What’s New in Python

Contents

8

9

Common Stumbling Blocks

1.1 PrintlsAFunction
1.2 Views And Iterators Instead Of Lists
1.3 Ordering Comparisonso v ...
14 Integers oo i e
1.5 Text Vs. Data Instead Of Unicode Vs. 8-bit

Overview Of Syntax Changes

2.1 New Syntax o v v v v vt e e e
2.2 ChangedSyntax v vt i
2.3 Removed Syntax

Changes Already Present In Python 2.6

Library Changes

PEP 3101: A New Approach To String Formatting
Changes To Exceptions

Miscellaneous Other Changes

7.1 Operators And Special Methods
7.2 Builtins o

Build and C API Changes

Performance

10 Porting To Python 3.0

Indexxiii

Release 3.0.1

A. M. Kuchling

February 14, 2009

Python Software Foundation
Email: docs@python.org

ii

..................... il
..................... 1ii

vii

viii

ix

xii

xii

Author Guido van Rossum
Release 3.0.1

Date February 14, 2009

This article explains the new features in Python 3.0, compared to 2.6. Python 3.0, also known as “Python 3000”
or “Py3K?”, is the first ever intentionally backwards incompatible Python release. There are more changes than in a
typical release, and more that are important for all Python users. Nevertheless, after digesting the changes, you’ll find
that Python really hasn’t changed all that much — by and large, we’re mostly fixing well-known annoyances and warts,
and removing a lot of old cruft.

This article doesn’t attempt to provide a complete specification of all new features, but instead tries to give a convenient
overview. For full details, you should refer to the documentation for Python 3.0, and/or the many PEPs referenced in
the text. If you want to understand the complete implementation and design rationale for a particular feature, PEPs
usually have more details than the regular documentation; but note that PEPs usually are not kept up-to-date once a
feature has been fully implemented.

Due to time constraints this document is not as complete as it should have been. As always for a new release, the
Misc/NEWS file in the source distribution contains a wealth of detailed information about every small thing that was
changed.

1 Common Stumbling Blocks

This section lists those few changes that are most likely to trip you up if you’re used to Python 2.5.

1.1 Print Is A Function

The print statement has been replaced with a print () function, with keyword arguments to replace most of the
special syntax of the old print statement (PEP 3105). Examples:

0ld: print "The answer is", 22
New: print ("The answer is", 2x2)

0ld: print x, # Trailing comma suppresses newline
New: print(x, end=" ") # Appends a space instead of a newline
0ld: print # Prints a newline

New: print () # You must call the function!

0ld: print >>sys.stderr, "fatal error"
New: print ("fatal error", file=sys.stderr)

0ld: print (x, Vy) # prints repr((x, v))
New: print ((x, Vy)) # Not the same as print(x, y)!

You can also customize the separator between items, e.g.:

print ("There are <", 2xx32, "> possibilities!", sep="")
which produces:

There are <4294967296> possibilities!

Note:

http://www.python.org/dev/peps/pep-3105

e The print () function doesn’t support the “softspace” feature of the old print statement. For example,
in Python 2.x, print "A\n", "B" would write "A\nB\n"; but in Python 3.0, print ("A\n", "B")
writes "A\n B\n".

* Initially, you’ll be finding yourself typing the old print x a lot in interactive mode. Time to retrain your
fingers to type print (x) instead!

* When using the 2t 03 source-to-source conversion tool, all print statements are automatically converted to
print () function calls, so this is mostly a non-issue for larger projects.

1.2 Views And lterators Instead Of Lists

Some well-known APIs no longer return lists:

¢ dict methods dict.keys (),dict.items () and dict.values () return “views” instead of lists. For
example, this no longer works: k = d.keys(); k.sort (). Usek = sorted(d) instead (this works
in Python 2.5 too and is just as efficient).

e Also, the dict.iterkeys(),dict.iteritems () and dict.itervalues () methods are no longer
supported.

* map () and filter () return iterators. If you really need a list, a quick fixis e.g. 1ist (map(...)),buta
better fix is often to use a list comprehension (especially when the original code uses 1ambda), or rewriting the
code so it doesn’t need a list at all. Particularly tricky is map () invoked for the side effects of the function; the
correct transformation is to use a regular for loop (since creating a list would just be wasteful).

* range () now behaves like xrange () used to behave, except it works with values of arbitrary size. The latter
no longer exists.

* zip () now returns an iterator.

1.3 Ordering Comparisons

Python 3.0 has simplified the rules for ordering comparisons:

* The ordering comparison operators (<, <=, >=, >) raise a TypeError exception when the operands don’t have
a meaningful natural ordering. Thus, expressions like 1 < ”, 0 > None or len <= len are no longer
valid, and e.g. None < None raises TypeError instead of returning False. A corollary is that sorting a
heterogeneous list no longer makes sense — all the elements must be comparable to each other. Note that this
does not apply to the == and ! = operators: objects of different incomparable types always compare unequal to
each other.

* builtin.sorted() and 1ist.sort () no longer accept the cmp argument providing a comparison func-
tion. Use the key argument instead. N.B. the key and reverse arguments are now “keyword-only”.

* The cmp () function should be treated as gone, and the ___cmp__ () special method is no longer supported.
Use __1t__ () forsorting, __eq__ () with __hash__ (), and other rich comparisons as needed. (If you
really need the cmp () functionality, you could use the expression (a > b) — (a < b) as the equivalent
for cmp (a, b).)

1.4 Integers

* PEP 0237: Essentially, 1ong renamed to int. That is, there is only one built-in integral type, named int; but
it behaves mostly like the old 1ong type.

http://www.python.org/dev/peps/pep-0237

e PEP 0238: An expression like 1 /2 returns a float. Use 1//2 to get the truncating behavior. (The latter syntax
has existed for years, at least since Python 2.2.)

e The sys.maxint constant was removed, since there is no longer a limit to the value of integers. However,
sys.maxsize can be used as an integer larger than any practical list or string index. It conforms to the

implementation’s “natural” integer size and is typically the same as sys.maxint in previous releases on the
same platform (assuming the same build options).

e The repr () of a long integer doesn’t include the trailing . anymore, so code that unconditionally strips that
character will chop off the last digit instead. (Use str () instead.)

¢ Octal literals are no longer of the form 0720; use 00720 instead.

1.5 Text Vs. Data Instead Of Unicode Vs. 8-bit
Everything you thought you knew about binary data and Unicode has changed.

* Python 3.0 uses the concepts of fext and (binary) data instead of Unicode strings and 8-bit strings. All text
is Unicode; however encoded Unicode is represented as binary data. The type used to hold text is str, the
type used to hold data is bytes. The biggest difference with the 2.x situation is that any attempt to mix
text and data in Python 3.0 raises TypeError, whereas if you were to mix Unicode and 8-bit strings in
Python 2.x, it would work if the 8-bit string happened to contain only 7-bit (ASCII) bytes, but you would get
UnicodeDecodeError if it contained non-ASCII values. This value-specific behavior has caused numerous
sad faces over the years.

* As aconsequence of this change in philosophy, pretty much all code that uses Unicode, encodings or binary data
most likely has to change. The change is for the better, as in the 2.x world there were numerous bugs having
to do with mixing encoded and unencoded text. To be prepared in Python 2.x, start using unicode for all
unencoded text, and st r for binary or encoded data only. Then the 2t 03 tool will do most of the work for you.

* You can no longer use u" . . ." literals for Unicode text. However, you must use b" . . . " literals for binary
data.

* As the str and bytes types cannot be mixed, you must always explicitly convert between them. Use
str.encode () to go from str to bytes, and bytes.decode () to go from bytes to str. You can
alsouse bytes (s, encoding=...) and str (b, encoding=...), respectively.

e Like str, the bytes type is immutable. There is a separate mutable type to hold buffered binary data,
bytearray. Nearly all APIs that accept bytes also accept bytearray. The mutable API is based on
collections.MutableSequence.

» All backslashes in raw string literals are interpreted literally. This means that 7 \U’ and ’ \u’ escapes in raw
strings are not treated specially. For example, r’ \u20ac’ is a string of 6 characters in Python 3.0, whereas in
2.6, ur’ \u20ac’ was the single “euro” character. (Of course, this change only affects raw string literals; the
euro character is * \u20ac’ in Python 3.0.)

e The builtin basestring abstract type was removed. Use str instead. The str and bytes types don’t
have functionality enough in common to warrant a shared base class. The 2t 03 tool (see below) replaces every
occurrence of basestring with str.

* Files opened as text files (still the default mode for open ()) always use an encoding to map between strings (in
memory) and bytes (on disk). Binary files (opened with a b in the mode argument) always use bytes in memory.
This means that if a file is opened using an incorrect mode or encoding, I/O will likely fail loudly, instead of
silently producing incorrect data. It also means that even Unix users will have to specify the correct mode (text
or binary) when opening a file. There is a platform-dependent default encoding, which on Unixy platforms can
be set with the LANG environment variable (and sometimes also with some other platform-specific locale-related
environment variables). In many cases, but not all, the system default is UTF-8; you should never count on this

http://www.python.org/dev/peps/pep-0238

default. Any application reading or writing more than pure ASCII text should probably have a way to override
the encoding. There is no longer any need for using the encoding-aware streams in the codecs module.

* Filenames are passed to and returned from APIs as (Unicode) strings. This can present platform-specific prob-
lems because on some platforms filenames are arbitrary byte strings. (On the other hand, on Windows filenames
are natively stored as Unicode.) As a work-around, most APIs (e.g. open () and many functions in the os
module) that take filenames accept bytes objects as well as strings, and a few APIs have a way to ask for a
bytes return value. Thus, os.listdir () returns a list of bytes instances if the argument is a bytes
instance, and os.getcwdb () returns the current working directory as a bytes instance. Note that when
os.listdir () returns a list of strings, filenames that cannot be decoded properly are omitted rather than
raising UnicodeError.

* Some system APIs like os.environ and sys.argv can also present problems when the bytes made avail-
able by the system is not interpretable using the default encoding. Setting the LANG variable and rerunning the
program is probably the best approach.

* PEP 3138: The repr () of a string no longer escapes non-ASCII characters. It still escapes control characters
and code points with non-printable status in the Unicode standard, however.

e PEP 3120: The default source encoding is now UTF-8.

* PEP 3131: Non-ASCII letters are now allowed in identifiers. (However, the standard library remains ASCII-
only with the exception of contributor names in comments.)

e The StringIO and cStringIO modules are gone. Instead, import the 1o module and use 1o.StringIO
or io.BytesIO for text and data respectively.

* See also the Unicode HOWTO (in), which was updated for Python 3.0.

2 Overview Of Syntax Changes

This section gives a brief overview of every syntactic change in Python 3.0.

2.1 New Syntax

e PEP 3107: Function argument and return value annotations. This provides a standardized way of annotating a
function’s parameters and return value. There are no semantics attached to such annotations except that they can
be introspected at runtime using the __annotations___ attribute. The intent is to encourage experimentation
through metaclasses, decorators or frameworks.

* PEP 3102: Keyword-only arguments. Named parameters occurring after rargs in the parameter list must be
specified using keyword syntax in the call. You can also use a bare * in the parameter list to indicate that you
don’t accept a variable-length argument list, but you do have keyword-only arguments.

* Keyword arguments are allowed after the list of base classes in a class definition. This is used by the new
convention for specifying a metaclass (see next section), but can be used for other purposes as well, as long as
the metaclass supports it.

e PEP 3104: nonlocal statement. Using nonlocal x you can now assign directly to a variable in an outer
(but non-global) scope. nonlocal is a new reserved word.

e PEP 3132: Extended Iterable Unpacking. You can now write things like a, b, xrest =
some_sequence. And even xrest, a = stuff. The rest object is always a (possibly empty) list;
the right-hand side may be any iterable. Example:

(a, *rest, b) = range(5)

http://www.python.org/dev/peps/pep-3138
http://www.python.org/dev/peps/pep-3120
http://www.python.org/dev/peps/pep-3131
http://www.python.org/dev/peps/pep-3107
http://www.python.org/dev/peps/pep-3102
http://www.python.org/dev/peps/pep-3104
http://www.python.org/dev/peps/pep-3132

Thissetsato 0, bto 4,and restto [1, 2, 3].

Dictionary comprehensions: {k: v for k, v in stuff} means the same thing as dict (stuff)
but is more flexible. (This is PEP 0274 vindicated. :-)

Setliterals,e.g. {1, 2}. Notethat {} is an empty dictionary; use set () for an empty set. Set comprehensions
are also supported; e.g., {x for x in stuff} means the same thing as set (stuff) butis more flexible.

New octal literals, e.g. 00720 (already in 2.6). The old octal literals (0720) are gone.
New binary literals, e.g. 01010 (already in 2.6), and there is a new corresponding builtin function, bin ().

Bytes literals are introduced with a leading b or B, and there is a new corresponding builtin function, bytes ().

2.2 Changed Syntax

2.3

PEP 3109 and PEP 3134: new raise statement syntax: ‘raise [expr [from expr]]’. See below.
as and with are now reserved words. (Since 2.6, actually.)

True, False, and None are reserved words. (2.6 partially enforced the restrictions on None already.)
Change from except exc, var to except exc as var. See PEP 3110.

PEP 3115: New Metaclass Syntax. Instead of:

class C:
_ metaclass__ =M

you must now use:

class C(metaclass=M) :

The module-global __metaclass___ variable is no longer supported. (It was a crutch to make it easier to
default to new-style classes without deriving every class from object.)

List comprehensions no longer support the syntactic form ‘[... for var in iteml, item2,
...17.Use‘[... for var in (iteml, item2, ...)]’ instead. Also note that list comprehen-
sions have different semantics: they are closer to syntactic sugar for a generator expression inside a 1ist ()
constructor, and in particular the loop control variables are no longer leaked into the surrounding scope.

The ellipsis (. . .) can be used as an atomic expression anywhere. (Previously it was only allowed in slices.)
Also, it must now be spelled as (Previously it could also be spelledas . . ., by a mere accident of
the grammar.)

Removed Syntax

PEP 3113: Tuple parameter unpacking removed. You can no longer write def foo(a, (b, c¢)):
Use def foo(a, b_c): b, c = b_cinstead.

Removed backticks (use repr () instead).
Removed <> (use ! = instead).

Removed keyword: exec () is no longer a keyword; it remains as a function. (Fortunately the function syntax
was also accepted in 2.x.) Also note that exec () no longer takes a stream argument; instead of exec (£) you
canuse exec (f.read()).

http://www.python.org/dev/peps/pep-0274
http://www.python.org/dev/peps/pep-3109
http://www.python.org/dev/peps/pep-3134
http://www.python.org/dev/peps/pep-3110
http://www.python.org/dev/peps/pep-3115
http://www.python.org/dev/peps/pep-3113

3

Integer literals no longer support a trailing 1 or L.
String literals no longer support a leading u or U.
The from module import * syntax is only allowed at the module level, no longer inside functions.

The only acceptable syntax for relative imports is ‘from . [module] import name’. All import forms
not starting with . are interpreted as absolute imports. (PEP (0328)

Classic classes are gone.

Changes Already Present In Python 2.6

Since many users presumably make the jump straight from Python 2.5 to Python 3.0, this section reminds the reader of
new features that were originally designed for Python 3.0 but that were back-ported to Python 2.6. The corresponding
sections in What’s New in Python 2.6 should be consulted for longer descriptions.

PEP 343: The ‘with’ statement. The with statement is now a standard feature and no longer needs to be
imported from the ___future_ . Also check out Writing Context Managers and The contextlib module.

PEP 366: Explicit Relative Imports From a Main Module. This enhances the usefulness of the —m option when
the referenced module lives in a package.

PEP 370: Per-user site-packages Directory.
PEP 371: The multiprocessing Package.

PEP 3101: Advanced String Formatting. Note: the 2.6 description mentions the format () method for both
8-bit and Unicode strings. In 3.0, only the st r type (text strings with Unicode support) supports this method;
the bytes type does not. The plan is to eventually make this the only API for string formatting, and to start
deprecating the % operator in Python 3.1.

PEP 3105: print As a Function. This is now a standard feature and no longer needs to be imported from
___future__. More details were given above.

PEP 3110: Exception-Handling Changes. The except exc as var syntax is now standard and except exc,
var is no longer supported. (Of course, the as var part is still optional.)

PEP 3112: Byte Literals. The b" .. ." string literal notation (and its variants like b’ ...’ , b""" _ """,
and br" ... ") now produces a literal of type bytes.

PEP 3116: New I/O Library. The io module is now the standard way of doing file I/O, and the initial val-
ues of sys.stdin, sys.stdout and sys.stderr are now instances of io.TextIOBase. The builtin
open () function is now an alias for io.open () and has additional keyword arguments encoding, errors,
newline and closefd. Also note that an invalid mode argument now raises ValueError, not IOError. The
binary file object underlying a text file object can be accessed as £ .buffer (but beware that the text object
maintains a buffer of itself in order to speed up the encoding and decoding operations).

PEP 3118: Revised Buffer Protocol. The old builtin buffer () is now really gone; the new builtin
memoryview () provides (mostly) similar functionality.

PEP 3119: Abstract Base Classes. The abc module and the ABCs defined in the collections module plays
a somewhat more prominent role in the language now, and builtin collection types like dict and 11 st conform
tothe collections.MutableMapping and collections.MutableSequence ABCs, respectively.

PEP 3127: Integer Literal Support and Syntax. As mentioned above, the new octal literal notation is the only
one supported, and binary literals have been added.

http://www.python.org/dev/peps/pep-0328

e PEP 3129: Class Decorators.

e PEP 3141: A Type Hierarchy for Numbers. The numbers module is another new use of ABCs, defining
Python’s “numeric tower”. Also note the new fractions module which implements numbers.Rational.

4 Library Changes

Due to time constraints, this document does not exhaustively cover the very extensive changes to the standard library.
PEP 3108 is the reference for the major changes to the library. Here’s a capsule review:

* Many old modules were removed. Some, like gopherlib (no longer used) and md5 (replaced by hashlib),

were already deprecated by PEP 0004. Others were removed as a result of the removal of support for various
platforms such as Irix, BeOS and Mac OS 9 (see PEP 0011). Some modules were also selected for removal in
Python 3.0 due to lack of use or because a better replacement exists. See PEP 3108 for an exhaustive list.

The bsddb3 package was removed because its presence in the core standard library has proved over time to be a
particular burden for the core developers due to testing instability and Berkeley DB’s release schedule. However,
the package is alive and well, externally maintained at http://www.jcea.es/programacion/pybsddb.htm.

Some modules were renamed because their old name disobeyed PEP 0008, or for various other reasons. Here’s
the list:

Old Name New Name
_winreg winreg
ConfigParser configparser
copy_reg copyreg
Queue queue
SocketServer socketserver
markupbase _markupbase
repr reprlib
test.test_support | test.support

A common pattern in Python 2.x is to have one version of a module implemented in pure Python, with an
optional accelerated version implemented as a C extension; for example, pickle and cPickle. This places
the burden of importing the accelerated version and falling back on the pure Python version on each user of
these modules. In Python 3.0, the accelerated versions are considered implementation details of the pure Python
versions. Users should always import the standard version, which attempts to import the accelerated version and
falls back to the pure Python version. The pickle / cPickle pair received this treatment. The profile
module is on the list for 3.1. The St ringIO module has been turned into a class in the io module.

Some related modules have been grouped into packages, and usually the submodule names have been simplified.
The resulting new packages are:

dbm (anydbm, dbhash, dbm, dumbdbm, gdbm, whichdb).
— html (HTMLParser, htmlentitydefs).

— http (httplib, BaseHTTPServer, CGIHTTPServer,
cookielib).

SimpleHTTPServer, Cookie,

— tkinter (all Tkinter-related modules except turtle). The target audience of turtle doesn’t
really care about tkinter. Also note that as of Python 2.6, the functionality of turtle has been
greatly enhanced.

— urllib(urllib,urllib2,urlparse, robotparse).
— xmlrpc (xmlrpclib, DocXMLRPCServer, SimpleXMLRPCServer).

Some other changes to standard library modules, not covered by PEP 3108:

http://www.python.org/dev/peps/pep-3108
http://www.python.org/dev/peps/pep-0004
http://www.python.org/dev/peps/pep-0011
http://www.python.org/dev/peps/pep-3108
http://www.jcea.es/programacion/pybsddb.htm
http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-3108

¢ Killed sets. Use the builtin set () function.

e Cleanup of the sys module: removed sys.exitfunc(), sys.exc_clear (), sys.exc_type,
sys.exc_value, sys.exc_traceback. (Note that sys.last_type etc. remain.)

e Cleanup of the array.array type: the read () and write () methods are gone; use fromfile () and
tofile () instead. Also, the ’ ¢’ typecode for array is gone — use either ' b’ for bytes or u’ for Unicode
characters.

* Cleanup of the operator module: removed sequenceIncludes () and isCallable ().

* Cleanup of the thread module: acquire_lock () and release_lock () are gone; use acquire ()
and release () instead.

¢ Cleanup of the random module: removed the jumpahead () APL
* The new module is gone.

¢ The functions os.tmpnam (), os.tempnam () and os.tmpfile () have been removed in favor of the
tempfile module.

* The tokenize module has been changed to work with bytes. The main entry point is now
tokenize.tokenize (), instead of generate_tokens.

e string.letters and its friends (string.lowercase and string.uppercase) are gone. Use
string.ascii_letters etc. instead. (The reason for the removal is that string. letters and friends
had locale-specific behavior, which is a bad idea for such attractively-named global “constants”.)

e Renamed module __ _builtin__ to builtins (removing the underscores, adding an ‘s’). The
__builtins__ variable found in most global namespaces is unchanged. To modify a builtin, you should
use builtins,not__ _builtins_ !

5 PEP 3101: A New Approach To String Formatting

* A new system for built-in string formatting operations replaces the % string formatting operator. (However, the
% operator is still supported; it will be deprecated in Python 3.1 and removed from the language at some later
time.) Read PEP 3101 for the full scoop.

6 Changes To Exceptions

The APIs for raising and catching exception have been cleaned up and new powerful features added:

e PEP 0352: All exceptions must be derived (directly or indirectly) from BaseException. This is the
root of the exception hierarchy. This is not new as a recommendation, but the requirement to inherit from
BaseException is new. (Python 2.6 still allowed classic classes to be raised, and placed no restriction on
what you can catch.) As a consequence, string exceptions are finally truly and utterly dead.

* Almost all exceptions should actually derive from Exception; BaseException should only be used
as a base class for exceptions that should only be handled at the top level, such as SystemExit or
KeyboardInterrupt. The recommended idiom for handling all exceptions except for this latter category is
to use except Exception.

* StandardError was removed (in 2.6 already).

» Exceptions no longer behave as sequences. Use the args attribute instead.

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-0352

e PEP 3109: Raising exceptions. You must now use ‘raise Exception (args)’ instead of ‘raise
Exception, args’. Additionally, you can no longer explicitly specify a traceback; instead, if you have
to do this, you can assign directly to the __traceback___ attribute (see below).

e PEP 3110: Catching exceptions. You must now use ‘except SomeException as variable’ in-
stead of ‘except SomeException, variable’. Moreover, the variable is explicitly deleted when the
except block is left.

* PEP 3134: Exception chaining. There are two cases: implicit chaining and explicit chaining. Implicit chaining
happens when an exception is raised in an except or finally handler block. This usually happens due to a
bug in the handler block; we call this a secondary exception. In this case, the original exception (that was being
handled) is saved as the __context___attribute of the secondary exception. Explicit chaining is invoked with
this syntax:

raise SecondaryException() from primary_ exception

(where primary_exception is any expression that produces an exception object, probably an exception that was
previously caught). In this case, the primary exception is stored on the ___cause___ attribute of the secondary
exception. The traceback printed when an unhandled exception occurs walks the chain of __cause__ and
__context___ attributes and prints a separate traceback for each component of the chain, with the primary
exception at the top. (Java users may recognize this behavior.)

* PEP 3134: Exception objects now store their traceback as the __traceback___ attribute. This means that an
exception object now contains all the information pertaining to an exception, and there are fewer reasons to use
sys.exc_info () (though the latter is not removed).

* A few exception messages are improved when Windows fails to load an extension module. For example, error
code 193 isnow $1 is not a valid Win32 application. Strings now deal with non-English
locales.

7 Miscellaneous Other Changes

7.1 Operators And Special Methods

e !'=now returns the opposite of ==, unless == returns Not Implemented.

* The concept of “unbound methods” has been removed from the language. When referencing a method as a class
attribute, you now get a plain function object.

e __getslice_ (), __setslice_ () and __delslice__ () were killed. The syntax a[i:j] now
translates to a.___getitem_ (slice (i, J)) (or __setitem__ () or __delitem__ (), when used
as an assignment or deletion target, respectively).

e PEP 3114: the standard next () method has been renamed to__next__ ().

e The __oct__ () and __hex__ () special methods are removed — oct () and hex () use __index__ ()
now to convert the argument to an integer.

* Removed support for __members___and __methods__.

e The function attributes named func_X have been renamed to use the __X__ form, freeing up these
names in the function attribute namespace for user-defined attributes. To wit, func_closure,
func_code, func_defaults, func_dict, func_doc, func_globals, func_name were renamed
to_ closure_ ,_ code_ , defaults_ ,_ dict_ , doc__, globals__,__ _name__ ,re-

spectively.

e nonzero__ () isnow __bool__ ().

http://www.python.org/dev/peps/pep-3109
http://www.python.org/dev/peps/pep-3110
http://www.python.org/dev/peps/pep-3134
http://www.python.org/dev/peps/pep-3134
http://www.python.org/dev/peps/pep-3114

7.2 Builtins

8

PEP 3135: New super (). You can now invoke super () without arguments and (assuming this is in a
regular instance method defined inside a class statement) the right class and instance will automatically be
chosen. With arguments, the behavior of super () is unchanged.

PEP 3111: raw_input () was renamed to input (). That is, the new input () function reads a line from
sys.stdin and returns it with the trailing newline stripped. It raises EOFError if the input is terminated
prematurely. To get the old behavior of input (), use eval (input ()).

A new builtin next () was added to call the __next__ () method on an object.
Moved intern () to sys.intern ().
Removed: apply (). Instead of apply (f, args) use f (xargs).

Removed callable (). Instead of callable (f) you can use hasattr(f, '__call__'). The
operator.isCallable () function is also gone.

Removed coerce (). This function no longer serves a purpose now that classic classes are gone.
Removed execfile (). Instead of execfile (fn) use exec (open (fn) .read()).
Removed file. Use open ().

Removed reduce (). Use functools.reduce () if you really need it; however, 99 percent of the time an
explicit for loop is more readable.

Removed reload (). Use imp.reload().

Removed. dict.has_key () —use the in operator instead.

Build and C API Changes

Due to time constraints, here is a very incomplete list of changes to the C APL.

Support for several platforms was dropped, including but not limited to Mac OS 9, BeOS, RISCOS, Irix, and
Tru64.

PEP 3118: New Buffer APIL.

PEP 3121: Extension Module Initialization & Finalization.
PEP 3123: Making PyOb ject_HEAD conform to standard C.
No more C API support for restricted execution.

PyNumber_Coerce, PyNumber_CoerceEx, PyMember_Get, and PyMember_Set C APIs are re-
moved.

New C API PyImport_ImportModuleNoBlock, works like PyImport_ImportModule but won’t
block on the import lock (returning an error instead).

Renamed the boolean conversion C-level slot and method: nb_nonzero is now nb_bool.

Removed METH_OLDARGS and WITH_CYCLE_GC from the C API.

http://www.python.org/dev/peps/pep-3135
http://www.python.org/dev/peps/pep-3111
http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-3121
http://www.python.org/dev/peps/pep-3123

9 Performance

The net result of the 3.0 generalizations is that Python 3.0 runs the pystone benchmark around 10% slower than Python
2.5. Most likely the biggest cause is the removal of special-casing for small integers. There’s room for improvement,
but it will happen after 3.0 is released!

10 Porting To Python 3.0

For porting existing Python 2.5 or 2.6 source code to Python 3.0, the best strategy is the following:

1. (Prerequisite:) Start with excellent test coverage.

2. Port to Python 2.6. This should be no more work than the average port from Python 2.x to Python 2.(x+1). Make
sure all your tests pass.

3. (Still using 2.6:) Turn on the —3 command line switch. This enables warnings about features that will be
removed (or change) in 3.0. Run your test suite again, and fix code that you get warnings about until there are
no warnings left, and all your tests still pass.

4. Run the 2t 03 source-to-source translator over your source code tree. (See 2to3 - Automated Python 2 to 3 code
translation (in The Python Library Reference) for more on this tool.) Run the result of the translation under
Python 3.0. Manually fix up any remaining issues, fixing problems until all tests pass again.

It is not recommended to try to write source code that runs unchanged under both Python 2.6 and 3.0; you’d have to use
a very contorted coding style, e.g. avoiding print statements, metaclasses, and much more. If you are maintaining
a library that needs to support both Python 2.6 and Python 3.0, the best approach is to modify step 3 above by editing
the 2.6 version of the source code and running the 2t o3 translator again, rather than editing the 3.0 version of the
source code.

For porting C extensions to Python 3.0, please see Porting Extension Modules to 3.0 (in).

Index
P

Python Enhancement Proposals
PEP 0004, viii
PEP 0008, viii
PEP 0011, viii
PEP 0237, iv
PEP 0238, iv
PEP 0274, vi
PEP 0328, vii
PEP 0352, x
PEP 3101, ix
PEP 3102, v
PEP 3104, vi
PEP 3105, ii
PEP 3107, v
PEP 3108, viii, ix
PEP 31009, vi, x
PEP 3110, vi, x
PEP 3111, xi
PEP 3113, vii
PEP 3114, xi
PEP 3115, vi
PEP 3118, xi
PEP 3120, v
PEP 3121, xi
PEP 3123, xii
PEP 3131, v
PEP 3132, vi
PEP 3134, vi, x
PEP 3135, xi
PEP 3138, v

xiii

	Common Stumbling Blocks
	Print Is A Function
	Views And Iterators Instead Of Lists
	Ordering Comparisons
	Integers
	Text Vs. Data Instead Of Unicode Vs. 8-bit

	Overview Of Syntax Changes
	New Syntax
	Changed Syntax
	Removed Syntax

	Changes Already Present In Python 2.6
	Library Changes
	PEP 3101: A New Approach To String Formatting
	Changes To Exceptions
	Miscellaneous Other Changes
	Operators And Special Methods
	Builtins

	Build and C API Changes
	Performance
	Porting To Python 3.0
	Index

