Python Tutorial
Release 2.6.1

Guido van Rossum

Fred L. Drake, Jr., editor

April 06, 2009

Python Software Foundation
Email: docs@python.org






A Glossary

B About these documents
B.1 Contributors to the Python Documentation

C History and License
C.1 History of the software

CONTENTS

C.2 Terms and conditions for accessing or otherwise using Python . . . . . . . ... ... ...

C.3 Licenses and Acknowledgements for Incorporated Software.
D Copyright

Index

11
11
12
15

23

25







Python Tutorial, Release 2.6.1

Release?2.6
Date April 06, 2009

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together
with its interpreted nature, make it an ideal language for scripting and rapid application development in many
areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web siteitp://www.python.org/and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system.
It helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the
tutorial can be read off-line as well.

For a description of standard objects and modules, see the Python Library Reference document. The Python
Reference Manual gives a more formal definition of the language. To write extensions in C or C++, read Extending
and Embedding the Python Interpreter and Python/C API Reference. There are also several books covering Python
in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs,
and you will be ready to learn more about the various Python library modules described in the Python Library
Reference.

The Glossaryis also worth going through.

CONTENTS 1


http://www.python.org/

Python Tutorial, Release 2.6.1

2 CONTENTS



APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library #b2to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{@gm The Python Library
Referencp

abstract base classAbstract Base Classes (abbreviated ABCs) complemecit-typingby providing a way to
define interfaces when other techniques Iiasattr() would be clumsy. Python comes with many
builtin ABCs for data structures (in thellections module), numbers (in theumbers module), and
streams (in thé@ module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-lengtraccepts or passes (if in the function definition or call)
several positional arguments in a list, white does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an objecto has an attribute it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cachedyc and.pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on avirtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic classAny class which does not inherit froobject . Seenew-style classClassic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For examjié(3.15) converts the floating point number to the inte-
ger 3, but in 3+4.5 , each argument is of a different type (one int, one float), and both must be con-
verted to the same type before they can be added or it will rai$gpgError . Coercion between
two operands can be performed with th@erce builtin function; thus,3+4.5 is equivalent to calling
operator.add(*coerce(3, 4.5)) and results inoperator.add(3.0, 4.5) . Without co-
ercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.gfloat(3)+4.5 rather than jusB+4.5 .



http://www.python.org/~{}guido/

Python Tutorial, Release 2.6.1

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1 ), often writteni in mathematics oj in engineering. Python has builtin support for complex
numbers, which are written with this latter notation; the imaginary part is written vyitbudfix, e.g.,3+1j .
To get access to complex equivalents of tieth module, usemath . Use of complex numbers is a fairly
advanced mathematical feature. If you're not aware of a need for them, it's almost certain you can safely
ignore them.

context manager An object which controls the environment seen inwith statement by defining
_enter_ () and__exit () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decoratorsdassmethod()  andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

Seethe documentation for function definitigim The Python Language Referehéar more about decora-
tors.

descriptor Any new-styleobject which defines the methodsget () , set () ,or__delete ()
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, usinga.bto get, set or delete an attribute looks up the object naiadhe class dictionary foa,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, Iseglementing Descriptorén The Python Language
Reference

dictionary An associative array, where arbitrary keys are mapped to values. The dis¢ ofclosely resembles
that forlist , but the keys can be any object with ahash__ () function, not just integers. Called a
hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into thec__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation
of the object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or
attribute signature rather than by explicit relationship to some type object (“If it looks like a duck and
quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests tgieg)
or isinstance() . (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employbkasattr() tests olEAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of maényy andexcept statements. The technique contrasts with the
LBYLstyle common to many other languages such as C.

4 Appendix A. Glossary


http://www.python.org/dev/peps/pep-0343

Python Tutorial, Release 2.6.1

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There
are alsostatemerd which cannot be used as expressions, sugbrias or if . Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

finder An object that tries to find thdoader for a module. It must implement a method named
find_module() . SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

__future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expressiod currently evaluates t@. If the module
in which it is executed had enabléde divisionby executing:

from _ future  import division

the expressioil/4 would evaluate t@.75 . By importing the _future_ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> import _ future

>>>  future_ . division

_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage col-
lection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using gield statement instead ofraturn  statement. Generator functions often contain one
or morefor orwhile loops whichyield elements back to the caller. The function execution is stopped
at theyield keyword (returning the result) and is resumed there when the next element is requested by
calling thenext() method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optibnaxpression. The combined expression
generates values for an enclosing function:

>>> sum(i *i for i in range (10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executeS€Pythen
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter to
be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much
finer granularity), but so far none have been successful because performance suffered in the common single-
processor case.

hashable An object is hashableif it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needsen () or__cmp_ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is thielif)



http://www.python.org/dev/peps/pep-0302

Python Tutorial, Release 2.6.1

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python. Good for beginners, it also serves as clear example
code for those wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekiién currently
evaluates t@ in contrast to th@.75 returned by float division. Also calleitbor division When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (suchfesat ), the result will be coerced (seeercior)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using/theoperator instead of the operator. See also
future_.

importer An object that both finds and loads a module; botimderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just fithch  with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remenhiedp(x) ).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
alsointeractive

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (suchles , str , andtuple ) and some non-sequence types liket andfile and
objects of any classes you define with ariter__ () or __getitem__() method. Iterables can be
used in &or loop and in many other places where a sequence is neeill (, map() , ...). When an
iterable object is passed as an argument to the builtin funiteof) , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to calliter()  or deal with iterator objects yourself. Ther statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. Séeratso,
sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the itena¢atld method return suc-
cessive items in the stream. When no more data are availaBtepdteration exception is raised
instead. At this point, the iterator object is exhausted and any further callstext§ method just raise
Stoplteration again. Iterators are required to have arter__ () method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as alist ) produces a fresh new iterator each time you pass it titéh@  function or use it in dor
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found itterator Typegin The Python Library Referenge
keyword argument Arguments which are preceded withvariable_name=  in the call. The variable name

designates the local name in the function to which the value is assighed used to accept or pass a
dictionary of keyword arguments. Sesgjument

lambda An anonymous inline function consisting of a singbgressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolammbda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with thEAFP approach and is characterized by the presence of iharsgatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

6 Appendix A. Glossary



Python Tutorial, Release 2.6.1

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a
list of strings containing even hex numbers (0x..) in the range from 0 to 255if Tlbause is optional. If
omitted, all elements imlange(256) are processed.

loader An object that loads a module. It must define a method ndwesti module() . A loader is typically
returned by dinder. SeePEP 302for details.

mapping A container object (such adict ) which supports arbitrary key lookups using the special method
__getitem__ ()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creatigiin The Python Language Referehce

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its fiassgument(which is usually calledelf ). Seefunctionand
nested scope

mutable Mutable objects can change their value but keep td€ir . See alsoammutable

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for ex-
ample time.localtime() returns a tuple-like object where tlgearis accessible either with an index
such ag[0] or with a named attribute liketm_year ).

A named tuple can be a built-in type such t®e.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a
self-documenting representation likenployee(name="jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and builtin namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functidmsiltin__.open()
andos.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writimglom.seed()
or itertools.izip() makes it clear that those functions are implemented byrémelom and
itertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fronobject . This includes all built-in types likéist anddict
Only new-style classes can use Python’s newer, versatile features Bkats ~ , descriptors, properties,
and__ getattribute__ ()

More information can be found iNew-style and classic classg@s The Python Language Referehce

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
anynew-style class

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call. is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a functiorar§ament

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3
was something in the distant future.) This is also abbreviated “Py3K”.



http://www.python.org/dev/peps/pep-0302

Python Tutorial, Release 2.6.1

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable usirfgra statement. Many other languages don't
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range (len (food)):
print  food][i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print  piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPythonimplementation. Theys module defines getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterable which supports efficient element access using integer indices via thetitem__ ()
special method and defineden() method that returns the length of the sequence. Some built-in se-
guence types arést |, str , tuple , andunicode . Note thatdict also supports getitem__ ()
and__len__ () , butis considered a mapping rather than a sequence because the lookups use arbitrary
immutablekeys rather than integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[ with colons between numbers when several are given, such\agiable_name[1:3:5] . The
bracket (subscript) notation usskce objects internally (or in older versions, getslice () and
__setslice_ () ).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented irspecial method namém The Python Language Referehce

statement A statement is part of a suite (a “block” of code). A statement is eithexpressioror a one of several
constructs with a keyword, such #s, while or print

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(). While they don't provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__  attribute or can be retrieved withipe(obj)

virtual machine A computer defined entirely in software. Python’s virtual machine executéytheodemitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typimgport this " at the interactive prompt.

8 Appendix A. Glossary



APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated fref@tructured Texsources bysphinx a document processor specifically writ-
ten for the Python documentation.

In the online version of these documents, you can submit comments and suggest changes directly on the docu-
mentation pages.

Development of the documentation and its toolchain takes place odatt®@python.orgnailing list. We're
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

« theDocutilsproject for creating reStructuredText and the Docutils suite;

« Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete — if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.ong and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesus Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander Be-
lopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl, Keith
Briggs, lan Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario, Mike
Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, Peter Deutsch,
Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson, Carey
Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernan Martinez Foffani, Stefan Franke, Jim Fulton, Peter
Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy,
Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Har-
ald Hanche-Olsen, Manus Hand, Gerhard Haring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller,
Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit,
Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric
Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de
Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph
Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, UIf A. Lindgren, Everett Lipman, Mirko Liss,
Martin von Léwis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew Macintyre, Vladimir Marangozov,
Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Monta-
naro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup,
Denis S. Otkidach, Zooko O’'Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen,



http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

Python Tutorial, Release 2.6.1

Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, Francois Pinard,
Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,
Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse I, Mark Russell, Nick Russo, Chris
Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael Sloan, Gregory P. Smith,
Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter
Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn
Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Wel-
bourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

Itis only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

10 Appendix B. About these documents



APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.con)! In 2001, the Python Software Foundation (PSF,teg&//www.python.org/psj/was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

11


http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

Python Tutorial, Release 2.6.1

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2| n/a 1991-1995| CWI yes
1.3thrul.5.2| 1.2 1995-1999| CNRI yes
1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com| no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 222 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 23.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 233 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 24.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
244 243 2006 PSF yes
2.5 24 2006 PSF yes
251 25 2007 PSF yes
252 251 2008 PSF yes
2.5.3 252 2008 PSF yes
2.6 25 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.1

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.6.1 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.1 alone or in any derivative version, provided, however,
that PSF's License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.1 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.6.1.

12 Appendix C. History and License



Python Tutorial, Release 2.6.1

4. PSF is making Python 2.6.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available étttp://www.pythonlabs.com/logos.htmay be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

C.2. Terms and conditions for accessing or otherwise using Python 13


http://www.pythonlabs.com/logos.html

Python Tutorial, Release 2.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995,
Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

14 Appendix C. History and License


http://hdl.handle.net/1895.22/1013

Python Tutorial, Release 2.6.1

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdttp://www.math.keio.ac.jp/matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3. Licenses and Acknowledgements for Incorporated Software 15


http://www.math.keio.ac.jp/

Python Tutorial, Release 2.6.1

C.3.2 Sockets

Thesocket module uses the functiongetaddrinfo() ,andgetnameinfo() , which are coded in separate
source files from the WIDE Projedtitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for thépectl  module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. [

Permission to use, copy, modify, and distribute this software for [
any purpose without fee is hereby granted, provided that this en- |
tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |
This software was prepared as an account of work sponsored by an |

agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |

16 Appendix C. History and License


http://www.wide.ad.jp/

Python Tutorial, Release 2.6.1

ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its wuse would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://lwww.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

C.3. Licenses and Acknowledgements for Incorporated Software 17



Python Tutorial, Release 2.6.1

1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

18 Appendix C. History and License



Python Tutorial, Release 2.6.1

C.3.7 Profiling
Theprofile  andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3. Licenses and Acknowledgements for Incorporated Software 19



Python Tutorial, Release 2.6.1

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

Thexmirpclib  module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

20 Appendix C. History and License



Python Tutorial, Release 2.6.1

C.3.11 test_epoll

Thetest_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 21



Python Tutorial, Release 2.6.1

22 Appendix C. History and License



APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licenséor complete license and permissions information.

23



Python Tutorial, Release 2.6.1

24 Appendix D. Copyright



Symbols
3

_ future__ 5
__slots__ 8
>>> 3
2to3,3

A

abstract base clas3,
argument3
attribute,3

B

BDFL, 3
bytecode3

C

class,3

classic class3
coercion,3
complex number3
context manage#
CPython4

D

decorator4
descriptor4
dictionary,4
docstring 4
duck-typing,4

E

EAFP,4
expression4
extension moduley

F

finder,5
function,5

G

garbage collectiorf
generatorp

generator expressioh,

GIL, 5

INDEX

global interpreter locks

H
hashable5

IDLE, 5
immutable 6
importer,6
integer division
interactive 6
interpretedf
iterable,6
iterator,6

K
keyword argument;

L

lambda,6

LBYL, 6

list, 6

list comprehensiorg
loader,7

M
mapping,’
metaclassy
method,7
mutable,’

N

named tupley
namespace;,
nested scopé€,
new-style class/

O

object,7

P

positional argument]

Python 30007

Python Enhancement Proposals
PEP 3025, 7

25



Python Tutorial, Release 2.6.1

PEP 3434
Pythonic,7

R

reference coun

S

sequence;
slice,8

special method3
statementd

T

triple-quoted string3
type,8

V

virtual machine8

Z
Zen of Python8

26

Index



	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

