The Python Language Reference
Release 2.6.2

Guido van Rossum

Fred L. Drake, Jr., editor

April 15, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Alternate Implementations. e e e e 3
1.2 Notation e e e e e e 4
Lexical analysis 5
2.1 Linestructure e e e e e 5
2.2 Othertokens. e e e 8
2.3 ldentifiersand keywords e e e e 8
2.4 Literals e e e e e 9
25 0peratorso e e e e 12
2.6 Delimiters e e e e e 12
Data model 15
3.1 Objects,values andtypes o e 15
3.2 Thestandard type hierarchy. e 16
3.3 New-styleandclassicclasses. e 22
3.4 Specialmethodnames. e e e 23
Execution model 39
4.1 Namingandbinding. e e 39
4.2 EXCEPLONS. . . . v o e e e e e e 40
Expressions 43
5.1 Arthmetic CONVErSIONS e 43
5.2 AIOMS e e e e e AS
5.3 Primaries. e e e e
5.4 ThepoweroperatOr. o e e e e 50
5.5 Unary arithmetic and bitwise operations 51
5.6 Binary arithmeticoperations. e e e 51
5.7 Shiftingoperations e e e 52
5.8 Binary bitwise operations. L e e 52
5.9 COMPAriSONS. . . . o o vt e e e e e e e 52
5.10 Booleanoperations. e e e e e e e e 54
511 Lambdas. o e e e 54
5.12 EXpression lists o e e e e e e e e e e 54
5.13 Evaluationorder. e e 55
514 SUMMAY. . . . o o e e e e e e e e e e 55
Simple statements 57
6.1 Expressionstatements. e e e e 57

6.2 Assignmentstatements. e e e e e e 57

6.3 Theassert statement. e 60
6.4 Thepass statement. L e e e e 60
6.5 Thedel statement e e e e e e e e 60
6.6 Theprint statement. e 61
6.7 Thereturn statement e e e e e e e e e e 61
6.8 Theyield statement. e 61
6.9 Theraise statement. e e e e 62
6.10 Thebreak statement. e e e 62
6.11 Thecontinue statement e e e e e e e 63
6.12 Theimport statement. e 63
6.13 Theglobal statement. e 65
6.14 Theexec statement. o e e e e e e e e 66
7 Compound statements 67
7.1 Theif statement L e e 68
7.2 Thewhile statement. e e 68
7.3 Thefor statement e e e e e e e 68
7.4 Thetry statement e e e e 69
7.5 Thewith statement. e e e e e e e 70
7.6 Functiondefinitions. L e e e 70
7.7 Classdefinitions. e e e 72
8 Top-level components 73
8.1 Complete Python programs i i i i e e e e e e e e e 73
8.2 Fileinput. e 73
8.3 Interactive iINnput. L L e 73
8.4 EXPression inpuL e e e e e e e e 74
9 Full Grammar specification 75
A Glossary 79
B About these documents 87
B.1 Contributors to the Python Documentation., 87
C History and License 89
C.1 Historyofthesoftware e e 89
C.2 Terms and conditions for accessing or otherwise using Python 90
C.3 Licenses and Acknowledgements for Incorporated Software. 93
D Copyright 101
Index 103

The Python Language Reference, Release 2.6.2

Release?2.6
Date April 15, 2009

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described imhe Python Standard Librarfin The Python Library ReferengeFor an informal introduction to

the language, se€he Python Tutorialin Python Tutoria). For C or C++ programmers, two additional manuals

exist: Extending and Embedding the Python InterprefierExtending and Embedding PytHotkescribes the high-

level picture of how to write a Python extension module, andRiithon/C APl Reference Manugh The Python/C

API) describes the interfaces available to C/C++ programmers in detail.

CONTENTS 1

The Python Language Reference, Release 2.6.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While | am trying to be as precise as possible, | chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently
only one Python implementation in widespread use (although alternate implementations exist), and its particular quirks
are sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore,
you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are docunidrged in
Python Standard Librargin The Python Library ReferengteA few built-in modules are mentioned when they interact
in a significant way with the language definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be foundtat Jython website

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET application
and makes .NET libraries available. It was created by Brian Lloyd. For more information, segtltwen for
.NET home page

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that gen-
erates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original
creator of Jython. For more information, geée IronPython website

http://www.jython.org/
http://pythonnet.sourceforge.net
http://pythonnet.sourceforge.net
http://www.ironpython.com/

The Python Language Reference, Release 2.6.2

PyPy An implementation of Python written in Python; even the bytecode interpreter is written in Python. This is
executed using CPython as the underlying interpreter. One of the goals of the project is to encourage experi-
mentation with the language itself by making it easier to modify the interpreter (since it is written in Python).
Additional information is available othe PyPy project’s home page

Each of these implementations varies in some way from the language as documented in this manual, or introduces
specific information beyond what's covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you're using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name Ic_letter (Ic_letter | “_")*
Ic_letter t= 0 fan7”

The first line says that aame is anlc_letter followed by a sequence of zero or mdee letter s and under-
scores. Aric_letter in turn is any of the single charactéas through'z’ . (This rule is actually adhered to for
the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule)=andA vertical bar () is used to separate
alternatives; it is the least binding operator in this notation. A 4tameans zero or more repetitions of the preceding

item; likewise, a plus€) means one or more repetitions, and a phrase enclosed in square bradkétméans zero

or one occurrences (in other words, the enclosed phrase is optional. artte+ operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar. In lexical definitions (as the example above), two more
conventions are used: Two literal characters separated by three dots mean a choice of any single character in the given
(inclusive) range of ASCII characters. A phrase between angular bragkets () gives an informal description of

the symbol defined; e.qg., this could be used to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. Introduction

http://codespeak.net/pypy/

CHAPTER
TWO

LEXICAL ANALYSIS

A Python program is read bygarser Input to the parser is a streamtokens generated by thiexical analyzer This
chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text. New in version 2.3: An encoding declaration can be
used to indicate that string literals and comments use an encoding different from ASCII. For compatibility with older
versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either declaring an
explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(an ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future
Unicode text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset,
but with very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it
is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This
applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a numberlobical lines

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or mopdysical linedy following the explicit or implicitline joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files, any of the standard
platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form using
the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the character, representing ASCII LF, is the line terminator).

The Python Language Reference, Release 2.6.2

2.1.3 Comments

A comment starts with a hash charactéy that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored
by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
coding[=:]\s*([-\w.]+) , this comment is processed as an encoding declaration; the first group of this
expression names the encoding of the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-
which is recognized also by GNU Emacs, and
vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
("\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among others, by Microsatttjsad).

If an encoding is declared, the encoding hame must be recognized by Python. The encoding is used for all lexical
analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are

converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation

starts. The encoding declaration must appear on a line of its own.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charadteas {ollows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = [’ Januari ', ' Februari ', ' Maart # These are the
" April 7, " Mei’, “Juni 7, # Dutch names
“Juli " Augustus ', ' September ', # for the months
' Oktober ', ' November’, ' December’] # of the year

6 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number
of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split
over multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero). The indentation levels of consecutive lines are used to generate INDENT and DEDENT
tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaleusitbe one of the numbers occurring on

the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is
generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger
than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:
def perm():

Compute the list of all permutations of |
if len () <= 1.

return l]

r =1]
for i in range (len (I)):

s = I[i] + i +1:]

p = perm(s)

for x in p:

r. append(l[i:i +1] + X)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented

2.1. Line structure 7

The Python Language Reference, Release 2.6.2

for i in range(len(l)): # error: not indented
s = I[i] + [[i+1:]
p = perm(I[:i] + I[i+1:]) # error: unexpected indent
for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation ofreturn r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens
Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be

used interchangeably to separate tokens. Whitespace is heeded between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exigntifiers keywordsliterals,
operators anddelimiters Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to amme3 are described by the following lexical definitions:

identifier = (letter|”_") (letter | digit | “_")*
letter = lowercase | uppercase
lowercase = fan."z”

uppercase = A2

digit = 0.9

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved wordeywordsof the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

Changed in version 2.4\one became a constant and is now recognized by the compiler as a name for the built-in
objectNone. Although it is not a keyword, you cannot assign a different object to it. Changed in version 2.5: Both

8 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

as andwith are only recognized when theith_statement future feature has been enabled. It will always be
enabled in Python 2.6. See sectidne with statemerfor details. Note that usings andwith as identifiers will
always issue a warning, even when thigh_statement future directive is not in effect.

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

_* Not imported byfrom module import * . The special identifier is used in the interactive interpreter to
store the result of the last evaluation; it is stored in thbuiltin__ module. When not in interactive mode,
_ has no special meaning and is not defined. See settienmport statement

Note: The name_ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

__* System-defined names. These names are defined by the interpreter and its implementation (including the
standard library); applications should not expect to define additional names using this convention. The set of
names of this class defined by Python may be extended in future versions. SeeSpetiah method names

__* Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See
sectionldentifiers (Names)

2.4 Literals
Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix](shortstring | longstring)
stringprefix = T | fur | R "UT | “URT | fUr | “uR”
shortstring m= " shortstringitem* “” | " shortstringitem* "
longstring n= U™ Jongstringitem*
| ™ longstringitem* "
shortstringitem = shortstringchar | escapeseq
longstringitem = longstringchar | escapeseq
shortstringchar = <any source character except “\" or newline or the quote>
longstringchar ;= <any source character except “\">
escapeseq = “W" <any ASCIl character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal. The source character set is defined by the encoding declaration; it

is ASCII if no encoding declaration is given in the source file; see seé&timoding declarations In plain English:

String literals can be enclosed in matching single qudtgsi(double quotes'(). They can also be enclosed in match-

ing groups of three single or double quotes (these are generally referredripl@sjuoted strings The backslash

(\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash itself, or
the quote character. String literals may optionally be prefixed with a letteror 'R’ ; such strings are callew

stringsand use different rules for interpreting backslash escape sequences. A ptegfixof'U’ makes the string a

Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646.

2.4. Literals 9

The Python Language Reference, Release 2.6.2

Some additional escape sequences, described below, are available in Unicode strings. The two prefix characters may
be combined; in this casky’ must appear before

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
guotes in a row terminate the string. (A “quote” is the character used to open the string, i.€’ @tlieJ Unless an

't or'R’ prefix is present, escape sequences in strings are interpreted according to rules similar to those used by
Standard C. The recognized escape sequences are:

Escape Sequence| Meaning Notes

\newline Ignored

\\ Backslash\()

\ Single quote’()

\" Double quote'()

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\N{name} Character namedamein the Unicode database (Unicode only)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\UXXXX Character with 16-bit hex valuexxx(Unicode only) (1)

AUXXXXXXXX Character with 32-bit hex valuexxxxxUnicode only) (2)

\v ASCII Vertical Tab (VT)

\ooo Character with octal valueoo (3,5)

\xhh Character with hex valuleh (4,5)
Notes:

1. Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

2. Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will
be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default). Individual code
units which form parts of a surrogate pair can be encoded using this escape sequence.

3. Asin Standard C, up to three octal digits are accepted.
4. Unlike in Standard C, exactly two hex digits are required.

5. In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that
the byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode
character with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchangjes piaekslash is left in the

string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode only)” in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.

When anr' or’R’ prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the stringor example, the string literdl\n" consists of two characters: a backslash and

a lowercasen’ . String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is avalid string literal consisting of two characters: a backslash and a double tjilotejs not a valid string

literal (even a raw string cannot end in an odd number of backslashes). Specifically, string cannot end in a

single backslaslfsince the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the stitrag, a line continuation.

When anr’ or’'R’ prefix is used in conjunction with'a’ or’U’ prefix, then thauXXXX and\UXXXXXXXX
escape sequences are processed vdtilether backslashes are left in the strindg-or example, the string literal
ur\u0062\n" consists of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and

10 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

‘LATIN SMALL LETTER N'. Backslashes can be escaped with a preceding backslash; however, both remain in the
string. As a resuljuXXXX escape sequences are only recognized when there are an odd number of backslashes.

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed,
and their meaning is the same as their concatenation. Tiheito" 'world’ is equivalent td'helloworld"

This feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long
lines, or even to add comments to parts of strings, for example:

re . compile("[A-Za-z | " # letter or underscore
"[A-Za-z0-9_]J* ! # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be
used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles
for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals
There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase-ikds actually an expression composed of the unary
operator - ‘ and the literall.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer (“I" | “L")
integer decimalinteger | octinteger | hexinteger | bininteger

decimalinteger := nonzerodigit digit* | “0”

octinteger = 0" ("o” | “O") octdigit+ | “0” octdigit+
hexinteger = "0 ("' | "X") hexdigit+

bininteger = “0” ("b” | “B") bindigit+

nonzerodigit = 1.9

octdigit = t0nLT

bindigit = 0"

hexdigit n= digit | “a"..f" | “ANLEY

Although both lower cas# and upper casgé’ are allowed as sulffix for long integers, it is strongly recommended
to always usél’ , since the lettel’ looks too much like the digitl’

Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit arith-
metic) are accepted as if they were long integers instéddhere is no limit for long integer literals apart from what
can be stored in available memory.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

1 In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below the
largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value.

2.4. Literals 11

The Python Language Reference, Release 2.6.2

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeef

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart “.”
exponentfloat ;= (intpart | pointfloat) exponent
intpart = digit+

fraction = 7 digit+

exponent = “e” | “E") [+ | “-] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For exampled77e010 is legal, and denotes the same numberasl10. The allowed range of floating
point literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase-ikds actually an expression composed of the unary
operator- and the literall.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:
imagnumber = (floathumber | intpart) (" | “J")

An imaginary literal yields a complex number with a real part of 0.0. Complex humbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.(8+4j) . Some examples of imaginary literals:

3.14j 10 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * w / I %
<< >> & N ~
< > <= >= == 1= <>

The comparison operators> and!= are alternate spellings of the same operdtoris the preferred spellings> is
obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

12 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

(> 1t 3 e
:l-: .-: .*: /= /= 0,/0:
&= |= N= >>= <<= *r—

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

' " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

$?

2.6. Delimiters 13

The Python Language Reference, Release 2.6.2

14 Chapter 2. Lexical analysis

CHAPTER
THREE

DATA MODEL

3.1 Objects, values and types

Objectsare Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code is
also represented by objects.) Every object has an identity, a type and a value. An athgatity never changes

once it has been created; you may think of it as the object’'s address in memoryis Theperator compares the
identity of two objects; thed() function returns an integer representing its identity (currently implemented as its
address). An objecttypeis also unchangeablé.An object’s type determines the operations that the object supports
(e.g., “does it have a length?”) and also defines the possible values for objects of that tyggpellhe function

returns an object’s type (which is an object itself). Madueof some objects can change. Objects whose value can
change are said to beutable objects whose value is unchangeable once they are created ardmafiethble (The

value of an immutable container object that contains a reference to a mutable object can change when the latter's
value is changed; however the container is still considered immutable, because the collection of objects it contains
cannot be changed. So, immutability is not strictly the same as having an unchangeable value, it is more subtle.)
An object's mutability is determined by its type; for instance, numbers, strings and tuples are immutable, while
dictionaries and lists are mutable. Objects are never explicitly destroyed; however, when they become unreachable
they may be garbage-collected. An implementation is allowed to postpone garbage collection or omit it altogether —
it is a matter of implementation quality how garbage collection is implemented, as long as no objects are collected
that are still reachable. (Implementation note: CPython currently uses a reference-counting scheme with (optional)
delayed detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but
is not guaranteed to collect garbage containing circular references. See the documentatiogcofmbeule for
information on controlling the collection of cyclic garbage. Other implementations act differently and CPython may
change.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception witinya *...except * statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, ustielg@ method. Programs are

strongly recommended to explicitly close such objects. The . finally * statement provides a convenient way

to do this. Some objects contain references to other objects; these arecoallathers Examples of containers are

tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the
value of a container, we imply the values, not the identities of the contained objects; however, when we talk about the
mutability of a container, only the identities of the immediately contained objects are implied. So, if an immutable
container (like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with

11t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

15

The Python Language Reference, Release 2.6.2

the same type and value, while for mutable objects this is not allowed. E.g.aaftell; b = 1 , a andb may or
may not refer to the same object with the value one, depending on the implementation, butafigr d = [] ,
¢ andd are guaranteed to refer to two different, unique, newly created empty lists. (Note thad = [] assigns
the same object to bothandd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.). Some of the type descriptions below
contain a paragraph listing ‘special attributes.” These are attributes that provide access to the implementation and are
not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don’t explicitly return anything. Its truth value is false.

Notimplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in nameNotimplemented . Numeric methods and rich comparison methods may return this value
if they do not implement the operation for the operands provided. (The interpreter will then try the reflected
operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . Itis used to indicate the presence of the syntax in a slice. Its truth value is true.

numbers.Number These are created by numeric literals and returned as results by arithmetic operators and arith-
metic built-in functions. Numeric objects are immutable; once created their value never changes. Python
numbers are of course strongly related to mathematical numbers, but subject to the limitations of nhumerical
representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and negative).
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may
be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the
exceptiorOverflowError is raised instead). For the purpose of shift and mask operations, integers
are assumed to have a binary, 2's complement notation using 32 or more bits, and hiding no bits from
the user (i.e., all 4294967296 different bit patterns correspond to different values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative num-
bers are represented in a variant of 2’'s complement which gives the illusion of an infinite string of
sign bits extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean
values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that
when converted to a string, the strinfsalse” or"True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers and the least surprises when switching between the plain
and long integer domains. Any operation, if it yields a result in the plain integer domain, will yield the
same result in the long integer domain or when using mixed operands. The switch between domains is
transparent to the programmer.

16 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

numbers.Real (float) These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings
in processor and memory usage that are usually the reason for using these is dwarfed by the overhead of
using objects in Python, so there is no reason to complicate the language with two kinds of floating point
numbers.

numbers.Complex These represent complex numbers as a pair of machine-level double precision floating
point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of a
complex numbek can be retrieved through the read-only attribtgsal andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in fiemg}ionreturns
the number of items of a sequence. When the length of a sequencthésindex set contains the numbers 0,
1, ...,n-1. Itemi of sequenca is selected by[i] . Sequences also support sliciraji:] selects all items
with index k such that <= k < j. When used as an expression, a slice is a sequence of the same type. This
implies that the index set is renumbered so that it starts at 0. Some sequences also support “extended slicing”
with a third “step” parameterali:j:K] selects all items o with indexx wherex = i + n*k ,n>=0
andi <= x<j.
Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however,
the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is represented
by a string of one item. Characters represent (at least) 8-bit bytes. The built-in fundhighs and
ord() convert between characters and nonnegative integers representing the byte values. Bytes with
the values 0-127 usually represent the corresponding ASCII values, but the interpretation of values is
up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read
from a file. (On systems whose native character set is not ASCII, strings may use EBCDIC in their
internal representation, provided the functiats() andord() implement a mapping between
ASCII and EBCDIC, and string comparison preserves the ASCII order. Or perhaps someone can
propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by a
Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode ordinal
(the maximum value for the ordinal is given sys.maxunicode , and depends on how Python
is configured at compile time). Surrogate pairs may be present in the Unicode object, and will be
reported as two separate items. The built-in functiomshr() andord() convert between code
units and nonnegative integers representing the Unicode ordinals as defined in the Unicode Standard
3.0. Conversion from and to other encodings are possible through the Unicode reatioat()
and the built-in functiorunicode()

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing
a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Mutable sequencesMutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignmeni@nddelete) statements.
There is currently a single intrinsic mutable sequence type:
Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list
of expressions in square brackets. (Note that there are no special cases needed to form lists of length
Oorl)

The extension modularray provides an additional example of a mutable sequence type.

3.2. The standard type hierarchy 17

The Python Language Reference, Release 2.6.2

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any
subscript. However, they can be iterated over, and the built-in funi@if) returns the number of items in

a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing
mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the

normal rules for numeric comparison: if two numbers compare equal {eand1.0), only one of them can

be contained in a set.
There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the bsédt{ln constructor and can be modified

afterwards by several methods, suctadd() .
Frozen sets These represent an immutable set. They are created by the Hodzémset()

constructor. As

a frozenset is immutable amdishableit can be used again as an element of another set, or as a dictionary

key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript afkhticselects
the item indexed bk from the mappinga; this can be used in expressions and as the target of assignments or

del statements. The built-in functidan() returns the number of items in a mapping.
There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values
not acceptable as keys are values containing lists or dictionaries or other mutable types that are compared
by value rather than by object identity, the reason being that the efficient implementation of dictionaries
requires a key’s hash value to remain constant. Numeric types used for keys obey the normal rules for nu-
meric comparison: if two numbers compare equal (d.gnd1.0) then they can be used interchangeably

to index the same dictionary entry.

Dictionaries are mutable; they can be created by{the notation (see sectiobictionary display}.
The extension moduletbm, gdbm, andbsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see sectiits) can be applied:

User-defined functions A user-defined function object is created by a function definition (see séatioction
definitiong. It should be called with an argument list containing the same number of items as the function’s

formal parameter list.
Special attributes:

Attribute Meaning

func_doc The function’s documentation string, Bione if unavailable

__doc__ Another way of spellindunc_doc
func_name | The function’s name
__hame__ | Another way of spellindunc_name

None if no arguments have a default value
func_code | The code object representing the compiled function body.

namespace of the module in which the function was defined.
func_dict The namespace supporting arbitrary function attributes.

__module__| The name of the module the function was defined iMone if unavailable.
func_defaults A tuple containing default argument values for those arguments that have defaults,

func_globals A reference to the dictionary that holds the function’s global variables — the global

func_closure None or a tuple of cells that contain bindings for the function’s free variables.

Writabl
Writabl
Writabl
Writabl
Writabl
oMWritabl

Writabl
Read-
only
Writabl
Read-
only

M M M D M

Most of the attributes labelled “Writable” check the type of the assigned value. Changed in version 2.4:
func_name is now writable. Function objects also support getting and setting arbitrary attributes, which
can be used, for example, to attach metadata to functions. Regular attribute dot-notation is used to get and
set such attributed\Note that the current implementation only supports function attributes on user-defined

functions. Function attributes on built-in functions may be supported in the future.

18

Chapter 3. Data model

The Python Language Reference, Release 2.6.2

Additional information about a function’s definition can be retrieved from its code object; see the descrip-
tion of internal types below.

User-defined methodsA user-defined method object combines a class, a class instanbioiie) and any
callable object (normally a user-defined function).
Special read-only attributesm_self is the class instance objedim_func is the function object;
im_class isthe class oim_self for bound methods or the class that asked for the method for unbound
methods; doc__ is the method’s documentation (sameisfunc.__doc__); __name__ isthe
method name (same &s_func.__name__); _ module__ is the name of the module the method
was defined in, oNone if unavailable. Changed in version 2.itn_self used to refer to the class that
defined the method.Changed in version 2.6: For 3.0 forward-compatibilitfunc is also available as
__func__ ,andim_self as__self . Methods also support accessing (but not setting) the arbitrary
function attributes on the underlying function object.
User-defined method objects may be created when getting an attribute of a class (perhaps via an instance
of that class), if that attribute is a user-defined function object, an unbound user-defined method object, or
a class method object. When the attribute is a user-defined method object, a new method object is only
created if the class from which it is being retrieved is the same as, or a derived class of, the class stored
in the original method object; otherwise, the original method object is used as it is. When a user-defined
method object is created by retrieving a user-defined function object from a class, $&lf attribute
is None and the method object is said to be unbound. When one is created by retrieving a user-defined
function object from a class via one of its instancesinitsself attribute is the instance, and the method
object is said to be bound. In either case, the new method’slass attribute is the class from which
the retrieval takes place, and ita_func attribute is the original function object. When a user-defined
method object is created by retrieving another method object from a class or instance, the behaviour is the
same as for a function object, except thatitihefunc attribute of the new instance is not the original
method object but itéam_func attribute. When a user-defined method object is created by retrieving
a class method object from a class or instancanitsself attribute is the class itself (the same as the
im_class attribute), and itém_func attribute is the function object underlying the class method.
When an unbound user-defined method object is called, the underlying furiotidiuic) is called, with
the restriction that the first argument must be an instance of the properiolastass) or of a derived
class thereof.
When a bound user-defined method object is called, the underlying funictiofuic) is called, inserting
the class instancéni_self) in front of the argument list. For instance, wh@iis a class which contains
a definition for a functiori() , andx is an instance of, callingx.f(1) is equivalent to callingC.f(x,
1).
When a user-defined method object is derived from a class method object, the “class instance” stored in
im_self will actually be the class itself, so that calling eithef(1) or C.f(1) is equivalent to
callingf(C,1) wheref is the underlying function.
Note that the transformation from function object to (unbound or bound) method object happens each time
the attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the
attribute to a local variable and call that local variable. Also notice that this transformation only happens
for user-defined functions; other callable objects (and all non-callable objects) are retrieved without trans-
formation. It is also important to note that user-defined functions which are attributes of a class instance
are not converted to bound methods; iy happens when the function is an attribute of the class.

Generator functions A function or method which uses thygeld statement (see sectidie yield statemejt
is called agenerator function Such a function, when called, always returns an iterator object which can
be used to execute the body of the function: calling the iteratarg() method will cause the function
to execute until it provides a value using theld statement. When the function executesturn
statement or falls off the end,&toplteration exception is raised and the iterator will have reached
the end of the set of values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in func-
tions arelen() andmath.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributdsc___ is the function’s doc-
umentation string, oNone if unavailable; _name__is the function’s name;_self _ is settoNone

3.2. The standard type hierarchy 19

The Python Language Reference, Release 2.6.2

(but see the next item); module__ is the name of the module the function was defined iNone if
unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in methalisisappend() ,
assumingalist is a list object. In this case, the special read-only attributeelf is set to the object
denoted byist.

Class TypesClass types, or “new-style classes,” are callable. These objects normally act as factories for new
instances of themselves, but variations are possible for class types that overrile () . The argu-
ments of the call are passed tonew__ () and, in the typical case, to init_ () to initialize the new
instance.

Classic ClasseClass objects are described below. When a class object is called, a new class instance (also
described below) is created and returned. This implies a call to the classis () method if it has
one. Any arguments are passed on to thait () method. If there isno_init_ () method, the
class must be called without arguments.

Class instancesClass instances are described below. Class instances are callable only when the class has a
cal|() method;x(arguments) is a shorthand fox.__call__(arguments)

Modules Modules are imported by thenport statement (see sectidine import statemejt A module object has
a hamespace implemented by a dictionary object (this is the dictionary referenced by the func_globals attribute
of functions defined in the module). Attribute references are translated to lookups in this dictionary,.e.qg.,
is equivalent tan.__dict__ ["X"] . A module object does not contain the code object used to initialize the
module (since it isn't needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, m.g.,= 1 is equivalent to
m.__dict ['x"] = 1 . Special read-only attribute: dict _is the module’s namespace as a dic-
tionary object. Predefined (writable) attributes:name___ is the module’s name; doc__ is the module’s
documentation string, ddone if unavailable; file_ is the pathname of the file from which the module
was loaded, if it was loaded from a file. Thefile__ attribute is not present for C modules that are statically
linked into the interpreter; for extension modules loaded dynamically from a shared library, it is the pathname
of the shared library file.

ClassesBoth class types (new-style classes) and class objects (old-style/classic classes) are typically created by class
definitions (see sectioBilass definitions A class has a namespace implemented by a dictionary object. Class
attribute references are translated to lookups in this dictionary,@&x.js translated t&.__ dict__ ["x"

(although for new-style classes in particular there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. For
old-style classes, the search is depth-first, left-to-right in the order of occurrence in the base class list. New-
style classes use the more complex C3 method resolution order which behaves correctly even in the presence of
‘diamond’ inheritance structures where there are multiple inheritance paths leading back to a common ancestor.
Additional details on the C3 MRO used by new-style classes can be found in the documentation accompanying
the 2.3 release attp://www.python.org/download/releases/2.3/mr#hen a class attribute reference (for class

C, say) would yield a user-defined function object or an unbound user-defined method object whose associated
class is eithe€C or one of its base classes, it is transformed into an unbound user-defined method object whose
im_class attribute isC. When it would yield a class method object, it is transformed into a bound user-
defined method object whosen_class andim_self attributes are botlC. When it would yield a static

method object, it is transformed into the object wrapped by the static method object. Seelsegtionenting
Descriptorsfor another way in which attributes retrieved from a class may differ from those actually contained
inits__dict__ (note that only new-style classes support descriptors). Class attribute assignments update the
class’s dictionary, never the dictionary of a base class. A class object can be called (see above) to yield a class
instance (see below). Special attributesname___is the class name; module__ is the module name in

which the class was defined; dict __ is the dictionary containing the class’s namespacdiases _ is

a tuple (possibly empty or a singleton) containing the base classes, in the order of their occurrence in the base
class list;__doc__ is the class’s documentation string, or None if undefined.

20 Chapter 3. Data model

http://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 2.6.2

Class instancesA class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an attribute
is not found there, and the instance’s class has an attribute by that name, the search continues with the class
attributes. If a class attribute is found that is a user-defined function object or an unbound user-defined method

Files

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change

object whose associated class is the class (dd)laf the instance for which the attribute reference was initiated
or one of its bases, it is transformed into a bound user-defined method objectiwhasess attribute isC

and whosem_self attribute is the instance. Static method and class method objects are also transformed, as

if they had been retrieved from cla€s see above under “Classes”. See sectioplementing Descriptorfor

another way in which attributes of a class retrieved via its instances may differ from the objects actually stored

inthe class’'s _dict__ . If no class attribute is found, and the object’s class hasgetattr () method,

that is called to satisfy the lookup. Attribute assignments and deletions update the instance’s dictionary, never a

class’s dictionary. If the class has asetattr () or _delattr () method, this is called instead of

updating the instance dictionary directly. Class instances can pretend to be numbers, sequences, or mappings

if they have methods with certain special names. See se8iimtial method names Special attributes:
__dict__ isthe attribute dictionary; class__ s the instance’s class.

A file object represents an open file. File objects are created bgpbe() built-in function, and also by
os.popen() ,os.fdopen() , and themakefile() method of socket objects (and perhaps by other func-
tions or methods provided by extension modules). The obggststdin ~ , sys.stdout andsys.stderr

are initialized to file objects corresponding to the interpreter’'s standard input, output and error stredfils. See
Objects(in The Python Library Referengéor complete documentation of file objects.

with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represehyte-compiledexecutable Python code, bytecode The difference be-

tween a code object and a function object is that the function object contains an explicit reference to the
function’s globals (the module in which it was defined), while a code object contains no context; also the
default argument values are stored in the function object, not in the code object (because they represent val-
ues calculated at run-time). Unlike function objects, code objects are immutable and contain no references

(directly or indirectly) to mutable objects.

Special read-only attributeso_name gives the function nameso_argcount is the number of posi-
tional arguments (including arguments with default values)nlocals is the number of local variables
used by the function (including argumentsy;_varnames is a tuple containing the names of the local
variables (starting with the argument hamex); cellvars is a tuple containing the names of local
variables that are referenced by nested functionsfreevars is a tuple containing the names of free
variables;co_code is a string representing the sequence of bytecode instructonspnsts is a tu-

ple containing the literals used by the bytecode; names is a tuple containing the names used by the
bytecodero_filename is the filename from which the code was compiled; firstlineno is the
first line number of the functiorgo_Inotab is a string encoding the mapping from bytecode offsets to
line numbers (for details see the source code of the interpreteritacksize is the required stack
size (including local variablesfo _flags is an integer encoding a number of flags for the interpreter.
The following flag bits are defined fao_flags : bit 0x04 is set if the function uses tHarguments
syntax to accept an arbitrary number of positional argument)®i8 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments;xi20 is set if the function is a genera-
tor.

Future feature declarationsdm __ future__ import division) also use bits ito_flags to
indicate whether a code object was compiled with a particular feature enabldik2bi®0 is set if the
function was compiled with future division enabled; Hitsl0 and0x1000 were used in earlier versions
of Python.

Other bits inco_flags are reserved for internal use. If a code object represents a function, the first item
in co_consts is the documentation string of the function,one if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below).

Special read-only attribute$: back is to the previous stack frame (towards the caller)None if this

3.2. The standard type hierarchy 21

The Python Language Reference, Release 2.6.2

is the bottom stack framd; code is the code object being executed in this frarhdpcals is the
dictionary used to look up local variablek;globals is used for global variabled; builtins is

used for built-in (intrinsic) name$; restricted is a flag indicating whether the function is executing

in restricted execution modé; lasti gives the precise instruction (this is an index into the bytecode
string of the code object). Special writable attributéstrace , if not None, is a function called

at the start of each source code line (this is used by the debudgers type , f exc value ,

f exc_traceback represent the last exception raised in the parent frame provided another exception
was ever raised in the current frame (in all other cases they are Nibtiegno is the current line
number of the frame — writing to this from within a trace function jumps to the given line (only for the
bottom-most frame). A debugger can implement a Jump command (aka Set Next Statement) by writing to
f_lineno.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler
is entered, the stack trace is made available to the program. (See Séwtiow statemetr)t It is accessible
assys.exc_traceback , and also as the third item of the tuple returnedsipg.exc_info() . The
latter is the preferred interface, since it works correctly when the program is using multiple threads. When
the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the usgsdast traceback

Special read-only attributesb_next is the next level in the stack trace (towards the frame where the
exception occurred), ddone if there is no next leveltb_frame points to the execution frame of the
current leveltb_lineno gives the line number where the exception occurtiedasti indicates the
precise instruction. The line number and last instruction in the traceback may differ from the line number
of its frame object if the exception occurred inrg statement with no matching except clause or with a
finally clause.

Slice objects Slice objects are used to represent slices wheended slice syntag used. This is a slice using
two colons, or multiple slices or ellipses separated by commasagi:gstep] ,afizj, k] , or
al..., ifj] . They are also created by the builtshce() function. Special read-only attributes:
start is the lower boundstop is the upper boundstep is the step value; each idone if omitted.
These attributes can have any type.

Slice objects support one method:

indices (self, length
This method takes a single integer argumiemigth and computes information about the extended
slice that the slice object would describe if applied to a sequentengthitems. It returns a tuple
of three integers; respectively these aregtat andstopindices and thetepor stride length of the
slice. Missing or out-of-bounds indices are handled in a manner consistent with regular slices. New
in version 2.3.

Static method objects Static method objects provide a way of defeating the transformation of function objects
to method objects described above. A static method object is a wrapper around any other object, usually a
user-defined method object. When a static method object is retrieved from a class or a class instance, the
object actually returned is the wrapped object, which is not subject to any further transformation. Static
method objects are not themselves callable, although the objects they wrap usually are. Static method
objects are created by the builtdtaticmethod() constructor.

Class method objectsA class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of
class method objects upon such retrieval is described above, under “User-defined methods”. Class method
objects are created by the builtétassmethod() constructor.

3.3 New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.

22 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

Up to Python 2.1, old-style classes were the only flavour available to the user. The concept of (old-style) class is
unrelated to the concept of type:xfis an instance of an old-style class, then class __ designates the class of

X, buttype(x) is always<type ’instance’> . This reflects the fact that all old-style instances, independently

of their class, are implemented with a single built-in type, caitstince

New-style classes were introduced in Python 2.2 to unify classes and types. A new-style class is neither more nor
less than a user-defined type. Xfis an instance of a new-style class, thgpe(x) is typically the same as
X.__class__ (although this is not guaranteed - a new-style class instance is permitted to override the value re-
turned forx.__class__).

The major motivation for introducing new-style classes is to provide a unified object model with a full meta-model. It
also has a number of practical benefits, like the ability to subclass most built-in types, or the introduction of “descrip-
tors”, which enable computed properties.

For compatibility reasons, classes are still old-style by default. New-style classes are created by specifying another
new-style class (i.e. a type) as a parent class, or the “top-level tipett if no other parent is needed. The
behaviour of new-style classes differs from that of old-style classes in a number of important details in addition to
whattype() returns. Some of these changes are fundamental to the new object model, like the way special methods
are invoked. Others are “fixes” that could not be implemented before for compatibility concerns, like the method
resolution order in case of multiple inheritance.

While this manual aims to provide comprehensive coverage of Python’s class mechanics, it may still be lacking in
some areas when it comes to its coverage of new-style classes. Ple&ase seevw.python.org/doc/newstyldéor

sources of additional information. Old-style classes are removed in Python 3.0, leaving only the semantics of new-
style classes.

3.4 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscript-
ing and slicing) by defining methods with special names. This is Python’s approaphkrator overloadingallowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method named

__getitem__ () , andx is an instance of this class, thefi] is roughly equivalent ta.__getitem__ (i) for
old-style classes anype(x).__getitem__ (X, i) for new-style classes. Except where mentioned, attempts
to execute an operation raise an exception when no appropriate method is defined (tyticaliyeError or

TypeError).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of thiNdsl&hést

interface in the W3C’s Document Object Model.)

3.4.1 Basic customization

__new__(cls, [...]D
Called to create a new instance of clats ~ new_ () is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new__() should be the new object instance (usually an instancéspf

Typical implementations create a new instance of the class by invoking the superclassis () method
using super(currentclass, cls).__new__(cls[, ...]) with appropriate arguments and then
modifying the newly-created instance as necessary before returning it.

If __new__ () returns an instance als, then the new instance’s init_ () method will be invoked like
__init__(selff, ...]) , Whereself is the new instance and the remaining arguments are the same as
were passedto new_ () .

3.4. Special method names 23

http://www.python.org/doc/newstyle/

The Python Language Reference, Release 2.6.2

If new () does notreturn an instance d, then the new instance’s init_ () method will not be
invoked.

__new__() isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

_init__ (self, [...])
Called when the instance is created. The arguments are those passed to the class constructor expres-
sion. If a base class has aninit_ () method, the derived class’s init_ () method, if any,
must explicitly call it to ensure proper initialization of the base class part of the instance; for example:
BaseClass.__init__(self, [args...]) . As a special constraint on constructors, no value may be
returned; doing so will causeTypeError to be raised at runtime.

__del__ (self
Called when the instance is about to be destroyed. This is also called a destructor. If a base class has a
__del_ () method, the derived class’'sdel () method, if any, must explicitly call it to ensure proper
deletion of the base class part of the instance. Note that it is possible (though not recommended!) for the
__del__ () method to postpone destruction of the instance by creating a new reference to it. It may then be
called at a later time when this new reference is deleted. It is not guaranteed tredt () methods are
called for objects that still exist when the interpreter exits.

Note: del x doesn't directly callx.__del_ () — the former decrements the reference countxfday

one, and the latter is only called whers reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.g., a
doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the stack
frame of a function that caught an exception (the traceback storggsiaxc_traceback keeps the stack

frame alive); or a reference to the object on the stack frame that raised an unhandled exception in interactive
mode (the traceback stored sgs.last_traceback keeps the stack frame alive). The first situation can

only be remedied by explicitly breaking the cycles; the latter two situations can be resolved by Btonieg

in sys.exc_traceback or sys.last_traceback . Circular references which are garbage are detected
when the option cycle detector is enabled (it's on by default), but can only be cleaned up if there are no Python-
level del () methods involved. Refer to the documentation for gitemodule for more information
abouthow del () methods are handled by the cycle detector, particularly the descriptiongdithage

value.

Warning: Due to the precarious circumstances under whictiel () methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printsgsstderr instead. Also,
when__del () isinvoked in response to a module being deleted (e.g., when execution of the program
is done), other globals referenced by thedel () method may already have been deleted or in fhe
process of being torn down (e.g. the import machinery shutting down). For this reasosl, ()
methods should do the absolute minimum needed to maintain external invariants. Starting with versfon 1.5,
Python guarantees that globals whose name begins with a single underscore are deleted from theif module
before other globals are deleted; if no other references to such globals exist, this may help in assufing that
imported modules are still available at the time when théel () method is called.

__repr__ (self)
Called by therepr() built-in function and by string conversions (reverse quotes) to compute the “official”
string representation of an object. If at all possible, this should look like a valid Python expression that could
be used to recreate an object with the same value (given an appropriate environment). If this is not possible, a
string of the form<...some useful description...> should be returned. The return value must be
a string object. If a class definesrepr () butnot str () ,then__repr () isalsousedwhenan
“informal” string representation of instances of that class is required. This is typically used for debugging, so
it is important that the representation is information-rich and unambiguous.

__str_ (self)
Called by thestr() built-in function and by therint statement to compute the “informal” string represen-
tation of an object. This differs from repr__ () in that it does not have to be a valid Python expression: a

24 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

more convenient or concise representation may be used instead. The return value must be a string object.

_ It (self, othey

__le__ (self, othej

__eq__ (self, othey

__ne__ (self, othey

gt (self, othey

__ge__ (self, othey
New in version 2.1. These are the so-called “rich comparison” methods, and are called for comparison operators
in preference to_cmp__ () below. The correspondence between operator symbols and method names is
as follows: x<y callsx.__It_ (y) ,x<=y callsx.__le (y) ,x==y callsx. _eq_(y) ,x=y and
x<>y callx.__ne_ (y) ,x>y callsx._ gt (y) ,andx>=y callsx._ ge_ (y)

A rich comparison method may return the singlebtwtimplemented if it does not implement the operation

for a given pair of arguments. By conventidralse andTrue are returned for a successful comparison.
However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g.,
in the condition of anf statement), Python will cabool() on the value to determine if the result is true or

false.

There are no implied relationships among the comparison operators. The txthyofdoes not imply that
x!=y isfalse. Accordingly, when defining eq_ () , one should also define ne_ () so that the operators
will behave as expected. See the paragraph dmash__ () for some important notes on creatihgshable

objects which support custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not sup-
port the operation but the right argument does); rathelt, () and__ gt () are each other’s reflection,
le () and__ge () areeach other’sreflection,andeq_ () and__ne_ () are their own reflec-

tion.

Arguments to rich comparison methods are never coerced.

__cmp__ (self, othe}
Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other , zeroifself == other , a positive integer itelf > other . Ifno__cmp_ () ,
eq () or__ne_ () operation is defined, class instances are compared by object identity (“address”).
See also the description of hash__ () for some important notes on creatingshableobjects which support
custom comparison operations and are usable as dictionary keys. (Note: the restriction that exceptions are not
propagated by cmp_ () has been removed since Python 1.5.)

__rcmp___ (self, othe}
Changed in version 2.1: No longer supported.

__hash__ (self)
Called by built-in functionhash() and for operations on members of hashed collections inclusktg
frozenset , anddict . __hash__ () should return an integer. The only required property is that objects

which compare equal have the same hash value; it is advised to somehow mix together (e.g. using exclusive or)
the hash values for the components of the object that also play a part in comparison of objects.

If a class does not defineacmp__ () or__eq_ () method it should not define a hash__ () operation
either; ifitdefines cmp__ () or _eq () butnot hash () ,itsinstances will not be usable in hashed
collections. If a class defines mutable objects and implementsiap__ () or__eq_ () method, it should

not implement _hash__ () , since hashable collection implementations require that a object’s hash value is
immutable (if the object’s hash value changes, it will be in the wrong hash bucket).

User-defined classes havecmp () and__hash_ () methods by default; with them, all objects compare
unequal (except with themselves) and hash__ () returnsid(x)

Classes which inherita hash__ () method from a parent class but change the meaningoinp__ () or
__eq__() such that the hash value returned is no longer appropriate (e.g. by switching to a value-based con-
cept of equality instead of the default identity based equality) can explicitly flag themselves as being unhashable
by setting__hash__ = None in the class definition. Doing so means that not only will instances of the class

3.4. Special method names 25

The Python Language Reference, Release 2.6.2

raise an appropriat€ypeError when a program attempts to retrieve their hash value, but they will also be
correctly identified as unhashable when checksigstance(obj, collections.Hashable) (un-

like classes which define their own hash__ () to explicitly raiseTypeError). Changed in version 2.5:
__hash__ () may now also return a long integer object; the 32-bit integer is then derived from the hash of
that object.Changed in version 2.6:hash__ may now be set tdlone to explicitly flag instances of a class

as unhashable.

__honzero__ (self)

Called to implement truth value testing and the built-in operatioal() ; should returrFalse or True , or
their integer equivalentd or 1. When this method is not defined,len_ () is called, if it is defined, and the
object is considered true if its result is nonzero. If a class defines neitheen () nor__nonzero_ ()
all its instances are considered true.

__unicode___ (self)

Called to implementinicode() builtin; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system
default encoding.

3.4.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

__getattr (' self, namg

Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree fgelf). nameis the attribute name. This method should return the (computed)

attribute value or raise attributeError exception. Note that if the attribute is found through the normal
mechanism, getattr__ () is not called. (This is an intentional asymmetry betweengetattr ()
and _setattr () .) This is done both for efficiency reasons and because otherwisetattr ()

would have no way to access other attributes of the instance. Note that at least for instance variables, you can
fake total control by not inserting any values in the instance attribute dictionary (but instead inserting them in
another object). See the getattribute () method below for a way to actually get total control in
new-style classes.

__setattr__ (self, name, value

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionarynameis the attribute namevalue is the value to be assigned to it.

If _ setattr () wants to assign to an instance attribute, it should not simply exemifmame
= value — this would cause a recursive call to itself. Instead, it should insert the value in the dictio-
nary of instance attributes, e.gelf.__dict _[name] = value . For new-style classes, rather than

accessing the instance dictionary, it should call the base class method with the same name, for example,
object.__setattr__(self, name, value)

__delattr (' self, namg

Like _ setattr () but for attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

More attribute access for new-style classes

The following methods only apply to new-style classes.

__getattribute___ (self, namg

Called unconditionally to implement attribute accesses for instances of the class. If the class also de-
fines__ getattr () , the latter will not be called unless getattribute () either calls it explic-

itly or raises anAttributeError . This method should return the (computed) attribute value or raise
an AttributeError exception. In order to avoid infinite recursion in this method, its implementation

26

Chapter 3. Data model

The Python Language Reference, Release 2.6.2

should always call the base class method with the same name to access any attributes it needs, for example,
object.__ getattribute__ (self, name)

Note: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or builtin functions. Sepecial method lookup for new-style classes

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a salestiggtorclass)
appears in the class dictionary of another new-style class, known asvther class. In the examples below, “the
attribute” refers to the attribute whose name is the key of the property in the owner claist . Descriptors
can only be implemented as new-style classes themselves.

__get__ (self, instance, owngr
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute accesspwneris always the owner class, whilestanceis the instance that the attribute was accessed
through, oNone when the attribute is accessed throughdhaer. This method should return the (computed)
attribute value or raise attributeError exception.

__set__ (self, instance, valye
Called to set the attribute on an instamestanceof the owner class to a new valuglue

__delete__ (self, instancg
Called to delete the attribute on an instaimtganceof the owner class.

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocol:get () , set () ,and delete () . If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a.x has a lookup chain starting with.__dict _ ['x] , thentype(a).__dict_ ['X] , and continuing
through the base classestgpe(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style
objects or classes (ones that subctatgect() ortype()).

The starting point for descriptor invocation is a bindiags . How the arguments are assembled depends on

Direct Call The simplest and least common call is when user code directly invokes a descriptor method:
X.__get (a)

Instance Binding If binding to a new-style object instance,a.x is transformed into the call:
type(a).__dict_ ['x'].__get (a, type(a))

Class Binding If ~ binding to a new-style class, A.X is transformed into the call
A._dict_ ['X].__get_(None, A)

Super Binding If a is an instance ofsuper , then the binding super(B, obj).m() searches
obj. class . mro__ for the base clas#®\ immediately preceding@ and then invokes the de-
scriptor with the callA.__dict_ ['m’].__get_ (obj, A)

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are de-
fined. Normally, data descriptors define bothget () and__set () , while non-data descriptors have just

3.4. Special method names 27

The Python Language Reference, Release 2.6.2

the get () method. Data descriptors always override a redefinition in an instance dictionary. In contrast, non-
data descriptors can be overridden by instantes.

Python methods (includingtaticmethod() andclassmethod()) are implemented as non-data descriptors.
Accordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that
differ from other instances of the same class.

Theproperty() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for
objects having very few instance variables. The space consumption can become acute when creating large numbers of
instances.

The default can be overridden by definingslots__in a new-style class definition. The slots__declaration takes a
sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space
is saved because dict__is not created for each instance.

__Slots__
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. If defined in a new-style classslots__reserves space for the declared variables and prevents the
automatic creation of _dict__and__ weakref for each instance. New in version 2.2.

Notes on using _slots__

« When inheriting from a class without slots_, the__ dict__attribute of that class will always be accessible, so
a__slots__definition in the subclass is meaningless.

« Without a__dict__variable, instances cannot be assigned new variables not listed in $has__definition.
Attempts to assign to an unlisted variable name rafssbuteError . If dynamic assignment of new
variables is desired, then add dict__’ to the sequence of strings in theslots__declaration. Changed in
version 2.3: Previously, addirig_dict__ to the__slots__declaration would not enable the assignment of
new attributes not specifically listed in the sequence of instance variable names.

« Without a__ weakref variable for each instance, classes defininglots__do not support weak references
to its instances. If weak reference support is needed, then adeeakref ' to the sequence of strings
in the__slots__declaration. Changed in version 2.3: Previously, addingveakref ' to the__slots__
declaration would not enable support for weak references.

« _slots__areimplemented at the class level by creating descriptoyg¢ menting Descriptojdor each variable
name. As aresult, class attributes cannot be used to set default values for instance variables defsietsby
otherwise, the class attribute would overwrite the descriptor assignment.

« If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

« The action of a_slots__declaration is limited to the class where it is defined. As a result, subclasses will have
a__dict__unless they also define slots_.

* Nonempty__slots__does not work for classes derived from “variable-length” built-in types sutdnas , str
andtuple

2 A descriptor can define any combination ofget () , _set () and__delete_ () . If it does not define _get () , then
accessing the attribute even on an instance will return the descriptor object itself. If the descriptor defiries() and/or__delete_ ()
it is a data descriptor; if it defines neither, it is a non-data descriptor.

28 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

< Any non-string iterable may be assigned toslots . Mappings may also be used; however, in the future,
special meaning may be assigned to the values corresponding to each key.

e _ class__assignment works only if both classes have the sanséots_. Changed in version 2.6: Previously,
__class__assignment raised an error if either new or old class hadots .

3.4.3 Customizing class creation

By default, new-style classes are constructed usipg() . A class definition is read into a separate namespace and
the value of class name is bound to the resutypt&(name, bases, dict)
When the class definition is read,_if metaclass_is defined then the callable assigned to it will be called instead of
type() . This allows classes or functions to be written which monitor or alter the class creation process:

» Modifying the class dictionary prior to the class being created.

» Returning an instance of another class — essentially performing the role of a factory function.
These steps will have to be performed in the metaclass®w__ () method —type._ new_ () can then be

called from this method to create a class with different properties. This example adds a new element to the class
dictionary before creating the class:

class metacls (type):

def _ _new__(mcs, name, bases, dict):
dict ['foo’] = ’'metacls was here
return type . __new__(mcs, name, bases, dict)

You can of course also override other class methods (or add new methods); for example defining a custom
cal () method in the metaclass allows custom behavior when the class is called, e.g. not always creating
a new instance.

__metaclass__
This variable can be any callable accepting argumentadare, bases , anddict . Upon class creation, the
callable is used instead of the builtdype() . New in version 2.2.

The appropriate metaclass is determined by the following precedence rules:

e If dict[__metaclass__] exists, itis used.

« Otherwise, if there is at least one base class, its metaclass is used (this looks ¢tass__attribute first and if
not found, uses its type).

« Otherwise, if a global variable named __metaclass___ exists, it is used.
« Otherwise, the old-style, classic metaclass (types.ClassType) is used.
The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, interface

checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource lock-
ing/synchronization.

3.4.4 Emulating callable objects

_call__ (self,[args...)
Called when the instance is “called” as a function; if this method is defix@dgl, arg2, ...) is a
shorthand fox.__call__(argl, arg2, ...)

3.4. Special method names 29

The Python Language Reference, Release 2.6.2

3.4.5 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods
is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable
keys should be the integekdor whichO <= k < N whereN is the length of the sequence, or slice objects, which
define a range of items. (For backwards compatibility, the methagktslice () (see below) can also be de-

fined to handle simple, but not extended slices.) It is also recommended that mappings provide the keg#{pds

values() ,items() , has key() , get() , clear() , setdefault() , iterkeys() , itervalues() ,
iteritems() , pop() , popitem() , copy() , andupdate() behaving similar to those for Python’s standard
dictionary objects. Thé&serDict module provides ®ictMixin class to help create those methods from a base

set of _getitem_ () , setitem_ () , deltem_ () , andkeys() . Mutable sequences should pro-

vide methodappend() ,count() ,index() ,extend() ,insert() ,pop() ,remove() ,reverse() and

sort() , like Python standard list objects. Finally, sequence types should implement addition (meaning concatena-
tion) and multiplication (meaning repetition) by defining the methodsdd () , radd () , iadd () ,

_mul__ () ,_rmul_() and__imul__() described below; they should not definecoerce_ () or other
numerical operators. It is recommended that both mappings and sequences implementoth@ins__ ()

method to allow efficient use of the operator; for mappingsn should be equivalent dias_key() ; for se-

guences, it should search through the values. It is further recommended that both mappings and sequences implement
the iter_ () method to allow efficient iteration through the container; for mappingger () should be

the same agerkeys() ; for sequences, it should iterate through the values.

__len__ (self)
Called to implement the built-in functiolen() . Should return the length of the object, an integer0.
Also, an object that doesn't define anonzero_ () method and whose len_ () method returns zero
is considered to be false in a Boolean context.

__getitem__ (self, key
Called to implement evaluation s&lf[key] . For sequence types, the accepted keys should be integers and
slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence
type) is up to the getitem__ () method. Ifkeyis of an inappropriate typ&ypeError may be raised,;
if of a value outside the set of indexes for the sequence (after any special interpretation of negative values),
IndexError should be raised. For mapping typeskédyis missing (not in the containeleyError should
be raised.

Note: for loops expect that amdexError will be raised for illegal indexes to allow proper detection of
the end of the sequence.

__setitem__ (self, key, value
Called to implement assignment selffkey] . Same note as for_getitem__ () . This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised for kapvahezs as for
the_ getitem__ () method.

__delitem__ (self, key
Called to implement deletion dfelf[key] . Same note as for_getitem__() . This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for impeypatues as for the getitem__ ()
method.

__iter__ (self)
This method is called when an iterator is required for a container. This method should return a new iterator

object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container, and should also be made available as the métr&dys()

Iterator objects also need to implement this method; they are required to return themselves. For more information
on iterator objects, sdeerator Typegin The Python Library Referenge

__reversed__ (self)

30 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

Called (if present) by theeversed() builtin to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the _ reversed_ () method is not provided, theeversed() builtin will fall back to using

the sequence protocol (len () and _ getitem_ ()). Objects should normally only provide
__reversed_ () if they do not support the sequence protocol and an efficient implementation of reverse
iteration is possible. New in version 2.6.

The membership test operators (andnot in) are normally implemented as an iteration through a sequence.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be a sequence.

__contains__ (self, item
Called to implement membership test operators. Should return tritenifis in self false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

3.4.6 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences methods
should at most only define getslice_ () ; mutable sequences might define all three methods.

__getslice_ (self,i,)
Deprecated since version 2.0: Support slice objects as parameters tatiiegem () method. (However,
built-in types in CPython currently still implement getslice_ () . Therefore, you have to override it in
derived classes when implementing slicing.) Called to implement evaluatiealifij] . The returned
object should be of the same typesadf Note that missing or j in the slice expression are replaced by zero
or sys.maxint , respectively. If negative indexes are used in the slice, the length of the sequence is added

to that index. If the instance does not implement théen_ () method, amttributeError is raised.
No guarantee is made that indexes adjusted this way are not still negative. Indexes which are greater than the
length of the sequence are not modified. If ngyetslice () is found, a slice object is created instead,
and passed to_getitem__ () instead.

__setslice_ (self,i,], sequenge
Called to implement assignmentdelf]i:j] . Same notes fdrandj as for__getslice_ ()
This method is deprecated. If no setslice () is found, or for extended slicing of the form
selffi:j:k] , a slice object is created, and passed teetitem () , instead of _setslice ()
being called.

__delslice_ (self,i,)
Called to implement deletion afelf[i:j] . Same notes farandj as for__getslice_ () . This method
is deprecated. If no_delslice () is found, or for extended slicing of the forself[i:j:K] , aslice
object is created, and passed talelitem__ () , instead of _delslice_ () being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is avail-
able. For slice operations involving extended slice notation, or in absence of the slice methpeigem_ ()
__setitem__ () or__delitem_ () is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods getitem_ () , setitem_ () and__ delitem_ () support slice objects as ar-
guments):

class MyClass :
def _ getitem__ (self , index):

def _ setitem__ (self , index, value):

3.4. Special method names 31

The Python Language Reference, Release 2.6.2

def _ delitem__ (self , index):

if sys . version_info < (2, O)
They won’t be defined if version is at least 2.0 final

def _ getslice (self , i, j):

return self [max(0, i): max(0, j)]
def _ setslice_ (self , i, j, seq):

self [max(0, i): max(0, j)] = seq
def _ delslice_ (self , i,)):

del self [max(0, i); max(0, j)]

Note the calls tanax() ; these are necessary because of the handling of negative indices beforédice ()

methods are called. When negative indexes are used, ttiem__ () methods receive them as provided, but the
__*slice_ () methods get a “cooked” form of the index values. For each negative index value, the length of
the sequence is added to the index before calling the method (which may still result in a negative index); this is the
customary handling of negative indexes by the built-in sequence types, andtteen__ () methods are expected

to do this as well. However, since they should already be doing that, negative indexes cannot be passed in; they must
be constrained to the bounds of the sequence before being passed téitbm__ () methods. Callingnax(O,

i) conveniently returns the proper value.

3.4.7 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

__add__ (self, othe}

__sub__ (self, othe}

__mul__ (self, othe}

__floordiv__ (self, othe}

__mod__(self, othe}

__divmod__ (self, othe}

__pow__ (self, other, [modulo)

__Ishift.__ (self, othe}

__rshift__ (self, othe}

__and__ (self, othe}

__xor__ (self, othe}

__or__ (self, othey
These methods are called to implement the binary arithmetic operations*(, // , % divmod() , pow() ,
<<, >> & N, |). Forinstance, to evaluate the expressior y, wherex is an instance of a class that has
an__add_ () methodx.__add_ (y) iscalled. The divmod_ () method should be the equivalent to
using__floordiv__ () and__mod__ () ;itshould not be related to truediv__ () (described below).
Note that pow () should be defined to accept an optional third argument if the ternary version of the
built-in pow() function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
Notimplemented

__div__ (self, othe}
__truediv__ (self, othe}
The division operator/() is implemented by these methods. Thetruediv__ () method is used when

32 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

__future__.division is in effect, otherwise div_ () is used. If only one of these two methods is
defined, the object will not support division in the alternate confepeError will be raised instead.

__radd__ (self, othe}
__rsub__ (self, othej
__rmul__ (self, othe}
_ rdiv__ (self, othe}
__rtruediv__ (self, othe)
__rfloordiv__ (self, othey
__rmod__ (self, othej
__rdivmod__ (self, othe}
__rpow___ (self, othe}
__rlshift__ (self, othe}
__rrshift__ (self, othej
__rand__ (self, othej
__rxor__ (self, othej
__ror__ (self, othe}

These methods are called to implement the binary arithmetic operatipns{, / , % divmod() , pow() ,

<<, >>, & N, |) with reflected (swapped) operands. These functions are only called if the left operand

does not support the corresponding operation and the operands are of different fyp&ar instance,
to evaluate the expression - y , wherey is an instance of a class that has arrsub__ () method,
y.__rsub_ (x) is called ifx.__sub__ (y) returnsNotimplemented Note that ternarpow() will
not try calling__rpow__() (the coercion rules would become too complicated).

Note: If the right operand’s type is a subclass of the left operand’s type and that subclass provides the re-
flected method for the operation, this method will be called before the left operand’s non-reflected method. This

behavior allows subclasses to override their ancestors’ operations.

__ladd__ (self, othe}

__isub__ (self, othej

__imul__ (self, othe}

_idiv__ (self, othe}

__itruediv__ (self, othe)

__ifloordiv__ (self, othey

__imod___ (self, othe}

__ipow___ (self, other, [modulg]

__lshift__ (self, othe}

__irshift__ (self, othe}

__land__ (self, othe}

__ixor__ (self, othej

__ior__ (self, othe}
These methods are called to implement the augmented arithmetic assigntaents,(*=, /=, /I= |, %= **=,
<<=, >>=, &=, "=, |=). These methods should attempt to do the operation in-place (mod#gifjgand return
the result (which could be, but does not have todsdf). If a specific method is not defined, the augmented
assignment falls back to the normal methods. For instance, to execute the statemeny , wherex is an
instance of a class that has anadd__ () methodx.__iadd__ (y) is called. Ifxis an instance of a class
that does notdefinea iadd () methodx. add_(y) andy. radd_ (x) are considered, as with
the evaluation ok + y.

__neg__ (self
__pos__ (self)
__abs__ (self
__invert__ (self)

Called to implement the unary arithmetic operations, abs() and-~).

3 For operands of the same type, it is assumed that if the non-reflected method (sued@s ()) fails the operation is not supported, which
is why the reflected method is not called.

3.4. Special method names 33

The Python Language Reference, Release 2.6.2

__complex__ (self)

_int__ (self)

__long__ (self)

__float__ (' self)
Called to implement the built-in functiormplex() ,int() ,long() , andfloat() . Should return a
value of the appropriate type.

__oct__ (self

__hex__ (self)

Called to implement the built-in functiorect() andhex() . Should return a string value.

__index__ ('self)
Called to implemenbperator.index() . Also called whenever Python needs an integer object (such as in
slicing). Must return an integer (int or long). New in version 2.5.

__coerce__ (self, othe}
Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple contaglfrapmdother
converted to a common numeric type,Ndone if conversion is impossible. When the common type would be
the type ofother , it is sufficient to returrNone, since the interpreter will also ask the other object to attempt
a coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the
conversion to the other type here). A return valudofimplemented is equivalent to returninfjlone.

3.4.8 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become
hard to document precisely; documenting what one version of one particular implementation does is undesirable.
Instead, here are some informal guidelines regarding coercion. In Python 3.0, coercion will not be supported.

« Ifthe left operand of a % operator is a string or Unicode object, no coercion takes place and the string formatting
operation is invoked instead.

« Itis no longer recommended to define a coercion operation. Mixed-mode operations on types that don't define
coercion pass the original arguments to the operation.

* New-style classes (those derived frarbject) never invoke the coerce () method in response to a
binary operator; the only time coerce_ () isinvoked is when the built-in functiocoerce() s called.

« For most intents and purposes, an operator that retdotisnplemented is treated the same as one that is
not implemented at all.

* Below, _op_ () and__rop_ () are used to signify the generic method names corresponding to an op-
erator; _iop__ () is used for the corresponding in-place operator. For example, for the opefator
add () and_radd () areused forthe left and right variant of the binary operator, anadd ()
for the in-place variant.

« For objectsx andy, firstx.__op__ (y) is tried. If this is not implemented or returidotimplemented
y._ rop__(x) is tried. If this is also not implemented or returN®timplemented , a TypeError
exception is raised. But see the following exception:

» Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and
the right operand is an instance of a proper subclass of that type or class and overrides the bazse’g)
method, the right operand’s rop_ () method is triecbeforethe left operand’s _op_ () method.

This is done so that a subclass can completely override binary operators. Otherwise, the left operand’s
_op__() method would always accept the right operand: when an instance of a given class is expected,
an instance of a subclass of that class is always acceptable.

34 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

When either operand type defines a coercion, this coercion is called before that tyjpgs () or
_rop__() method is called, but no sooner. If the coercion returns an object of a different type for the
operand whose coercion is invoked, part of the process is redone using the new object.

When an in-place operator (like=*) is used, if the left operand implementsiop__ () , itis invoked without
any coercion. When the operation falls back toop__ () and/or__rop__ () , the normal coercion rules

apply.
Inx + vy, if xis a sequence that implements sequence concatenation, sequence concatenation is invoked.

Inx * y , if one operator is a sequence that implements sequence repetition, and the other is animhteger (
orlong), sequence repetition is invoked.

Rich comparisons (implemented by methodsq__ () and so on) never use coercion. Three-way comparison
(implemented by cmp__ ()) does use coercion under the same conditions as other binary operations use it.

In the current implementation, the built-in numeric tyjrets , long andfloat do not use coercion; the type
complex however does use coercion for binary operators and rich comparisons, despite the above rules. The
difference can become apparent when subclassing these types. Over time, thentypdex may be fixed

to avoid coercion. All these types implement acoerce_ () method, for use by the built-inoerce()

function.

3.4.9 With Statement Context Managers

New in version 2.5. Acontext manageis an object that defines the runtime context to be established when executing
awith statement. The context manager handles the entry into, and the exit from, the desired runtime context for
the execution of the block of code. Context managers are normally invoked usingfithestatement (described in
sectionThe with statemehtbut can also be used by directly invoking their methods. Typical uses of context managers
include saving and restoring various kinds of global state, locking and unlocking resources, closing opened files, etc.

For more information on context managers, €amtext Manager Typdg# The Python Library Referenke

__enter__ (self)

Enter the runtime context related to this object. Thin statement will bind this method’s return value to the
target(s) specified in thes clause of the statement, if any.

__exit__ (self, exc_type, exc_value, tracebpack

Exit the runtime context related to this object. The parameters describe the exception that caused the context to
be exited. If the context was exited without an exception, all three arguments Wibe.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being prop-
agated), it should return a true value. Otherwise, the exception will be processed normally upon exit from this
method.

Note that _exit_ () methods should not reraise the passed-in exception; this is the caller’s responsibility.

See Also:

PEP 0343- The “with” statement The specification, background, and examples for the Pyithtin statement.

3.4.10 Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute.
This is the case regardless of whether the method is being looked up explicitlkas getitem__ (i) or im-
plicitly as in x[i]

This behaviour means that special methods may exhibit different behaviour for different instances of a single old-style
class if the appropriate special attributes are set differently:

3.4. Special method names 35

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

>>> class C

pass
>>> ¢l = C()
>>> ¢c2 = C()
>>> ¢cl._len__ = lambda: 5
>>> ¢2._len__ = lambda: 9

>>> len (cl)

>>> len (c2)

3.4.11 Special method lookup for new-style classes
For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an

object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception (unlike the equivalent example with old-style classes):

>>> class C(object):
pass

>>> c = C()

>>> ¢. len_ = lambda: 5
>>> len (c)
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in <module>

TypeError : object of type 'C’ has no len()

The rationale behind this behaviour lies with a number of special methods suchash () and__repr_ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conven-
tional lookup process, they would fail when invoked on the type object itself:

>>> 1 . hash_() == hash(1)
True
>>> int . _hash_ () == hash(int)
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in <module>

TypeError : descriptor '__hash__’' of ’int’ object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass
confusion’, and is avoided by bypassing the instance when looking up special methods:

>>> type (1).__hash_ (1) == hash (1)

True

>>> type (int). __hash__(int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the getattribute () method even of the object’s metaclass:

>>> class Meta(type):
def _ getattribute (*args):

36 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

print " Metaclass getattribute invoked "
return type . __ getattribute (*args)

>>> class C(object):

__Mmetaclass__ = Meta
def __len_ (self):
return 10
def _ getattribute (*args):
print " Class getattribute invoked
return object . __ getattribute_ (*args)
>>> ¢ = C()
>>> c¢.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type (¢) . __len_ (c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len (c) # Implicit lookup
10
Bypassing the getattribute_ () machinery in this fashion provides significant scope for speed optimisations

within the interpreter, at the cost of some flexibility in the handling of special methods (the special mmetibe set

on the class object itself in order to be consistently invoked by the interpreter).

3.4. Special method names

37

The Python Language Reference, Release 2.6.2

38 Chapter 3. Data model

CHAPTER
FOUR

EXECUTION MODEL

4.1 Naming and binding

Namegefer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program
text refers to thévinding of that name established in the innermost function block containing the usdochkis a

piece of Python program text that is executed as a unit. The following are blocks: a module, a function body, and
a class definition. Each command typed interactively is a block. A script file (a file given as standard input to the
interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a
command specified on the interpreter command line with-ti@ption) is a code block. The file read by the built-in
functionexecfile() is a code block. The string argument passed to the built-in funetrai{) and to theexec

statement is a code block. The expression read and evaluated by the built-in fumgtitfh is a code block. A

code block is executed in axecution frameA frame contains some administrative information (used for debugging)

and determines where and how execution continues after the code block’s execution has comdetgubdéfines

the visibility of a name within a block. If a local variable is defined in a block, its scope includes that block. If
the definition occurs in a function block, the scope extends to any blocks contained within the defining one, unless a
contained block introduces a different binding for the name. The scope of names defined in a class block is limited to
the class block; it does not extend to the code blocks of methods — this includes generator expressions since they are
implemented using a function scope. This means that the following will fail:

class A:
a = 42
b =list (@ +i for i in range (10))

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the bloclésivironment If a name is bound in a block, it is a local variable of that
block. If a name is bound at the module level, it is a global variable. (The variables of the module code block are
local and global.) If a variable is used in a code block but not defined there, ftég aariable When a name is

not found at all, &NameError exception is raised. If the name refers to a local variable that has not been bound, a
UnboundLocalError exception is raisedJnboundLocalError is a subclass dflameError . The following
constructs bind names: formal parameters to functiomsprt statements, class and function definitions (these bind
the class or function name in the defining block), and targets that are identifiers if occurring in an assifgnméedp

header, in the second position of arcept clause header or aftes in awith statement. Thenport statement

of the formfrom ... import * binds all names defined in the imported module, except those beginning with
an underscore. This form may only be used at the module level.

A target occurring in alel statement is also considered bound for this purpose (though the actual semantics are to
unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will report a
SyntaxError

Each assignment or import statement occurs within a block defined by a class or function definition or at the module
level (the top-level code block).

39

The Python Language Reference, Release 2.6.2

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule
is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The
local variables of a code block can be determined by scanning the entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding

of that name in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtin namespace, the namespace
of the module__builtin__ . The global namespace is searched first. If the name is not found there, the builtin
namespace is searched. The global statement must precede all uses of the name. The built-in namespace associated
with the execution of a code block is actually found by looking up the nanbeiiltins__ in its global namespace;

this should be a dictionary or a module (in the latter case the module’s dictionary is used). By default, when in the
__main__ module,__builtins__ is the built-in module__builtin__ (note: no ‘s’); when in any other
module,__ builtins__ is an alias for the dictionary of the builtin__ module itself.__ builtins___ can

be set to a user-created dictionary to create a weak form of restricted execution.

Note: Users should not touch builtins__ ; it is strictly an implementation detail. Users wanting to override
values in the built-in namespace shouthort the__ builtin__ (no ‘s’) module and modify its attributes appro-
priately. The namespace for a module is automatically created the first time a module is imported. The main module
for a script is always called main__ .

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.

A class definition is an executable statement that may use and define names. These references follow the normal
rules for name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names
defined at the class scope are not visible in methods.

4.1.1 Interaction with dynamic features

There are several cases where Python statements are illegal when used in conjunction with nested scopes that contain
free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at compile
time.

If the wild card form of import —import * —is used in a function and the function contains or is a nested block
with free variables, the compiler will raiseSyntaxError

If exec is used in a function and the function contains or is a nested block with free variables, the compiler will raise
aSyntaxError unless the exec explicitly specifies the local namespace fanthe . (In other wordsexec obj
would be illegal, buexec obj in ns would be legal.)

Theeval() , execfile() , andinput() functions and thexec statement do not have access to the full envi-
ronment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables
are not resolved in the nearest enclosing namespace, but in the global namésémeeexec statement and the

eval() andexecfile() functions have optional arguments to override the global and local namespace. If only
one namespace is specified, it is used for both.

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exceptionrégsed at the point where the error is detected; it mayhamdledby
the surrounding code block or by any code block that directly or indirectly invoked the code block where the error

1 This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

40 Chapter 4. Execution model

The Python Language Reference, Release 2.6.2

occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with taese statement. Exception handlers are specified with the

try ...except statement. Thénally clause of such a statement can be used to specify cleanup code which does
not handle the exception, but is executed whether an exception occurred or not in the preceding code. Python uses
the “termination” model of error handling: an exception handler can find out what happened and continue execution
at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-entering the
offending piece of code from the top). When an exception is not handled at all, the interpreter terminates execution
of the program, or returns to its interactive main loop. In either case, it prints a stack backtrace, except when the
exception isSystemExit

Exceptions are identified by class instances. &heept clause is selected depending on the class of the instance: it
must reference the class of the instance or a base class thereof. The instance can be received by the handler and can
carry additional information about the exceptional condition.

Exceptions can also be identified by strings, in which casesitiept clause is selected by object identity. An
arbitrary value can be raised along with the identifying string which can be passed to the handler.

Warning: Messages to exceptions are not part of the Python API. Their contents may change from one jpersion
of Python to the next without warning and should not be relied on by code which will run under multiple vefsions
of the interpreter.

See also the description of the statement in sectiomhe try statemerandraise statement in sectiomhe raise
statement

4.2. Exceptions 41

The Python Language Reference, Release 2.6.2

42 Chapter 4. Execution model

CHAPTER
FIVE

EXPRESSIONS

This chapter explains the meaning of the elements of expressions in P#jaax Notes:In this and the following
chapters, extended BNF notation will be used to describe syntax, not lexical analysis. When (one alternative of) a
syntax rule has the form

name = othername

and no semantics are given, the semantics of this fornanfe are the same as fathername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common
type,” the arguments are coerced using the coercion rules list€detion rules If both arguments are standard
numeric types, the following coercions are applied:

If either argument is a complex number, the other is converted to complex;

otherwise, if either argument is a floating point number, the other is converted to floating point;

otherwise, if either argument is a long integer, the other is converted to long integer;

otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator). Extensions can
define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
reverse quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms
is:
atom R identifier | literal | enclosure
enclosure = parenth_form | list_display
| generator_expression | dict_display
| string_conversion | yield_atom

5.2.1 ldentifiers (Names)

An identifier occurring as an atom is a name. See sedtientifiers and keywordfor lexical definition and section
Naming and bindindor documentation of naming and binding. When the name is bound to an object, evaluation

43

The Python Language Reference, Release 2.6.2

of the atom yields that object. When a name is not bound, an attempt to evaluate it fdes@®Brror exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is consigevateanameof that class.
Private names are transformed to a longer form before code is generated for them. The transformation inserts the class
name in front of the name, with leading underscores removed, and a single underscore inserted in front of the class
name. For example, the identifier spam occurring in a class namddamwill be transformed to Ham__spam
This transformation is independent of the syntactical context in which the identifier is used. If the transformed name
is extremely long (longer than 255 characters), implementation defined truncation may happen. If the class name
consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal i= stringliteral | integer | longinteger
| floathumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See sectioniteralsfor details. All literals correspond to immutable data types, and hence the object’s identity

is less important than its value. Multiple evaluations of literals with the same value (either the same occurrence in the
program text or a different occurrence) may obtain the same object or a different object with the same value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:
parenth_form = “(" [expression_list])"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma,
it yields a tuple; otherwise, it yields the single expression that makes up the expression list. ~ An empty pair of
parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply (i.e., two occurrences
of the empty tuple may or may not yield the same object). Note that tuples are not formed by the parentheses, but
rather by use of the comma operator. The exception is the empty tuple, for which pareatbesgaired — allowing
unparenthesized “nothing” in expressions would cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display m= “[" [expression_list | list_comprehension] “]"
list_comprehension expression list_for

list_for = “for” target_list “in” old_expression_list [list_iter]
old_expression_list n= old_expression [(“,” old_expression)+ [*,]]
list_iter = list for | list_if

list_if = “if" old_expression [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and placed into the list object in that order. When a list comprehension is supplied, it consists of a single expression
followed by at least onér clause and zero or mofer orif clauses. In this case, the elements of the new list

are those that would be produced by considering each dbtheor if clauses a block, nesting from left to right, and
evaluating the expression to produce a list element each time the innermost block is feached

11n Python 2.3 and later releases, a list comprehension “leaks” the control variables @dreaitisontains into the containing scope. However,

44 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

5.2.5 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression R “(" expression genexpr_for “)”
genexpr_for = “for” target_list “in” or_test [genexpr_iter]
genexpr_iter == genexpr_for | genexpr_if

genexpr_if = “if” old_expression [genexpr_iter]

A generator expression yields a new generator object. It consists of a single expression followed by at feast one
clause and zero or mofer orif clauses. The iterating values of the new generator are those that would be produced
by considering each of tHer orif clauses a block, nesting from left to right, and evaluating the expression to yield
a value that is reached the innermost block for each iteration.

Variables used in the generator expression are evaluated lazily in a separate scope wegtf)themethod is called

for the generator object (in the same fashion as for normal generators). However, #xgression of the leftmost

for clause is immediately evaluated in the current scope so that an error produced by it can be seen before any other
possible error in the code that handles the generator expression. Subseguandif clauses cannot be evaluated
immediately since they may depend on the previous loop. For examplefx*y for x in range(10) for

y in bar(x))

The parentheses can be omitted on calls with only one argument. See s>iior the detail.

5.2.6 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display = “" [key_datum_list] “}
key datum_list = key _datum (%" key_datum)* [","]
key datum = expression “" expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key object is used as a
key into the dictionary to store the corresponding datum. Restrictions on the types of the key values are listed earlier
in sectionThe standard type hierarchyTo summarize, the key type should bashablg which excludes all mutable
objects.) Clashes between duplicate keys are not detected; the last datum (textually rightmost in the display) stored
for a given key value prevails.

5.2.7 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion R expression_list

A string conversion evaluates the contained expression list and converts the resulting object into a string according to
rules specific to its type.

If the object is a string, a numbéxone, or a tuple, list or dictionary containing only objects whose type is one of
these, the resulting string is a valid Python expression which can be passed to the built-in fewalipn to yield
an expression with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape sequences that are
safe to print.) Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or
indirectly) use... to indicate a recursive reference, and the result cannot be passealfo to get an equal value
(SyntaxError will be raised instead). The built-in functioepr() performs exactly the same conversion in its

this behavior is deprecated, and relying on it will not work in Python 3.0

5.2. Atoms 45

The Python Language Reference, Release 2.6.2

argument as enclosing it in parentheses and reverse quotes does. The built-in fstnQtionperforms a similar but
more user-friendly conversion.

5.2.8 Yield expressions

yield_atom
yield_expression

“(" yield_expression *)”
“yield” [expression_list]

New in version 2.5. Theield expression is only used when defining a generator function, and can only be used
in the body of a function definition. Usingygeld expression in a function definition is sufficient to cause that
definition to create a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execu-
tion of a generator function. The execution starts when one of the generator’'s methods is called. At that time, the execu-
tion proceeds to the firsteld expression, where it is suspended again, returning the vakexpoéssion_list

to generator’s caller. By suspended we mean that all local state is retained, including the current bindings of local
variables, the instruction pointer, and the internal evaluation stack. When the execution is resumed by calling one of
the generator's methods, the function can proceed exactly asyfdlte expression was just another external call.

The value of thejield expression after resuming depends on the method which resumed the execution. All of this
makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry point
and their execution can be suspended. The only difference is that a generator function cannot control where should the
execution continue after it yields; the control is always transfered to the generator’s caller. The following generator’s
methods can be used to control the execution of a generator function:

next ()
Starts the execution of a generator function or resumes it at the last exgoeittd expression. When a
generator function is resumed witlmext() method, the currentield expression always evaluatesNone.
The execution then continues to the ngiktld expression, where the generator is suspended again, and the

value of theexpression_list is returned tonext() ‘s caller. If the generator exits without yielding
another value, &toplteration exception is raised.
send (value

Resumes the execution and “sends” a value into the generator functionvalitee argument becomes the
result of the currengield expression. Theend() method returns the next value yielded by the generator, or
raisesStoplteration if the generator exits without yielding another value. Wkend() is called to start
the generator, it must be called wilone as the argument, because there is/mdd expression that could
receive the value.

throw (type, [value, [traceback]]
Raises an exception of typgpe at the point where generator was paused, and returns the next value yielded
by the generator function. If the generator exits without yielding another valbmdteration exception
is raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

close ()
Raises &eneratorExit at the point where the generator function was paused. If the generator function then
raisesStoplteration (by exiting normally, or due to already being closed)G®neratorExit (by not

catching the exception), close returns to its caller. If the generator yields a vatuatianeError is raised.
If the generator raises any other exception, it is propagated to the cédlee() does nothing if the generator
has already exited due to an exception or normal exit.

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value =None):
print " Execution starts when " next()
try :
while True :

is called for the first time.

46 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

try :
value = (yield value)
except Exception , e:
value = e
finally
print " Don’'t forget to clean up when "close() ° is called. !
>>> generator = echo(1)

>>> print generator . next()
Execution starts when ’'next()’ is called for the first time.

1

>>> print generator . next()

None

>>> print generator . send(2)

2

>>> generator . throw(TypeError , "spam")

TypeError('spam’,)
>>> generator . close()
Don't forget to clean up when ’close()’ is called.

See Also:

PEP 0342- Coroutines via Enhanced GeneratorsThe proposal to enhance the API and syntax of generators, mak-
ing them usable as simple coroutines.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary “.” identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance.
This object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the
exceptionAttributeError is raised. Otherwise, the type and value of the object produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:
subscription u= primary “[" expression_list “”
The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the
mapping, and the subscription selects the value in the mapping that corresponds to that key. (The expression list is a
tuple except if it has exactly one item.)

5.3. Primaries 47

http://www.python.org/dev/peps/pep-0342

The Python Language Reference, Release 2.6.2

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative, the length of
the sequence is added to it (so that, xgl] selects the last item of.) The resulting value must be a nonnegative
integer less than the number of items in the sequence, and the subscription selects the item whose index is that value
(counting from zero). A string’s items are characters. A character is not a separate data type but a string of exactly
one character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignmentaxl statements. The syntax for a slicing:

slicing = simple_slicing | extended_slicing
simple_slicing = primary “[* short_slice “]"
extended_slicing primary “[" slice_list “]”

slice_list = slice_item (*,” slice_item)* [","]
slice_item ;= expression | proper_slice | ellipsis
proper_slice := short_slice | long_slice

short_slice := [lower_bound] “” [upper_bound]
long_slice = short_slice “:” [stride]
lower_bound = expression

upper_bound = expression

stride = expression

ellipsis n= Y

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by
defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is
the case if the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice
and no trailing comma, the interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zerogsittaxint , respectively. If

either bound is negative, the sequence’s length is added to it. The slicing now selects all items withsncexhat

i <= k < j wherei andj are the specified lower and upper bounds. This may be an empty sequence. It is not an
error if i orj lie outside the range of valid indexes (such items don't exist so they aren’t selected). The semantics for
an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed with a key that is
constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple containing the
conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a slice item
that is an expression is that expression. The conversion of an ellipsis slice item is the Bilifisis object. The
conversion of a proper slice is a slice object (see sedtienstandard type hierarchywhosestart , stop andstep

attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting
None for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

48 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

call = primary “(" [argument_list [",”]
| expression genexpr_for] “)”
argument_list = positional_arguments [",” keyword arguments]

[')" “*" expression] [",” keyword_arguments]

[, “**" expression]

| keyword_arguments [",” “*" expression]

[’)" “**" expression]

| “*" expression [",” “*" expression] [",)” “**" expression]
| “**" expression

positional_arguments = expression (“," expression)*
keyword_arguments = keyword_item (“,” keyword_item)*
keyword_item = identifier “=" expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and certain class instances themselves are callable; extensions may define
additional callable object types). All argument expressions are evaluated before the call is attempted. Please refer to
sectionFunction definitiondor the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next,
for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as
the first formal parameter name, the first slot is used, and so on). If the slot is already fillgggError exception

is raised. Otherwise, the value of the argument is placed in the slot, filling it (even if the expreddéareidt fills the

slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don't specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is
specified, &ypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

Note: Animplementation may provide builtin functions whose positional parameters do not have names, even if they
are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In CPython, this
is the case for functions implemented in C that By&rg_ParseTuple to parse their arguments.

If there are more positional arguments than there are formal parameter SiggeBrror exception is raised, unless
a formal parameter using the syntédentifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter ndiygeRrror exception is raised, unless a

formal parameter using the syntaidentifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding
values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax*expression appears in the function cabxpression must evaluate to a sequence. Elements from
this sequence are treated as if they were additional positional arguments; if there are positional angymexits
andexpression evaluates to a sequengg, ..., yM, this is equivalent to a call with M+N positional argumeris
XNy YL L yML

A consequence of this is that although tiexpression syntax may appeafter some keyword arguments, it is
processetheforethe keyword arguments (and thexpression argument, if any — see below). So:

>>> def f(a, b):
print a, b

s> (b =1, *(2))
21
>>> fa =1, *(2))

5.3. Primaries 49

The Python Language Reference, Release 2.6.2

Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?
TypeError : f() got multiple values for keyword argument ’a’
>>> f(1, *(2)
12

It is unusual for both keyword arguments and te&pression syntax to be used in the same call, so in practice
this confusion does not arise.

If the syntax**expression appears in the function cakbxpression = must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. In the case of a keyword appearingerdresision and
as an explicit keyword argument TgpeError exception is raised.

Formal parameters using the syntadentifier or **identifier cannot be used as positional argument

slots or as keyword argument names. Formal parameters using the &gunbéixt) cannot be used as keyword
argument names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is
assigned to the sublist using the usual tuple assignment rules after all other parameter processing is done.

A call always returns some value, possiblgne, unless it raises an exception. How this value is computed depends
on the type of the callable object.

Ifitis—

a user-defined function: The code block for the function is executed, passing it the argument list. The first thing
the code block will do is bind the formal parameters to the arguments; this is described in $ectidion
definitions When the code block executesedurn statement, this specifies the return value of the function
call.

a built-in function or method: The result is up to the interpreter; sBeilt-in Functions(in The Python Library
Referencgfor the descriptions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method:The corresponding user-defined function is called, with an argument list that is one longer
than the argument list of the call: the instance becomes the first argument.

a class instance:The class must define a call () method; the effect is then the same as if that method was
called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power = primary [™*" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operanti$)2 resultsin-1 .

The power operator has the same semantics as the bpittai) function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type. The result type is that of the arguments after coercion.

With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands,
the result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For exd@pi2, returnsl00, but10**-2 returns

0.01 . (This last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types
and the second argument was negative, an exception was raised).

50 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

Raising0.0 to a negative power results inZeroDivisionError . Raising a negative number to a fractional
power results in &alueError

5.5 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr n= power | u_expr | “+” u_expr | u_expr

The unary- (minus) operator yields the negation of its numeric argument. The ungpjus) operator yields its
numeric argument unchanged. The unarfinvert) operator yields the bitwise inversion of its plain or long integer
argument. The bitwise inversion gfis defined as(x+1) . It only applies to integral numbers. In all three cases, if
the argument does not have the proper typEygeError exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr = u_expr | m_expr “*" u_expr | m_expr “//" u_expr | m_expr “/" u_expr
| m_expr “%” u_expr
a_expr = m_expr | a_expr “+" m_expr | a_expr “-” m_expr

The* (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers
are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed;
a negative repetition factor yields an empty sequence. /Ttdivision) and// (floor division) operators yield the

guotient of their arguments. The numeric arguments are first converted to a common type. Plain or long integer division
yields an integer of the same type; the result is that of mathematical division with the ‘floor’ function applied to the

result. Division by zero raises tteroDivisionError exception. Thé&s(modulo) operator yields the remainder
from the division of the first argument by the second. The numeric arguments are first converted to a common type.
A zero right argument raises tizeroDivisionError exception. The arguments may be floating point numbers,

e.0.,3.14%0.7 equals0.34 (since3.14 equals4*0.7 + 0.34 .) The modulo operator always yields a result
with the same sign as its second operand (or zero); the absolute value of the result is strictly smaller than the absolute
value of the second operafd

The integer division and modulo operators are connected by the following idertitys (X/y)*y + (x%y)
Integer division and modulo are also connected with the built-in funciiemod() : divmod(x, y) == (x/y,

x%y) . These identities don’t hold for floating point numbers; there similar identities hold approximately xiere
is replaced byloor(x/y) orfloor(xty) - 1 3,

In addition to performing the modulo operation on nhumbers uperator is also overloaded by string and unicode
objects to perform string formatting (also known as interpolation). The syntax for string formatting is described in
the Python Library Reference, sectiString Formatting Operation§in The Python Library ReferengeDeprecated

since version 2.3: The floor division operator, the modulo operator, ardivhed() function are no longer defined

for complex numbers. Instead, convert to a floating point number usinglty@ function if appropriate. The

2 While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in ordet#ia00 % 1e100 have the same sign 48100, the
computed result isle-100 + 1e100 , which is numerically exactly equal tbe100. Functionfmod() in themath module returns a result
whose sign matches the sign of the first argument instead, and so reterh80 in this case. Which approach is more appropriate depends on
the application.

3 If x is very close to an exact integer multiple of y, it's possibleflopr(x/y) to be one larger thafx-x%y)/y due to rounding. In such
cases, Python returns the latter result, in order to preservditimbd(x,y)[0] * v + X % y be very close tx.

5.5. Unary arithmetic and bitwise operations 51

The Python Language Reference, Release 2.6.2

(addition) operator yields the sum of its arguments. The arguments must either both be numbers or both sequences of
the same type. In the former case, the numbers are converted to a common type and then added together. In the latter
case, the sequences are concatenated- Téebtraction) operator yields the difference of its arguments. The numeric
arguments are first converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:
shift_expr m= a_expr | shift_expr (“<<” | “>>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They
shift the first argument to the left or right by the number of bits given by the second argument. A right shifitby

is defined as division bpow(2, n) . A left shift by n bits is defined as multiplication withow(2, n) . Negative

shift counts raise ¥alueError exception.

5.8 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ;= shift_expr | and_expr “&” shift_expr
Xor_expr = and_expr | xor_expr “" and_expr
or_expr = Xor_expr | or_expr “|"” xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type. Theoperator yields the bitwise XOR (exclusive OR) of its arguments, which must be
plain or long integers. The arguments are converted to a common type| djerator yields the bitwise (inclusive)

OR of its arguments, which must be plain or long integers. The arguments are converted to a common type.

5.9 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions bke< b < ¢ have the interpretation that is conventional
in mathematics:

comparison
comp_operator

or_expr (comp_operator or_expr)*
“<H | H>H | H::H | H>:H | H<:H | “<>” | IL!:”
| “iS” ["notﬂ] | ["notﬂ] “in”

Comparisons yield boolean valué&ue or False . Comparisons can be chained arbitrarily, exgs y <= z is
equivalenttax < y and y <= z , except thay is evaluated only once (but in both cages not evaluated at all
whenx < vy is found to be false).

Formally, ifa, b, c, ...,y, zare expressions arabl, op2, ..., 0pN are comparison operators, thenopl b op2 c
y opN z isequivalenttaa opl b and b op2 ¢ and ... y opN z , except that each expression
is evaluated at most once.

Note thata opl b op2 c doesn't imply any kind of comparison betwearandc, so that, egx <y > z is
perfectly legal (though perhaps not pretty).

The forms<> and!= are equivalent; for consistency with &, is preferred; wheré&= is mentioned below> is also
accepted. The> spelling is considered obsolescent.

The operators, >, ==, >=, <=, and!= compare the values of two objects. The objects need not have the same
type. If both are numbers, they are converted to a common type. Otherwise, objects of differeattgyssompare

52 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

unequal, and are ordered consistently but arbitrarily. You can control comparison behavior of objects of non-builtin
types by defininga _cmp__ method or rich comparison methods likegt _ , described in sectioBpecial method
names

(This unusual definition of comparison was used to simplify the definition of operations like sorting and #mel
not in operators. In the future, the comparison rules for objects of different types are likely to change.)

Comparison of objects of the same type depends on the type:

« Numbers are compared arithmetically.

« Strings are compared lexicographically using the numeric equivalents (the result of the built-in fund¢jon)
of their characters. Unicode and 8-bit strings are fully interoperable in this behévior.

« Tuples and lists are compared lexicographically using comparison of corresponding elements. This means that
to compare equal, each element must compare equal and the two sequences must be of the same type and have
the same length.

If not equal, the sequences are ordered the same as their first differing elements. For ecap(fls2,x],
[1,2,y]) returns the same asnp(x,y) . If the corresponding element does not exist, the shorter sequence
is ordered first (for exampl¢l,2] < [1,2,3]).

 Mappings (dictionaries) compare equal if and only if their sorted (key, value) lists compare equatomes
other than equality are resolved consistently, but are not otherwise defined.

* Most other objects of builtin types compare unequal unless they are the same object; the choice whether one
object is considered smaller or larger than another one is made arbitrarily but consistently within one execution
of a program.

The operatorsn andnot in test for collection membershipc in s evaluates to true ik is a member of the
collections, and false otherwisex not in s returns the negation of in s . The collection membership test

has traditionally been bound to sequences; an object is a member of a collection if the collection is a sequence and
contains an element equal to that object. However, it make sense for many other object types to support membership
tests without being a sequence. In particular, dictionaries (for keys) and sets support membership testing.

For the list and tuple typeg, in y is true if and only if there exists an indésuch thak == y[i] s true.

For the Unicode and string types,in y is true if and only ifxis a substring oy. An equivalent test ig.find(x)

I= -1 . Note,x andy need not be the same type; consequenilgh’ in ’abc’ will return True . Empty
strings are always considered to be a substring of any other strifl§j, iso "abc" will return True . Changed

in version 2.3: Previouslyx was required to be a string of length For user-defined classes which define the
__contains__ () methodx in y istrueifand onlyify. contains__ (x) is true.

For user-defined classes which do not defineontains__ () and do define_getitem__ () ,x in y istrue

if and only if there is a non-negative integer indesuch thax == y[i] , and all lower integer indices do not raise
IndexError exception. (If any other exception is raised, it is asif raised that exception). The operatart

in is defined to have the inverse true valuerof The operators&s andis not test for object identityx is vy

is true if and only ifx andy are the same object. is not y yields the inverse truth valué.

4 While comparisons between unicode strings make sense at the byte level, they may be counter-intuitive to users. For example, the strings
u"\Ww00C7" andu"\u0043\u0327" compare differently, even though they both represent the same unicode character (LATIN CAPTITAL
LETTER C WITH CEDILLA). To compare strings in a human recognizable way, compare usiogdedata.normalize()

5 The implementation computes this efficiently, without constructing lists or sorting.

6 Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case of
comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people expected
to be able to test a dictionary for emptiness by comparing{i to

7 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of thes operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

5.9. Comparisons 53

The Python Language Reference, Release 2.6.2

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression = conditional_expression | lambda_form
old_expression @= or_test | old_lambda_form
conditional_expression w= or_test ['if” or_test “else” expression]
or_test = and_test | or_test “or” and_test
and_test i= not_test | and_test “and” not_test
not_test ;= comparison | “not” not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the follow-
ing values are interpreted as falsEalse , None, numeric zero of all types, and empty strings and containers
(including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (See the
__nonzero__ () special method for a way to change this.) The openator yieldsTrue if its argument is false,

False otherwise.

The expressiox if C else y first evaluate<C (not X); if C is true, x is evaluated and its value is returned,;
otherwisey is evaluated and its value is returned. New in version 2.5. The expressamd y first evaluates; if

X is false, its value is returned; otherwisds evaluated and the resulting value is returned. The expressimny
first evaluates; if x is true, its value is returned; otherwisgs evaluated and the resulting value is returned.

(Note that neitheand nor or restrict the value and type they returnRalse andTrue , but rather return the last
evaluated argument. This is sometimes useful, e.g.,i$fa string that should be replaced by a default value if it is
empty, the expression or 'foo’ yields the desired value. Becausa has to invent a value anyway, it does not
bother to return a value of the same type as its argument, smetg:foo’ yieldsFalse , not”.)

5.11 Lambdas

lambda_form
old_lambda_form

“lambda” [parameter_list]: expression
“lambda” [parameter_list]: old_expression

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a shorthand to cre-
ate anonymous functions; the expressiambda arguments: expression yields a function object. The
unnamed object behaves like a function object defined with

def name(arguments):
return expression

See sectiori-unction definitiondor the syntax of parameter lists. Note that functions created with lambda forms
cannot contain statements.

5.12 Expression lists

expression_list = expression (“,” expression)* [",]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions
in the list. The expressions are evaluated from left to right. The trailing comma is required only to create a single
tuple (a.k.a. @ingleton); it is optional in all other cases. A single expression without a trailing comma doesn't create a
tuple, but rather yields the value of that expression. (To create an empty tuple, use an empty pair of paréntheses:

54 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

5.13 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, exprd

(exprl, expr2, expr3, expr4)

{exprl: expr2, expr3: expr4}

exprl + expr2 * (expr3 - exprd)
expril(expr2, expr3, *exprd, **exprb)
expr3, exprd = exprl, expr2

5.14 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for comparisons, including tests, which all
have the same precedence and chain from left to right — see séttiomparisons— and exponentiation, which

groups from right to left).

Operator Description
lambda Lambda expression
or Boolean OR

and Boolean AND

not x Boolean NOT

in ,not in ,is ,is not ,<,<=,>, >= <> | Comparisons, including membership tests and identity tests,

| Bitwise OR

A Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

* L% Multiplication, division, remainder

+X, -X , ~X Positive, negative, bitwise NOT

w* Exponentiatior?

X[index] , x[index:index] , Subscription, slicing, call, attribute reference
x(arguments...) , X.attribute

(expressions...) , Binding or tuple display, list display, dictionary display, string
[expressions...] , conversion

{key:datum...} ,
‘expressions...'

8The power operator* binds less tightly than an arithmetic or bitwise unary operator on its right, th2t4id, is0.5 .

5.13. Evaluation order 55

The Python Language Reference, Release 2.6.2

56 Chapter 5. Expressions

CHAPTER
SIX

SIMPLE STATEMENTS

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| pass_stmt

| del_stmt

| print_stmt

| return_stmt

| yield_stmt

| raise_stmt

| break stmt

| continue_stmt

| import_stmt

| global stmt

| exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the Nahe). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt = expression_list

An expression statement evaluates the expression list (which may be a single expression). In interactive mode, if the
value is notNone, it is converted to a string using the builtdiapr() function and the resulting string is written to
standard output (see sectidhe print statemeton a line by itself. (Expression statements yieldMgne are not

written, so that procedure calls do not cause any output.)

6.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

57

The Python Language Reference, Release 2.6.2

assignment_stmt (target_list “=")+ (expression_list | yield_expression)
target_list target ()" target)* [",7]
target = identifier
| “(" target_list “)”
“I target_list “7”
attributeref
subscription
slicing

(See sectiofrrimariesfor the syntax definitions for the last three symbols.) An assignment statement evaluates the
expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple)
and assigns the single resulting object to each of the target lists, from left to right. Assignment is defined recursively
depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription
or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an
exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given
with the definition of the object types (see sectidre standard type hierarchy Assignment of an object to a target

list is recursively defined as follows.

If the target list is a single target: The object is assigned to that target.

If the target list is a comma-separated list of targets: The object must be an iterable with the same number of
items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding
targets. (This rule is relaxed as of Python 1.5; in earlier versions, the object had to be a tuple. Since strings are
sequences, an assignment likeb = "xy" is now legal as long as the string has the right length.)

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

— If the name does not occur ingdobal statement in the current code block: the name is bound to the
object in the current local namespace.

— Otherwise: the name is bound to the object in the current global namespace.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the
same number of items as there are targets in the target list, and its items are assigned, from left to right, to the
corresponding targets.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the cas@eError is raised. That object is then asked to assign

the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but
not necessarilyttributeError).

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either

a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated. If the primary is a mutable sequence object (such as a list), the subscript must yield a
plain integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative
integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with
that index. If the index is out of rangtndexError is raised (assignment to a subscripted sequence cannot

add new items to a list). If the primary is a mapping object (such as a dictionary), the subscript must have a
type compatible with the mapping’s key type, and the mapping is then asked to create a key/datum pair which

58

Chapter 6. Simple statements

The Python Language Reference, Release 2.6.2

maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key
value, or insert a new key/value pair (if no key with the same value existed).

« Ifthe target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to (small) integers. If either bound is negative, the sequence’s length is added to it.
The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the object
allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is
rejected during the code generation phase, causing less detailed error messages.)

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-
hand side are ‘safe’ (forexampée b = b, a swaps two variables), overlapsthin the collection of assigned-to
variables are not safe! For instance, the following program pjigt2]

6.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt ;= augtarget augop (expression_list | yield expression)
augtarget = identifier | attributeref | subscription | slicing
augop e i = = B = B /= B = ke

| >>=" | <<= | &= | A |

(See sectioPrimariesfor the syntax definitions for the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression hkke-= 1 can be rewritten ag = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented versioris only evaluated once. Also, when possible, the actual operation is
performedin-place meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of tha{possible
placebehavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the initial value is retrieved vgighadtr() and the result is assigned
with a setattr() . Notice that the two methods do not necessarily refer to the same variable. gbtaein()
refers to a class variablsetattr() still writes to an instance variable. For example:

class A
X =3 # class variable
a = A(
a.x +=1 # writes a.x as 4 leaving Ax as 3

6.2. Assignment statements 59

The Python Language Reference, Release 2.6.2

6.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = “assert” expression [",” expression]

The simple formassert expression , IS equivalent to
if _ debug__:

if not expression: raise AssertionError
The extended forngssert expressionl, expression2 , Is equivalent to
if _ debug__:

if not expressionl: raise AssertionError , expression2
These equivalences assume thadebug__ andAssertionError refer to the built-in variables with those names.

In the current implementation, the built-in variabledebug__ is True under normal circumstancdsalse when
optimization is requested (command line option -O). The current code generator emits no code for an assert state-
ment when optimization is requested at compile time. Note that it is unnecessary to include the source code for the
expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to_debug__ areillegal. The value for the built-in variable is determined when the interpreter starts.

6.4 The pass statement

pass_stmt = “pass”

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f (arg): pass # a function that does nothing (yet)

class C. pass # a class with no methods (yet)

6.5 The del statement

del_stmt n= “del” target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right. Deletion of a name removes the binding of
that name from the local or global namespace, depending on whether the name ocalobid a statement in the

same code block. If the name is unbountameError exception will be raised. ltis illegal to delete a name from

the local namespace if it occurs as a free variable in a nested block. Deletion of attribute references, subscriptions
and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an
empty slice of the right type (but even this is determined by the sliced object).

60 Chapter 6. Simple statements

The Python Language Reference, Release 2.6.2

6.6 The print statement

print_stmt = “print” ([expression (“,” expression)* [","]]
| “>>" expression [(“,” expression)+ [","]])

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object is
not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string is
then written. A space is written before each object is (converted and) written, unless the output system believes it is
positioned at the beginning of a line. This is the case (1) when no characters have yet been written to standard output,
(2) when the last character written to standard outplibis , or (3) when the last write operation on standard output

was not gorint statement. (In some cases it may be functional to write an empty string to standard output for this
reason.)

Note: Objects which act like file objects but which are not the built-in file objects often do not properly emulate this
aspect of the file object’s behavior, so it is best not to rely on this. \nA character is written at the end, unless

theprint statement ends with a comma. This is the only action if the statement contains just the kpyword
Standard output is defined as the file object nastddut in the built-in modulesys . If no such object exists, or

if it does not have avrite() method, aRuntimeError exception is raisedprint also has an extended form,
defined by the second portion of the syntax described above. This form is sometimes referrewtita as¢hevron.”

In this form, the first expression after the> must evaluate to a “file-like” object, specifically an object that has a

write() method as described above. With this extended form, the subsequent expressions are printed to this file
object. If the first expression evaluatedNone, thensys.stdout is used as the file for output.

6.7 The return statement

return_stmt m= “return” [expression_list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, &lsae is substituted.

return leaves the current function call with the expression listNone) as return value. Whereturn passes
control out of atry statement with dinally clause, thafinally clause is executed before really leaving the
function.

In a generator function, theeturn statement is not allowed to include arpression_list . In that context, a
barereturn indicates that the generator is done and will casplteration to be raised.

6.8 The yield statement

yield_stmt = vyield_expression

Theyield statement is only used when defining a generator function, and is only used in the body of the generator
function. Using ayield statement in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator.
The body of the generator function is executed by calling the generamit§) method repeatedly until it raises an
exception.

When ayield statement is executed, the state of the generator is frozen and the vaieredsion_list is

returned tonext() ‘s caller. By “frozen” we mean that all local state is retained, including the current bindings of
local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next
timenext() isinvoked, the function can proceed exactly as ifgledd statement were just another external call.

6.6. The print statement 61

The Python Language Reference, Release 2.6.2

As of Python version 2.5, thgeld statement is now allowed in thigy clause of dry ... finally construct. If
the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected),
the generator-iteratorglose() method will be called, allowing any pendirigally clauses to execute.

Note: In Python 2.2, thgield statement was only allowed when thenerators feature has been enabled. This

_ future__ import statement was used to enable the feature:
from _ future__ import generators
See Also:

PEP 0255- Simple Generators The proposal for adding generators andtleéd statement to Python.

PEP 0342- Coroutines via Enhanced GeneratorsThe proposal that, among other generator enhancements, pro-
posed allowing/ield to appear inside ity ... finally block.

6.9 The raise statement

” " N

raise_stmt = “raise” [expression [",” expression [",” expression]]]

If no expressions are preserdjse re-raises the last exception that was active in the current scope. If no exception
is active in the current scopeTgpeError exception is raised indicating that this is an error (if running under IDLE,
aQueue.Empty exception is raised instead).

Otherwisejaise evaluates the expressions to get three objects, INong as the value of omitted expressions. The
first two objects are used to determine tipeandvalueof the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value,
and the second object must Hene.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception
value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is
used as the argument list for the class constructor; ifftase, an empty argument list is used, and any other object

is treated as a single argument to the constructor. The instance so created by calling the constructor is used as the
exception value. If a third object is present and Nohe, it must be a traceback object (see secfite standard

type hierarchy, and it is substituted instead of the current location as the place where the exception occurred. If the
third object is present and not a traceback objedtione, a TypeError exception is raised. The three-expression

form of raise is useful to re-raise an exception transparently in an except clausgigait with no expressions

should be preferred if the exception to be re-raised was the most recently active exception in the current scope.

Additional information on exceptions can be found in secficeptionsand information about handling exceptions
is in sectionThe try statement

6.10 The break statement

break stmt m= ‘“break”

break may only occur syntactically nested irf@ or while loop, but not nested in a function or class definition
within that loop. It terminates the nearest enclosing loop, skipping the optits®al clause if the loop has one. If
afor loop is terminated byreak , the loop control target keeps its current value. Wherak passes control out
ofatry statement with dinally clause, thatinally clause is executed before really leaving the loop.

62 Chapter 6. Simple statements

http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0342

The Python Language Reference, Release 2.6.2

6.11 The continue statement

continue_stmt = “continue”

continue may only occur syntactically nested infar or while loop, but not nested in a function or class
definition orfinally clause within that loop. It continues with the next cycle of the nearest enclosing loop.

Whencontinue passes control out oftay statement with dinally clause, thatinally clause is executed
before really starting the next loop cycle.

6.12 The import statement

import_stmt »= “import” module ["as” name] (“,” module ['as” name])*
| “from” relative_module “import” identifier ["as” name]
(" identifier ["as” name])*
| “from” relative_module “import” “(" identifier ["as” name]
(%" identifier ["as” name])* [,"])"

| “from” module “import” “*”

module = (identifier “.”)* identifier
relative_module = “™ module | “+
name = identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a hame or
names in the local namespace (of the scope whererthert statement occurs). The statement comes in two forms
differing on whether it uses tifeom keyword. The first form (withoutrom) repeats these steps for each identifier in

the list. The form withfrom performs step (1) once, and then performs step (2) repeatedly. To understand how step (1)
occurs, one must first understand how Python handles hierarchical naming of modules. To help organize modules and
provide a hierarchy in naming, Python has a concept of packages. A package can contain other packages and modules
while modules cannot contain other modules or packages. From a file system perspective, packages are directories
and modules are files. The origingpecification for packagds still available to read, although minor details have
changed since the writing of that document. Once the nhame of the module is known (unless otherwise specified, the
term “module” will refer to both packages and modules), searching for the module or package can begin. The first
place checked isys.modules , the cache of all modules that have been imported previously. If the module is found
there then it is used in step (2) of import. If the module is not found in the cachesysaneta_path is searched

(the specification fosys.meta_path can be found ifPEP 302. The object is a list ofinder objects which are

queried in order as to whether they know how to load the module by callingfthdirmodule() method with

the name of the module. If the module happens to be contained within a package (as denoted by the existence of
a dot in the name), then a second argumeriind _module() is given as the value of the path__ attribute

from the parent package (everything up to the last dot in the name of the module being imported). If a finder can
find the module it returns Bader (discussed later) or returidone. If none of the finders osys.meta_path

are able to find the module then some implicitly defined finders are queried. Implementations of Python vary in what
implicit meta path finders are defined. The one they all do define, though, is one that heysdiedh_hooks
sys.path_importer_cache , andsys.path

The implicit finder searches for the requested module in the “paths” specified in one of two places (“paths” do not
have to be file system paths). If the module being imported is supposed to be contained within a package then the
second argument passedfited_module() , __path__ on the parent package, is used as the source of paths. If

the module is not contained in a package thgsipath is used as the source of paths.

Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at

sys.path_importer_cache caches finders for paths and is checked for a finder. If the path does not have a finder
cached themsys.path_hooks is searched by calling each object in the list with a single argument of the path, re-
turning a finder or raisegnporterror . If a finder is returned then it is cachedsys.path_importer_cache

and then used for that path entry. If no finder can be found but the path exists then a vBloeeois stored in

6.11. The continue statement 63

http://www.python.org/doc/essays/packages.html
http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

sys.path_importer_cache to signify that an implicit, file-based finder that handles modules stored as individ-
ual files should be used for that path. If the path does not exist then a finder which always Kginenis placed

in the cache for the path. If no finder can find the module tineportError is raised. Otherwise some finder
returned a loader whodead_module() method is called with the name of the module to load (3E& 302for

the original definition of loaders). A loader has several responsibilities to perform on a module it loads. First, if the
module already exists isys.modules (a possibility if the loader is called outside of the import machinery) then

it is to use that module for initialization and not a new module. But if the module does not egigt.modules

then it is to be added to that dict before initialization begins. If an error occurs during loading of the module and
it was added teys.modules it is to be removed from the dict. If an error occurs but the module was already in
sys.modules itis left in the dict. The loader must set several attributes on the moduleame___is to be set

to the name of the module. file_is to be the “path” to the file unless the module is built-in (and thus listed in
sys.builtin_module_names) in which case the attribute is not set. If what is being imported is a package then
__path__ isto be set to a list of paths to be searched when looking for modules and packages contained within the
package being imported. package__ is optional but should be set to the name of package that contains the mod-
ule or package (the empty string is used for module not contained in a packadedder _ is also optional but

should be set to the loader object that is loading the module. If an error occurs during loading then the loader raises
ImportError if some other exception is not already being propagated. Otherwise the loader returns the module that
was loaded and initialized.

When step (1) finishes without raising an exception, step (2) can begin.

The first form ofimport statement binds the module name in the local namespace to the module object, and then
goes on to import the next identifier, if any. If the module name is followeedythe name followingas is used as

the local name for the module. Th®m form does not bind the module name: it goes through the list of identifiers,
looks each one of them up in the module found in step (1), and binds the name in the local namespace to the object
thus found. As with the first form afmport , an alternate local name can be supplied by specifyasglcalname”.

If a name is not foundmportError s raised. If the list of identifiers is replaced by a st&r (), all public names
defined in the module are bound in the local namespace adfrithert statement.. Theublic namesiefined by a
module are determined by checking the module’s namespace for a variable naatled ; if defined, it must be

a sequence of strings which are names defined or imported by that module. The names givah in are all
considered public and are required to exist. Il is not defined, the set of public names includes all names
found in the module’s namespace which do not begin with an underscore chardcter (all_ should contain

the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library
modules which were imported and used within the module).

Thefrom form with* may only occur in a module scope. If the wild card form of importmport * —isusedin

a function and the function contains or is a nested block with free variables, the compiler will BistsxError

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or packdgerafter

you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot
means the current package where the module making the import exists. Two dots means up one package level. Three
dots is up two levels, etc. So if you exectitem . import mod from a module in thepkg package then you

will end up importingpkg.mod . If you executefrom ..subpkg2 imprt mod from within pkg.subpkgl

you will import pkg.subpkg2.mod . The specification for relative imports is contained witRiaP 328 The built-

in function __import__ () is provided to support applications that determine which modules need to be loaded
dynamically; refer tdBuilt-in Functions(in The Python Library Referengéor additional information.

6.12.1 Future statements

A future statemernis a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python. The future statement is intended to ease migration to
future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a
per-module basis before the release in which the feature becomes standard.

64 Chapter 6. Simple statements

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0328

The Python Language Reference, Release 2.6.2

future_statement = “from” “_ future__ " “import” feature ["as” name]
(*,” feature ['as” name])*
| “from” “ _future_ " “import” “(" feature ["as” name]
()" feature ["as” name])* [")])"

feature = identifier

name = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

 the module docstring (if any),

e comments,

blank lines, and

other future statements.

The features recognized by Python 2.6 arécode_literals , print_function , absolute_import ,
division , generators , nested_scopes andwith_statement . generators , with_statement
nested_scopes are redundant in Python version 2.6 and above because they are always enabled.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new incom-
patible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently.
Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if
a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard nfotirle |
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:
import _ future__ [as name]

That is not a future statement; it's an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by amxec statement or calls to the builtin functioesmpile() andexecfile() that occur
in a moduleM containing a future statement will, by default, use the new syntax or semantics associated with the
future statement. This can, starting with Python 2.2 be controlled by optional argumeommpide() — see the

documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with thé option, is passed a script name to execute, and the script includes a future statement,
it will be in effect in the interactive session started after the script is executed.

6.13 The global statement

global_stmt w= ‘“global” identifier (“,” identifier)*

Theglobal statementis a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable withtmlt , although free
variables may refer to globals without being declared global.

6.13. The global statement 65

The Python Language Reference, Release 2.6.2

Names listed in alobal statement must not be used in the same code block textually precedingjchat
statement.

Names listed in global statement must not be defined as formal parameters dpin doop control targetglass
definition, function definition, oirmport statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this freedom,
as future implementations may enforce them or silently change the meaning of the progtesgrammer’s note:
theglobal is a directive to the parser. It applies only to code parsed at the same timeggsithe statement. In
particular, aglobal statement contained in axec statement does not affect the code blaoktainingthe exec
statement, and code contained inexec statement is unaffected lgyobal statements in the code containing the

exec statement. The same applies to éwal() , execfile() andcompile() functions.

6.14 The exec statement

" N

exec_stmt = “exec” or_expr ['in” expression [",” expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a string, an
open file object, or a code object. If it is a string, the string is parsed as a suite of Python statements which is then
executed (unless a syntax error occutslf.it is an open file, the file is parsed until EOF and executed. If it is a code
object, it is simply executed. In all cases, the code that's executed is expected to be valid as file input (s€élsection
inpuf). Be aware that theeturn andyield statements may not be used outside of function definitions even within

the context of code passed to theec statement.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression
afterin is specified, it should be a dictionary, which will be used for both the global and the local variables. If
two expressions are given, they are used for the global and local variables, respectively. If proddisdan be

any mapping object. Changed in version 2.4: Forméolyals was required to be a dictionary. As a side effect, an
implementation may insert additional keys into the dictionaries given besides those corresponding to variable names
set by the executed code. For example, the current implementation may add a reference to the dictionary of the
built-in module__builtin__ under the key builtins__ (M. Programmer’s hints: dynamic evaluation of
expressions is supported by the built-in functeval() . The built-in functiongylobals() andlocals() return

the current global and local dictionary, respectively, which may be useful to pass around foraxse by

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal
newline mode to convert Windows or Mac-style newlines.

66 Chapter 6. Simple statements

CHAPTER
SEVEN

COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execution of those other state-
ments in some way. In general, compound statements span multiple lines, although in simple incarnations a whole
compound statement may be contained in one line.

Theif ,while andfor statements implement traditional control flow construtts. specifies exception handlers

and/or cleanup code for a group of statements. Function and class definitions are also syntactically compound state-
ments. Compound statements consist of one or more ‘clauses.” A clause consists of a header and a ‘suite.” The
clause headers of a particular compound statement are all at the same indentation level. Each clause header begins
with a uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause.

A suite can be one or more semicolon-separated simple statements on the same line as the header, following the
header’s colon, or it can be one or more indented statements on subsequent lines. Only the latter form of suite can
contain nested compound statements; the following is illegal, mostly because it wouldn't be clear tdf whlahse

a followingelse clause would belong:

if testl: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of theprint statements are executed:

if X <y <z print x print vy, print z

Summarizing:
compound_stmt = if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| funcdef
| classdef
| decorated
suite n= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement n= stmt_list NEWLINE | compound_stmt
stmt_list n= simple_stmt (*;” simple_stmt)* [";"]

Note that statements always end iINBEWLINEpossibly followed by &EDENTAIso note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the &smgling
problem is solved in Python by requiring nestedstatements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

67

The Python Language Reference, Release 2.6.2

7.1 The if statement

Theif statement is used for conditional execution:

if_stmt = “if” expression “” suite
(“elif” expression “" suite)*
['else” “" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operationdor the definition of true and false); then that suite is executed (and no other part of the
statement is executed or evaluated). If all expressions are false, the suiteeskthelause, if present, is executed.

7.2 The while statement

Thewhile statement is used for repeated execution as long as an expression is true:

while_stmt = “while” expression “:” suite
['else” “” suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of tlése clause, if present, is executed and the loop terminatesbreAk

statement executed in the first suite terminates the loop without executirgsthe clause’s suite. Acontinue

statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

7.3 The for statement

Thefor statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt n= “for” target_list “in” expression_list “” suite
['else” “” suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list . The suite is then executed once for each item provided by the iterator, in the order of ascending
indices. Each item in turn is assigned to the target list using the standard rules for assignments, and then the suite is
executed. When the items are exhausted (which is immediately when the sequence is empty), the suitedn the
clause, if present, is executed, and the loop terminatefreAk statement executed in the first suite terminates the

loop without executing thelse clause’s suite. Aontinue statement executed in the first suite skips the rest of

the suite and continues with the next item, or with ¢fee clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it. The target
list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to at all by
the loop. Hint: the built-in functiomange() returns a sequence of integers suitable to emulate the effect of Pascal’s
for i := a to b do ;e.g.,range(3) returnsthe lisf0, 1, 2]

Warning: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable
sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and this is incr¢mented
on each iteration. When this counter has reached the length of the sequence the loop terminates. This nmeans that
if the suite deletes the current (or a previous) item from the sequence, the next item will be skipped (sinceg it gets
the index of the current item which has already been treated). Likewise, if the suite inserts an item in the s¢quence
before the current item, the current item will be treated again the next time through the loop. This can lead {o nasty
bugs that can be avoided by making a temporary copy using a slice of the whole sequence, e.g.,

68 Chapter 7. Compound statements

The Python Language Reference, Release 2.6.2

for x in a[]:
if x < 0: a.remove(x)

7.4 The try statement

Thetry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt n= tryl_stmt | try2_stmt
tryl_stmt D= ftry” Y suite
(“except” [expression [(“as” | “,) target]] “” suite)+
['else” “" suite]
['finally” “" suite]
try2_stmt = try" " suite
“finally” “:” suite

Changed in version 2.5: In previous versions of Pytlion,...except ..finally did not work.try ...except had

to be nested ifry ..finally . Theexcept -clause(s) specify one or more exception handlers. When no exception
occurs in thetry clause, no exception handler is executed. When an exception occurstiiy theuite, a search

for an exception handler is started. This search inspects the except clauses in turn until one is found that matches
the exception. An expression-less except clause, if present, must be last; it matches any exception. For an except
clause with an expression, that expression is evaluated, and the clause matches the exception if the resulting object
is “compatible” with the exception. An object is compatible with an exception if it is the class or a base class of
the exception object, a tuple containing an item compatible with the exception, or, in the (deprecated) case of string
exceptions, is the raised string itself (note that the object identities must match, i.e. it must be the same string object,
not just a string with the same value).

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if
the entiretry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified in that except clause, if
present, and the except clause’s suite is executed. All except clauses must have an executable block. When the end of
this block is reached, execution continues normally after the entire try statement. (This means that if two nested han-
dlers exist for the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will
not handle the exception.) Before an except clause’s suite is executed, details about the exception are assigned to three
variables in thesys module:sys.exc_type receives the object identifying the exceptiegs.exc_value re-

ceives the exception’s parametsys.exc_traceback receives a traceback object (see seclibn standard type
hierarchy) identifying the point in the program where the exception occurred. These details are also available through
the sys.exc_info() function, which returns a tupl@exc_type, exc_value, exc_traceback) . Use

of the corresponding variables is deprecated in favor of this function, since their use is unsafe in a threaded program.
As of Python 1.5, the variables are restored to their previous values (before the call) when returning from a function
that handled an exception. The optios&de clause is executed if and when control flows off the end oftthe

clause.”? Exceptions in theelse clause are not handled by the precedimgept clauses. Ifinally is present,

it specifies a ‘cleanup’ handler. They clause is executed, including asycept andelse clauses. If an ex-

ception occurs in any of the clauses and is not handled, the exception is temporarily savédalfjhe clause is

executed. If there is a saved exception, it is re-raised at the end tofidtig clause. If thdinally clause raises

another exception or executessdurn or break statement, the saved exception is lost. The exception information

is not available to the program during execution of finelly clause. When aturn , break orcontinue

statement is executed in thiey suite of atry ..finally statement, thénally clause is also executed ‘on

1 The exception is propagated to the invocation stack only if there ity clause that negates the exception.
2 currently, control “flows off the end” except in the case of an exception or the executiorenfra , continue , orbreak statement.

7.4. The try statement 69

The Python Language Reference, Release 2.6.2

the way out.” Acontinue statement is illegal in thénally clause. (The reason is a problem with the current
implementation — this restriction may be lifted in the future).

Additional information on exceptions can be found in secficweptionsand information on using theiise state-
ment to generate exceptions may be found in sedtlomraise statement

7.5 The with statement

New in version 2.5. Thevith statement is used to wrap the execution of a block with methods defined by a context
manager (see sectioith Statement Context ManagkrsThis allows commoriry ...except ..finally usage
patterns to be encapsulated for convenient reuse.

with_stmt n= “with” expression ['as” target] “” suite

The execution of thevith statement proceeds as follows:

1. The context expression is evaluated to obtain a context manager.
2. The context manager's enter () method is invoked.

3. If atarget was included in theith statement, the return value fromenter__ () is assigned to it.

Note: The with statement guarantees that if theenter () method returns without an error, then
exit () willalways be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 5 below.

4. The suite is executed.

5. The context manager’s exit_ () method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as argumentstdt () . Otherwise, thredlone arguments are supplied.

If the suite was exited due to an exception, and the return value from that () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following thevith statement.

If the suite was exited for any reason other than an exception, the return value feom () is ignored,
and execution proceeds at the normal location for the kind of exit that was taken.

Note: In Python 2.5, thevith statement is only allowed when tiagth_statement feature has been enabled. It
is always enabled in Python 2.6.
See Also:

PEP 0343- The “with” statement The specification, background, and examples for the Pythitin statement.

7.6 Function definitions

A function definition defines a user-defined function object (see settierstandard type hierarchry

70 Chapter 7. Compound statements

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

decorated = decorators (classdef | funcdef)
decorators = decorator+
decorator = “@" dotted_name ['(" [argument_list [","]] “)"] NEWLINE
funcdef = “def” funcname “(" [parameter_list] “)” “” suite
dotted_name = identifier (“.” identifier)*
parameter_list = (defparameter “)*
(" identifier [, “**” identifier]
| “**" identifier
| defparameter [*,”])
defparameter = parameter ['=" expression]
sublist = parameter (“,” parameter)* [")]
parameter = identifier | “(" sublist “)”
funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is°called.

A function definition may be wrapped by one or matecoratorexpressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which
is invoked with the function object as the only argument. The returned value is bound to the function name instead of
the function object. Multiple decorators are applied in nested fashion. For example, the following code:

@f1(arg)
@f2

def func (): pass
is equivalent to:

def func (): pass
func = fl(arg)(f2(func))

When one or more top-level parameters have the foamameter= expressionthe function is said to have “default
parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters
must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executedhis means that the expression

is evaluated once, when the function is defined, and that that same “pre-computed” value is used for each call. This
is especially important to understand when a default parameter is a mutable object, such as a list or a dictionary: if
the function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is
generally not what was intended. A way around this is toNigee as the default, and explicitly test for it in the body

of the function, e.g.:

def whats_on_the_telly (penguin =None):
if penguin is None:
penguin =]
penguin . append(" property of the zoo ")
return penguin

3 A string literal appearing as the first statement in the function body is transformed into the functido's _ attribute and therefore the
function’sdocstring

7.6. Function definitions 71

The Python Language Reference, Release 2.6.2

Function call semantics are described in more detail in se@lfs. A function call always assigns values to all
parameters mentioned in the parameter list, either from position arguments, from keyword arguments, or from default
values. If the form *identifier " is present, it is initialized to a tuple receiving any excess positional parameters,
defaulting to the empty tuple. If the fornmf*identifier " is present, it is initialized to a new dictionary receiving

any excess keyword arguments, defaulting to a new empty dictionary. It is also possible to create anonymous
functions (functions not bound to a name), for immediate use in expressions. This uses lambda forms, described
in sectionExpression lists Note that the lambda form is merely a shorthand for a simplified function definition; a
function defined in adef " statement can be passed around or assigned to another name just like a function defined
by a lambda form. Thedef " form is actually more powerful since it allows the execution of multiple statements.

Programmer’s note: Functions are first-class objects. déef ” form executed inside a function definition defines a
local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See sedtlaming and bindindor details.

7.7 Class definitions

A class definition defines a class object (see sedttonstandard type hierarchry

classdef ©= “class” classname [inheritance] “” suite
inheritance = (" [expression_list] “)”
classname = identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the inher-
itance list should evaluate to a class object or class type which allows subclassing. The class’s suite is then executed
in a new execution frame (see sectidaming and bindinly using a newly created local namespace and the original
global namespace. (Usually, the suite contains only function definitions.) When the class’s suite finishes execution, its
execution frame is discarded but its local namespace is savedlass object is then created using the inheritance list

for the base classes and the saved local namespace for the attribute dictionary. The class name is bound to this class
object in the original local namespace.

Programmer’s note: Variables defined in the class definition are class variables; they are shared by all instances. To
create instance variables, they can be set in a methodelitiname = value . Both class and instance variables

are accessible through the notati@elf.name *, and an instance variable hides a class variable with the same name
when accessed in this way. Class variables can be used as defaults for instance variables, but using mutable values
there can lead to unexpected results. Few-style class, descriptors can be used to create instance variables with
different implementation details.

Class definitions, like function definitions, may be wrapped by one or meceratorexpressions. The evaluation
rules for the decorator expressions are the same as for functions. The result must be a class object, which is then bound
to the class name.

4 A string literal appearing as the first statement in the class body is transformed into the namespime’s item and therefore the class’s
docstring

72 Chapter 7. Compound statements

CHAPTER
EIGHT

TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, excgys forarious system services),
__builtin__ (built-in functions, exceptions adone) and__main__ . The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section. The interpreter may also
be invoked in interactive mode; in this case, it does not read and execute a complete program but reads and executes
one statement (possibly compound) at a time. The initial environment is identical to that of a complete program;
each statement is executed in the namespacemfin__ . Under Unix, a complete program can be passed to the
interpreter in three forms: with the stringcommand line option, as a file passed as the first command line argument,

or as standard input. If the file or standard input is a tty device, the interpreter enters interactive mode; otherwise, it
executes the file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:
file_input = (NEWLINE | statement)*

This syntax is used in the following situations:

« when parsing a complete Python program (from a file or from a string);
« when parsing a module;

« when parsing a string passed to theesc statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

73

The Python Language Reference, Release 2.6.2

interactive_input n= [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argum&i{)to must have
the following form:

eval_input = expression_list NEWLINE*
The input line read bynput() must have the following form:
input_input = expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in functem_input() or the
readline() method of file objects.

74 Chapter 8. Top-level components

CHAPTER
NINE

FULL GRAMMAR SPECIFICATION

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

Note: Changing the grammar specified in this file will most likely
require corresponding changes in the parser module
(../Modules/parsermodule.c). If you can't make the changes to
that module yourself, please co-ordinate the required changes
with someone who can; ask around on python-dev for help. Fred
Drake <fdrake@acm.org> will probably be listening there.

H O H R H

NOTE WELL: You should also follow all the steps listed in PEP 306,
"How to Change Python's Grammar"

Commands for Kees Blom’s railroad program
#diagram:token NAME

#diagram:token NUMBER

#diagram:token STRING

#diagram:token NEWLINE

#diagram:token ENDMARKER

#diagram:token INDENT

#diagram:output\input python.bla

#diagram:token DEDENT
#diagram:output\textwidth 20.04cm\oddsidemargin 0.0cm\evensidemargin 0.0cm
#diagram:rules

Start symbols for the grammar:

single_input is a single interactive statement;
file_input is a module or sequence of commands read from an input file;
eval_input is the input for the eval() and input() functions.

NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER

eval_input: testlist NEWLINE* ENDMARKER

decorator: '@’ dotted_name [(' [arglist] ')’] NEWLINE
decorators: decorator+

decorated: decorators (classdef | funcdef)

funcdef: 'def’ NAME parameters '’ suite

parameters: ‘(" [varargslist])’

75

The Python Language Reference, Release 2.6.2

varargslist: ((fpdef [=" test] '))*
(* NAME [, "** NAME] | ** NAME) |
fpdef ['=" test] (', fpdef ['=" test])* [,])
fpdef: NAME | '(fplist ')
fplist: fpdef (', fpdef)* [,]

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (’;’ small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | exec_stmt | assert_stmt)
expr_stmt: testlist (augassign (yield_expr]testlist) |

(=" (yield_expr]|testlist))*)

augassign: (+=' | =" | *=' | U= | %= | &= || 0=

=" | > | e | =)
For normal assignments, additional restrictions enforced by the interpreter
print_stmt: "print’ ([test (,” test)* [,]] |

>>' test [() test)+ [V 1)
del_stmt: 'del’ exprlist
pass_stmt: ’'pass’
flow_stmt: break stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break’
continue_stmt: ’continue’
return_stmt: ‘return’ [testlist]
yield_stmt: yield _expr
raise_stmt: 'raise’ [test [, test [, test]]]
import_stmt: import_name | import_from
import_name: ’'import’ dotted_as_names
import_from: (from’ (.’* dotted _name | '.'+)
'import’ (*" | '(import_as_names ')’ | import_as_names))

import_as_name: NAME [‘as’ NAME]
dotted_as_name: dotted_name ['as’ NAME]
import_as_names: import_as_name (’,” import_as_name)* [')]
dotted_as_names: dotted_as name (’,;’ dotted_as_name)*
dotted_name: NAME (. NAME)*
global_stmt: ’'global’ NAME (’,;’ NAME)*
exec_stmt: 'exec’ expr [in’ test [, test]]
assert_stmt: ’'assert’ test [, test]

compound_stmt: if stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef | classdef | decorated
if_stmt: 'if’ test '’ suite (elif’ test ' suite)* [else’ ' suite]
while_stmt: 'while’ test ' suite [else’ ' suite]
for_stmt: ‘for’ exprlist ’in’ testlist '’ suite [else’ ' suite]
try_stmt: (try’ .’ suite
((except_clause ;' suite)+
[else’ "' suite]
[finally’ " suite] |
finally’ '’ suite))
with_stmt: 'with’ test [with_var] '’ suite
with_var: 'as’ expr
NB compile.c makes sure that the default except clause is last
except_clause: 'except’ [test [(as’ | ')) test]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:

76 Chapter 9. Full Grammar specification

The Python Language Reference, Release 2.6.2

[x for x in lambda: True, lambda: False if x()]
even while also allowing:

lambda x: 5 if x else 2

(But not a mix of the two)

testlist_safe: old_test [(',’ old_test)+ [,]]

old_test: or_test | old lambdef

old_lambdef: ’'lambda’ [varargslist] "' old_test

test: or_test ['if or_test ’'else’ test] | lambdef
or_test: and_test (‘or' and_test)*
and_test: not_test (‘and’ not_test)*
not_test: 'not’ not test | comparison
comparison: expr (comp_op expr)*
comp_op: '<|'>'=="">="'<="I'<>''="|'in’'not’ 'in’|'is’'is’ 'not’
expr: xor_expr (| xor_expr)*
xor_expr: and_expr (' and_expr)*
and_expr: shift_expr (& shift_expr)*
shift_expr: arith_expr (('<<’|'>>") arith_expr)*
arith_expr: term ((+'|-") term)*
term: factor (("™''/'|'%’|'/l") factor)*
factor: ('+|-'|~’) factor | power
power: atom trailer* [**' factor]
atom: ('([yield_expr|testlist _gexp])" |

T [listmaker] T |

{" [dictmaker] '} |

" testlistl |

NAME | NUMBER | STRING+)
listmaker: test (list_for | (, test)* [',])
testlist_gexp: test (gen_for | (', test)* [')])
lambdef: ’lambda’ [varargslist] "' test

trailer: '(" [arglist] ')’ | [subscriptlist T | ' NAME
subscriptlist: subscript (', subscript)* [',’]
subscript: . . | test | [test] i’ [test] [sliceop]

sliceop: "’ [test]

exprlist: expr (,” expr)* [',]

testlist: test () test)* [,]

dictmaker: test "’ test (,; test ' test)* [,]

classdef: 'class’ NAME ['(" [testlist] ')'] '’ suite

arglist: (argument ’,)* (argument [')]
|'*" test (;) argument)* [',) ™** test]
|'**" test)

argument: test [gen_for] | test '=" test # Really [keyword '='] test

list_iter: list_for | list_if
list_for: 'for’ exprlist 'in’ testlist_safe [list_iter]
list_if: 'if’ old_test [list_iter]

gen_iter: gen_for | gen_if
gen_for: 'for’ exprlist 'in’ or_test [gen_iter]
gen_if: 'if old_test [gen_iter]

testlistl: test (°,’ test)*

77

The Python Language Reference, Release 2.6.2

not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: ‘yield’ [testlist]

78 Chapter 9. Full Grammar specification

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed inter-
actively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library d®2to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{onThe Python Library Refer-
encs.

abstract base classAbstract Base Classes (abbreviated ABCs) complenherit-typingby providing a way to define
interfaces when other techniques likasattr() would be clumsy. Python comes with many builtin ABCs
for data structures (in theollections module), numbers (in theumbers module), and streams (in tie
module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length:accepts or passes (if in the function definition or call) several positional
arguments in a list, whil&* does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object has an attributa it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the inter-
preter. The bytecode is also cachedgyc and.pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which oper-
ate on instances of the class.

classic classAny class which does not inherit froobject . Seenew-style classClassic classes will be removed in
Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two argu-
ments of the same type. For exampig(3.15) converts the floating point number to the inte§ebut in
3+4.5 , each argument is of a different type (one int, one float), and both must be converted to the same type be-
fore they can be added or it will raiséfgpeError . Coercion between two operands can be performed with the

79

http://www.python.org/~{}guido/

The Python Language Reference, Release 2.6.2

coerce builtin function; thus3+4.5 is equivalent to callingpperator.add(*coerce(3, 4.5)) and
results inoperator.add(3.0, 4.5) . Without coercion, all arguments of even compatible types would
have to be normalized to the same value by the programmerfleay(3)+4.5 rather than jusB+4.5 .

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often writteni in mathematics of in engineering. Python has builtin support for complex numbers,
which are written with this latter notation; the imaginary part is written with suffix, e.g.,3+1j . To get
access to complex equivalents of thath module, usemath . Use of complex numbers is a fairly advanced
mathematical feature. If you're not aware of a need for them, it's almost certain you can safely ignore them.

context manager An object which controls the environment seen iwigh statement by defining _enter__ ()
and__exit () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in con-
texts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation usir@\happer
syntax. Common examples for decorators@asssmethod() andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

Seethe documentation for function definitiéor more about decorators.

descriptor Any new-styleobject which defines the methodsget () , set () ,or_ delete_ () .When
a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using
a.bto get, set or delete an attribute looks up the object namirethe class dictionary faa, but if bis a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, Iseglementing Descriptors

dictionary An associative array, where arbitrary keys are mapped to values. The dis¢ ottlosely resembles that
forlist , butthe keys can be any object with ahash () function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into tHec__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests usyme() orisinstance()
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests ofEAFP programming.

80 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of martyy andexcept statements. The technique contrasts withltB&'L style common
to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. Theresis¢caisos
which cannot be used as expressions, sugitias orif . Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

finder An object that tries to find thewader for a module. It must implement a method nanfied_module()
SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expres&ibd currently evaluates t@. If the module in which
it is executed had enabledie divisionby executing:

from _ future import division

the expressioril/4 would evaluate t®.75 . By importing the_ future_ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> jmport _ future__
>>> _ future__ . division
_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, 'alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to the
caller using yield statement instead ofraturn statement. Generator functions often contain one or more
for orwhile loopswhichyield elements back to the caller. The function execution is stopped aiethie
keyword (returning the result) and is resumed there when the next element is requested by caiiéx(}he
method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followedbby a
expression defining a loop variable, range, and an optibnaxpression. The combined expression generates
values for an enclosing function:

>>> sum(i *i for i in range (10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executesdR\ttreon
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

81

http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

hashable An objectishashablef it has a hash value which never changes during its lifetime (it needsash__ ()
method), and can be compared to other objects (it needsem () or__cmp_ () method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is thed()

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekkiéncurrently eval-
uates to2 in contrast to the2.75 returned by float division. Also callefioor division When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such#saa), the result will be coerced (seeercior) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using thie operator instead of thie operator. See also future .

importer An object that both finds and loads a module; bofméderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just laytham with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (rementiedp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. Seealsctive

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such abst , str , andtuple) and some non-sequence types liket andfile and objects of any
classes you define with an iter_ () or__getitem_ () method. Iterables can be used ifoa loop
and in many other places where a sequence is neei®jl (, map() , ...). When an iterable object is passed
as an argument to the builtin functider() , it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessarytay@all or deal with iterator
objects yourself. Théor statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See atsaator, sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the iteraat{y method return successive
items in the stream. When no more data are availaplteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls teitt() method just rais&toplteration
again. lterators are required to have ariter () method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (suclisas § produces a fresh new
iterator each time you pass it to titer() function or use it in dor loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found itterator Typegin The Python Library Referenge

82 Appendix A. Glossary

The Python Language Reference, Release 2.6.2

keyword argument Arguments which are preceded wittlvariable_name= in the call. The variable name des-
ignates the local name in the function to which the value is assigtieds used to accept or pass a dictionary
of keyword arguments. Seegument

lambda An anonymous inline function consisting of a singlepressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theAFP approach and is characterized by the presence of marsfatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results.result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255if Tletause is optional. If omitted, all
elements irrange(256) are processed.

loader An object that loads a module. It must define a method naloedl module() . A loader is typically
returned by dinder. SeePEP 302for details.

mapping A container object (such adict) which supports arbitrary key lookups using the special method
__getitem__ ()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creation
method A function which is defined inside a class body. If called as an attribute of an instance of that class, the

method will get the instance object as its firssgumeni(which is usually calledelf). Seefunctionandnested
scope

mutable Mutable objects can change their value but keep tdéir . See alsommutable

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where tlyear is accessible either with an index such as
t[0] orwith a named attribute liketm_year).

A named tuple can be a built-in type such #@sie.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a self-

documenting representation likamployee(name='jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and builtin namespaces as well as nested hamespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functiortsuiltin__.open() andos.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writtagdom.seed() or itertools.izip()
makes it clear that those functions are implemented byahdom anditertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

83

http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

new-style classAny class which inherits fronobject . This includes all built-in types likdist and dict
Only new-style classes can use Python’s newer, versatile features litets ~ , descriptors, properties,
and__getattribute__ ()

More information can be found iNew-style and classic classes

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call* is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a functiona®eenent

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable usinfpa statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range (len (food)):
print food]i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key elementBf/then
implementation. Theys module defines getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large humbers of instances in a memory-critical application.

sequenceAn iterablewhich supports efficient element access using integer indices via tiegitem__ () special
method and defineslan() method that returns the length of the sequence. Some built-in sequence types are
list ,str ,tuple ,andunicode . Note thatdict also supports getitem () and len_ () ,but
is considered a mapping rather than a sequence because the lookups use arbitcagplekeys rather than

integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[with colons between numbers when several are given, such waariable _name[1:3:5] . The
bracket (subscript) notation usefice objects internally (or in older versions, getslice () and
__setslice_ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method names

statement A statement is part of a suite (a “block” of code). A statement is eithexamnessioror a one of several
constructs with a keyword, such és, while or print

84 Appendix A. Glossary

The Python Language Reference, Release 2.6.2

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__ attribute or can be retrieved withipe(obj)

virtual machine A computer defined entirely in software. Python’s virtual machine executés/theodeemitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typirighport this " at the interactive prompt.

85

The Python Language Reference, Release 2.6.2

86 Appendix A. Glossary

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated frerBtructuredTexsources bySphinx a document processor specifically written
for the Python documentation.

In the online version of these documents, you can submit comments and suggest changes directly on the documentation
pages.

Development of the documentation and its toolchain takes place afotte@python.orgnailing list. We're always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« theDocutilsproject for creating reStructuredText and the Docutils suite;

» Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
— if you feel that you or anyone else should be on this list, please let us know (send edwaikt@python.ong and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, JesUs Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander Be-
lopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl, Keith
Briggs, lan Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario, Mike Clark-
son, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter Deutsch, Robert
Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson, Carey Evans, Martijn
Faassen, Carl Feynman, Dan Finnie, Hernan Martinez Foffani, Stefan Franke, Jim Fulton, Peter Funk, Lele Gaifax,
Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Shelley Gooch, Nathaniel
Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand,
Gerhard Haring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bernhard Herzog, Magnus L. Hetland,
Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl,
Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen,
Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan
Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno
Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg,
Ross Light, UIf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Léwis, Fredrik Lundh, Jeff MacDonald, John

87

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python Language Reference, Release 2.6.2

Machin, Andrew Maclntyre, Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel May, Rebecca Mc-
Creary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata,
Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety,
William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin
D. Pettit, Chris Phoenix, Francois Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider,
Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse
II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Scheme-
nauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael
Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks,
Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio,
Martijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy
Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

88 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.con)! In 2001, the Python Software Foundation (PSF,rgge//www.python.org/psjf/was formed,

a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

89

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python Language Reference, Release 2.6.2

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2| n/a 1991-1995| CWI yes
1.3thrul.5.2| 1.2 1995-1999| CNRI yes
1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com| no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 2.2.2 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 23.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 2.3.3 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 24.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
244 243 2006 PSF yes
2.5 24 2006 PSF yes
251 25 2007 PSF yes
252 251 2008 PSF yes
2.5.3 252 2008 PSF yes
2.6 25 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.6.2 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.2 alone or in any derivative version, provided, however,
that PSF'’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.2 alone or in any derivative version prepared by
Licensee.

90 Appendix C. History and License

The Python Language Reference, Release 2.6.2

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 2.6.2 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.6.2.

. PSF is making Python 2.6.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.6.2 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.2 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.2, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.6.2, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.htmmay be used according to the permissions granted on that web page.

c.2.

Terms and conditions for accessing or otherwise using Python 91

http://www.pythonlabs.com/logos.html

The Python Language Reference, Release 2.6.2

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office

at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI's License Agreement and CNRI's notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URIip://hdl.handle.net/1895.22/1013

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS 1S” basis. CNRI MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual property law of the United States, including

without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,

Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995, Stichting
Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or

92

Appendix C. History and License

http://hdl.handle.net/1895.22/1013

The Python Language Reference, Release 2.6.2

CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdmtp://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_ array(init_key, key length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

C.3. Licenses and Acknowledgements for Incorporated Software 93

http://www.math.keio.ac.jp/

The Python Language Reference, Release 2.6.2

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functiongetaddrinfo() , andgetnameinfo() , which are coded in separate
source files from the WIDE Projediitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. |

Permission to use, copy, modify, and distribute this software for [
any purpose without fee is hereby granted, provided that this en- |

94 Appendix C. History and License

http://www.wide.ad.jp/

The Python Language Reference, Release 2.6.2

tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |

This software was prepared as an account of work sponsored by an |
agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |
ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its use would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

C.3. Licenses and Acknowledgements for Incorporated Software 95

The Python Language Reference, Release 2.6.2

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

TheCookie module contains the following notice:

96 Appendix C. History and License

The Python Language Reference, Release 2.6.2

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 97

The Python Language Reference, Release 2.6.2

C.3.8 Execution tracing

Thetrace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

98 Appendix C. History and License

The Python Language Reference, Release 2.6.2

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

Thetest_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be

C.3. Licenses and Acknowledgements for Incorporated Software 99

The Python Language Reference, Release 2.6.2

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

100 Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licenséor complete license and permissions information.

101

The Python Language Reference, Release 2.6.2

102 Appendix D. Copyright

INDEX

Symbols __float__() (object method}3
* __floordiv__ () (object methodR2
statement/1 _ future__ 81
*x __ge__ () (object method}b
statement71 __get_ () (object method},7

v 79 __getattr__ () (object method)p
__abs__ () (object methodj3 _getgttribute_() (object method@%
__add__ () (object method}2 _get!tem_() (mapping object method}
__all__ (optional module attribute4 _getltgm_() (Obj.ect methoddp
__and__() (object method}? __getslice__() (object methodj1
__bases__ (class attribute)) __gt_ () (object methodp5

builtin __hash__ () (object method)5
o modﬁe,66, 73 __hex__() (object method3}4
__builtins__66 __iadd__ () (object method}3
__call__() (object methodpg, 50 __iand__() (object method}3
__class__ (instance attributé)] __idiv__() (object method)33
__cmp__() (object method}5 __ifloordiv__ () (object methodB3
__coerce__ () (object method __lIshift__() (object method)33
__complex__() (object method3 __imod__() (object method}3
__contains__() (object metho®1 —Import__ .
__debug__ 60 built-in function, 64
__del__() (object method}4 __imul__() (object method}3
__delattr__ () (object method}6 __index__() (object method}4
__delete_ () (object method)7 __init__() (object method)0, 24
__delitem__ () (object method3p _int__() (object method}3
__delslice_ () (object method)}. __invert__() (object method}3
__dict__(class attributep0 __ior__() (object method}3
__dict__ (function attribute),9 __ipow__() (object method}3
__dict__(instance attribute}], 26 __irshift__() (object method}33
__dict__ (module attribute,0 __isub__ () (object method}3
__div__() (object methodB2 __iter_ () (object method0
__divmod__ () (object method}? __itruediv__() (object method}3
__doc__ (class attribute}p __ixor__() (object method}3
__doc__ (function attribute),9 __le__() (object methodp5
__doc__ (method attribute)9 __len__() (mapping object method)
__doc__ (module attribute}0 __len__() (object method}0
__enter__() (object methody5 __loader__64
__eq__() (object method}5 __long__() (object method}3
__exit__() (object method}5 __Ishift__() (object method}2

file ,64 __ It () (object methodR5
__file__ (module attribute0 __main__

module,40, 73

103

The Python Language Reference, Release 2.6.2

__metaclass__ (built-in variable)9
__mod__ () (object method}2
__module__ (class attribute)p
__module__ (function attribute)9
__module__ (method attribute))9
__mul__() (object method32
__hame__ 64

__name__ (class attribut&)Q
__name___(function attribute)9
__name__ (method attribute)9
__name__ (module attribute))
__ne__ () (object method}5
__neg__ () (object method};3
__new__ () (object method}3
__nonzero__ () (object method, 30
__oct__() (object methody4
__or__() (object methodR2
__package_ 64

__path__£3,64

__pos__ () (object method}3
__pow__ () (object method}?2
__radd__ () (object method}3
__rand__ () (object method}3
__rcmp__ () (object method}5
__rdiv__() (object method3
__rdivmod__ () (object method}3
__repr__() (object method}4
__reversed__ () (object metho@))
__rfloordiv__() (object methodR3
__rIshift__() (object methodR3
__rmod__ () (object method}3
__rmul__ () (object methodR3
__ror__() (object methodRB3
__rpow__ () (object method}3
__rrshift__ () (object methodR3
__rshift__ () (object methodj2
__rsub__ () (object methodj;3
__rtruediv__ () (object method}3
__rxor__() (object method33
__set_ () (object method}/
__setattr__ () (object method)6
__setitem__ () (object method0
__setslice__ () (object method®]
__slots 84

__slots___ (built-in variableR8
__str__() (object method4
__sub__ () (object method}2
__truediv__ () (object method}2
__unicode__ () (object method)6
__xor__() (object methodR2
>>> 79

2t03,79

A

abs
built-in function, 33
abstract base class9
addition,51
and
bitwise,52
operatorp4
anonymous
function,54
argument,/9
function, 18
arithmetic
conversion43
operation, binary51
operation, unar1
array
module,17
ASCII, 4,9, 10,13, 17
assert
statement60
AssertionError
exception60
assertions
debugging60
assignment
attribute,57, 58
augmented59
class attribute20
class instance attributgl
slicing, 59
statementl7, 57
subscription58
target list,58
atom,43
attribute,16, 79
assignment;7, 58
assignment, clas&0p
assignment, class instanés,
class,20
class instance&0
deletion,60
generic speciall.6
reference47
special,16
AttributeError
exception47
augmented
assignment;9

B

back-quotes?4, 45
backslash charactes,
backward

104

Index

The Python Language Reference, Release 2.6.2

quotes24, 45
BDFL, 79
binary
arithmetic operatior 1
bitwise operation52
binary literal,11
binding
global nameg5

name,39, 57, 63, 64, 70, 72

range,68
raw_input,74
repr,24, 45,57
slice,22
str, 24, 45
type,15
unichr,17
unicode,17, 26
built-in method

bitwise call, 50
and,52 object,20, 50
operation, binary52 byte,17
operation, unans1 bytecode21, 79
or,52
xor, 52 C
blank line,7 C,10
block, 39 language6, 17, 19, 52
code,39 call, 48
BNF, 4, 43 built-in function,50
Boolean built-in method 50
object,16 class instance&y0
operation54 class object20, 50
break function, 18, 50
statement62, 68, 69 instance?9, 50
bsddb method,50
module,18 procedure57
built-in user-defined functior§0
method,20 callable
built-in function object,18, 48
__import__ 64 chaining
abs,33 comparisons2
call, 50 characterl7, 48
chr,17 character set,7
cmp,25 chr
compile,66 built-in function, 17
complex,34 class,79
divmod, 32, 33 attribute,20
eval,66, 74 attribute assignmen®0
execfile,66 classic,23
float, 34 constructor24
globals,66 definition,61, 72
hash,25 instance20
hex,34 name,72
id, 15 new-style 23
input, 74 object,20, 50, 72
int, 34 old-style,23
len,17, 18, 30 statementy2
locals,66 class instance
long, 34 attribute,20
object,19, 50 attribute assignmen®1
oct, 34 call, 50
open,21 object,20, 50
ord,17 class object
pow, 32, 33 call, 20, 50
Index 105

The Python Language Reference, Release 2.6.2

classic class/9
clause67
close() (generator method)6
cmp
built-in function, 25

co_argcount (code object attributé,
co_cellvars (code object attributé&)l.

co_code (code object attribute)]

co_consts (code object attribut&},
co_filename (code obiject attribute)l,
co_firstlineno (code object attribute)]

co_flags (code object attribute)]

co_freevars (code object attribut&),
co_Inotab (code object attribut&)]
co_name (code object attribute)l,
co_names (code object attributg},
co_nlocals (code object attribute)]
co_stacksize (code object attribut2},
co_varnames (code object attribute),

code

block, 39

object,21
coercion,79
commag4

trailing, 54, 61
command line73
commentg
comparisons2

string,17
comparisons?5

chaining,52
compile

built-in function, 66
complex

built-in function, 34

literal, 11

number,17

object,17
complex number80
compound

statementt7
comprehensions

list, 44
Conditional

expression54
constant9
constructor

class24
container,15, 20
context managef5, 80
continue

statement63, 68, 69
conversion

arithmetic,43

string,24, 45, 57
coroutine 46
CPython,80

D

dangling

else,67
data,15

type, 16

type, immutable44
datum,45
dbm

module,18
debugging

assertionsg0
decimal literal, 11
decoratorg80
DEDENT token,7, 67
def

statement70
default

parameter value/ 1
definition

class61, 72

function,61, 70
del

statement]7, 24, 60
delete, 17
deletion

attribute,60

target,60

target list,60
delimiters,12
descriptor80
destructorp4, 58
dictionary,80

display,45

object,18, 20, 25, 45, 47, 58
display

dictionary,45

list, 44

tuple,44
division, 51
divmod

built-in function, 32, 33
docstring,72, 80
documentation string}1
duck-typing,80

E

EAFP,80
EBCDIC, 17
elif

keyword,68

106

Index

The Python Language Reference, Release 2.6.2

Ellipsis
object,16
else
dangling,67
keyword,62, 68, 69
empty
list, 44
tuple,17, 44
encodingsp
environment39
error handling40
errors,40
escape sequencl)
eval
built-in function, 66, 74
evaluation
order,55
exc_info (in module sysy?2
exc_traceback (in module sygy, 69
exc_type (in module sysp9
exc_value (in module sysj9
except
keyword,69
exception40, 62
AssertionErrorg0
AttributeError,47
GeneratorExit46
handler,22
ImportError,64
NameError43
raising,62
RuntimeError61
Stoplteration46, 61
TypeError,51
ValueError,52
ZeroDivisionError51
exception handler0
exclusive
or,52
exec
statement66
execfile
built-in function, 66
execution
frame,39, 72
restricted 40
stack,22
execution model39
expression43, 81
Conditional 54
generator45
lambda,54
list, 54, 57, 58
statement>7

yield, 46
extended

slicing, 48
extended print statemert]
extended slicingl7
extension

module,16
extension moduleg1

F

f_back (frame attributeR1
f_builtins (frame attribute)21
f_code (frame attributep1
f_exc_traceback (frame attribut@y
f_exc_type (frame attribute}2
f_exc_value (frame attribute}?2
f_globals (frame attributep1
f_lasti (frame attribute)21
f_lineno (frame attribute22
f_locals (frame attributeR1
f_restricted (frame attribute®1
f_trace (frame attribute,2
False,16
file

object,21, 74
finally

keyword,61-63, 69
find_module

finder,63
finder,63, 81

find_module 63
float

built-in function, 34
floating point

number,17

object,17
floating point literal,11
for

statement62, 63, 68
form

lambda,54, 72
frame

execution39, 72

object,21
free

variable,39, 60
from

keyword,63

statement39
frozenset

object,18
func_closure (function attribute).9
func_code (function attribute),9
func_defaults (function attribute) 9

Index

107

The Python Language Reference, Release 2.6.2

func_dict (function attribute)]9
func_doc (function attribute),9
func_globals (function attribute},9

function,81
anonymoush4
argument,18
call, 18, 50
call, user-defined;0
definition,61, 70
generator46, 61
name,’70
object,18, 19, 50, 70
user-defined] 8
future
statementt4

G

garbage collectiorn 5, 81
gdbm
module,18
generatorgl
expression45s
function, 19, 46, 61
iterator,19, 61
object,21, 45, 46
generator expressiofil
GeneratorExit
exception46
generic
special attribute] 6
GIL, 81
global
name bindingf5
namespace,9
statement58, 60, 65
global interpreter lock31
globals
built-in function, 66
grammars
grouping,7

H

handle an exceptiod,0
handler

exception22
hash

built-in function, 25
hash charactefi
hashable81
hex

built-in function, 34
hexadecimal literall 1
hierarchy

type,16

I
id
built-in function, 15
identifier, 8, 43
identity
test,53
identity of an object15
IDLE, 82
if
statement68

im_class (method attribute)9
im_func (method attribute},9
im_self (method attribute),9

imaginary literal,11
immutable,82
data typed4
object,17, 44, 45
immutable object]15
immutable sequence
object,17
immutable types
subclassing?3
import
statement20, 63
importer,82
ImportError
exception64
in
keyword,68
operator53
inclusive
or,52
INDENT token,7
indentation,’
index operationl7
indices() (slice method}2
inheritance /2
input, 74
built-in function, 74
raw, 74
instance
call, 29, 50
class,20
object,20, 50
int
built-in function, 34
integer,17
object,16
representation],6
integer division 82
integer literal,11
interactive,82
interactive mode73
internal type21

108

Index

The Python Language Reference, Release 2.6.2

interpreted32
interpreter,73
inversion,51
invocation,18
is
operatorb3
is not
operator53
item
sequence4’
string, 48
item selectionl7
iterable,82
iterator,82

J

Java
languagel7

K

key, 45
key/datum pair45
keyword,8
elif, 68
else,62, 68, 69
except,69
finally, 61-63, 69
from, 63
in, 68
yield, 46
keyword argumeni32

L

lambda,83
expression54
form, 54, 72

language
C,16,17,19,52
Java,17
Pascal5s8

last_traceback (in module sygy

LBYL, 83

leading whitespace,

len
built-in function,17, 18, 30

lexical analysisb

lexical definitions 4

line continuationp

line joining, 5, 6

line structurep

list, 83
assignment, targebg
comprehensiongi4
deletion target60

display,44
empty,44
expressionb4, 57, 58
object,17, 44, 47, 48, 58
target,58, 68
list comprehensiorg3
literal, 9, 44
load_module
loader,64
loader,64, 83
load_modulep4
locals
built-in function, 66
logical line,5
long
built-in function, 34
long integer
object,16
long integer literal,L 1
loop
over mutable sequenceés
statement6?2, 63, 68
loop control
target,62

M

makefile() (socket method) 1
mangling
name44
mapping,83
object,18, 21, 47,58
membership
test,53
metaclass33
method,83
built-in, 20
call, 50
object,19, 20, 50
user-defined]9
minus,51
module
__builtin__,66, 73
__main__40,73
array,17
bsddb,18
dbm, 18
extension;16
gdbm,18
importing, 63
namespace),0
object,20, 47
Sys,61, 69, 73
modulo,51
multiplication,51

Index

109

The Python Language Reference, Release 2.6.2

mutable,83
object,17, 57, 58

mutable object]15

mutable sequence
loop over,68
object,17

N

name,8, 39, 43
binding, 39, 57, 63, 64, 70, 72
binding, global 65
class,72
function,70
mangling,44
rebinding,57
unbinding,60

named tuple83

NameError
exception43

NamekError (built-in exception39

names
private,44

namespace9, 83
global, 19
module,20

negation51

nested scope33

new-style class33

newline
suppressior; 1

NEWLINE token,5, 67

next() (generator metho6

None
object,16, 57

not
operatorp4

not in
operator53

notation,4

Notimplemented
object,16

null
operation50

number,11
complex,17
floating point,17

numeric
object,16, 21
numeric literal,11

O

object,15, 84
Boolean,16
built-in function, 19, 50

built-in method,20, 50
callable,18, 48
class 20, 50, 72
class instance0, 50
code,21
complex,17
dictionary,18, 20, 25, 45, 47, 58
Ellipsis, 16
file, 21, 74
floating point,17
frame,21
frozenset18
function, 18, 19, 50, 70
generator?1, 45, 46
immutable, 17, 44, 45
immutable sequencé/
instance20, 50
integer,16
list, 17, 44, 47, 48, 58
long integer,16
mapping,18, 21, 47, 58
method,19, 20, 50
module,20, 47
mutable17, 57, 58
mutable sequencéy
None,16, 57
Notimplementedl6
numeric,16, 21
plain integer,16
recursive45
sequencel?, 21, 47, 48, 53, 58, 68
set,18
set type, 18
slice,30
string, 17, 47, 48
traceback?2, 62, 69
tuple,17, 47, 48, 54
unicode,17
user-defined functiori,8, 50, 70
user-defined method9
oct
built-in function, 34
octal literal,11
open
built-in function,21
operation
binary arithmetic51
binary bitwise 52
Boolean54
null, 60
shifting, 52
unary arithmeticb1
unary bitwise51
operator

110

Index

The Python Language Reference, Release 2.6.2

and,54

in, 53

is, 53

is not,53

not, 54

notin,53

or,54

overloading23

precedences5
operatorsl1?2
or

bitwise,52

exclusive,52

inclusive,52

operatorp4
ord

built-in function, 17
order

evaluation 55
output,57, 61

standard57, 61
OverflowError (built-in exception)]6
overloading

operator23

P

packagef3
parameter

value, defaulty1
parenthesized form4
parserb
Pascal

languagef8
pass

statement60
physical line)5, 6, 10
plain integer

object,16
plain integer literal,L 1
plus,51
popen() (in module osp1
positional argumeng4
pow

built-in function, 32, 33
precedence

operatorp5
primary,47
print

statement?4, 61
private

namesg4
procedure

call, 57
program,73

Python 300084
Python Enhancement Proposals
PEP 025562
PEP 034247, 62
PEP 034335, 70
PEP 30263, 64, 81, 83
PEP 32864
PEP 34380
Pythonic,84

Q

quotes
backward 24, 45
reverse24, 45

R

raise

statement62
raise an exceptior,0
raising

exception2
range

built-in function, 68
raw input,74
raw string,9
raw_input

built-in function, 74
readline() (file method)74
rebinding

name;57
recursive

object,45
reference

attribute, 47
reference coung4
reference counting,5
relative

import, 64
repr

built-in function, 24, 45, 57
representation

integer,16
reserved wordg
restricted

execution40
return

statement6l, 69
reverse

quotes24, 45
RuntimeError

exceptiongl

S
scope39

Index

111

The Python Language Reference, Release 2.6.2

send() (generator method)p
sequenced4
item,47

object,17, 21, 47, 48, 53, 58, 68

set
object,18
set type
object,18
shifting
operation52
simple
statement>7
singleton
tuple,17
slice,48, 84
built-in function, 22
object,30
slicing, 17, 48
assignment59
extended48
source character set,
spacey/
special
attribute,16
attribute, genericl6
special method34
stack
execution22
trace,22
standard
output,57, 61
Standard C10
standard input73
start (slice object attribute}?2, 48
statement71, 84
* 71
**, 71
asserts0
assignmentl7, 57
assignment, augmentesh
break,62, 68, 69
class,72
compoundg7
continue,63, 68, 69
def, 70
del, 17, 24, 60
exec,66
expression57
for, 62, 63, 68
from, 39
future,64
global,58, 60, 65
if, 68
import, 20, 63

loop, 62, 63, 68

pass©0

print, 24, 61

raise,62

return,61, 69

simple,57

try, 22, 69

while, 62, 63, 68

with, 35, 70

yield, 61
statement grouping,
stderr (in module sysp1
stdin (in module sysR1
stdio, 21
stdout (in module sysp1, 61
step (slice object attribute}2, 48
stop (slice object attribute®2, 48
Stoplteration

exception46, 61
str

built-in function, 24, 45
string

comparisonl7

conversion24, 45, 57

item, 48

object,17, 47, 48

Unicode,9
string literal,9
subclassing

immutable types?3
subscription,17, 18, 47

assignment;8
subtraction52
suite,67
suppression

newline,61
syntax,4, 43
Sys

module,61, 69, 73
sys.exc_info22
sys.exc_traceback?
sys.last_traceback?
sys.meta_patt§3
sys.modules;3
sys.pathf3
sys.path_hook$3
sys.path_importer_cach@3
sys.stderr21
sys.stdin21
sys.stdout21
SystemExit (built-in exception)1

T
tab,7

112

The Python Language Reference, Release 2.6.2

target,58
deletion,60
list, 58, 68
list assignment;8
list, deletion,60
loop control,62
tb_frame (traceback attribute)?
tb_lasti (traceback attribute)}?
tb_lineno (traceback attribute)2
tb_next (traceback attribute)2
termination model41
test
identity, 53
membership53
throw() (generator method}6
token,5
trace
stack,22
traceback
object,22, 62, 69
trailing
comma,54, 61
triple-quoted string9, 84
True, 16
try
statement?2, 69
tuple
display,44
empty,17, 44
object,17, 47, 48, 54
singleton,17
type, 16, 85
built-in function, 15
data,16
hierarchy,16
immutable data44
type of an object]15
TypeError
exception51
types, internal21

U

unary
arithmetic operatior 1
bitwise operation51
unbinding
name,60
UnboundLocalError39
unichr
built-in function, 17
Unicode,17
unicode
built-in function,17, 26
object,17

Unicode Consortiun®
UNIX, 73
unreachable object,5
unrecognized escape sequerice,
user-defined
function, 18
function call,50
method,19
user-defined function
object,18, 50, 70
user-defined method
object,19

Vv

value

default parameter;1
value of an object]5
ValueError

exception52
values

writing, 57, 61
variable

free,39, 60
virtual machineg5

W

while

statement62, 63, 68
whitespacey
with

statement35, 70
writing

values 57, 61

X

xor
bitwise,52

Y

yield
expression46
keyword,46
statementl

Z

Zen of Python85
ZeroDivisionError
exception51

Index

113

	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Other tokens
	Identifiers and keywords
	Literals
	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	New-style and classic classes
	Special method names

	Execution model
	Naming and binding
	Exceptions

	Expressions
	Arithmetic conversions
	Atoms
	Primaries
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Boolean operations
	Lambdas
	Expression lists
	Evaluation order
	Summary

	Simple statements
	Expression statements
	Assignment statements
	The assert statement
	The pass statement
	The del statement
	The print statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	The global statement
	The exec statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	Function definitions
	Class definitions

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

