GNUMCS1m:

A Monte Carlo Simulation Program

by Frédéric Y. Bois and Don R. Maszle

User’s Manual, software version 5.6.6

Copyright (©) 1997-2000,2004,2007-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License".

contact:

Frederic Bois

fbois@member.fsf.org

Chapter 1: Software and Documentation Licenses 1

1 Software and Documentation Licenses

1.1 Software license

GNU MCSim is free software; you can redistribute it and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
3 of the License, or (at your option) any later version. This program is distributed in the
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

1.2 Documentation license

The GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITTIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

GNU MCSim User’s Manual

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in

Chapter 1: Software and Documentation Licenses 3

another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

GNU MCSim User’s Manual

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Chapter 1: Software and Documentation Licenses 5

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but

you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

GNU MCSim User’s Manual

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

Chapter 1: Software and Documentation Licenses 7

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Chapter 2: Overview 9

2 Overview

GNU MCSim is a simulation and statistical inference tool for algebraic or differential equa-
tion systems. Other programs have been created to the same end, the Matlab family of
graphical interactive programs being some of the more general and easy to use. Still, many
available tools are not optimal for performing computer intensive and sophisticated Monte
Carlo analyses. GNU MCSim was created specifically to this end: to perform Monte Carlo
analyses in an optimized, and easy to maintain environment. The software consists in two
pieces, a model generator and a simulation engine:

- The model generator, "mod", was created to facilitate structural model definition and
maintenance, while keeping execution time short. You code your model using a simplified
syntax and mod translates it in C.

- The simulation engine is a set, of routines are linked to your model to produce executable
code. After linking, you will be able to run simulations of your structural model under a
variety of conditions, specify an associated statistical model, and perform Monte Carlo
simulations.

2.1 General procedure

Model building and simulation proceeds in four stages:

1. You create with any text editor (e.g., emacs) a model description file. The reference
section on mod, later in this manual gives you the syntax to use (see Chapter 5 [Setting-
up Structural Models], page 19). This syntax allows you to describe the model variables,
parameters, equations, inputs and outputs in a C-like fashion without having you to
actually know how to write a C program.

2. You instruct the model generator, mod, to preprocess your structural model description
file. Mod creates a C file, called model.c.

3. You compile and link the newly created model. c file together with a library containing
the other C routines (or with the other C files of the mcsim/sim directory). GNU
MCSim C code is standard, so you should be able to compile it with any standard C
compiler, for example GNU gcc. After compiling and linking, an executable simula-
tion program is created, specific of your particular model. These preprocessing and
compilation steps can be performed in Unix with a single shell command makemcsim
(in which case, the model.c is created only temporarily and erased afterward). This
produces the most efficient code for your particular machine.

4. You then write any number of simulation specification files and run them with the
compiled mcsim program. These simulation files describe the kind of simulation to run
(simple simulations, Monte Carlo etc.), various settings for the integration algorithm
if needed, and a description of one or several simulation conditions (eventually with a
statistical model and data to fit) (see Chapter 6 [Running Simulations|, page 35). The
simulation output is written to standard ASCII files.

Little or no knowledge of computer programming is required, unless you want to tailor
the program to special needs, beyond what is described in this manual (in which case you
may want to contact us).

Under Unix, a graphical user interface written in Tcl/Tk, XMCSim (called by the com-
mand xmcsim), is also provided. This menu-driven interface automatizes the compilation

10 GNU MCSim User’s Manual

and running tasks. It also offers a convenient interface to 2-D and 3-D plotting of the
simulation results.

2.2 Types of simulations

Five types of simulations are available:

e A simple simulation will solve (eventually integrate) the equations you specified, using
the default parameter values eventually overridden in the simulation specification file.
User-requested outputs are sent to an output file of your choice.

e "Monte Carlo" simulations will perform repeated (stochastic) simulations across a ran-
domly sampled region of the model parameter space (see [MonteCarlo() specification],
page 39).

e A Markov-chain Monte Carlo (MCMC) simulation performs a series of simulations
along a Markov chain in the model parameter space (see [MCMC() specification],
page 39). In MCMC simulations the random choice of a new parameter value is in-
fluenced by the current value. They can be used to obtain the Bayesian posterior
distribution of the model parameters, given a statistical model, prior parameter dis-
tributions (that you need to specify) and data for which a likelihood function can be
computed. The program handles hierarchical (e.g., random effects and mixed effects)
statistical models (see Section 6.2.5 [Setting-up statistical models], page 50).

e A "SetPoints" simulation solves the model for a series of specified parameter sets, listed
in a separate ASCII file (see [SetPoints() specification|, page 42). You can create these
parameter sets yourself (on a regular grid, for example) or use the output of a previous
Monte Carlo or MCMC simulation.

e An "OptimalDesign" procedure optimizes the number and location of observation times
for experimental conditions, in order to minimize the variance of a parameter or an
output you specify, given a structural model, a statistical model, and prior distributions
for their parameters (see [OptimalDesign() specification], page 42).

2.3 Major changes introduced with version 5.4.0

e GNU MCSim is now distributed under version 3 of the GNU General Public License.

e The installation scripts have been rewritten using GNU autoconf, automake and
libtool. This should make GNU MCSim easier to install and more portable.

e Systems Biology Markup Language (SBML) models are processed by libSBML if it is
installed.

e Tempered MCMC (for hard, multimodal posterior densities, and also for rapid and
guaranteed convergence) and stochastic optimizations are offered as options of the
MCMC () specification.

2.4 Major changes introduced with version 5.5.0

e The installation scripts have been regenerated using GNU autoconf version 2.69 which
fixes a potential security problem in the installation. That should be transparent to
the user.

e The mod utility can now generate C model files suitable for use with the R package
deSolve. Use mod -R for that.

Chapter 2: Overview 11

2.5 Major changes introduced with version 5.6.0

The keyword End is now mandatory at the end of every model. This is not backward
compatible (you will need to modify your older models accordingly) but we had to
implement this for technical reasons.

The StartTime () specification, setting the initial time for integration can now accept
a symbolic parameter. That allows you to treat the initial time as a random variable
in error-in-variable problems (when the initial time is an unknown).

The PrintStep() specification can read a list of variables to print (as Print () does).

In MCMC simulation, the jump kernel is now output in a file with the .kernel extension.
If the simulations are restarted in a continuation mode and if a kernel file with the same
name as the restart file (with an added .kernel extension) is present, the jump kernel
will restored to its saved value.

Delay differential equations can now be coded and solved using the CalDelay function.

Discontinuities in state variables can now be forced to happen at predefined times
through the Events () specification.

Chapter 3: Installation 13

3 Installation

3.1 System requirements

GNU MCSim is written in ANSI-standard C language. We are distributing the source
code and you should be able to compile it for any system, provided you have an ANSI C
compliant compiler.

Starting with version 5.0.0 GNU MCSim is using a few routines from the GNU Scientific
Library (1ibgsl). We recommend that you install version 1.5 (or higher) of the shared GSL
library, gslcblas library, and GSL include files on your system. Otherwise a few obscure
features will not be available (you’ll get a error message if you are trying to use them.)

Version 5.4.0 and higher of GNU MCSim can take advantage of (1ibSBML) to read
SBML models. If you choose to install libSBML on your system, we recommend that you
use version 3.3.2 (or higher) of libSBML. LibSBML needs an XML parser library (either
Expat, Xerces, or libxml2). The Expat library has worked well for us under Linux.

On any system we recommend the GNU gcc compiler (freeware). The automated instal-
lation script checks for the availability on your system of the tools needed for compilation
and proper running of the software. It should warn you of missing component and even-
tually adapt the installation to your needs (for example by installing the package locally if
you do not have superuser’s priviledges).

To run the graphical user interface XMCsim, you need a GNU/Linux or Unix system
with "XWindows", "Tcl/Tk" and "wish" installed.

3.2 Distribution
GNU MCSim source code is available on Internet through:

- http://savannah.gnu.org/projects/mcsim.

Packaged distributions are available at:

- http://ftp.gnu.org/gnu/mcsim,

- http://wuw.gnu.org/software/mcsim,

and mirror sites of the GNU project.

Three mailing lists are available for GNU MCSim users:

General info on GNU MCSim is broadcasted through:

- http://lists.gnu.org/archive/html/info-mcsim

You can subscribe to the info list by going to:

- http://lists.gnu.org/mailman/listinfo/info-mcsim.

You can request help from us, and from other GNU MCSim users, by sending email to:
- help-mcsim@gnu.org

(see http://lists.gnu.org/mailman/listinfo/help-mcsim for subscribing).
Help archives are found at:

- http://news.gmane.org/gmane. comp.gnu.mcsim,

- http://lists.gnu.org/archive/html/help-mcsim.

http://savannah.gnu.org/projects/mcsim
http://ftp.gnu.org/gnu/mcsim
http://www.gnu.org/software/mcsim
http://lists.gnu.org/archive/html/info-mcsim
http://lists.gnu.org/mailman/listinfo/info-mcsim
mailto:help-mcsim@gnu.org
http://lists.gnu.org/mailman/listinfo/help-mcsim
http://news.gmane.org/gmane.comp.gnu.mcsim
http://lists.gnu.org/archive/html/help-mcsim

14 GNU MCSim User’s Manual

You can report bugs to us, by sending email to:

- bug-mcsim@gnu.org
(http://lists.gnu.org/mailman/listinfo/bug-mcsim for subscribing).
Bugs archives are located at:

- http://news.gmane.org/gmane.comp.gnu.mcsim.bugs,

- http://lists.gnu.org/archive/html/bug-mcsim.

3.3 Machine-specific installation

3.3.1 Unix and GNU/Linux operating systems

To install on a Unix or GNU/Linux machine, download (in binary mode) the distributed
archive file to your machine. Place it in a directory where there is no existing mcsim
subdirectory that could be erased (make sure you check that). Decompress the archive with
GNU gunzip (gunzip <archive-name>.tar.gz). Untar the decompressed archive with tar
(tar xf <archive-name>.tar) (do man tar for further help). Move to the mcsim directory
just created and issue the following commands:

./configure
make
make check

The first command above checks for the availability of the tools needed for installation and
proper running of the software. The second compiles the mod program and the dynamic
libmcsim.so library and eventually compiles this manual in various formats. The third
checks whether the software is running and producing meaningful results in test cases.
In case of error messages, don’t panic: check the actual differences between the culprit
output file and the file sim.out produced by the checking. Small differences may occur
from different machine precision. This can happen for random numbers, in which case the
Markov chain simulations (MCMC) can diverge greatly after a while.

If you are logged in as "root" or have sufficient access rights, you can then install the
software in common directories in /usr by typing at the shell prompt:

make install

If this system-wide installation is successful the executable files mod, makemcsim, xmcsim are
installed in /usr/local/bin. The library libmcsim is placed in /usr/local/lib. A copy
of the mesim source directory (with the mod, sim, doc, samples, and xmcsim subdirectories)
is placed in /usr/local/share. If you have the GNU info system available, an mcsim node
is added to the main info menu, so that info mcsim will show you this manual. Finally,
a symbolic link to /usr/local/share/mcsim/doc, which contains the documentation files
and this manual (if it was generated), is created as /usr/share/doc/mcsim.

If you do not have the necessary access rights and want to install GNU MCSim in a
directory such as /home/me, type:
./configure prefix=/home/me

This will copy or move mod, makemcsim, and xmcsim in a /bin directory in the /home/me
directory, creating it if necessary. The library libmcsim.so will be moved to the
/home/me/1ib directory, etc.

mailto:bug-mcsim@gnu.org
http://lists.gnu.org/mailman/listinfo/bug-mcsim
http://news.gmane.org/gmane.comp.gnu.mcsim.bugs
http://lists.gnu.org/archive/html/bug-mcsim

Chapter 3: Installation 15

On certain platforms (Linux...), you will also need to do one of the following:
1) run ’ldconfig’ (see the man page if this is unfamiliar)
2) set the LD_LIBRARY_PATH (or equivalent) environment variable to contain the path
" Jusr/local/lib" or whatever you set so that programs can find the libSBML library at
run-time.

3.3.2 Other operating systems

Under other operating systems (Windows, etc.) or if everything else fails you should be
able to both uncompress and untar the archive with widely distributed archiving tools.
Refer to the documentation of your C compiler to create an executable mod file from the
source code files (getopt.c, lex.c, lexerr.c, lexfn.c, mod.c, modd.c, modi.c, modiSBML.c,
modiSBML2.c, modo.c, strutil.c) provided in the mod directory. If you want to process
SBML models it is best to install the libSBML library first. You would then compile mod
with the HAVE_LIBSBML flag defined (option ~-DHAVE_LIBSBML) and link with the library
(using the -1sbml directive). Place then the executable mod on your command path.

The sim directory contains all the source files (delays.c, getopt.c, lex.c, lexerr.c, lexfn.c,
list.c, Isodesl.c, lsodes2.c, matutil.c, matutilo.c, mh.c, modelu.c, optdsign.c, random.c,
sim.c, simi.c, siminit.c, simmonte.c, simo.c, strutil.c, yourcode.c) to create a dynamic li-
brary or a set of objects to link with the model.c files generated by mod after processing
your models. Compilation also requires reference to the config.h file sitting in the main
folder (one level above the sim directory). The -I.. option should make the compiler aware
of the correct location of config.h. Alternatively, config.h can be copied into the sim
directory to make the package complete (apart of model.c).

The final product should be an executable able to run your model. Linking with the

GNU Scientific Library (gsl) is recommended (but not mandatory. In that case, define the
HAVE_LIBGSL flag and link with the -1gsl and -1gslcblas (in that order!).

You are now ready to use GNU MCSim. We recommend that you go through the next
section of this manual, which walks you through an example of model building and running.

Chapter 4: Working Through an Example 17

4 Working Through an Example

Several models and simulation specification files are provided with the package as examples
(they are in the samples directory. You can try any of them. The linear regression model
is particularly simple, but to be more complete we will try here a nonlinear implicit model,
specified through differential equations.

Pharmacokinetics models describe the transport and transformation of chemical com-
pounds in the body. These models often include nonlinear first-order differential equations.
The following example is taken from our own work on the kinetics of tetrachloroethylene
(a solvent) in the human body (Bois et al., 1996; Bois et al., 1990) (see [Bibliographic
References|, page 59).

Go to the mcsim/samples/perc directory (installed either locally or by default in
usr/share under Unix or GNU/Linux). Open the file perc.model with any text editor
(e.g., emacs or vi under Unix). This file is an example of a model definition file. It is also
printed at in Appendix the end of this manual (see Section B.3 [perc.model], page 67).
You can use it as a template for your own model, but you should leave it unchanged for
now. In that file, the pound signs (#) indicate the start of comments. Notice that the file
defines:

e state variables for the model (for which differentials are defined), for example:
States = {Q_fat, # Quantity of PERC in the fat (mg)

Q_wp, # ... in the well-perfused compartment (mg)
Q_pp, # in the poorly-perfused compartment (mg)
Q_liv, # ... in the liver (mg)

Q_exh, # ... exhaled (mg)

Q_met} # Quantity of metabolite formed (mg)

e output variables (obtainable at any time as analytical functions of the states, inputs
and parameters), for example:

Outputs = {C_liv, # mg/l in the liver
C_alv, # ... in the alveolar air
C_exh, # ... in the exhaled air
C_ven, # ... in the venous blood
Pct_metabolized, # % of the dose metabolized
C_exh_ug} # ug/l in the exhaled air

e input variables (independent of the others variables, and eventually varying with time),
for example:

Inputs = {C_inh, # Concentration inhaled (ppm)
Q_ing}; # Quantity ingested (mg)
e model parameters (independent of time), such as:
LeanBodyWt = 55; # lean body weight (kg)

e model initialization and parameters’ scaling (the parameters used in the dynamic equa-
tions can be made functions of other parameters: for example volumes can be computed
from masses and densities, etc.),

e system’s dynamics (differential or algebraic equations defining the model per se),

e equations to compute the output variables.

18 GNU MCSim User’s Manual

This model definition file as a simple syntax, easy to master. It needs to be turned
into a C program file before compilation and linking to the other routines (integration, file
management etc.) of GNU MCSim. You will use mod for that. First, quit the editor and
return to the operating system.

To start mod under Unix just type mod perc.model. After a few seconds, with no error
messages if the model definition is syntactically correct, mod announces that the model.c
file has been created. It should operate similarly under other operating systems.

The next step is to compile and link together the various C files that will constitute the
simulation program for your particular model. Note that each time you want to change
an equation in your model you will have to change the model definition file and repeat
the steps above. However, changing just parameter values or state initial values does not
require recompilation since that can be done through simulation specification files.

e Under Unix, the simplest is to use the makemcsim script. Just type makemcsim and
compilation will be done automatically (see Section 5.2 [Using makemcsim|, page 20).
An executable mcsim.perc is created. You can rename it if you wish.

e Under other operating systems, you should use the command make or its equivalent to
compile and link together the model.c file created by mod and the other C files of the
sim directory (see Chapter 3 [Installation], page 13). That should create an application
(you should give it a name specific to the model you are developing, e.g., mcsim.perc).
Refer to your compiler manual for details on how to use your programming environment.
Your executable mcsim. perc program is now ready to perform simulations.

To start your GNU MCSim program just type mcsim.perc (if you gave it that name)
under Unix. After an introductory banner (telling in particular which model file the program
has been compiled with), you are prompted for an input file name: type in perc.lsodes.in
(see Section B.4 [perc.lsodes.in], page 72, to see this file in Appendix), then a space, and
then type in the output file name: perc.lsodes.out. After a few seconds or less (depending
on your machine) the program announces that it has finished and that the output file is
perc.lsodes.out. You can open the output file with any text editor or word processor,
you can edit it for input in graphic programs etc.

You can try the various demonstration models provided in the samples directory and
observe the output you obtain. You can then start programming you own models and doing
simulations. The next sections of this manual reference the syntax for model definition and
simulation specifications.

Chapter 5: Setting-up Structural Models 19

5 Setting-up Structural Models

The model generator, "mod", was created to facilitate structural model definition and
maintenance, while keeping short execution time through compilation. This chapter ex-
plains how to use mod, and how to code your models using a simplified syntax that mod can
translate in C (creating thereby a model.c file).

After compiling and linking of the newly created model.c file together with the other
C files of the mcsim/sim directory (or after linking with a dynamic library 1ibmcsim.so),
an executable simulation program is created, specific of your particular model. These
preprocessing and compilation steps can be performed in Unix with a single shell command
makemcsim (in which case, the model.c is created only temporarily and erased after that).

Several examples of model simulation files are included in the mcsim/samples directory.
Some of them are reproduced in Appendix (see Appendix B [Examples|, page 65).

5.1 Using mod to preprocess model description files

The mod program is a stand-alone facility. It takes a model description file in the "user-
friendly" format described below (see Section 5.3 [Syntax of mod files], page 20) and cre-
ates a C language file model.c which you will compile and link to produce the simulation
program. Mod allows the user to define equations for the model, assign default values to pa-
rameters or default initial values to model variables, and to initialize them using additional
algebraic equations. Mod lets the user create and modify models without having to maintain

C code. Under Unix or GNU/Linux, the command line syntax for the mod program is:
mod [input-file [output-file]]

where the brackets indicate that the input and output filenames are optional. If the input
filename is not specified, the program will prompt for both. If only the input filename is
specified, the output is written by default to the file model.c. Unless you feel like doing
some makefile programming, we recommend using this default since the makefile for GNU
MCSim assumes the C language model file to have this name. You have to have prepared a
text file containing a description of the model following the syntax described in the following
(see Section 5.3 [Syntax of mod files|, page 20).

The following options are available:
-h, -H gives a short online help.

-R generate a C file of the format requested for use by the deSolve package of the
R software for statistical analysis; deSolve implements differential equations solvers with
interesting capabilities.

Most error messages given by mod are self-explanatory. Where appropriate, they also give
the line number in the model file where the error occurred. Beware, however, of cascades
of errors generated as a consequence of a first one; so don’t panic: start by fixing the first
one and rerun mod. Note that when using the -R option, care has to be taken to adopt the
deSolve code conventions (see the deSolve manual on R CRAN). If you get really stuck
you can send a message to the help mailing list (see Chapter 3 [Installation|, page 13) or to
the authors of this manual.

20 GNU MCSim User’s Manual

5.2 Using makemcsim to fully process model files

makemcsim is a Unix sh shell script that further facilitates preprocessing and compilation.
You run makemcsim by entering it at the command prompt:

makemcsim [model-filel

where the brackets indicate that the model filename is optional. If a model filename is not
specified, the first file having extension .model (by alphabetical order) is used. Makem-
csim calls mod if the model file has changed since last compilation, compiles the model.c
generated, links it to the shared 1ibmcsim. so library to create an executable mcsim.<root-
model-name>. The extension root-model-name corresponds to your model filename (with-
out its last extension if it has one; i.e. typically, without the .model extension). The
model.c file is deleted afterward; if you want to inspect it (for example, if you got error
messages from mod), run mod on your model definition file.

Two variants of makemcsim are also available: makemcsims, which creates a standalone
version (no dynamic libraries needed), and makemcsimd, which creates a standalone version
with debugging symbols included (so that you can use gdb, for example, to check what the
code does).

5.3 Syntax of the model description file

The model description file is a text (ASCII) file that consists of several sections, including
global declarations, dynamics specifications (with derivative calculations), model initializa-
tion ("scaling"), and output computations. Here is a template for such a file (for further
examples see Appendix B [Examples|, page 65):

Model description file (this is a comment)
<Global variable specifications>
Initialize {
<Equations for initializing or scaling model parameters>
b
Dynamics {
<Equations for computing derivatives of the state variables>
3
Jacobian {
<Equation for the Jacobian of the state derivatives>
b
CalcOutputs {
<Equations for computing output variables>
b
End. # mandatory ending keyword

Initialize, Dynamics, Jacobian and CalcOutputs are reserved keywords and, if
used, must appear as shown, followed by the curly braces which delimit each section (see
Section 5.3.7 [Model initialization], page 28; Section 5.3.8 [Dynamics section]|, page 29;
Section 5.3.10 [Output calculations|, page 30). Please note that at least one of the sections
Dynamics or CalcOutputs should be defined, and that Dynamics must be used if the
model includes differential equations. Finally the model definition file must have the End

Chapter 5: Setting-up Structural Models 21

keyword at the beggining of a line, eventually preceeded by white spaces or tabs. Text
after the End keyword is ignored.

5.3.1 General syntax

The general syntax of the model description file is as follows:

Comments begin with a pound sign (#) and continue to the end of the line.
Blank lines are allowed and ignored.
All commands can span several lines and are terminated by a semi-colon (;).

Four types of variables are used: state variables, output variables, input variables, and
parameters (see Section 5.3.2 [Global variable declarations|, page 23). The name of
a variable should be a valid C identifier, starting with a letter or underscore (_) and
followed by any number of alpha-numeric characters or underscores, up to a maximum
of 80. Variable names are case sensitive. Note that the name IFN, in capital letters, is
reserved by the program and should not be used as parameter or variable name.

Variable assignments have the following syntax:
<variable-name> ’=’ <constant-value-or-expression> ’;’

The equal sign is needed. The right-hand side expression can be a wvalid C
mathematical expression including numerical constants, already defined variables,
standard ANSI C mathematical functions (see https: //en . wikipedia . org/
wiki / C_mathematical_functions), and GNU MCSim’s "special functions" (see
Section 5.3.4 [Special functions|, page 25) or "input functions" (see Section 5.3.5
[Input functions|, page 27). Special functions can take already defined variables,
constant values or expressions as parameters. Input functions can only be used on the
right hand side of assignments to input variables.
Colon conditional assignments have the following syntax:

<variable-name> = (<test> 7 <value-if-true> : <value-if-false>);
For example:

Adjusted_Param = (Input_Var > 0.0 ? Param * 1.1 : Param);
In this example, if ‘Input_Var’ is greater than 0, the parameter ‘Adjusted_Param’
is computed as the product of ‘Param’ by ‘1.1’; otherwise ‘Adjusted_Param’ is equal
to ‘Param’. Note that conditional assignments can be nested (i.e., <value-if-true> or
<value-if-false> can themselves be a conditional expression). The comparison operators
allowed are the equality operator ==, and non-equality operators !=, <, > <> <= and
>=.
More complex conditions can also be specified, but the Boolean AND, OR and NOT
operations have not yet been implemented. You can use:
(C’A’*’B?)>0) for AND ((’A’+’B’)>0) for OR (°A’==0) for NOT
Vectors: (Warning: for now, the square bracket notation can be only used in the
model definition file. It is not recognized in simulation specification files; for those,
the underscore ((_) unrolling syntax can be used to address vector components. This
limits the usefulness of this feature).

Vectors’ declaration: To declare a variable as a vector use the one of the two following
syntaxes when you first define it:

https://en.wikipedia.org/wiki/C_mathematical_functions
https://en.wikipedia.org/wiki/C_mathematical_functions

22

GNU MCSim User’s Manual

<variable-name> ’[’ <integer> ’]’

<variable-name> ’[’ <integer> ’-’ <integer> ’]’
The variable name is immediately followed by an opening square bracket (’[’). The
array index bounds (which define the valid indices) can be given as (long) positive or
null integers separated by an hyphen (’-’) (spaces are allowed). In this case the second
integer must be higher the first. They are followed by a closing bracket (’]’). The
hyphen and second integer are optional. If only one bound (integer) is given, only the
component with corresponding index is declared. Both syntaxes can be mixed. For
example:

States = {y[0-9]};

alphal0-2] = 1;

betal[0] = 1;
betall] = 2;
betal[2-4];

The previous lines define a state variable ‘y’ as a vector of length 10, with valid indices
ranging between 0 and 9, included. The parameter vector ‘alpha’ is defined with range
0 to 2, each component being initialized to value 1. For parameter ‘beta’, components
0, 1 and 2 to 4 are initialized separately (components 2 to 4 are initialized with default
value 0).

Accessing vectors’ components: After declaration, vector’s components can be accessed
individually using the square bracket syntax:

<variable-name> ’[’ <integer> ’]’

For example:

Outputs = {x[0-1]1};
betal[0] = 0;
betal[1l] = betal[0] + 1;

CalcOutputs {
x[0] = betal[0] * t;
x[1] = betall] * t;
}
In the above example, ‘beta[0]’, ‘beta[1]’, ‘x[0]’, and ‘x[1]’ are accessed individu-
ally. The variable ‘t’ refers to the implicit variable 'time’.
Vectorization of equations: The equations specifying the model, which consist in assign-
ments, can be vectorized in the Initialize, Dynamics and CalcOutputs sections (but
not in the global section) (see Section 5.3.2 [Global variable declarations|, page 23).
Vectorization allows you to specify an operation for an entire vector or parts of it. The
following syntax should be used:
<var-name>’ [’<integer>’-’<integer>’]’ = <vectorized-expression>;
On the right-hand side, the vectorized expression should be a valid C mathematical
expression including numerical constants, already defined state, input, output, other
(parameter) variables or vectors, and standard ANSI C mathematical functions or
special functions (see Section 5.3.4 [Special functions|, page 25). Here also, input
functions (see Section 5.3.5 [Input functions|, page 27) can only be used on the right
hand side of assignments to input variables. Vector indices on the right-hand side
can take the special form of "bracketed expressions". Bracketed expressions can be

Chapter 5: Setting-up Structural Models 23

composed of integers, the 4 basic arithmetic operators ('+’, ’-’, 7*’/ /)| parentheses
and the index letter ’i’. The running index ’i’ points in turn to each component in the
range specified on the left-hand side (imagine that the range given on the left-hand side
corresponds to a 'for’ loop with index ’i’ running from the lower bound to the upper
bound). This is best understood by looking at some code. In the previous example,
the assignments to x[0] and x[1] obviously deserve vectorization. This is achieved by
the following statements:

CalcOutputs {
x[0-1] = betalil * t;
}

Here, the index ’i’ refers to the values 0 and 1. Here is another example:

Outputs{x[1-101};
CalcOutputs {

x[1] = 0;

x[2-10] = x[i-1] + 1;
}

This is equivalent to:

Outputs{x[1-10]};
CalcOutputs {
x[1] = 0;
x[2] x[1] + 1;

x[10] = x[9] + 1:
}

and will assign value 1 to ‘x[2]°, 2 to ‘x[3]’, etc. On the right-hand side, more com-
plicated bracketed expressions like ‘[(2*i-1)/(i+3)]’ can be used. Another, working,
example of vector use is given in the mcsim/samples/pde2 directory.

Alternative underscore’ (’_’) syntax: Individual vector components can be declared
and used (everywhere in the model file) with the following syntax:

<variable-name>’_’<integer>

The integer indicates which component of the vector is referred to. For example ‘x_1’
is strictly equivalent to ‘x[1]’. Note!: No space are allowed between the variable name,
the underscore and the integer. Note alsol: This syntax is the only one that can be
used in simulation specification files. If you declare a parameter ‘beta[1-10]’ in your
model definition file, the only way to refer to it in the simulation input file will be
through its individual components ‘beta_1’, ‘beta_2’, ... etc. This limitation will be
removed in a future release of the software.

e The End keyword must used to indicate model termination.

5.3.2 Global variable declarations

Commands not specified within the delimiting braces of another section are considered to
be global declarations. In the global section, you first declare the state, input, and output
variables. There should be at least one state or output variable in your model.

24 GNU MCSim User’s Manual

e States are variables for which a first-order differential equation is defined in the
Dynamics section (see Section 5.3.8 [Dynamics section], page 29) (higher orders or
partial differential equations are not allowed).

e Inputs are variables independent of the others variables, but eventually varying with
time (for example an exposure concentration to a chemical).

e Outputs are dependent model variables (obtainable at any time as analytical functions
of the states, inputs or parameters) that do not have dynamics. They must receive
assignments in either the Dynamics or CalcOutputs sections.

The format for declaring each of these variables is the same, and consists of the keyword
States, Inputs or Outputs followed by an equal sign and a list of the variable names
enclosed in curly braces as shown here:

States = {Qb_fat, # Benzene in the fat
Qb_bm, # ... in the bone marrow
Qb_liv}; # ... in the liver and others
Inputs = {Q_gav, # Gavage dose

C_inh}; # Inhalation concentration

Outputs = {Cb_exp, # Concentration in expired air
Cb_ven}; # ... in venous blood

After being defined, states, inputs and outputs can then be given initial values (con-
stants or expressions). Inputs can also be assigned input functions, described below (see
Section 5.3.5 [Input functions|, page 27). Some examples of initialization are shown here:

Qb = 0.1; # Default initial value for state variable Qb

Input variable assigned a periodic exponential input function
Q = PerExp(1, 60, 0, 1); # Magnitude of 1.0,
period of 60 time units,
TO in period is O,
Rate constant is 1.0
If a state, input, or output variable is not explicitly given an initial value, that value will
be set to zero by default. Initial values are reset to their specified value by the simulation
program at the start of each Simulation (see [Simulation sections|, page 48).

All the other variables are "parameters". Model parameters you want to be able to
change in simulation input files should be declared in the global section. For example:

Wind_speed; # (m/s) Local wind speed

Parameters are by default assigned a value of zero. To assign a different nominal values,
use the assignment rules given above. For example:

BodyWt = 65.0 + sqrt(15.0); # Weight of the subject (in kg)

All parameters and variables are computed in double precision floating-point format.
Initial values should not be such as to cause computation errors in the model equations;
this is likely to lead to crashing of the program (so, for example, do not assign a default
value of zero to a parameter appearing alone in a denominator). Note that the order of
global declarations matters within the global section itself (i.e., parameters and variables

Chapter 5: Setting-up Structural Models 25

should be defined and initialized before being used in assignments of others), but not with
respect to other blocks. A parameter defined at the end of the description file can be used
in the Dynamics section which may appear at the beginning of the file. Still, such an inverse
order should be avoided. For this reason, the format above, where global declarations come
first, is strongly suggested to avoid confusing results. Note again that the name IFN, in
capital letters, is reserved by the program and should not be used as parameter or variable
name. Finally, if a parameter is defined several times, only the first definition is taken into
account (a warning is issued, but beware of it).

5.3.3 Model types

This section deals with structural models. Statistical models that you setup for model
calibration and data analysis are defined in the simulation input files, through statistical
distribution functions. They are dealt with later in this manual (see Section 6.2.5 [Setting-
up statistical models|, page 50).

GNU MCSim can easily deal with purely algebraic structural models. You do not need
to define state variables or a Dynamics section for such models. Simply use input and output
variables and parameters and specify the model in the CalcOutputs section. You can use
the time variable t if that is natural for your model. If your model does not use t, you
will still need to specify "output times" in Print () or PrintStep() statements to obtain
outputs: you can use arbitrary times. If you do not use t as "independent" model variable,
you will also need do define a Simulation section (see [Simulation sections|, page 48) for
each combination of values for the independent variables of your model. This may be clumsy
if many values are to be used. In that case, you may want to use the variable t to represent
something else than time.

Ordinary differential models, with algebraic components, can be easily setup with GNU
MCSim. Use state variables and specify a Dynamics section. Time, t is the integration
variable, but here again, t can be used to represent anything you want. For partial differen-
tial equations some problems might be solved by implementing line methods (see examples
in mcsim/samples/pdel and mcsim/samples/pde2)...

You can use GNU MCSim for discrete-time dynamic models (or difference models). That
is a bit tricky. Assignments in the CalcOutputs section are volatile (not memorized), so the
model equations have to be given in a Dynamics section. But the model variables should
still be declared as outputs, because they should not be updated by integration. However,
you need at least one true differential equation in the Dynamics section, so you should
declare a dummy state variable (and assign to its derivative a constant value of zero). You
also want the calls to Dynamics to be precisely scheduled, so it is best to use the Euler
integration routine (see [Integrate() specification], page 38) which uses a constant step.
Since Euler may call repeatedly Dynamics at any given time, you want to guard against
untimely updating... Altogether, we recommend that you examine the sample files in the
mcsim/samples/discrete directory provided with the source code for GNU MCSim.

5.3.4 Special functions
The following special functions (whose name is case-sensitive) are available to the user for
assignment of parameters and variables in the model definition file:

e BetaRandom(alpha, beta, a, b): returns a Beta distributed variate on the interval
[a,b] with shape parameters alpha and beta;

26

GNU MCSim User’s Manual

BinomialBetaRandom(E, alpha, beta): return random variate, of mathematical ex-
pectation E, drawn from a binomial distribution with probability p, p being Beta
distributed with parameters alpha and beta;

BinomialRandom(p, N): returns a binomially distributed random variate;
CauchyRandom(s): returns a Cauchy distributed random variate with scale s;
CDFNormal (x): the normal cumulative density function;

Chi2Random(dof): returns a Chi-squared random variate with dof degrees of freedom;
erfc(x): the complementary error function;

ExpRandom(beta): returns an exponential variate with inverse scale beta;

GammaRandom(alpha): returns a gamma distributed random variate with shape pa-
rameter alpha and inverse scale equal to 1;

GetSeed (): returns the current value of the random generator seed;

GGammaRandom(alpha, beta): returns a gamma distributed random variate with shape
parameter alpha and inverse scale beta;

InvGGammaRandom(alpha, beta): returns an inverse gamma distributed random vari-
ate with shape parameter alpha and scale parameter beta;

1nDFNormal (x, mean, sd): the natural logarithm of the normal density function;
1nGamma (x): the natural logarithm of the gamma function;

LogNormalRandom(mean, sd): returns a lognormally distributed variate with geomet-
ric mean mean and geometric standard deviation sd (i.e., the log of the returned variate
is normally distributed with mean In(mean) standard deviation In(sd);

LogUniformRandom(a, b): returns variate log-uniformly distributed on the interval
[a,b];

NormalRandom(mean, sd): returns a normally distributed random variable with pre-
scribed mean and standard deviation;

PiecewiseRandom(min, a, b, max): the distribution of the returned variate has the
form of a truncated triangle, with base from min to max and a plateau between a and
b. If a = b, the distribution is the triangular distribution;

PoissonRandom(mu): returns a Poisson-distributed random variate, of rate mu;

SetSeed(seed): sets the current value of the pseudo-random generator seed to the
specified seed. That seed can be any positive real number. Seeds between 1.0 and
2147483646.0 are used as is, the others are rescaled within those bounds (and a warning
is issued);

StudentTRandom(dof, mean, sd): returns a Student ¢ distributed random variate with
dof degrees of freedom and given mean and standard deviation;

TruncInvGGammaRandom(alpha, beta, a, b): returns a truncated inverse gamma dis-
tributed random variate with shape parameter alpha and scale beta, in the range [a,b].
Explicit specification of a,b is required;

TruncLogNormalRandom(mean, sd, a, b): returns a truncated lognormal variate with
geometric mean mean and geometric standard deviation sd, in the range [a,b]. Explicit
specification of a,b is required;

Chapter 5: Setting-up Structural Models 27

e TruncNormalRandom(mean, sd, a, b): returns a truncated normal variate with pre-
scribed mean and standard deviation, in the range [a,b]. Explicit specification of a,b
is required;

e UniformRandom(min, max): returns a uniformly distributed random variable, sampled
between min and max. The algorithm used is that of Park and Miller (Barry, 1996; Park
and Miller, 1988; Vattulainen et al., 1994) (see [Bibliographic References|, page 59). A
default random generator seed (314159265.3589793) is used.

Note: for all the above random number generating functions, a default random generator
seed is used. It can be changed with the function SetSeed. Note also that assignment of
a random number generating function to a state variable derivative will define a form of
stochastic differential equation. GNU MCSim’s integration routines are not particularly
suited to the resolution of such equations. If you wish to try it anyway, you may want to
consider using the "robust" Euler method (see [Integrate() specification], page 38).

5.3.5 Input functions

These functions can be used in special assignments, valid only for input variables. Inputs
can be initialized to a constant or to a standard mathematical expression, or assigned one
of the following input functions:

e PerDose() specifies a periodic input of constant <magnitude>. The input begins at
<initial-time> in the <period> and lasts for <exposure-time> time units. Syntax:

<input variable> = PerDose(<magnitude>, <period>, <initial-time>,
<exposure-time>) ;

e PerExp() specifies a periodic exponential input. At time <initial-time> in the <period>
the input rises instantaneously to <magnitude> and begins to decay exponentially with
the constant <decay-constant>. The input is turned off once the magnitude reaches a
negligible fraction (107'7) of its original value. Note that the input does not accumulate
across periods, it resets at each period start. Syntax:

<input variable> = PerExp(<magnitude>, <period>, <initial-time>,
<decay-constant>) ;

e NDoses () specifies a number of stepwise inputs of variable magnitude and their starting
times. The first argument, <n>, is the number of input steps and start times. Next
come a list of magnitudes and a list of corresponding initial times. Each list is comma-
separated. The duration of each input step is computed automatically by difference
between the listed times. Currently this function can only be used in the simulation
description file, and not in the model description file (which simply implies that you
cannot use it as a default). Syntax:

<input variable> = NDoses(<n>, <list-of-magnitudes>,
<list-of-initial-times>);
Note that the list of times must begin at the starting time of the simulation (typically
time zero), even if the magnitude at that first time is zero.

e Spikes() specifies a number of instantaneous inputs of variable magnitude and their
exact times of occurrence. The first argument, <n>, is the number of inputs and input
times. Next come a list of magnitudes and a list of times. Each list is comma-separated.
Currently this function can only be used in the simulation description file, and not in

28 GNU MCSim User’s Manual

the model description file (which simply implies that you cannot use it as a default).
Syntax:
<input variable> = Spikes(<n>, <list-of-magnitudes>,
<list-of-times>);

The arguments of input functions can either be constants or variables. For example, if
‘Mag’ and ‘RateConst’ are defined model parameters, then the input variable ‘Q_in’ can be
defined as:

Q_in = PerExp(Mag, 60, O, RateConst);

In this way the parameters of input functions can, for example, be assigned statistical
distributions in Monte Carlo simulations (see [Distrib() specification]|, page 44). Variable
dependencies are resolved before each simulation specified by a Simulation section (equiv-
alently Experiment) (see [Simulation sections], page 48).

For each of the periodic functions, a single exposure beginning at time initial-time can
be specified by giving an effectively infinite period, e.g. 10'°. The first period starts at the
initial time of the simulation. Magnitudes change exactly at the times given.

Input variables assigned input functions can be combined to give a lot of flexibility
(e.g., an input variable can be declared as the sum of others). Separate inputs can also be
declared in the global section of the model definition file and combined in the Dynamics (see
Section 5.3.8 [Dynamics section], page 29) and CalcOutputs (see Section 5.3.10 [Output
calculations], page 30) sections.

5.3.6 In line functions

Inline() functions can be placed in the various sections of a model file to introduce stan-
dard C code (or whatever) in your models. Text placed between the parentheses of an
Inline function will be passed as is to the C compiler. That text can span several lines
but its size should not exceed MAX_EQN (defined in lex.h); In case it does, you can in-
crease MAX_EQN (and recompile mod...) or you can split you text between any number
of Inline() in a row. It is your responsibility to make sure that the code passed can be
compiled without errors!

Example:
Inline(printf("hello/n"););

Note also that the inlined code is likely to be dependent on whether or not you are using
the -R option of mod.

5.3.7 Model initialization

The model initialization section begins with the keyword Initialize (the keyword Scale is
obsolete but is still understood) and is enclosed in curly braces. The equations given in this
section will define a function (subroutine) that will be called by GNU MCSim after the as-
signments specified in each Simulation section are done (see [Simulation sections|, page 48).
They are the last initializations performed. The model file in mcsim/samples/perc gives
an example of the use of Initialize (see Section B.3 [perc.model], page 67, in Appendix).

All model variables and parameters, except inputs, can be changed in this section. Mod-
ifications to state variables affect initial values only. In this section, state variables, outputs

Chapter 5: Setting-up Structural Models 29

and parameters (but not input variables) can also appear at the the right-hand side of
equations. The integration variable can be accessed if referred to as t

Warning: Assignments to state variables in the Initialize section override the same
assignments made in input files.

Additional parameters (to those declared in the global section) may be used within the
section. They will be declared as local temporary variables and their scope will be limited to
the Initialize section (i.e., their value and existence will be forgotten outside the section).

The dt () operator (see Section 5.3.8 [Dynamics section], page 29) cannot be used in this
section, since derivatives have not yet been computed when the scaling function is called.

5.3.8 Dynamics section

The dynamics specification section begins with the keyword Dynamics and is enclosed in
curly braces. The equations given in this section will be called by the integration routines at
each integration step. Dynamics must be used if the model includes differential equations.

Additional parameters (to those declared in the global section) may be used for any
calculations within the section. They will be declared as local temporary variables. (Note,
for example, the use of ‘Cout_fat’ and ‘Cout_wp’ in the perc.model sample file). Local
variables are not accessible from the simulation program, or from other sections of the model
definition file, so don’t try to output them.

Each state variable declared in the global section must have one corresponding differential
equation in the Dynamics section. If a differential equation is missing, mod issues an error
message such as:

Error: State variable ’Q_foo’ has no dynamics.
and no model.c file or executable program will be created.

The derivative of a state variable is defined using the dt () operator, as shown here:

dt(state-variable) ’=’ constant-value-or-expression ’;’

The right-hand side can be any valid C expression, including standard math library calls
and the special functions mentioned above (see Section 5.3.4 [Special functions], page 25).
Note that no syntactic check is performed on the library function calls. Their correctness
is your responsibility.

The dt () operator can also be used in the right-hand side of equations in the dynamics
section to refer to the value of a derivative at that point in the calculations. For example:

dt (Qm_in) = Qmetabolized - dt(Qm_out);

The integration variable (e.g., time) can be accessed if referred to as t, as in:

dt(Qm_in) = Qmetabolized - t;

Output variables can also be made a function of t in the Dynamics section.

Note that while state variables, input variables and model parameters can be used on
the right-hand side of equations, they cannot be assigned values in the Dynamics section. If
you need a parameter to change with time, you can declare it as an output variable in the
global section. Assignments to states, inputs or parameters in this section causes an error
message like the following to be issued:

Error: line 48: ’YourParm’ used in invalid context.
Parameters cannot be defined in Dynamics{} section.

30 GNU MCSim User’s Manual

5.3.9 Delay differential equations
GNU MCSim can solve delay differential equations.

Delay differential equations are equations that depend on past values of the state vari-
ables, say at time t-tau instead of at time t.

This is done very easily in GNU MCSim models with the CalcDelay funtion. Its syntax
is:

CalcDelay (<variable>, <delay>);

The variable must be a declared state or output variable. CalcDelay() will return its
past value (at time delay). The delay specified must be either a declared parameter or a
constant floating point or integer value. For example:

tau = 100;
dt (Q1) = k * CalcDelay(Q3, tau);
dt (Q2) = k * CalcDelay(Q3, 10);
