
Distributing Python Modules
Release 2.5.2

Greg Ward
Anthony Baxter

21st February, 2008

Python Software Foundation
Email: distutils-sig@python.org

Copyright c© 2001-2008 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s point of view,
describing how to use the Distutils to make Python modules and extensions easily available to a wider audience with
very little overhead for build/release/install mechanics.

CONTENTS

1 An Introduction to Distutils 1
1.1 Concepts & Terminology . 1
1.2 A Simple Example . 1
1.3 General Python terminology . 3
1.4 Distutils-specific terminology . 3

2 Writing the Setup Script 5
2.1 Listing whole packages . 6
2.2 Listing individual modules . 6
2.3 Describing extension modules . 7
2.4 Relationships between Distributions and Packages . 10
2.5 Installing Scripts . 11
2.6 Installing Package Data . 12
2.7 Installing Additional Files . 12
2.8 Additional meta-data . 13
2.9 Debugging the setup script . 14

3 Writing the Setup Configuration File 15

4 Creating a Source Distribution 19
4.1 Specifying the files to distribute . 19
4.2 Manifest-related options . 21

5 Creating Built Distributions 23
5.1 Creating dumb built distributions . 24
5.2 Creating RPM packages . 24
5.3 Creating Windows Installers . 26

6 Registering with the Package Index 29
6.1 The .pypirc file . 29

7 Uploading Packages to the Package Index 31

8 Examples 33
8.1 Pure Python distribution (by module) . 33
8.2 Pure Python distribution (by package) . 34
8.3 Single extension module . 36

9 Extending Distutils 39
9.1 Integrating new commands . 39

i

9.2 Adding new distribution types . 40

10 Command Reference 41
10.1 Installing modules: the install command family . 41
10.2 Creating a source distribution: the sdist command . 41

11 API Reference 43
11.1 distutils.core — Core Distutils functionality . 43
11.2 distutils.ccompiler — CCompiler base class . 44
11.3 distutils.unixccompiler — Unix C Compiler . 49
11.4 distutils.msvccompiler — Microsoft Compiler . 50
11.5 distutils.bcppcompiler — Borland Compiler . 50
11.6 distutils.cygwincompiler — Cygwin Compiler . 50
11.7 distutils.emxccompiler — OS/2 EMX Compiler . 50
11.8 distutils.mwerkscompiler — Metrowerks CodeWarrior support 50
11.9 distutils.archive_util — Archiving utilities . 50
11.10 distutils.dep_util — Dependency checking . 51
11.11 distutils.dir_util — Directory tree operations . 51
11.12 distutils.file_util — Single file operations . 52
11.13 distutils.util — Miscellaneous other utility functions . 52
11.14 distutils.dist — The Distribution class . 54
11.15 distutils.extension — The Extension class . 54
11.16 distutils.debug — Distutils debug mode . 54
11.17 distutils.errors — Distutils exceptions . 54
11.18 distutils.fancy_getopt — Wrapper around the standard getopt module 55
11.19 distutils.filelist — The FileList class . 56
11.20 distutils.log — Simple PEP 282-style logging . 56
11.21 distutils.spawn — Spawn a sub-process . 56
11.22 distutils.sysconfig — System configuration information 56
11.23 distutils.text_file — The TextFile class . 57
11.24 distutils.version — Version number classes . 58
11.25 distutils.cmd — Abstract base class for Distutils commands 58
11.26 distutils.command — Individual Distutils commands . 59
11.27 distutils.command.bdist — Build a binary installer . 59
11.28 distutils.command.bdist_packager — Abstract base class for packagers 59
11.29 distutils.command.bdist_dumb — Build a “dumb” installer 59
11.30 distutils.command.bdist_msi — Build a Microsoft Installer binary package 59
11.31 distutils.command.bdist_rpm — Build a binary distribution as a Redhat RPM and SRPM . 59
11.32 distutils.command.bdist_wininst — Build a Windows installer 59
11.33 distutils.command.sdist — Build a source distribution 59
11.34 distutils.command.build — Build all files of a package 59
11.35 distutils.command.build_clib — Build any C libraries in a package 59
11.36 distutils.command.build_ext — Build any extensions in a package 59
11.37 distutils.command.build_py — Build the .py/.pyc files of a package 59
11.38 distutils.command.build_scripts — Build the scripts of a package 59
11.39 distutils.command.clean — Clean a package build area 59
11.40 distutils.command.config — Perform package configuration 59
11.41 distutils.command.install — Install a package . 59
11.42 distutils.command.install_data — Install data files from a package 59
11.43 distutils.command.install_headers — Install C/C++ header files from a package . . . 59
11.44 distutils.command.install_lib — Install library files from a package 59
11.45 distutils.command.install_scripts — Install script files from a package 59
11.46 distutils.command.register — Register a module with the Python Package Index 59
11.47 Creating a new Distutils command . 60

ii

Module Index 61

Index 63

iii

iv

CHAPTER

ONE

An Introduction to Distutils

This document covers using the Distutils to distribute your Python modules, concentrating on the role of devel-
oper/distributor: if you’re looking for information on installing Python modules, you should refer to the Installing
Python Modules manual.

1.1 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-party
modules. As a developer, your responsibilities (apart from writing solid, well-documented and well-tested code, of
course!) are:

• write a setup script (‘setup.py’ by convention)

• (optional) write a setup configuration file

• create a source distribution

• (optional) create one or more built (binary) distributions

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it’s not always feasible to expect them to create
a multitude of built distributions. It is hoped that a class of intermediaries, called packagers, will arise to address this
need. Packagers will take source distributions released by module developers, build them on one or more platforms,
and release the resulting built distributions. Thus, users on the most popular platforms will be able to install most
popular Python module distributions in the most natural way for their platform, without having to run a single setup
script or compile a line of code.

1.2 A Simple Example

The setup script is usually quite simple, although since it’s written in Python, there are no arbitrary limits to what
you can do with it, though you should be careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run multiple times in the course of building and
installing your module distribution.

If all you want to do is distribute a module called foo, contained in a file ‘foo.py’, then your setup script can be as
simple as this:

1

../inst/inst.html
../inst/inst.html

from distutils.core import setup
setup(name=’foo’,

version=’1.0’,
py_modules=[’foo’],
)

Some observations:

• most information that you supply to the Distutils is supplied as keyword arguments to the setup() function

• those keyword arguments fall into two categories: package metadata (name, version number) and information
about what’s in the package (a list of pure Python modules, in this case)

• modules are specified by module name, not filename (the same will hold true for packages and extensions)

• it’s recommended that you supply a little more metadata, in particular your name, email address and a URL for
the project (see section 2 for an example)

To create a source distribution for this module, you would create a setup script, ‘setup.py’, containing the above code,
and run:

python setup.py sdist

which will create an archive file (e.g., tarball on UNIX, ZIP file on Windows) containing your setup script ‘setup.py’,
and your module ‘foo.py’. The archive file will be named ‘foo-1.0.tar.gz’ (or ‘.zip’), and will unpack into a directory
‘foo-1.0’.

If an end-user wishes to install your foo module, all she has to do is download ‘foo-1.0.tar.gz’ (or ‘.zip’), unpack it,
and—from the ‘foo-1.0’ directory—run

python setup.py install

which will ultimately copy ‘foo.py’ to the appropriate directory for third-party modules in their Python installation.

This simple example demonstrates some fundamental concepts of the Distutils. First, both developers and installers
have the same basic user interface, i.e. the setup script. The difference is which Distutils commands they use: the
sdist command is almost exclusively for module developers, while install is more often for installers (although
most developers will want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or more built distributions for them. For
instance, if you are running on a Windows machine, and want to make things easy for other Windows users, you can
create an executable installer (the most appropriate type of built distribution for this platform) with the bdist_-
wininst command. For example:

python setup.py bdist_wininst

will create an executable installer, ‘foo-1.0.win32.exe’, in the current directory.

Other useful built distribution formats are RPM, implemented by the bdist_rpm command, Solaris pkgtool
(bdist_pkgtool), and HP-UX swinstall (bdist_sdux). For example, the following command will create an
RPM file called ‘foo-1.0.noarch.rpm’:

python setup.py bdist_rpm

2 Chapter 1. An Introduction to Distutils

(The bdist_rpm command uses the rpm executable, therefore this has to be run on an RPM-based system such as
Red Hat Linux, SuSE Linux, or Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

1.3 General Python terminology

If you’re reading this document, you probably have a good idea of what modules, extensions, and so forth are. Nev-
ertheless, just to be sure that everyone is operating from a common starting point, we offer the following glossary of
common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three types of
modules concern us here: pure Python modules, extension modules, and packages.

pure Python module a module written in Python and contained in a single ‘.py’ file (and possibly associated ‘.pyc’
and/or ‘.pyo’ files). Sometimes referred to as a “pure module.”

extension module a module written in the low-level language of the Python implementation: C/C++ for Python, Java
for Jython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object (‘.so’)
file for Python extensions on UNIX, a DLL (given the ‘.pyd’ extension) for Python extensions on Windows, or
a Java class file for Jython extensions. (Note that currently, the Distutils only handles C/C++ extensions for
Python.)

package a module that contains other modules; typically contained in a directory in the filesystem and distinguished
from other directories by the presence of a file ‘ init .py’.

root package the root of the hierarchy of packages. (This isn’t really a package, since it doesn’t have an ‘ init .py’
file. But we have to call it something.) The vast majority of the standard library is in the root package, as
are many small, standalone third-party modules that don’t belong to a larger module collection. Unlike regular
packages, modules in the root package can be found in many directories: in fact, every directory listed in
sys.path contributes modules to the root package.

1.4 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource and meant
to be installed en masse. Examples of some well-known module distributions are Numeric Python, PyXML,
PIL (the Python Imaging Library), or mxBase. (This would be called a package, except that term is already
taken in the Python context: a single module distribution may contain zero, one, or many Python packages.)

pure module distribution a module distribution that contains only pure Python modules and packages. Sometimes
referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Sometimes referred
to as a “non-pure distribution.”

distribution root the top-level directory of your source tree (or source distribution); the directory where ‘setup.py’
exists. Generally ‘setup.py’ will be run from this directory.

1.3. General Python terminology 3

4

CHAPTER

TWO

Writing the Setup Script

The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils. The
main purpose of the setup script is to describe your module distribution to the Distutils, so that the various commands
that operate on your modules do the right thing. As we saw in section 1.2 above, the setup script consists mainly of
a call to setup(), and most information supplied to the Distutils by the module developer is supplied as keyword
arguments to setup().

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own setup
script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also have an independent
existence so that Python 1.5.2 users can use them to install other module distributions. The Distutils’ own setup script,
shown here, is used to install the package into Python 1.5.2.)

#!/usr/bin/env python

from distutils.core import setup

setup(name=’Distutils’,
version=’1.0’,
description=’Python Distribution Utilities’,
author=’Greg Ward’,
author_email=’gward@python.net’,
url=’http://www.python.org/sigs/distutils-sig/’,
packages=[’distutils’, ’distutils.command’],
)

There are only two differences between this and the trivial one-file distribution presented in section 1.2: more metadata,
and the specification of pure Python modules by package, rather than by module. This is important since the Distutils
consist of a couple of dozen modules split into (so far) two packages; an explicit list of every module would be tedious
to generate and difficult to maintain. For more information on the additional meta-data, see section 2.8.

Note that any pathnames (files or directories) supplied in the setup script should be written using the UNIX convention,
i.e. slash-separated. The Distutils will take care of converting this platform-neutral representation into whatever is
appropriate on your current platform before actually using the pathname. This makes your setup script portable across
operating systems, which of course is one of the major goals of the Distutils. In this spirit, all pathnames in this
document are slash-separated. (Mac OS 9 programmers should keep in mind that the absence of a leading slash
indicates a relative path, the opposite of the Mac OS convention with colons.)

This, of course, only applies to pathnames given to Distutils functions. If you, for example, use standard Python
functions such as glob.glob() or os.listdir() to specify files, you should be careful to write portable code
instead of hardcoding path separators:

5

glob.glob(os.path.join(’mydir’, ’subdir’, ’*.html’))
os.listdir(os.path.join(’mydir’, ’subdir’))

2.1 Listing whole packages

The packages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules found in
each package mentioned in the packages list. In order to do this, of course, there has to be a correspondence between
package names and directories in the filesystem. The default correspondence is the most obvious one, i.e. package
distutils is found in the directory ‘distutils’ relative to the distribution root. Thus, when you say packages =
[’foo’] in your setup script, you are promising that the Distutils will find a file ‘foo/ init .py’ (which might be
spelled differently on your system, but you get the idea) relative to the directory where your setup script lives. If you
break this promise, the Distutils will issue a warning but still process the broken package anyways.

If you use a different convention to lay out your source directory, that’s no problem: you just have to supply the
package dir option to tell the Distutils about your convention. For example, say you keep all Python source under ‘lib’,
so that modules in the “root package” (i.e., not in any package at all) are in ‘lib’, modules in the foo package are in
‘lib/foo’, and so forth. Then you would put

package_dir = {’’: ’lib’}

in your setup script. The keys to this dictionary are package names, and an empty package name stands for the root
package. The values are directory names relative to your distribution root. In this case, when you say packages =
[’foo’], you are promising that the file ‘lib/foo/ init .py’ exists.

Another possible convention is to put the foo package right in ‘lib’, the foo.bar package in ‘lib/bar’, etc. This
would be written in the setup script as

package_dir = {’foo’: ’lib’}

A package: dir entry in the package dir dictionary implicitly applies to all packages below package, so the
foo.bar case is automatically handled here. In this example, having packages = [’foo’, ’foo.bar’]
tells the Distutils to look for ‘lib/ init .py’ and ‘lib/bar/ init .py’. (Keep in mind that although package dir applies
recursively, you must explicitly list all packages in packages: the Distutils will not recursively scan your source tree
looking for any directory with an ‘ init .py’ file.)

2.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially the case
of a single module that goes in the “root package” (i.e., no package at all). This simplest case was shown in section 1.2;
here is a slightly more involved example:

py_modules = [’mod1’, ’pkg.mod2’]

This describes two modules, one of them in the “root” package, the other in the pkg package. Again, the default
package/directory layout implies that these two modules can be found in ‘mod1.py’ and ‘pkg/mod2.py’, and that
‘pkg/ init .py’ exists as well. And again, you can override the package/directory correspondence using the package -

6 Chapter 2. Writing the Setup Script

dir option.

2.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules, describing
them to the Distutils is a bit more complicated. Unlike pure modules, it’s not enough just to list modules or packages
and expect the Distutils to go out and find the right files; you have to specify the extension name, source file(s), and
any compile/link requirements (include directories, libraries to link with, etc.).

All of this is done through another keyword argument to setup(), the ext modules option. ext modules is just a
list of Extension instances, each of which describes a single extension module. Suppose your distribution includes
a single extension, called foo and implemented by ‘foo.c’. If no additional instructions to the compiler/linker are
needed, describing this extension is quite simple:

Extension(’foo’, [’foo.c’])

The Extension class can be imported from distutils.core along with setup(). Thus, the setup script for a
module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(name=’foo’,

version=’1.0’,
ext_modules=[Extension(’foo’, [’foo.c’])],
)

The Extension class (actually, the underlying extension-building machinery implemented by the build_ext
command) supports a great deal of flexibility in describing Python extensions, which is explained in the following
sections.

2.3.1 Extension names and packages

The first argument to the Extension constructor is always the name of the extension, including any package names.
For example,

Extension(’foo’, [’src/foo1.c’, ’src/foo2.c’])

describes an extension that lives in the root package, while

Extension(’pkg.foo’, [’src/foo1.c’, ’src/foo2.c’])

describes the same extension in the pkg package. The source files and resulting object code are identical in both cases;
the only difference is where in the filesystem (and therefore where in Python’s namespace hierarchy) the resulting
extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use the ext package
keyword argument to setup(). For example,

2.3. Describing extension modules 7

setup(...
ext_package=’pkg’,
ext_modules=[Extension(’foo’, [’foo.c’]),

Extension(’subpkg.bar’, [’bar.c’])],
)

will compile ‘foo.c’ to the extension pkg.foo, and ‘bar.c’ to pkg.subpkg.bar.

2.3.2 Extension source files

The second argument to the Extension constructor is a list of source files. Since the Distutils currently only
support C, C++, and Objective-C extensions, these are normally C/C++/Objective-C source files. (Be sure to use
appropriate extensions to distinguish C++ source files: ‘.cc’ and ‘.cpp’ seem to be recognized by both UNIX and
Windows compilers.)

However, you can also include SWIG interface (‘.i’) files in the list; the build_ext command knows how to deal
with SWIG extensions: it will run SWIG on the interface file and compile the resulting C/C++ file into your extension.

SWIG support is rough around the edges and largely untested!

This warning notwithstanding, options to SWIG can be currently passed like this:

setup(...
ext_modules=[Extension(’_foo’, [’foo.i’],

swig_opts=[’-modern’, ’-I../include’])],
py_modules=[’foo’],
)

Or on the commandline like this:

> python setup.py build_ext --swig-opts="-modern -I../include"

On some platforms, you can include non-source files that are processed by the compiler and included in your extension.
Currently, this just means Windows message text (‘.mc’) files and resource definition (‘.rc’) files for Visual C++. These
will be compiled to binary resource (‘.res’) files and linked into the executable.

2.3.3 Preprocessor options

Three optional arguments to Extension will help if you need to specify include directories to search or preprocessor
macros to define/undefine: include_dirs, define_macros, and undef_macros.

For example, if your extension requires header files in the ‘include’ directory under your distribution root, use the
include_dirs option:

Extension(’foo’, [’foo.c’], include_dirs=[’include’])

You can specify absolute directories there; if you know that your extension will only be built on UNIX systems with
X11R6 installed to ‘/usr’, you can get away with

8 Chapter 2. Writing the Setup Script

Extension(’foo’, [’foo.c’], include_dirs=[’/usr/include/X11’])

You should avoid this sort of non-portable usage if you plan to distribute your code: it’s probably better to write C
code like

#include <X11/Xlib.h>

If you need to include header files from some other Python extension, you can take advantage of the fact that header
files are installed in a consistent way by the Distutils install_header command. For example, the Numerical
Python header files are installed (on a standard UNIX installation) to ‘/usr/local/include/python1.5/Numerical’. (The
exact location will differ according to your platform and Python installation.) Since the Python include directory—
‘/usr/local/include/python1.5’ in this case—is always included in the search path when building Python extensions, the
best approach is to write C code like

#include <Numerical/arrayobject.h>

If you must put the ‘Numerical’ include directory right into your header search path, though, you can find that directory
using the Distutils distutils.sysconfig module:

from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), ’Numerical’)
setup(...,

Extension(..., include_dirs=[incdir]),
)

Even though this is quite portable—it will work on any Python installation, regardless of platform—it’s probably
easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros with the define_macros and undef_macros options.
define_macros takes a list of (name, value) tuples, where name is the name of the macro to define (a
string) and value is its value: either a string or None. (Defining a macro FOO to None is the equivalent of a bare
#define FOO in your C source: with most compilers, this sets FOO to the string 1.) undef_macros is just a list
of macros to undefine.

For example:

Extension(...,
define_macros=[(’NDEBUG’, ’1’),

(’HAVE_STRFTIME’, None)],
undef_macros=[’HAVE_FOO’, ’HAVE_BAR’])

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

2.3. Describing extension modules 9

2.3.4 Library options

You can also specify the libraries to link against when building your extension, and the directories to search for those
libraries. The libraries option is a list of libraries to link against, library_dirs is a list of directories to search
for libraries at link-time, and runtime_library_dirs is a list of directories to search for shared (dynamically
loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target systems

Extension(...,
libraries=[’gdbm’, ’readline’])

If you need to link with libraries in a non-standard location, you’ll have to include the location in library_dirs:

Extension(...,
library_dirs=[’/usr/X11R6/lib’],
libraries=[’X11’, ’Xt’])

(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

Should mention clib libraries here or somewhere else!

2.3.5 Other options

There are still some other options which can be used to handle special cases.

The extra objects option is a list of object files to be passed to the linker. These files must not have extensions, as the
default extension for the compiler is used.

extra compile args and extra link args can be used to specify additional command line options for the respective com-
piler and linker command lines.

export symbols is only useful on Windows. It can contain a list of symbols (functions or variables) to be exported.
This option is not needed when building compiled extensions: Distutils will automatically add initmodule to the
list of exported symbols.

2.4 Relationships between Distributions and Packages

A distribution may relate to packages in three specific ways:

1. It can require packages or modules.

2. It can provide packages or modules.

3. It can obsolete packages or modules.

These relationships can be specified using keyword arguments to the distutils.core.setup() function.

Dependencies on other Python modules and packages can be specified by supplying the requires keyword argument
to setup(). The value must be a list of strings. Each string specifies a package that is required, and optionally what
versions are sufficient.

To specify that any version of a module or package is required, the string should consist entirely of the module or
package name. Examples include ’mymodule’ and ’xml.parsers.expat’.

10 Chapter 2. Writing the Setup Script

If specific versions are required, a sequence of qualifiers can be supplied in parentheses. Each qualifier may consist of
a comparison operator and a version number. The accepted comparison operators are:

< > ==
<= >= !=

These can be combined by using multiple qualifiers separated by commas (and optional whitespace). In this case, all
of the qualifiers must be matched; a logical AND is used to combine the evaluations.

Let’s look at a bunch of examples:

Requires Expression Explanation
==1.0 Only version 1.0 is compatible
>1.0, !=1.5.1, <2.0 Any version after 1.0 and before 2.0 is compatible, except 1.5.1

Now that we can specify dependencies, we also need to be able to specify what we provide that other distributions
can require. This is done using the provides keyword argument to setup(). The value for this keyword is a list of
strings, each of which names a Python module or package, and optionally identifies the version. If the version is not
specified, it is assumed to match that of the distribution.

Some examples:

Provides Expression Explanation
mypkg Provide mypkg, using the distribution version
mypkg (1.1) Provide mypkg version 1.1, regardless of the distribution version

A package can declare that it obsoletes other packages using the obsoletes keyword argument. The value for this is
similar to that of the requires keyword: a list of strings giving module or package specifiers. Each specifier consists
of a module or package name optionally followed by one or more version qualifiers. Version qualifiers are given in
parentheses after the module or package name.

The versions identified by the qualifiers are those that are obsoleted by the distribution being described. If no qualifiers
are given, all versions of the named module or package are understood to be obsoleted.

2.5 Installing Scripts

So far we have been dealing with pure and non-pure Python modules, which are usually not run by themselves but
imported by scripts.

Scripts are files containing Python source code, intended to be started from the command line. Scripts don’t require
Distutils to do anything very complicated. The only clever feature is that if the first line of the script starts with #!
and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter location. By
default, it is replaced with the current interpreter location. The --executable (or -e) option will allow the interpreter
path to be explicitly overridden.

The scripts option simply is a list of files to be handled in this way. From the PyXML setup script:

setup(...
scripts=[’scripts/xmlproc_parse’, ’scripts/xmlproc_val’]
)

2.5. Installing Scripts 11

2.6 Installing Package Data

Often, additional files need to be installed into a package. These files are often data that’s closely related to the
package’s implementation, or text files containing documentation that might be of interest to programmers using the
package. These files are called package data.

Package data can be added to packages using the package_data keyword argument to the setup() function. The
value must be a mapping from package name to a list of relative path names that should be copied into the package.
The paths are interpreted as relative to the directory containing the package (information from the package_dir
mapping is used if appropriate); that is, the files are expected to be part of the package in the source directories. They
may contain glob patterns as well.

The path names may contain directory portions; any necessary directories will be created in the installation.

For example, if a package should contain a subdirectory with several data files, the files can be arranged like this in
the source tree:

setup.py
src/

mypkg/
__init__.py
module.py
data/

tables.dat
spoons.dat
forks.dat

The corresponding call to setup() might be:

setup(...,
packages=[’mypkg’],
package_dir={’mypkg’: ’src/mypkg’},
package_data={’mypkg’: [’data/*.dat’]},
)

New in version 2.4.

2.7 Installing Additional Files

The data files option can be used to specify additional files needed by the module distribution: configuration files,
message catalogs, data files, anything which doesn’t fit in the previous categories.

data files specifies a sequence of (directory, files) pairs in the following way:

setup(...
data_files=[(’bitmaps’, [’bm/b1.gif’, ’bm/b2.gif’]),

(’config’, [’cfg/data.cfg’]),
(’/etc/init.d’, [’init-script’])]

)

Note that you can specify the directory names where the data files will be installed, but you cannot rename the data
files themselves.

12 Chapter 2. Writing the Setup Script

Each (directory, files) pair in the sequence specifies the installation directory and the files to install there. If directory
is a relative path, it is interpreted relative to the installation prefix (Python’s sys.prefix for pure-Python packages,
sys.exec_prefix for packages that contain extension modules). Each file name in files is interpreted relative
to the ‘setup.py’ script at the top of the package source distribution. No directory information from files is used to
determine the final location of the installed file; only the name of the file is used.

You can specify the data files options as a simple sequence of files without specifying a target directory, but this is not
recommended, and the install command will print a warning in this case. To install data files directly in the target
directory, an empty string should be given as the directory.

2.8 Additional meta-data

The setup script may include additional meta-data beyond the name and version. This information includes:

Meta-Data Description Value Notes
name name of the package short string (1)
version version of this release short string (1)(2)
author package author’s name short string (3)
author_email email address of the package author email address (3)
maintainer package maintainer’s name short string (3)
maintainer_email email address of the package maintainer email address (3)
url home page for the package URL (1)
description short, summary description of the package short string
long_description longer description of the package long string
download_url location where the package may be downloaded URL (4)
classifiers a list of classifiers list of strings (4)

Notes:

(1) These fields are required.

(2) It is recommended that versions take the form major.minor[.patch[.sub]].

(3) Either the author or the maintainer must be identified.

(4) These fields should not be used if your package is to be compatible with Python versions prior to 2.2.3 or 2.3. The
list is available from the PyPI website.

’short string’ A single line of text, not more than 200 characters.

’long string’ Multiple lines of plain text in reStructuredText format (see http://docutils.sf.net/).

’list of strings’ See below.

None of the string values may be Unicode.

Encoding the version information is an art in itself. Python packages generally adhere to the version format ma-
jor.minor[.patch][sub]. The major number is 0 for initial, experimental releases of software. It is incremented for
releases that represent major milestones in a package. The minor number is incremented when important new fea-
tures are added to the package. The patch number increments when bug-fix releases are made. Additional trailing
version information is sometimes used to indicate sub-releases. These are ”a1,a2,...,aN” (for alpha releases, where
functionality and API may change), ”b1,b2,...,bN” (for beta releases, which only fix bugs) and ”pr1,pr2,...,prN” (for
final pre-release release testing). Some examples:

0.1.0 the first, experimental release of a package

2.8. Additional meta-data 13

http://www.python.org/pypi
http://docutils.sf.net/

1.0.1a2 the second alpha release of the first patch version of 1.0

classifiers are specified in a python list:

setup(...
classifiers=[

’Development Status :: 4 - Beta’,
’Environment :: Console’,
’Environment :: Web Environment’,
’Intended Audience :: End Users/Desktop’,
’Intended Audience :: Developers’,
’Intended Audience :: System Administrators’,
’License :: OSI Approved :: Python Software Foundation License’,
’Operating System :: MacOS :: MacOS X’,
’Operating System :: Microsoft :: Windows’,
’Operating System :: POSIX’,
’Programming Language :: Python’,
’Topic :: Communications :: Email’,
’Topic :: Office/Business’,
’Topic :: Software Development :: Bug Tracking’,
],

)

If you wish to include classifiers in your ‘setup.py’ file and also wish to remain backwards-compatible with Python
releases prior to 2.2.3, then you can include the following code fragment in your ‘setup.py’ before the setup() call.

patch distutils if it can’t cope with the "classifiers" or
"download_url" keywords
from sys import version
if version < ’2.2.3’:

from distutils.dist import DistributionMetadata
DistributionMetadata.classifiers = None
DistributionMetadata.download_url = None

2.9 Debugging the setup script

Sometimes things go wrong, and the setup script doesn’t do what the developer wants.

Distutils catches any exceptions when running the setup script, and print a simple error message before the script is
terminated. The motivation for this behaviour is to not confuse administrators who don’t know much about Python
and are trying to install a package. If they get a big long traceback from deep inside the guts of Distutils, they may
think the package or the Python installation is broken because they don’t read all the way down to the bottom and see
that it’s a permission problem.

On the other hand, this doesn’t help the developer to find the cause of the failure. For this purpose, the DISTUTILS -
DEBUG environment variable can be set to anything except an empty string, and distutils will now print detailed
information what it is doing, and prints the full traceback in case an exception occurs.

14 Chapter 2. Writing the Setup Script

CHAPTER

THREE

Writing the Setup Configuration File

Often, it’s not possible to write down everything needed to build a distribution a priori: you may need to get some
information from the user, or from the user’s system, in order to proceed. As long as that information is fairly
simple—a list of directories to search for C header files or libraries, for example—then providing a configuration file,
‘setup.cfg’, for users to edit is a cheap and easy way to solicit it. Configuration files also let you provide default values
for any command option, which the installer can then override either on the command-line or by editing the config
file.

The setup configuration file is a useful middle-ground between the setup script—which, ideally, would be opaque to
installers1—and the command-line to the setup script, which is outside of your control and entirely up to the installer.
In fact, ‘setup.cfg’ (and any other Distutils configuration files present on the target system) are processed after the
contents of the setup script, but before the command-line. This has several useful consequences:

• installers can override some of what you put in ‘setup.py’ by editing ‘setup.cfg’

• you can provide non-standard defaults for options that are not easily set in ‘setup.py’

• installers can override anything in ‘setup.cfg’ using the command-line options to ‘setup.py’

The basic syntax of the configuration file is simple:

[command]
option=value
...

where command is one of the Distutils commands (e.g. build_py, install), and option is one of the options that
command supports. Any number of options can be supplied for each command, and any number of command sections
can be included in the file. Blank lines are ignored, as are comments, which run from a ‘#’ character until the end of
the line. Long option values can be split across multiple lines simply by indenting the continuation lines.

You can find out the list of options supported by a particular command with the universal --help option, e.g.

1This ideal probably won’t be achieved until auto-configuration is fully supported by the Distutils.

15

> python setup.py --help build_ext
[...]
Options for ’build_ext’ command:

--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the

source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files
--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine
--swig-opts list of SWIG command line options

[...]

Note that an option spelled --foo-bar on the command-line is spelled foo bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you have an extension pkg.ext, and you
want the compiled extension file (‘ext.so’ on UNIX, say) to be put in the same source directory as your pure Python
modules pkg.mod1 and pkg.mod2. You can always use the --inplace option on the command-line to ensure this:

python setup.py build_ext --inplace

But this requires that you always specify the build_ext command explicitly, and remember to provide --inplace.
An easier way is to “set and forget” this option, by encoding it in ‘setup.cfg’, the configuration file for this distribution:

[build_ext]
inplace=1

This will affect all builds of this module distribution, whether or not you explicitly specify build_ext. If you
include ‘setup.cfg’ in your source distribution, it will also affect end-user builds—which is probably a bad idea for
this option, since always building extensions in-place would break installation of the module distribution. In certain
peculiar cases, though, modules are built right in their installation directory, so this is conceivably a useful ability.
(Distributing extensions that expect to be built in their installation directory is almost always a bad idea, though.)

Another example: certain commands take a lot of options that don’t change from run to run; for example, bdist_rpm
needs to know everything required to generate a “spec” file for creating an RPM distribution. Some of this information
comes from the setup script, and some is automatically generated by the Distutils (such as the list of files installed).
But some of it has to be supplied as options to bdist_rpm, which would be very tedious to do on the command-line
for every run. Hence, here is a snippet from the Distutils’ own ‘setup.cfg’:

[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt

README.txt
USAGE.txt
doc/
examples/

Note that the doc files option is simply a whitespace-separated string split across multiple lines for readability.

See Also:

Installing Python Modules
(../inst/config-syntax.html)

16 Chapter 3. Writing the Setup Configuration File

../inst/config-syntax.html

More information on the configuration files is available in the manual for system administrators.

17

18

CHAPTER

FOUR

Creating a Source Distribution

As shown in section 1.2, you use the sdist command to create a source distribution. In the simplest case,

python setup.py sdist

(assuming you haven’t specified any sdist options in the setup script or config file), sdist creates the archive of
the default format for the current platform. The default format is a gzip’ed tar file (‘.tar.gz’) on UNIX, and ZIP file on
Windows.

You can specify as many formats as you like using the --formats option, for example:

python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

Format Description Notes
zip zip file (‘.zip’) (1),(3)
gztar gzip’ed tar file (‘.tar.gz’) (2),(4)
bztar bzip2’ed tar file (‘.tar.bz2’) (4)
ztar compressed tar file (‘.tar.Z’) (4)
tar tar file (‘.tar’) (4)

Notes:

(1) default on Windows

(2) default on UNIX

(3) requires either external zip utility or zipfile module (part of the standard Python library since Python 1.6)

(4) requires external utilities: tar and possibly one of gzip, bzip2, or compress

4.1 Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to generate one), the sdist command puts a
minimal default set into the source distribution:

• all Python source files implied by the py modules and packages options

19

• all C source files mentioned in the ext modules or libraries options (**getting C library sources currently
broken—no get_source_files() method in ‘build clib.py’!**)

• scripts identified by the scripts option

• anything that looks like a test script: ‘test/test*.py’ (currently, the Distutils don’t do anything with test scripts
except include them in source distributions, but in the future there will be a standard for testing Python module
distributions)

• ‘README.txt’ (or ‘README’), ‘setup.py’ (or whatever you called your setup script), and ‘setup.cfg’

Sometimes this is enough, but usually you will want to specify additional files to distribute. The typical way to do this
is to write a manifest template, called ‘MANIFEST.in’ by default. The manifest template is just a list of instructions for
how to generate your manifest file, ‘MANIFEST’, which is the exact list of files to include in your source distribution.
The sdist command processes this template and generates a manifest based on its instructions and what it finds in
the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename per line, regular files (or symlinks to
them) only. If you do supply your own ‘MANIFEST’, you must specify everything: the default set of files described
above does not apply in this case.

The manifest template has one command per line, where each command specifies a set of files to include or exclude
from the source distribution. For an example, again we turn to the Distutils’ own manifest template:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root matching ‘*.txt’, all files anywhere under
the ‘examples’ directory matching ‘*.txt’ or ‘*.py’, and exclude all directories matching ‘examples/sample?/build’. All
of this is done after the standard include set, so you can exclude files from the standard set with explicit instructions in
the manifest template. (Or, you can use the --no-defaults option to disable the standard set entirely.) There are several
other commands available in the manifest template mini-language; see section 10.2.

The order of commands in the manifest template matters: initially, we have the list of default files as described above,
and each command in the template adds to or removes from that list of files. Once we have fully processed the manifest
template, we remove files that should not be included in the source distribution:

• all files in the Distutils “build” tree (default ‘build/’)

• all files in directories named ‘RCS’, ‘CVS’ or ‘.svn’

Now we have our complete list of files, which is written to the manifest for future reference, and then used to build the
source distribution archive(s).

You can disable the default set of included files with the --no-defaults option, and you can disable the standard exclude
set with --no-prune.

Following the Distutils’ own manifest template, let’s trace how the sdist command builds the list of files to include
in the Distutils source distribution:

1. include all Python source files in the ‘distutils’ and ‘distutils/command’ subdirectories (because packages corre-
sponding to those two directories were mentioned in the packages option in the setup script—see section 2)

2. include ‘README.txt’, ‘setup.py’, and ‘setup.cfg’ (standard files)

3. include ‘test/test*.py’ (standard files)

20 Chapter 4. Creating a Source Distribution

4. include ‘*.txt’ in the distribution root (this will find ‘README.txt’ a second time, but such redundancies are
weeded out later)

5. include anything matching ‘*.txt’ or ‘*.py’ in the sub-tree under ‘examples’,

6. exclude all files in the sub-trees starting at directories matching ‘examples/sample?/build’—this may exclude
files included by the previous two steps, so it’s important that the prune command in the manifest template
comes after the recursive-include command

7. exclude the entire ‘build’ tree, and any ‘RCS’, ‘CVS’ and ‘.svn’ directories

Just like in the setup script, file and directory names in the manifest template should always be slash-separated; the
Distutils will take care of converting them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.

4.2 Manifest-related options

The normal course of operations for the sdist command is as follows:

• if the manifest file, ‘MANIFEST’ doesn’t exist, read ‘MANIFEST.in’ and create the manifest

• if neither ‘MANIFEST’ nor ‘MANIFEST.in’ exist, create a manifest with just the default file set

• if either ‘MANIFEST.in’ or the setup script (‘setup.py’) are more recent than ‘MANIFEST’, recreate ‘MANIFEST’
by reading ‘MANIFEST.in’

• use the list of files now in ‘MANIFEST’ (either just generated or read in) to create the source distribution
archive(s)

There are a couple of options that modify this behaviour. First, use the --no-defaults and --no-prune to disable the
standard “include” and “exclude” sets.

Second, you might want to force the manifest to be regenerated—for example, if you have added or removed files or
directories that match an existing pattern in the manifest template, you should regenerate the manifest:

python setup.py sdist --force-manifest

Or, you might just want to (re)generate the manifest, but not create a source distribution:

python setup.py sdist --manifest-only

--manifest-only implies --force-manifest. -o is a shortcut for --manifest-only, and -f for --force-manifest.

4.2. Manifest-related options 21

22

CHAPTER

FIVE

Creating Built Distributions

A “built distribution” is what you’re probably used to thinking of either as a “binary package” or an “installer” (de-
pending on your background). It’s not necessarily binary, though, because it might contain only Python source code
and/or byte-code; and we don’t call it a package, because that word is already spoken for in Python. (And “installer”
is a term specific to the world of mainstream desktop systems.)

A built distribution is how you make life as easy as possible for installers of your module distribution: for users
of RPM-based Linux systems, it’s a binary RPM; for Windows users, it’s an executable installer; for Debian-based
Linux users, it’s a Debian package; and so forth. Obviously, no one person will be able to create built distributions
for every platform under the sun, so the Distutils are designed to enable module developers to concentrate on their
specialty—writing code and creating source distributions—while an intermediary species called packagers springs up
to turn source distributions into built distributions for as many platforms as there are packagers.

Of course, the module developer could be his own packager; or the packager could be a volunteer “out there” some-
where who has access to a platform which the original developer does not; or it could be software periodically grabbing
new source distributions and turning them into built distributions for as many platforms as the software has access to.
Regardless of who they are, a packager uses the setup script and the bdist command family to generate built distri-
butions.

As a simple example, if I run the following command in the Distutils source tree:

python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this case), does a “fake” installation (also in
the ‘build’ directory), and creates the default type of built distribution for my platform. The default format for built
distributions is a “dumb” tar file on UNIX, and a simple executable installer on Windows. (That tar file is considered
“dumb” because it has to be unpacked in a specific location to work.)

Thus, the above command on a UNIX system creates ‘Distutils-1.0.plat .tar.gz’; unpacking this tarball from the right
place installs the Distutils just as though you had downloaded the source distribution and run python setup.py
install. (The “right place” is either the root of the filesystem or Python’s prefix directory, depending on the options
given to the bdist_dumb command; the default is to make dumb distributions relative to prefix .)

Obviously, for pure Python distributions, this isn’t any simpler than just running python setup.py install—
but for non-pure distributions, which include extensions that would need to be compiled, it can mean the difference
between someone being able to use your extensions or not. And creating “smart” built distributions, such as an RPM
package or an executable installer for Windows, is far more convenient for users even if your distribution doesn’t
include any extensions.

The bdist command has a --formats option, similar to the sdist command, which you can use to select the types
of built distribution to generate: for example,

23

python setup.py bdist --format=zip

would, when run on a UNIX system, create ‘Distutils-1.0.plat .zip’—again, this archive would be unpacked from the
root directory to install the Distutils.

The available formats for built distributions are:

Format Description Notes
gztar gzipped tar file (‘.tar.gz’) (1),(3)
ztar compressed tar file (‘.tar.Z’) (3)
tar tar file (‘.tar’) (3)
zip zip file (‘.zip’) (4)
rpm RPM (5)
pkgtool Solaris pkgtool
sdux HP-UX swinstall
rpm RPM (5)
wininst self-extracting ZIP file for Windows (2),(4)

Notes:

(1) default on UNIX

(2) default on Windows **to-do!**

(3) requires external utilities: tar and possibly one of gzip, bzip2, or compress

(4) requires either external zip utility or zipfile module (part of the standard Python library since Python 1.6)

(5) requires external rpm utility, version 3.0.4 or better (use rpm --version to find out which version you have)

You don’t have to use the bdist command with the --formats option; you can also use the command that directly
implements the format you’re interested in. Some of these bdist “sub-commands” actually generate several similar
formats; for instance, the bdist_dumb command generates all the “dumb” archive formats (tar, ztar, gztar,
and zip), and bdist_rpm generates both binary and source RPMs. The bdist sub-commands, and the formats
generated by each, are:

Command Formats
bdist_dumb tar, ztar, gztar, zip
bdist_rpm rpm, srpm
bdist_wininst wininst

The following sections give details on the individual bdist_* commands.

5.1 Creating dumb built distributions

Need to document absolute vs. prefix-relative packages here, but first I have to implement it!

5.2 Creating RPM packages

24 Chapter 5. Creating Built Distributions

The RPM format is used by many popular Linux distributions, including Red Hat, SuSE, and Mandrake. If one of these
(or any of the other RPM-based Linux distributions) is your usual environment, creating RPM packages for other users
of that same distribution is trivial. Depending on the complexity of your module distribution and differences between
Linux distributions, you may also be able to create RPMs that work on different RPM-based distributions.

The usual way to create an RPM of your module distribution is to run the bdist_rpm command:

python setup.py bdist_rpm

or the bdist command with the --format option:

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to easily specify multiple formats in one
run. If you need to do both, you can explicitly specify multiple bdist_* commands and their options:

python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>" \
bdist_wininst --target_version="2.0"

Creating RPM packages is driven by a ‘.spec’ file, much as using the Distutils is driven by the setup script. To make
your life easier, the bdist_rpm command normally creates a ‘.spec’ file based on the information you supply in the
setup script, on the command line, and in any Distutils configuration files. Various options and sections in the ‘.spec’
file are derived from options in the setup script as follows:

RPM ‘.spec’ file option or section Distutils setup script option
Name name
Summary (in preamble) description
Version version
Vendor author and author email, or

maintainer and maintainer email
Copyright licence
Url url
%description (section) long description

Additionally, there are many options in ‘.spec’ files that don’t have corresponding options in the setup script. Most of
these are handled through options to the bdist_rpm command as follows:

RPM ‘.spec’ file option or section bdist_rpm option default value
Release release “1”
Group group “Development/Libraries”
Vendor vendor (see above)
Packager packager (none)
Provides provides (none)
Requires requires (none)
Conflicts conflicts (none)
Obsoletes obsoletes (none)
Distribution distribution name (none)
BuildRequires build requires (none)
Icon icon (none)

Obviously, supplying even a few of these options on the command-line would be tedious and error-prone, so it’s usually

5.2. Creating RPM packages 25

best to put them in the setup configuration file, ‘setup.cfg’—see section 3. If you distribute or package many Python
module distributions, you might want to put options that apply to all of them in your personal Distutils configuration
file (‘˜/.pydistutils.cfg’).

There are three steps to building a binary RPM package, all of which are handled automatically by the Distutils:

1. create a ‘.spec’ file, which describes the package (analogous to the Distutils setup script; in fact, much of the
information in the setup script winds up in the ‘.spec’ file)

2. create the source RPM

3. create the “binary” RPM (which may or may not contain binary code, depending on whether your module
distribution contains Python extensions)

Normally, RPM bundles the last two steps together; when you use the Distutils, all three steps are typically bundled
together.

If you wish, you can separate these three steps. You can use the --spec-only option to make bdist_rpm just create
the ‘.spec’ file and exit; in this case, the ‘.spec’ file will be written to the “distribution directory”—normally ‘dist/’, but
customizable with the --dist-dir option. (Normally, the ‘.spec’ file winds up deep in the “build tree,” in a temporary
directory created by bdist_rpm.)

5.3 Creating Windows Installers

Executable installers are the natural format for binary distributions on Windows. They display a nice graphical user
interface, display some information about the module distribution to be installed taken from the metadata in the setup
script, let the user select a few options, and start or cancel the installation.

Since the metadata is taken from the setup script, creating Windows installers is usually as easy as running:

python setup.py bdist_wininst

or the bdist command with the --formats option:

python setup.py bdist --formats=wininst

If you have a pure module distribution (only containing pure Python modules and packages), the resulting installer
will be version independent and have a name like ‘foo-1.0.win32.exe’. These installers can even be created on UNIX
or Mac OS platforms.

If you have a non-pure distribution, the extensions can only be created on a Windows platform, and will be Python
version dependent. The installer filename will reflect this and now has the form ‘foo-1.0.win32-py2.0.exe’. You have
to create a separate installer for every Python version you want to support.

The installer will try to compile pure modules into bytecode after installation on the target system in normal and
optimizing mode. If you don’t want this to happen for some reason, you can run the bdist_wininst command
with the --no-target-compile and/or the --no-target-optimize option.

By default the installer will display the cool “Python Powered” logo when it is run, but you can also supply your own
bitmap which must be a Windows ‘.bmp’ file with the --bitmap option.

The installer will also display a large title on the desktop background window when it is run, which is constructed
from the name of your distribution and the version number. This can be changed to another text by using the --title
option.

26 Chapter 5. Creating Built Distributions

The installer file will be written to the “distribution directory” — normally ‘dist/’, but customizable with the --dist-dir
option.

5.3.1 The Postinstallation script

Starting with Python 2.3, a postinstallation script can be specified which the --install-script option. The basename of
the script must be specified, and the script filename must also be listed in the scripts argument to the setup function.

This script will be run at installation time on the target system after all the files have been copied, with argv[1] set
to -install, and again at uninstallation time before the files are removed with argv[1] set to -remove.

The installation script runs embedded in the windows installer, every output (sys.stdout, sys.stderr) is redi-
rected into a buffer and will be displayed in the GUI after the script has finished.

Some functions especially useful in this context are available as additional built-in functions in the installation script.

directory_created(path)
file_created(path)

These functions should be called when a directory or file is created by the postinstall script at installation time.
It will register path with the uninstaller, so that it will be removed when the distribution is uninstalled. To be
safe, directories are only removed if they are empty.

get_special_folder_path(csidl string)
This function can be used to retrieve special folder locations on Windows like the Start Menu or the Desktop. It
returns the full path to the folder. csidl string must be one of the following strings:

"CSIDL_APPDATA"

"CSIDL_COMMON_STARTMENU"
"CSIDL_STARTMENU"

"CSIDL_COMMON_DESKTOPDIRECTORY"
"CSIDL_DESKTOPDIRECTORY"

"CSIDL_COMMON_STARTUP"
"CSIDL_STARTUP"

"CSIDL_COMMON_PROGRAMS"
"CSIDL_PROGRAMS"

"CSIDL_FONTS"

If the folder cannot be retrieved, OSError is raised.

Which folders are available depends on the exact Windows version, and probably also the configuration. For
details refer to Microsoft’s documentation of the SHGetSpecialFolderPath() function.

create_shortcut(target, description, filename[, arguments[, workdir[, iconpath[, iconindex]]]])
This function creates a shortcut. target is the path to the program to be started by the shortcut. description is
the description of the shortcut. filename is the title of the shortcut that the user will see. arguments specifies
the command line arguments, if any. workdir is the working directory for the program. iconpath is the file
containing the icon for the shortcut, and iconindex is the index of the icon in the file iconpath. Again, for details
consult the Microsoft documentation for the IShellLink interface.

5.3. Creating Windows Installers 27

28

CHAPTER

SIX

Registering with the Package Index

The Python Package Index (PyPI) holds meta-data describing distributions packaged with distutils. The distutils
command register is used to submit your distribution’s meta-data to the index. It is invoked as follows:

python setup.py register

Distutils will respond with the following prompt:

running register
We need to know who you are, so please choose either:
1. use your existing login,
2. register as a new user,
3. have the server generate a new password for you (and email it to you), or
4. quit

Your selection [default 1]:

Note: if your username and password are saved locally, you will not see this menu.

If you have not registered with PyPI, then you will need to do so now. You should choose option 2, and enter your
details as required. Soon after submitting your details, you will receive an email which will be used to confirm your
registration.

Once you are registered, you may choose option 1 from the menu. You will be prompted for your PyPI username and
password, and register will then submit your meta-data to the index.

You may submit any number of versions of your distribution to the index. If you alter the meta-data for a particular
version, you may submit it again and the index will be updated.

PyPI holds a record for each (name, version) combination submitted. The first user to submit information for a given
name is designated the Owner of that name. They may submit changes through the register command or through
the web interface. They may also designate other users as Owners or Maintainers. Maintainers may edit the package
information, but not designate other Owners or Maintainers.

By default PyPI will list all versions of a given package. To hide certain versions, the Hidden property should be set
to yes. This must be edited through the web interface.

6.1 The .pypirc file

The format of the ‘.pypirc’ file is formated as follows:

29

[server-login]
repository: <repository-url>
username: <username>
password: <password>

repository can be ommitted and defaults to http://www.python.org/pypi.

30 Chapter 6. Registering with the Package Index

CHAPTER

SEVEN

Uploading Packages to the Package Index

New in version 2.5.

The Python Package Index (PyPI) not only stores the package info, but also the package data if the author of the
package wishes to. The distutils command upload pushes the distribution files to PyPI.

The command is invoked immediately after building one or more distribution files. For example, the command

python setup.py sdist bdist_wininst upload

will cause the source distribution and the Windows installer to be uploaded to PyPI. Note that these will be uploaded
even if they are built using an earlier invocation of ‘setup.py’, but that only distributions named on the command line
for the invocation including the upload command are uploaded.

The upload command uses the username, password, and repository URL from the ‘$HOME/.pypirc’ file (see sec-
tion 6.1 for more on this file).

You can use the --sign option to tell upload to sign each uploaded file using GPG (GNU Privacy Guard). The gpg
program must be available for execution on the system PATH. You can also specify which key to use for signing using
the --identity=name option.

Other upload options include --repository=url (which lets you override the repository setting from
‘$HOME/.pypirc’), and --show-response (which displays the full response text from the PyPI server for help in debug-
ging upload problems).

31

32

CHAPTER

EIGHT

Examples

This chapter provides a number of basic examples to help get started with distutils. Additional information about using
distutils can be found in the Distutils Cookbook.

See Also:

Distutils Cookbook
Collection of recipes showing how to achieve more control over distutils.

8.1 Pure Python distribution (by module)

If you’re just distributing a couple of modules, especially if they don’t live in a particular package, you can specify
them individually using the py modules option in the setup script.

In the simplest case, you’ll have two files to worry about: a setup script and the single module you’re distributing,
‘foo.py’ in this example:

<root>/
setup.py
foo.py

(In all diagrams in this section, <root>will refer to the distribution root directory.) A minimal setup script to describe
this situation would be:

from distutils.core import setup
setup(name=’foo’,

version=’1.0’,
py_modules=[’foo’],
)

Note that the name of the distribution is specified independently with the name option, and there’s no rule that says it
has to be the same as the name of the sole module in the distribution (although that’s probably a good convention to fol-
low). However, the distribution name is used to generate filenames, so you should stick to letters, digits, underscores,
and hyphens.

Since py modules is a list, you can of course specify multiple modules, eg. if you’re distributing modules foo and
bar, your setup might look like this:

33

http://www.python.org/cgi-bin/moinmoin/DistutilsCookbook

<root>/
setup.py
foo.py
bar.py

and the setup script might be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
py_modules=[’foo’, ’bar’],
)

You can put module source files into another directory, but if you have enough modules to do that, it’s probably easier
to specify modules by package rather than listing them individually.

8.2 Pure Python distribution (by package)

If you have more than a couple of modules to distribute, especially if they are in multiple packages, it’s probably easier
to specify whole packages rather than individual modules. This works even if your modules are not in a package; you
can just tell the Distutils to process modules from the root package, and that works the same as any other package
(except that you don’t have to have an ‘ init .py’ file).

The setup script from the last example could also be written as

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
packages=[’’],
)

(The empty string stands for the root package.)

If those two files are moved into a subdirectory, but remain in the root package, e.g.:

<root>/
setup.py
src/ foo.py

bar.py

then you would still specify the root package, but you have to tell the Distutils where source files in the root package
live:

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
package_dir={’’: ’src’},
packages=[’’],
)

More typically, though, you will want to distribute multiple modules in the same package (or in sub-packages). For
example, if the foo and bar modules belong in package foobar, one way to layout your source tree is

34 Chapter 8. Examples

<root>/
setup.py
foobar/

__init__.py
foo.py
bar.py

This is in fact the default layout expected by the Distutils, and the one that requires the least work to describe in your
setup script:

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
packages=[’foobar’],
)

If you want to put modules in directories not named for their package, then you need to use the package dir option
again. For example, if the ‘src’ directory holds modules in the foobar package:

<root>/
setup.py
src/

__init__.py
foo.py
bar.py

an appropriate setup script would be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
package_dir={’foobar’: ’src’},
packages=[’foobar’],
)

Or, you might put modules from your main package right in the distribution root:

<root>/
setup.py
__init__.py
foo.py
bar.py

in which case your setup script would be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
package_dir={’foobar’: ’’},
packages=[’foobar’],
)

8.2. Pure Python distribution (by package) 35

(The empty string also stands for the current directory.)

If you have sub-packages, they must be explicitly listed in packages, but any entries in package dir automatically
extend to sub-packages. (In other words, the Distutils does not scan your source tree, trying to figure out which
directories correspond to Python packages by looking for ‘ init .py’ files.) Thus, if the default layout grows a sub-
package:

<root>/
setup.py
foobar/

__init__.py
foo.py
bar.py
subfoo/

__init__.py
blah.py

then the corresponding setup script would be

from distutils.core import setup
setup(name=’foobar’,

version=’1.0’,
packages=[’foobar’, ’foobar.subfoo’],
)

(Again, the empty string in package dir stands for the current directory.)

8.3 Single extension module

Extension modules are specified using the ext modules option. package dir has no effect on where extension source
files are found; it only affects the source for pure Python modules. The simplest case, a single extension module in a
single C source file, is:

<root>/
setup.py
foo.c

If the foo extension belongs in the root package, the setup script for this could be

from distutils.core import setup
from distutils.extension import Extension
setup(name=’foobar’,

version=’1.0’,
ext_modules=[Extension(’foo’, [’foo.c’])],
)

If the extension actually belongs in a package, say foopkg, then

With exactly the same source tree layout, this extension can be put in the foopkg package simply by changing the
name of the extension:

36 Chapter 8. Examples

from distutils.core import setup
from distutils.extension import Extension
setup(name=’foobar’,

version=’1.0’,
ext_modules=[Extension(’foopkg.foo’, [’foo.c’])],
)

8.3. Single extension module 37

38

CHAPTER

NINE

Extending Distutils

Distutils can be extended in various ways. Most extensions take the form of new commands or replacements for
existing commands. New commands may be written to support new types of platform-specific packaging, for example,
while replacements for existing commands may be made to modify details of how the command operates on a package.

Most extensions of the distutils are made within ‘setup.py’ scripts that want to modify existing commands; many
simply add a few file extensions that should be copied into packages in addition to ‘.py’ files as a convenience.

Most distutils command implementations are subclasses of the Command class from distutils.cmd. New com-
mands may directly inherit from Command, while replacements often derive from Command indirectly, directly sub-
classing the command they are replacing. Commands are required to derive from Command.

9.1 Integrating new commands

There are different ways to integrate new command implementations into distutils. The most difficult is to lobby for
the inclusion of the new features in distutils itself, and wait for (and require) a version of Python that provides that
support. This is really hard for many reasons.

The most common, and possibly the most reasonable for most needs, is to include the new implementations with your
‘setup.py’ script, and cause the distutils.core.setup() function use them:

from distutils.command.build_py import build_py as _build_py
from distutils.core import setup

class build_py(_build_py):
"""Specialized Python source builder."""

implement whatever needs to be different...

setup(cmdclass={’build_py’: build_py},
...)

This approach is most valuable if the new implementations must be used to use a particular package, as everyone
interested in the package will need to have the new command implementation.

Beginning with Python 2.4, a third option is available, intended to allow new commands to be added which can
support existing ‘setup.py’ scripts without requiring modifications to the Python installation. This is expected to
allow third-party extensions to provide support for additional packaging systems, but the commands can be used
for anything distutils commands can be used for. A new configuration option, command packages (command-line
option --command-packages), can be used to specify additional packages to be searched for modules implementing
commands. Like all distutils options, this can be specified on the command line or in a configuration file. This option

39

can only be set in the [global] section of a configuration file, or before any commands on the command line. If set
in a configuration file, it can be overridden from the command line; setting it to an empty string on the command line
causes the default to be used. This should never be set in a configuration file provided with a package.

This new option can be used to add any number of packages to the list of packages searched for command
implementations; multiple package names should be separated by commas. When not specified, the search is
only performed in the distutils.command package. When ‘setup.py’ is run with the option --command-
packages distcmds,buildcmds, however, the packages distutils.command, distcmds, and buildcmds
will be searched in that order. New commands are expected to be implemented in modules of the same name
as the command by classes sharing the same name. Given the example command line option above, the com-
mand bdist_openpkg could be implemented by the class distcmds.bdist_openpkg.bdist_openpkg
or buildcmds.bdist_openpkg.bdist_openpkg.

9.2 Adding new distribution types

Commands that create distributions (files in the ‘dist/’ directory) need to add (command, filename) pairs to
self.distribution.dist_files so that upload can upload it to PyPI. The filename in the pair contains
no path information, only the name of the file itself. In dry-run mode, pairs should still be added to represent what
would have been created.

40 Chapter 9. Extending Distutils

CHAPTER

TEN

Command Reference

10.1 Installing modules: the install command family

The install command ensures that the build commands have been run and then runs the subcommands install_lib,
install_data and install_scripts.

10.1.1 install_data

This command installs all data files provided with the distribution.

10.1.2 install_scripts

This command installs all (Python) scripts in the distribution.

10.2 Creating a source distribution: the sdist command

fragment moved down from above: needs context!

The manifest template commands are:

Command Description
include pat1 pat2 ... include all files matching any of the listed patterns
exclude pat1 pat2 ... exclude all files matching any of the listed patterns
recursive-include dir pat1 pat2 ... include all files under dir matching any of the listed patterns
recursive-exclude dir pat1 pat2 ... exclude all files under dir matching any of the listed patterns
global-include pat1 pat2 ... include all files anywhere in the source tree matching

any of the listed patterns
global-exclude pat1 pat2 ... exclude all files anywhere in the source tree matching

any of the listed patterns
prune dir exclude all files under dir
graft dir include all files under dir

The patterns here are UNIX-style “glob” patterns: * matches any sequence of regular filename characters, ? matches
any single regular filename character, and [range] matches any of the characters in range (e.g., a-z, a-zA-Z,
a-f0-9_.). The definition of “regular filename character” is platform-specific: on UNIX it is anything except slash;
on Windows anything except backslash or colon; on Mac OS 9 anything except colon.

Windows support not there yet

41

42

CHAPTER

ELEVEN

API Reference

11.1 distutils.core — Core Distutils functionality

The distutils.core module is the only module that needs to be installed to use the Distutils. It provides the
setup() (which is called from the setup script). Indirectly provides the distutils.dist.Distribution
and distutils.cmd.Command class.

setup(arguments)
The basic do-everything function that does most everything you could ever ask for from a Distutils method. See
XXXXX

The setup function takes a large number of arguments. These are laid out in the following table.

argument name value type
name The name of the package a string

version The version number of the package See distutils.version
description A single line describing the package a string

long description Longer description of the package a string
author The name of the package author a string

author email The email address of the package author a string
maintainer The name of the current maintainer, if different from the author a string

maintainer email The email address of the current maintainer, if different from the author
url A URL for the package (homepage) a URL

download url A URL to download the package a URL
packages A list of Python packages that distutils will manipulate a list of strings

py modules A list of Python modules that distutils will manipulate a list of strings
scripts A list of standalone script files to be built and installed a list of strings

ext modules A list of Python extensions to be built A list of instances of distutils.core.Extension
classifiers A list of categories for the package The list of available categorizations is at http://cheeseshop.python.org/pypi?:action=list classifiers.
distclass the Distribution class to use A subclass of distutils.core.Distribution

script name The name of the setup.py script - defaults to sys.argv[0] a string
script args Arguments to supply to the setup script a list of strings

options default options for the setup script a string
license The license for the package

keywords Descriptive meta-data. See PEP 314
platforms
cmdclass A mapping of command names to Command subclasses a dictionary

run_setup(script name[, script args=None, stop after=’run’])
Run a setup script in a somewhat controlled environment, and return the
distutils.dist.Distribution instance that drives things. This is useful if you need to find
out the distribution meta-data (passed as keyword args from script to setup()), or the contents of the config

43

http://cheeseshop.python.org/pypi?:action=listunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip classifiers

files or command-line.

script name is a file that will be run with execfile() sys.argv[0] will be replaced with script for the
duration of the call. script args is a list of strings; if supplied, sys.argv[1:] will be replaced by script args
for the duration of the call.

stop after tells setup() when to stop processing; possible values:

value description
Stop after the Distribution instance has been created and populated with the keyword arguments to setup()
Stop after config files have been parsed (and their data stored in the Distribution instance)
Stop after the command-line (sys.argv[1:] or script args) have been parsed (and the data stored in the Distribution instance.)
Stop after all commands have been run (the same as if setup() had been called in the usual way). This is the default value.

In addition, the distutils.core module exposed a number of classes that live elsewhere.

• Extension from distutils.extension

• Command from distutils.cmd

• Distribution from distutils.dist

A short description of each of these follows, but see the relevant module for the full reference.

class Extension
The Extension class describes a single C or C++extension module in a setup script. It accepts the following
keyword arguments in its constructor

argument name value type
name the full name of the extension, including any packages — ie. not a filename or pathname, but Python dotted name string

sources list of source filenames, relative to the distribution root (where the setup script lives), in UNIX form (slash-separated) for portability. Source files may be C, C++, SWIG (.i), platform-specific resource files, or whatever else is recognized by the build_ext command as source for a Python extension. string
include dirs list of directories to search for C/C++ header files (in UNIX form for portability) string

define macros list of macros to define; each macro is defined using a 2-tuple, where ’value’ is either the string to define it to or None to define it without a particular value (equivalent of #define FOO in source or -DFOO on UNIX C compiler command line) (string,string) tuple or (name,None)
undef macros list of macros to undefine explicitly string
library dirs list of directories to search for C/C++ libraries at link time string

libraries list of library names (not filenames or paths) to link against string
runtime library dirs list of directories to search for C/C++ libraries at run time (for shared extensions, this is when the extension is loaded) string

extra objects list of extra files to link with (eg. object files not implied by ’sources’, static library that must be explicitly specified, binary resource files, etc.) string
extra compile args any extra platform- and compiler-specific information to use when compiling the source files in ’sources’. For platforms and compilers where a command line makes sense, this is typically a list of command-line arguments, but for other platforms it could be anything. string

extra link args any extra platform- and compiler-specific information to use when linking object files together to create the extension (or to create a new static Python interpreter). Similar interpretation as for ’extra compile args’. string
export symbols list of symbols to be exported from a shared extension. Not used on all platforms, and not generally necessary for Python extensions, which typically export exactly one symbol: init + extension name. string

depends list of files that the extension depends on string
language extension language (i.e. ’c’, ’c++’, ’objc’). Will be detected from the source extensions if not provided. string

class Distribution
A Distribution describes how to build, install and package up a Python software package.

See the setup() function for a list of keyword arguments accepted by the Distribution constructor. setup()
creates a Distribution instance.

class Command
A Command class (or rather, an instance of one of its subclasses) implement a single distutils command.

11.2 distutils.ccompiler — CCompiler base class

This module provides the abstract base class for the CCompiler classes. A CCompiler instance can be used for
all the compile and link steps needed to build a single project. Methods are provided to set options for the compiler —
macro definitions, include directories, link path, libraries and the like.

44 Chapter 11. API Reference

This module provides the following functions.

gen_lib_options(compiler, library dirs, runtime library dirs, libraries)
Generate linker options for searching library directories and linking with specific libraries. libraries and li-
brary dirs are, respectively, lists of library names (not filenames!) and search directories. Returns a list of
command-line options suitable for use with some compiler (depending on the two format strings passed in).

gen_preprocess_options(macros, include dirs)
Generate C pre-processor options (-D, -U, -I) as used by at least two types of compilers: the typical UNIX
compiler and Visual C++. macros is the usual thing, a list of 1- or 2-tuples, where (name,) means undefine
(-U) macro name, and (name, value) means define (-D) macro name to value. include dirs is just a list of
directory names to be added to the header file search path (-I). Returns a list of command-line options suitable
for either UNIX compilers or Visual C++.

get_default_compiler(osname, platform)
Determine the default compiler to use for the given platform.

osname should be one of the standard Python OS names (i.e. the ones returned by os.name) and platform the
common value returned by sys.platform for the platform in question.

The default values are os.name and sys.platform in case the parameters are not given.

new_compiler(plat=None, compiler=None, verbose=0, dry run=0, force=0)
Factory function to generate an instance of some CCompiler subclass for the supplied platform/compiler combi-
nation. plat defaults to os.name (eg. ’posix’, ’nt’), and compiler defaults to the default compiler for that
platform. Currently only ’posix’ and ’nt’ are supported, and the default compilers are “traditional UNIX
interface” (UnixCCompiler class) and Visual C++(MSVCCompiler class). Note that it’s perfectly possible
to ask for a UNIX compiler object under Windows, and a Microsoft compiler object under UNIX—if you supply
a value for compiler, plat is ignored.

show_compilers()
Print list of available compilers (used by the --help-compiler options to build, build_ext, build_clib).

class CCompiler([verbose=0, dry run=0, force=0])
The abstract base class CCompiler defines the interface that must be implemented by real compiler classes.
The class also has some utility methods used by several compiler classes.

The basic idea behind a compiler abstraction class is that each instance can be used for all the compile/link
steps in building a single project. Thus, attributes common to all of those compile and link steps — include
directories, macros to define, libraries to link against, etc. — are attributes of the compiler instance. To allow
for variability in how individual files are treated, most of those attributes may be varied on a per-compilation or
per-link basis.

The constructor for each subclass creates an instance of the Compiler object. Flags are verbose (show verbose
output), dry run (don’t actually execute the steps) and force (rebuild everything, regardless of dependencies).
All of these flags default to 0 (off). Note that you probably don’t want to instantiate CCompiler or one of its
subclasses directly - use the distutils.CCompiler.new_compiler() factory function instead.

The following methods allow you to manually alter compiler options for the instance of the Compiler class.

add_include_dir(dir)
Add dir to the list of directories that will be searched for header files. The compiler is instructed to search
directories in the order in which they are supplied by successive calls to add_include_dir().

set_include_dirs(dirs)
Set the list of directories that will be searched to dirs (a list of strings). Overrides any preceding calls to
add_include_dir(); subsequent calls to add_include_dir() add to the list passed to set_-
include_dirs(). This does not affect any list of standard include directories that the compiler may
search by default.

add_library(libname)
Add libname to the list of libraries that will be included in all links driven by this compiler object. Note
that libname should *not* be the name of a file containing a library, but the name of the library itself:

11.2. distutils.ccompiler — CCompiler base class 45

the actual filename will be inferred by the linker, the compiler, or the compiler class (depending on the
platform).
The linker will be instructed to link against libraries in the order they were supplied to add_library()
and/or set_libraries(). It is perfectly valid to duplicate library names; the linker will be instructed
to link against libraries as many times as they are mentioned.

set_libraries(libnames)
Set the list of libraries to be included in all links driven by this compiler object to libnames (a list of
strings). This does not affect any standard system libraries that the linker may include by default.

add_library_dir(dir)
Add dir to the list of directories that will be searched for libraries specified to add_library() and
set_libraries(). The linker will be instructed to search for libraries in the order they are supplied
to add_library_dir() and/or set_library_dirs().

set_library_dirs(dirs)
Set the list of library search directories to dirs (a list of strings). This does not affect any standard library
search path that the linker may search by default.

add_runtime_library_dir(dir)
Add dir to the list of directories that will be searched for shared libraries at runtime.

set_runtime_library_dirs(dirs)
Set the list of directories to search for shared libraries at runtime to dirs (a list of strings). This does not
affect any standard search path that the runtime linker may search by default.

define_macro(name[, value=None])
Define a preprocessor macro for all compilations driven by this compiler object. The optional parameter
value should be a string; if it is not supplied, then the macro will be defined without an explicit value and
the exact outcome depends on the compiler used (XXX true? does ANSI say anything about this?)

undefine_macro(name)
Undefine a preprocessor macro for all compilations driven by this compiler object. If the same macro is
defined by define_macro() and undefined by undefine_macro() the last call takes precedence
(including multiple redefinitions or undefinitions). If the macro is redefined/undefined on a per-compilation
basis (ie. in the call to compile()), then that takes precedence.

add_link_object(object)
Add object to the list of object files (or analogues, such as explicitly named library files or the output of
“resource compilers”) to be included in every link driven by this compiler object.

set_link_objects(objects)
Set the list of object files (or analogues) to be included in every link to objects. This does not affect any
standard object files that the linker may include by default (such as system libraries).

The following methods implement methods for autodetection of compiler options, providing some functionality
similar to GNU autoconf.
detect_language(sources)

Detect the language of a given file, or list of files. Uses the instance attributes language_map (a dictio-
nary), and language_order (a list) to do the job.

find_library_file(dirs, lib[, debug=0])
Search the specified list of directories for a static or shared library file lib and return the full path to that
file. If debug is true, look for a debugging version (if that makes sense on the current platform). Return
None if lib wasn’t found in any of the specified directories.

has_function(funcname [, includes=None, include dirs=None, libraries=None, library dirs=None])
Return a boolean indicating whether funcname is supported on the current platform. The optional argu-
ments can be used to augment the compilation environment by providing additional include files and paths
and libraries and paths.

library_dir_option(dir)
Return the compiler option to add dir to the list of directories searched for libraries.

46 Chapter 11. API Reference

library_option(lib)
Return the compiler option to add dir to the list of libraries linked into the shared library or executable.

runtime_library_dir_option(dir)
Return the compiler option to add dir to the list of directories searched for runtime libraries.

set_executables(**args)
Define the executables (and options for them) that will be run to perform the various stages of compilation.
The exact set of executables that may be specified here depends on the compiler class (via the ’executables’
class attribute), but most will have:

attribute description
compiler the C/C++ compiler
linker so linker used to create shared objects and libraries
linker exe linker used to create binary executables
archiver static library creator

On platforms with a command-line (UNIX, DOS/Windows), each of these is a string that will be split
into executable name and (optional) list of arguments. (Splitting the string is done similarly to how
UNIX shells operate: words are delimited by spaces, but quotes and backslashes can override this. See
distutils.util.split_quoted().)

The following methods invoke stages in the build process.

compile(sources[, output dir=None, macros=None, include dirs=None, debug=0, extra preargs=None, extra -
postargs=None, depends=None])

Compile one or more source files. Generates object files (e.g. transforms a ‘.c’ file to a ‘.o’ file.)
sources must be a list of filenames, most likely C/C++files, but in reality anything that can be handled by a
particular compiler and compiler class (eg. MSVCCompiler can handle resource files in sources). Return
a list of object filenames, one per source filename in sources. Depending on the implementation, not all
source files will necessarily be compiled, but all corresponding object filenames will be returned.
If output dir is given, object files will be put under it, while retaining their original path component. That
is, ‘foo/bar.c’ normally compiles to ‘foo/bar.o’ (for a UNIX implementation); if output dir is build, then it
would compile to ‘build/foo/bar.o’.
macros, if given, must be a list of macro definitions. A macro definition is either a (name, value) 2-tuple
or a (name,) 1-tuple. The former defines a macro; if the value is None, the macro is defined without
an explicit value. The 1-tuple case undefines a macro. Later definitions/redefinitions/undefinitions take
precedence.
include dirs, if given, must be a list of strings, the directories to add to the default include file search path
for this compilation only.
debug is a boolean; if true, the compiler will be instructed to output debug symbols in (or alongside) the
object file(s).
extra preargs and extra postargs are implementation-dependent. On platforms that have the notion of a
command-line (e.g. UNIX, DOS/Windows), they are most likely lists of strings: extra command-line argu-
ments to prepend/append to the compiler command line. On other platforms, consult the implementation
class documentation. In any event, they are intended as an escape hatch for those occasions when the
abstract compiler framework doesn’t cut the mustard.
depends, if given, is a list of filenames that all targets depend on. If a source file is older than any file in
depends, then the source file will be recompiled. This supports dependency tracking, but only at a coarse
granularity.
Raises CompileError on failure.

create_static_lib(objects, output libname[, output dir=None, debug=0, target lang=None])
Link a bunch of stuff together to create a static library file. The “bunch of stuff” consists of the list of
object files supplied as objects, the extra object files supplied to add_link_object() and/or set_-
link_objects(), the libraries supplied to add_library() and/or set_libraries(), and the
libraries supplied as libraries (if any).
output libname should be a library name, not a filename; the filename will be inferred from the library
name. output dir is the directory where the library file will be put. XXX defaults to what?

11.2. distutils.ccompiler — CCompiler base class 47

debug is a boolean; if true, debugging information will be included in the library (note that on most
platforms, it is the compile step where this matters: the debug flag is included here just for consistency).
target lang is the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.
Raises LibError on failure.

link(target desc, objects, output filename[, output dir=None, libraries=None, library dirs=None, runtime li-
brary dirs=None, export symbols=None, debug=0, extra preargs=None, extra postargs=None, build -
temp=None, target lang=None])

Link a bunch of stuff together to create an executable or shared library file.
The “bunch of stuff” consists of the list of object files supplied as objects. output filename should be
a filename. If output dir is supplied, output filename is relative to it (i.e. output filename can provide
directory components if needed).
libraries is a list of libraries to link against. These are library names, not filenames, since they’re trans-
lated into filenames in a platform-specific way (eg. foo becomes ‘libfoo.a’ on UNIX and ‘foo.lib’ on
DOS/Windows). However, they can include a directory component, which means the linker will look
in that specific directory rather than searching all the normal locations.
library dirs, if supplied, should be a list of directories to search for libraries that were specified as bare
library names (ie. no directory component). These are on top of the system default and those supplied
to add_library_dir() and/or set_library_dirs(). runtime library dirs is a list of directories
that will be embedded into the shared library and used to search for other shared libraries that *it* depends
on at run-time. (This may only be relevant on UNIX.)
export symbols is a list of symbols that the shared library will export. (This appears to be relevant only on
Windows.)
debug is as for compile() and create_static_lib(), with the slight distinction that it actually
matters on most platforms (as opposed to create_static_lib(), which includes a debug flag mostly
for form’s sake).
extra preargs and extra postargs are as for compile() (except of course that they supply command-line
arguments for the particular linker being used).
target lang is the target language for which the given objects are being compiled. This allows specific
linkage time treatment of certain languages.
Raises LinkError on failure.

link_executable(objects, output progname[, output dir=None, libraries=None, library dirs=None, run-
time library dirs=None, debug=0, extra preargs=None, extra postargs=None, target -
lang=None])

Link an executable. output progname is the name of the file executable, while objects are a list of object
filenames to link in. Other arguments are as for the link method.

link_shared_lib(objects, output libname[, output dir=None, libraries=None, library dirs=None, run-
time library dirs=None, export symbols=None, debug=0, extra preargs=None, extra -
postargs=None, build temp=None, target lang=None])

Link a shared library. output libname is the name of the output library, while objects is a list of object
filenames to link in. Other arguments are as for the link method.

link_shared_object(objects, output filename[, output dir=None, libraries=None, library dirs=None, run-
time library dirs=None, export symbols=None, debug=0, extra preargs=None, ex-
tra postargs=None, build temp=None, target lang=None])

Link a shared object. output filename is the name of the shared object that will be created, while objects is
a list of object filenames to link in. Other arguments are as for the link method.

preprocess(source[, output file=None, macros=None, include dirs=None, extra preargs=None, extra -
postargs=None])

Preprocess a single C/C++ source file, named in source. Output will be written to file named output file,
or stdout if output file not supplied. macros is a list of macro definitions as for compile(), which will
augment the macros set with define_macro() and undefine_macro(). include dirs is a list of
directory names that will be added to the default list, in the same way as add_include_dir().

48 Chapter 11. API Reference

Raises PreprocessError on failure.

The following utility methods are defined by the CCompiler class, for use by the various concrete subclasses.

executable_filename(basename[, strip dir=0, output dir=’’])
Returns the filename of the executable for the given basename. Typically for non-Windows platforms this
is the same as the basename, while Windows will get a ‘.exe’ added.

library_filename(libname[, lib type=’static’, strip dir=0, output dir=’’])
Returns the filename for the given library name on the current platform. On UNIX a library with lib type
of ’static’ will typically be of the form ‘liblibname.a’, while a lib type of ’dynamic’ will be of the
form ‘liblibname.so’.

object_filenames(source filenames[, strip dir=0, output dir=’’])
Returns the name of the object files for the given source files. source filenames should be a list of filenames.

shared_object_filename(basename[, strip dir=0, output dir=’’])
Returns the name of a shared object file for the given file name basename.

execute(func, args[, msg=None, level=1])
Invokes distutils.util.execute() This method invokes a Python function func with the given
arguments args, after logging and taking into account the dry run flag. XXX see also.

spawn(cmd)
Invokes distutils.util.spawn(). This invokes an external process to run the given command.
XXX see also.

mkpath(name[, mode=511])
Invokes distutils.dir_util.mkpath(). This creates a directory and any missing ancestor direc-
tories. XXX see also.

move_file(src, dst)
Invokes distutils.file_util.move_file(). Renames src to dst. XXX see also.

announce(msg[, level=1])
Write a message using distutils.log.debug(). XXX see also.

warn(msg)
Write a warning message msg to standard error.

debug_print(msg)
If the debug flag is set on this CCompiler instance, print msg to standard output, otherwise do nothing.

11.3 distutils.unixccompiler — Unix C Compiler

This module provides the UnixCCompiler class, a subclass of CCompiler that handles the typical UNIX-style
command-line C compiler:

• macros defined with -Dname[=value]
• macros undefined with -Uname

• include search directories specified with -Idir

• libraries specified with -llib

• library search directories specified with -Ldir

• compile handled by cc (or similar) executable with -c option: compiles ‘.c’ to ‘.o’

• link static library handled by ar command (possibly with ranlib)

• link shared library handled by cc -shared

11.3. distutils.unixccompiler — Unix C Compiler 49

11.4 distutils.msvccompiler — Microsoft Compiler

This module provides MSVCCompiler, an implementation of the abstract CCompiler class for Microsoft Visual
Studio. Typically, extension modules need to be compiled with the same compiler that was used to compile Python.
For Python 2.3 and earlier, the compiler was Visual Studio 6. For Python 2.4 and 2.5, the compiler is Visual Studio
.NET 2003. The AMD64 and Itanium binaries are created using the Platform SDK.

MSVCCompiler will normally choose the right compiler, linker etc. on its own. To override this choice, the envi-
ronment variables DISTUTILS USE SDK and MSSdk must be both set. MSSdk indicates that the current environment
has been setup by the SDK’s SetEnv.Cmd script, or that the environment variables had been registered when the
SDK was installed; DISTUTILS USE SDK indicates that the distutils user has made an explicit choice to override the
compiler selection by MSVCCompiler.

11.5 distutils.bcppcompiler — Borland Compiler

This module provides BorlandCCompiler, an subclass of the abstract CCompiler class for the Borland C++
compiler.

11.6 distutils.cygwincompiler — Cygwin Compiler

This module provides the CygwinCCompiler class, a subclass of UnixCCompiler that handles the Cygwin port
of the GNU C compiler to Windows. It also contains the Mingw32CCompiler class which handles the mingw32 port
of GCC (same as cygwin in no-cygwin mode).

11.7 distutils.emxccompiler — OS/2 EMX Compiler

This module provides the EMXCCompiler class, a subclass of UnixCCompiler that handles the EMX port of the
GNU C compiler to OS/2.

11.8 distutils.mwerkscompiler — Metrowerks CodeWarrior sup-
port

Contains MWerksCompiler, an implementation of the abstract CCompiler class for MetroWerks CodeWarrior on
the pre-Mac OS X Macintosh. Needs work to support CW on Windows or Mac OS X.

11.9 distutils.archive_util — Archiving utilities

This module provides a few functions for creating archive files, such as tarballs or zipfiles.

make_archive(base name, format[, root dir=None, base dir=None, verbose=0, dry run=0])
Create an archive file (eg. zip or tar). base name is the name of the file to create, minus any format-specific
extension; format is the archive format: one of zip, tar, ztar, or gztar. root dir is a directory that will be
the root directory of the archive; ie. we typically chdir into root dir before creating the archive. base dir is
the directory where we start archiving from; ie. base dir will be the common prefix of all files and directories
in the archive. root dir and base dir both default to the current directory. Returns the name of the archive file.

Warning: This should be changed to support bz2 files

50 Chapter 11. API Reference

make_tarball(base name, base dir[, compress=’gzip’, verbose=0, dry run=0])
’Create an (optional compressed) archive as a tar file from all files in and under base dir. compress must be
’gzip’ (the default), ’compress’, ’bzip2’, or None. Both tar and the compression utility named by
compress must be on the default program search path, so this is probably UNIX-specific. The output tar file will
be named ‘base dir.tar’, possibly plus the appropriate compression extension (‘.gz’, ‘.bz2’ or ‘.Z’). Return the
output filename.

Warning: This should be replaced with calls to the tarfile module.

make_zipfile(base name, base dir[, verbose=0, dry run=0])
Create a zip file from all files in and under base dir. The output zip file will be named base dir + ‘.zip’. Uses
either the zipfile Python module (if available) or the InfoZIP ‘zip’ utility (if installed and found on the default
search path). If neither tool is available, raises DistutilsExecError. Returns the name of the output zip
file.

11.10 distutils.dep_util — Dependency checking

This module provides functions for performing simple, timestamp-based dependency of files and groups of files; also,
functions based entirely on such timestamp dependency analysis.

newer(source, target)
Return true if source exists and is more recently modified than target, or if source exists and target doesn’t.
Return false if both exist and target is the same age or newer than source. Raise DistutilsFileError if
source does not exist.

newer_pairwise(sources, targets)
Walk two filename lists in parallel, testing if each source is newer than its corresponding target. Return a pair of
lists (sources, targets) where source is newer than target, according to the semantics of newer()

newer_group(sources, target[, missing=’error’])
Return true if target is out-of-date with respect to any file listed in sources In other words, if target exists and
is newer than every file in sources, return false; otherwise return true. missing controls what we do when a
source file is missing; the default (’error’) is to blow up with an OSError from inside os.stat(); if it
is ’ignore’, we silently drop any missing source files; if it is ’newer’, any missing source files make us
assume that target is out-of-date (this is handy in “dry-run” mode: it’ll make you pretend to carry out commands
that wouldn’t work because inputs are missing, but that doesn’t matter because you’re not actually going to run
the commands).

11.11 distutils.dir_util — Directory tree operations

This module provides functions for operating on directories and trees of directories.

mkpath(name[, mode=0777, verbose=0, dry run=0])
Create a directory and any missing ancestor directories. If the directory already exists (or if name is
the empty string, which means the current directory, which of course exists), then do nothing. Raise
DistutilsFileError if unable to create some directory along the way (eg. some sub-path exists, but
is a file rather than a directory). If verbose is true, print a one-line summary of each mkdir to stdout. Return the
list of directories actually created.

create_tree(base dir, files[, mode=0777, verbose=0, dry run=0])
Create all the empty directories under base dir needed to put files there. base dir is just the a name of a directory
which doesn’t necessarily exist yet; files is a list of filenames to be interpreted relative to base dir. base dir +
the directory portion of every file in files will be created if it doesn’t already exist. mode, verbose and dry run
flags are as for mkpath().

11.10. distutils.dep_util — Dependency checking 51

copy_tree(src, dst[preserve mode=1, preserve times=1, preserve symlinks=0, update=0, verbose=0, dry -
run=0])

Copy an entire directory tree src to a new location dst. Both src and dst must be directory names. If src is
not a directory, raise DistutilsFileError. If dst does not exist, it is created with mkpath(). The end
result of the copy is that every file in src is copied to dst, and directories under src are recursively copied to dst.
Return the list of files that were copied or might have been copied, using their output name. The return value is
unaffected by update or dry run: it is simply the list of all files under src, with the names changed to be under
dst.

preserve mode and preserve times are the same as for copy_file in distutils.file_util; note that
they only apply to regular files, not to directories. If preserve symlinks is true, symlinks will be copied as
symlinks (on platforms that support them!); otherwise (the default), the destination of the symlink will be
copied. update and verbose are the same as for copy_file().

remove_tree(directory[verbose=0, dry run=0])
Recursively remove directory and all files and directories underneath it. Any errors are ignored (apart from
being reported to sys.stdout if verbose is true).

Some of this could be replaced with the shutil module?

11.12 distutils.file_util — Single file operations

This module contains some utility functions for operating on individual files.

copy_file(src, dst[preserve mode=1, preserve times=1, update=0, link=None, verbose=0, dry run=0])
Copy file src to dst. If dst is a directory, then src is copied there with the same name; otherwise, it must be a
filename. (If the file exists, it will be ruthlessly clobbered.) If preserve mode is true (the default), the file’s mode
(type and permission bits, or whatever is analogous on the current platform) is copied. If preserve times is true
(the default), the last-modified and last-access times are copied as well. If update is true, src will only be copied
if dst does not exist, or if dst does exist but is older than src.

link allows you to make hard links (using os.link) or symbolic links (using os.symlink) instead of copy-
ing: set it to ’hard’ or ’sym’; if it is None (the default), files are copied. Don’t set link on systems that don’t
support it: copy_file() doesn’t check if hard or symbolic linking is available. It uses _copy_file_-
contents() to copy file contents.

Return a tuple ‘(dest_name, copied)’: dest name is the actual name of the output file, and copied is true
if the file was copied (or would have been copied, if dry run true).

move_file(src, dst[verbose, dry run])
Move file src to dst. If dst is a directory, the file will be moved into it with the same name; otherwise, src is just
renamed to dst. Returns the new full name of the file. Warning: Handles cross-device moves on UNIX using
copy_file(). What about other systems???

write_file(filename, contents)
Create a file called filename and write contents (a sequence of strings without line terminators) to it.

11.13 distutils.util — Miscellaneous other utility functions

This module contains other assorted bits and pieces that don’t fit into any other utility module.

get_platform()
Return a string that identifies the current platform. This is used mainly to distinguish platform-specific build
directories and platform-specific built distributions. Typically includes the OS name and version and the archi-
tecture (as supplied by ’os.uname()’), although the exact information included depends on the OS; eg. for IRIX

52 Chapter 11. API Reference

the architecture isn’t particularly important (IRIX only runs on SGI hardware), but for Linux the kernel version
isn’t particularly important.

Examples of returned values:

•linux-i586
•linux-alpha
•solaris-2.6-sun4u
•irix-5.3
•irix64-6.2

For non-POSIX platforms, currently just returns sys.platform.

convert_path(pathname)
Return ’pathname’ as a name that will work on the native filesystem, i.e. split it on ’/’ and put it back together
again using the current directory separator. Needed because filenames in the setup script are always supplied in
UNIX style, and have to be converted to the local convention before we can actually use them in the filesystem.
Raises ValueError on non-UNIX-ish systems if pathname either starts or ends with a slash.

change_root(new root, pathname)
Return pathname with new root prepended. If pathname is relative, this is equivalent to
‘os.path.join(new_root,pathname)’ Otherwise, it requires making pathname relative and
then joining the two, which is tricky on DOS/Windows.

check_environ()
Ensure that ’os.environ’ has all the environment variables we guarantee that users can use in config files,
command-line options, etc. Currently this includes:

•HOME - user’s home directory (UNIX only)

•PLAT - description of the current platform, including hardware and OS (see get_platform())

subst_vars(s, local vars)
Perform shell/Perl-style variable substitution on s. Every occurrence of $ followed by a name is considered
a variable, and variable is substituted by the value found in the local vars dictionary, or in os.environ if
it’s not in local vars. os.environ is first checked/augmented to guarantee that it contains certain values: see
check_environ(). Raise ValueError for any variables not found in either local vars or os.environ.

Note that this is not a fully-fledged string interpolation function. A valid $variable can consist only of upper
and lower case letters, numbers and an underscore. No { } or style quoting is available.

grok_environment_error(exc[, prefix=‘’error: ’’])
Generate a useful error message from an EnvironmentError (IOError or OSError) exception object.
Handles Python 1.5.1 and later styles, and does what it can to deal with exception objects that don’t have
a filename (which happens when the error is due to a two-file operation, such as rename() or link()).
Returns the error message as a string prefixed with prefix.

split_quoted(s)
Split a string up according to UNIX shell-like rules for quotes and backslashes. In short: words are delimited
by spaces, as long as those spaces are not escaped by a backslash, or inside a quoted string. Single and double
quotes are equivalent, and the quote characters can be backslash-escaped. The backslash is stripped from any
two-character escape sequence, leaving only the escaped character. The quote characters are stripped from any
quoted string. Returns a list of words.

execute(func, args[, msg=None, verbose=0, dry run=0])
Perform some action that affects the outside world (for instance, writing to the filesystem). Such actions are
special because they are disabled by the dry run flag. This method takes care of all that bureaucracy for you; all
you have to do is supply the function to call and an argument tuple for it (to embody the “external action” being
performed), and an optional message to print.

11.13. distutils.util — Miscellaneous other utility functions 53

strtobool(val)
Convert a string representation of truth to true (1) or false (0).

True values are y, yes, t, true, on and 1; false values are n, no, f, false, off and 0. Raises ValueError
if val is anything else.

byte_compile(py files[, optimize=0, force=0, prefix=None, base dir=None, verbose=1, dry run=0, di-
rect=None])

Byte-compile a collection of Python source files to either ‘.pyc’ or ‘.pyo’ files in the same directory. py files
is a list of files to compile; any files that don’t end in ‘.py’ are silently skipped. optimize must be one of the
following:

•0 - don’t optimize (generate ‘.pyc’)

•1 - normal optimization (like ‘python -O’)

•2 - extra optimization (like ‘python -OO’)

If force is true, all files are recompiled regardless of timestamps.

The source filename encoded in each bytecode file defaults to the filenames listed in py files; you can modify
these with prefix and basedir. prefix is a string that will be stripped off of each source filename, and base dir is
a directory name that will be prepended (after prefix is stripped). You can supply either or both (or neither) of
prefix and base dir, as you wish.

If dry run is true, doesn’t actually do anything that would affect the filesystem.

Byte-compilation is either done directly in this interpreter process with the standard py_compile module, or
indirectly by writing a temporary script and executing it. Normally, you should let byte_compile() figure
out to use direct compilation or not (see the source for details). The direct flag is used by the script generated in
indirect mode; unless you know what you’re doing, leave it set to None.

rfc822_escape(header)
Return a version of header escaped for inclusion in an RFC 822 header, by ensuring there are 8 spaces space
after each newline. Note that it does no other modification of the string.

11.14 distutils.dist — The Distribution class

This module provides the Distribution class, which represents the module distribution being
built/installed/distributed.

11.15 distutils.extension — The Extension class

This module provides the Extension class, used to describe C/C++ extension modules in setup scripts.

11.16 distutils.debug — Distutils debug mode

This module provides the DEBUG flag.

11.17 distutils.errors — Distutils exceptions

Provides exceptions used by the Distutils modules. Note that Distutils modules may raise standard exceptions; in
particular, SystemExit is usually raised for errors that are obviously the end-user’s fault (eg. bad command-line
arguments).

54 Chapter 11. API Reference

This module is safe to use in ‘from ... import *’ mode; it only exports symbols whose names start with
Distutils and end with Error.

11.18 distutils.fancy_getopt — Wrapper around the standard
getopt module

This module provides a wrapper around the standard getopt module that provides the following additional features:

• short and long options are tied together

• options have help strings, so fancy_getopt could potentially create a complete usage summary

• options set attributes of a passed-in object

• boolean options can have “negative aliases” — eg. if --quiet is the “negative alias” of --verbose, then --quiet
on the command line sets verbose to false.

Should be replaced with optik (which is also now known as optparse in Python 2.3 and later).

fancy_getopt(options, negative opt, object, args)
Wrapper function. options is a list of ‘(long_option, short_option, help_string)’ 3-tuples as
described in the constructor for FancyGetopt. negative opt should be a dictionary mapping option names
to option names, both the key and value should be in the options list. object is an object which will be used
to store values (see the getopt() method of the FancyGetopt class). args is the argument list. Will use
sys.argv[1:] if you pass None as args.

wrap_text(text, width)
Wraps text to less than width wide.

Warning: Should be replaced with textwrap (which is available in Python 2.3 and later).

class FancyGetopt([option table=None])
The option table is a list of 3-tuples: ‘(long_option, short_option, help_string)’

If an option takes an argument, its long option should have ’=’ appended; short option should just be a single
character, no ’:’ in any case. short option should be None if a long option doesn’t have a corresponding
short option. All option tuples must have long options.

The FancyGetopt class provides the following methods:

getopt([args=None, object=None])
Parse command-line options in args. Store as attributes on object.

If args is None or not supplied, uses sys.argv[1:]. If object is None or not supplied, creates a new
OptionDummy instance, stores option values there, and returns a tuple ‘(args, object)’. If object is
supplied, it is modified in place and getopt() just returns args; in both cases, the returned args is a modified
copy of the passed-in args list, which is left untouched.

get_option_order()
Returns the list of ‘(option, value)’ tuples processed by the previous run of getopt() Raises
RuntimeError if getopt() hasn’t been called yet.

generate_help([header=None])
Generate help text (a list of strings, one per suggested line of output) from the option table for this
FancyGetopt object.

If supplied, prints the supplied header at the top of the help.

11.18. distutils.fancy_getopt — Wrapper around the standard getopt module 55

11.19 distutils.filelist — The FileList class

This module provides the FileList class, used for poking about the filesystem and building lists of files.

11.20 distutils.log — Simple PEP 282-style logging

Warning: Should be replaced with standard logging module.

11.21 distutils.spawn — Spawn a sub-process

This module provides the spawn() function, a front-end to various platform-specific functions for launching another
program in a sub-process. Also provides find_executable() to search the path for a given executable name.

11.22 distutils.sysconfig — System configuration information

The distutils.sysconfig module provides access to Python’s low-level configuration information. The spe-
cific configuration variables available depend heavily on the platform and configuration. The specific variables depend
on the build process for the specific version of Python being run; the variables are those found in the ‘Makefile’ and
configuration header that are installed with Python on UNIX systems. The configuration header is called ‘pyconfig.h’
for Python versions starting with 2.2, and ‘config.h’ for earlier versions of Python.

Some additional functions are provided which perform some useful manipulations for other parts of the distutils
package.

PREFIX
The result of os.path.normpath(sys.prefix).

EXEC_PREFIX
The result of os.path.normpath(sys.exec_prefix).

get_config_var(name)
Return the value of a single variable. This is equivalent to get_config_vars().get(name).

get_config_vars(...)
Return a set of variable definitions. If there are no arguments, this returns a dictionary mapping names of
configuration variables to values. If arguments are provided, they should be strings, and the return value will be
a sequence giving the associated values. If a given name does not have a corresponding value, None will be
included for that variable.

get_config_h_filename()
Return the full path name of the configuration header. For UNIX, this will be the header generated by the con-
figure script; for other platforms the header will have been supplied directly by the Python source distribution.
The file is a platform-specific text file.

get_makefile_filename()
Return the full path name of the ‘Makefile’ used to build Python. For UNIX, this will be a file generated by the
configure script; the meaning for other platforms will vary. The file is a platform-specific text file, if it exists.
This function is only useful on POSIX platforms.

get_python_inc([plat specific[, prefix]])
Return the directory for either the general or platform-dependent C include files. If plat specific is true, the
platform-dependent include directory is returned; if false or omitted, the platform-independent directory is re-
turned. If prefix is given, it is used as either the prefix instead of PREFIX, or as the exec-prefix instead of

56 Chapter 11. API Reference

EXEC_PREFIX if plat specific is true.

get_python_lib([plat specific[, standard lib[, prefix]]])
Return the directory for either the general or platform-dependent library installation. If plat specific is true,
the platform-dependent include directory is returned; if false or omitted, the platform-independent directory is
returned. If prefix is given, it is used as either the prefix instead of PREFIX, or as the exec-prefix instead of
EXEC_PREFIX if plat specific is true. If standard lib is true, the directory for the standard library is returned
rather than the directory for the installation of third-party extensions.

The following function is only intended for use within the distutils package.

customize_compiler(compiler)
Do any platform-specific customization of a distutils.ccompiler.CCompiler instance.

This function is only needed on UNIX at this time, but should be called consistently to support forward-
compatibility. It inserts the information that varies across UNIX flavors and is stored in Python’s ‘Makefile’.
This information includes the selected compiler, compiler and linker options, and the extension used by the
linker for shared objects.

This function is even more special-purpose, and should only be used from Python’s own build procedures.

set_python_build()
Inform the distutils.sysconfig module that it is being used as part of the build process for Python.
This changes a lot of relative locations for files, allowing them to be located in the build area rather than in an
installed Python.

11.23 distutils.text_file — The TextFile class

This module provides the TextFile class, which gives an interface to text files that (optionally) takes care of strip-
ping comments, ignoring blank lines, and joining lines with backslashes.

class TextFile([filename=None, file=None, **options])
This class provides a file-like object that takes care of all the things you commonly want to do when processing a
text file that has some line-by-line syntax: strip comments (as long as # is your comment character), skip blank
lines, join adjacent lines by escaping the newline (ie. backslash at end of line), strip leading and/or trailing
whitespace. All of these are optional and independently controllable.

The class provides a warn() method so you can generate warning messages that report physical line number,
even if the logical line in question spans multiple physical lines. Also provides unreadline() for imple-
menting line-at-a-time lookahead.

TextFile instances are create with either filename, file, or both. RuntimeError is raised if both are None.
filename should be a string, and file a file object (or something that provides readline() and close()
methods). It is recommended that you supply at least filename, so that TextFile can include it in warning
messages. If file is not supplied, TextFile creates its own using the open() built-in function.

The options are all boolean, and affect the values returned by readline()

option name description default
strip comments strip from ‘#’ to end-of-line, as well as any whitespace leading up to the ‘#’—unless it is escaped by a backslash true

lstrip ws strip leading whitespace from each line before returning it false
rstrip ws strip trailing whitespace (including line terminator!) from each line before returning it. true

skip blanks skip lines that are empty *after* stripping comments and whitespace. (If both lstrip ws and rstrip ws are false, then some lines may consist of solely whitespace: these will *not* be skipped, even if skip blanks is true.) true
join lines if a backslash is the last non-newline character on a line after stripping comments and whitespace, join the following line to it to form one logical line; if N consecutive lines end with a backslash, then N+1 physical lines will be joined to form one logical line. false

collapse join strip leading whitespace from lines that are joined to their predecessor; only matters if ‘(join_lines and not lstrip_ws)’ false

Note that since rstrip ws can strip the trailing newline, the semantics of readline() must differ from those
of the builtin file object’s readline() method! In particular, readline() returns None for end-of-file: an
empty string might just be a blank line (or an all-whitespace line), if rstrip ws is true but skip blanks is not.

11.23. distutils.text_file — The TextFile class 57

open(filename)
Open a new file filename. This overrides any file or filename constructor arguments.

close()
Close the current file and forget everything we know about it (including the filename and the current line
number).

warn(msg[,line=None])
Print (to stderr) a warning message tied to the current logical line in the current file. If the current logical
line in the file spans multiple physical lines, the warning refers to the whole range, such as ‘"lines
3-5"’. If line is supplied, it overrides the current line number; it may be a list or tuple to indicate a range
of physical lines, or an integer for a single physical line.

readline()
Read and return a single logical line from the current file (or from an internal buffer if lines have previously
been “unread” with unreadline()). If the join lines option is true, this may involve reading multiple
physical lines concatenated into a single string. Updates the current line number, so calling warn() after
readline() emits a warning about the physical line(s) just read. Returns None on end-of-file, since
the empty string can occur if rstrip ws is true but strip blanks is not.

readlines()
Read and return the list of all logical lines remaining in the current file. This updates the current line
number to the last line of the file.

unreadline(line)
Push line (a string) onto an internal buffer that will be checked by future readline() calls. Handy for
implementing a parser with line-at-a-time lookahead. Note that lines that are “unread” with unreadline
are not subsequently re-cleansed (whitespace stripped, or whatever) when read with readline. If mul-
tiple calls are made to unreadline before a call to readline, the lines will be returned most in most
recent first order.

11.24 distutils.version — Version number classes

11.25 distutils.cmd — Abstract base class for Distutils commands

This module supplies the abstract base class Command.

class Command(dist)
Abstract base class for defining command classes, the “worker bees” of the Distutils. A useful analogy for com-
mand classes is to think of them as subroutines with local variables called options. The options are declared in
initialize_options() and defined (given their final values) in finalize_options(), both of which
must be defined by every command class. The distinction between the two is necessary because option values
might come from the outside world (command line, config file, ...), and any options dependent on other options
must be computed after these outside influences have been processed — hence finalize_options(). The
body of the subroutine, where it does all its work based on the values of its options, is the run() method, which
must also be implemented by every command class.

The class constructor takes a single argument dist, a Distribution instance.

58 Chapter 11. API Reference

11.26 distutils.command — Individual Distutils commands

11.27 distutils.command.bdist — Build a binary installer

11.28 distutils.command.bdist_packager — Abstract base
class for packagers

11.29 distutils.command.bdist_dumb — Build a “dumb” installer

11.30 distutils.command.bdist_msi — Build a Microsoft Installer
binary package

11.31 distutils.command.bdist_rpm — Build a binary distribution
as a Redhat RPM and SRPM

11.32 distutils.command.bdist_wininst — Build a Windows in-
staller

11.33 distutils.command.sdist — Build a source distribution

11.34 distutils.command.build — Build all files of a package

11.35 distutils.command.build_clib — Build any C libraries in a
package

11.36 distutils.command.build_ext — Build any extensions in a
package

11.37 distutils.command.build_py — Build the .py/.pyc files of a
package

11.38 distutils.command.build_scripts — Build the scripts of a
package

11.39 distutils.command.clean — Clean a package build area

11.40 distutils.command.config — Perform package configura-
tion

11.41 distutils.command.install — Install a package

11.42 distutils.command.install_data — Install data files from
a package

11.43 distutils.command.install_headers — Install C/C++
header files from a package

11.44 distutils.command.install_lib — Install library files from
a package

11.45 distutils.command.install_scripts — Install script files
from a package

11.46 distutils.command.register — Register a module with the
Python Package Index

11.26. distutils.command — Individual Distutils commands 59

The register command registers the package with the Python Package Index. This is described in more detail in
PEP 301.

11.47 Creating a new Distutils command

This section outlines the steps to create a new Distutils command.

A new command lives in a module in the distutils.command package. There is a sample template in that
directory called ‘command template’. Copy this file to a new module with the same name as the new command you’re
implementing. This module should implement a class with the same name as the module (and the command). So, for
instance, to create the command peel_banana (so that users can run ‘setup.py peel_banana’), you’d copy
‘command template’ to ‘distutils/command/peel banana.py’, then edit it so that it’s implementing the class peel_-
banana, a subclass of distutils.cmd.Command.

Subclasses of Command must define the following methods.

initialize_options()(S)
et default values for all the options that this command supports. Note that these defaults may be overridden
by other commands, by the setup script, by config files, or by the command-line. Thus, this is not the place to
code dependencies between options; generally, initialize_options() implementations are just a bunch
of ‘self.foo = None’ assignments.

finalize_options()
Set final values for all the options that this command supports. This is always called as late as possible, ie. after
any option assignments from the command-line or from other commands have been done. Thus, this is the place
to to code option dependencies: if foo depends on bar, then it is safe to set foo from bar as long as foo still has
the same value it was assigned in initialize_options().

run()
A command’s raison d’etre: carry out the action it exists to perform, controlled by the options initialized in
initialize_options(), customized by other commands, the setup script, the command-line, and config
files, and finalized in finalize_options(). All terminal output and filesystem interaction should be done
by run().

sub commands formalizes the notion of a “family” of commands, eg. install as the parent with sub-commands
install_lib, install_headers, etc. The parent of a family of commands defines sub commands as a class
attribute; it’s a list of 2-tuples ‘(command_name, predicate)’, with command name a string and predicate
an unbound method, a string or None. predicate is a method of the parent command that determines whether the
corresponding command is applicable in the current situation. (Eg. we install_headers is only applicable if we
have any C header files to install.) If predicate is None, that command is always applicable.

sub commands is usually defined at the *end* of a class, because predicates can be unbound methods, so they must
already have been defined. The canonical example is the install command.

60 Chapter 11. API Reference

MODULE INDEX

D
distutils.archive_util, 50
distutils.bcppcompiler, 50
distutils.ccompiler, 44
distutils.cmd, 58
distutils.command, 59
distutils.command.bdist, 59
distutils.command.bdist_dumb, 59
distutils.command.bdist_msi, 59
distutils.command.bdist_packager, 59
distutils.command.bdist_rpm, 59
distutils.command.bdist_wininst, 59
distutils.command.build, 59
distutils.command.build_clib, 59
distutils.command.build_ext, 59
distutils.command.build_py, 59
distutils.command.build_scripts, 59
distutils.command.clean, 59
distutils.command.config, 59
distutils.command.install, 59
distutils.command.install_data, 59
distutils.command.install_headers, 59
distutils.command.install_lib, 59
distutils.command.install_scripts, 59
distutils.command.register, 59
distutils.command.sdist, 59
distutils.core, 43
distutils.cygwinccompiler, 50
distutils.debug, 54
distutils.dep_util, 51
distutils.dir_util, 51
distutils.dist, 54
distutils.emxccompiler, 50
distutils.errors, 54
distutils.extension, 54
distutils.fancy_getopt, 55
distutils.file_util, 52
distutils.filelist, 56
distutils.log, 56
distutils.msvccompiler, 50
distutils.mwerkscompiler, 50

distutils.spawn, 56
distutils.sysconfig, 56
distutils.text_file, 57
distutils.unixccompiler, 49
distutils.util, 52
distutils.version, 58

61

62

INDEX

A
add_include_dir() (CCompiler method), 45
add_library() (CCompiler method), 45
add_library_dir() (CCompiler method), 46
add_link_object() (CCompiler method), 46
add_runtime_library_dir() (CCompiler

method), 46
announce() (CCompiler method), 49

B
byte_compile() (in module distutils.util), 54

C
CCompiler (class in distutils.ccompiler), 45
change_root() (in module distutils.util), 53
check_environ() (in module distutils.util), 53
close() (TextFile method), 58
Command

class in distutils.cmd, 58
class in distutils.core, 44

compile() (CCompiler method), 47
convert_path() (in module distutils.util), 53
copy_file() (in module distutils.file util), 52
copy_tree() (in module distutils.dir util), 52
create_shortcut() (in module), 27
create_static_lib() (CCompiler method), 47
create_tree() (in module distutils.dir util), 51
customize_compiler() (in module distu-

tils.sysconfig), 57

D
debug_print() (CCompiler method), 49
define_macro() (CCompiler method), 46
detect_language() (CCompiler method), 46
directory_created() (in module), 27
Distribution (class in distutils.core), 44
distutils.archive_util (standard module), 50
distutils.bcppcompiler (standard module), 50
distutils.ccompiler (standard module), 44
distutils.cmd (standard module), 58
distutils.command (standard module), 59

distutils.command.bdist (standard module), 59
distutils.command.bdist_dumb (standard

module), 59
distutils.command.bdist_msi (standard mod-

ule), 59
distutils.command.bdist_packager (stan-

dard module), 59
distutils.command.bdist_rpm (standard mod-

ule), 59
distutils.command.bdist_wininst (standard

module), 59
distutils.command.build (standard module), 59
distutils.command.build_clib (standard

module), 59
distutils.command.build_ext (standard mod-

ule), 59
distutils.command.build_py (standard mod-

ule), 59
distutils.command.build_scripts (standard

module), 59
distutils.command.clean (standard module), 59
distutils.command.config (standard module),

59
distutils.command.install (standard module),

59
distutils.command.install_data (standard

module), 59
distutils.command.install_headers (stan-

dard module), 59
distutils.command.install_lib (standard

module), 59
distutils.command.install_scripts (stan-

dard module), 59
distutils.command.register (standard mod-

ule), 59
distutils.command.sdist (standard module), 59
distutils.core (standard module), 43
distutils.cygwinccompiler (standard module),

50
distutils.debug (standard module), 54
distutils.dep_util (standard module), 51
distutils.dir_util (standard module), 51

63

distutils.dist (standard module), 54
distutils.emxccompiler (standard module), 50
distutils.errors (standard module), 54
distutils.extension (standard module), 54
distutils.fancy_getopt (standard module), 55
distutils.file_util (standard module), 52
distutils.filelist (standard module), 56
distutils.log (standard module), 56
distutils.msvccompiler (standard module), 50
distutils.mwerkscompiler (standard module),

50
distutils.spawn (standard module), 56
distutils.sysconfig (standard module), 56
distutils.text_file (standard module), 57
distutils.unixccompiler (standard module), 49
distutils.util (standard module), 52
distutils.version (standard module), 58

E
environment variables

HOME, 53
PATH, 31
PLAT, 53

EXEC_PREFIX (data in distutils.sysconfig), 56
executable_filename() (CCompiler method), 49
execute()

CCompiler method, 49
in module distutils.util, 53

Extension (class in distutils.core), 44

F
fancy_getopt() (in module distutils.fancy getopt),

55
FancyGetopt (class in distutils.fancy getopt), 55
file_created() (in module), 27
finalize_options() (method), 60
find_library_file() (CCompiler method), 46

G
gen_lib_options() (in module distutils.ccompiler),

45
gen_preprocess_options() (in module distu-

tils.ccompiler), 45
generate_help() (FancyGetopt method), 55
get_config_h_filename() (in module distu-

tils.sysconfig), 56
get_config_var() (in module distutils.sysconfig),

56
get_config_vars() (in module distutils.sysconfig),

56
get_default_compiler() (in module distu-

tils.ccompiler), 45
get_makefile_filename() (in module distu-

tils.sysconfig), 56

get_option_order() (FancyGetopt method), 55
get_platform() (in module distutils.util), 52
get_python_inc() (in module distutils.sysconfig),

56
get_python_lib() (in module distutils.sysconfig),

57
get_special_folder_path() (in module), 27
getopt() (FancyGetopt method), 55
grok_environment_error() (in module distu-

tils.util), 53

H
has_function() (CCompiler method), 46
HOME, 53

I
initialize_options()() (method), 60

L
library_dir_option() (CCompiler method), 46
library_filename() (CCompiler method), 49
library_option() (CCompiler method), 47
link() (CCompiler method), 48
link_executable() (CCompiler method), 48
link_shared_lib() (CCompiler method), 48
link_shared_object() (CCompiler method), 48

M
make_archive() (in module distutils.archive util), 50
make_tarball() (in module distutils.archive util), 51
make_zipfile() (in module distutils.archive util), 51
mkpath()

CCompiler method, 49
in module distutils.dir util, 51

move_file()
CCompiler method, 49
in module distutils.file util, 52

N
new_compiler() (in module distutils.ccompiler), 45
newer() (in module distutils.dep util), 51
newer_group() (in module distutils.dep util), 51
newer_pairwise() (in module distutils.dep util), 51

O
object_filenames() (CCompiler method), 49
open() (TextFile method), 58

P
PATH, 31
PLAT, 53
PREFIX (data in distutils.sysconfig), 56
preprocess() (CCompiler method), 48

64 Index

Python Enhancement Proposals
PEP 301, 60
PEP 314, 43

R
readline() (TextFile method), 58
readlines() (TextFile method), 58
remove_tree() (in module distutils.dir util), 52
RFC

RFC 822, 54
rfc822_escape() (in module distutils.util), 54
run() (method), 60
run_setup() (in module distutils.core), 43
runtime_library_dir_option() (CCompiler

method), 47

S
set_executables() (CCompiler method), 47
set_include_dirs() (CCompiler method), 45
set_libraries() (CCompiler method), 46
set_library_dirs() (CCompiler method), 46
set_link_objects() (CCompiler method), 46
set_python_build() (in module distu-

tils.sysconfig), 57
set_runtime_library_dirs() (CCompiler

method), 46
setup() (in module distutils.core), 43
shared_object_filename() (CCompiler

method), 49
show_compilers() (in module distutils.ccompiler),

45
spawn() (CCompiler method), 49
split_quoted() (in module distutils.util), 53
strtobool() (in module distutils.util), 54
subst_vars() (in module distutils.util), 53

T
TextFile (class in distutils.text file), 57

U
undefine_macro() (CCompiler method), 46
unreadline() (TextFile method), 58

W
warn()

CCompiler method, 49
TextFile method, 58

wrap_text() (in module distutils.fancy getopt), 55
write_file() (in module distutils.file util), 52

Index 65

	1 An Introduction to Distutils
	1.1 Concepts & Terminology
	1.2 A Simple Example
	1.3 General Python terminology
	1.4 Distutils-specific terminology

	2 Writing the Setup Script
	2.1 Listing whole packages
	2.2 Listing individual modules
	2.3 Describing extension modules
	2.3.1 Extension names and packages
	2.3.2 Extension source files
	2.3.3 Preprocessor options
	2.3.4 Library options
	2.3.5 Other options

	2.4 Relationships between Distributions and Packages
	2.5 Installing Scripts
	2.6 Installing Package Data
	2.7 Installing Additional Files
	2.8 Additional meta-data
	2.9 Debugging the setup script

	3 Writing the Setup Configuration File
	4 Creating a Source Distribution
	4.1 Specifying the files to distribute
	4.2 Manifest-related options

	5 Creating Built Distributions
	5.1 Creating dumb built distributions
	5.2 Creating RPM packages
	5.3 Creating Windows Installers
	5.3.1 The Postinstallation script

	6 Registering with the Package Index
	6.1 The .pypirc file

	7 Uploading Packages to the Package Index
	8 Examples
	8.1 Pure Python distribution (by module)
	8.2 Pure Python distribution (by package)
	8.3 Single extension module

	9 Extending Distutils
	9.1 Integrating new commands
	9.2 Adding new distribution types

	10 Command Reference
	10.1 Installing modules: the install command family
	10.1.1 install_data
	10.1.2 install_scripts

	10.2 Creating a source distribution: the sdist command

	11 API Reference
	11.1 distutils.core --- Core Distutils functionality
	11.2 distutils.ccompiler --- CCompiler base class
	11.3 distutils.unixccompiler --- Unix C Compiler
	11.4 distutils.msvccompiler --- Microsoft Compiler
	11.5 distutils.bcppcompiler --- Borland Compiler
	11.6 distutils.cygwincompiler --- Cygwin Compiler
	11.7 distutils.emxccompiler --- OS/2 EMX Compiler
	11.8 distutils.mwerkscompiler --- Metrowerks CodeWarrior support
	11.9 distutils.archiveunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip util --- Archiving utilities
	11.10 distutils.depunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip util --- Dependency checking
	11.11 distutils.dirunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip util --- Directory tree operations
	11.12 distutils.fileunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip util --- Single file operations
	11.13 distutils.util --- Miscellaneous other utility functions
	11.14 distutils.dist --- The Distribution class
	11.15 distutils.extension --- The Extension class
	11.16 distutils.debug --- Distutils debug mode
	11.17 distutils.errors --- Distutils exceptions
	11.18 distutils.fancyunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip getopt --- Wrapper around the standard getopt module
	11.19 distutils.filelist --- The FileList class
	11.20 distutils.log --- Simple PEP 282-style logging
	11.21 distutils.spawn --- Spawn a sub-process
	11.22 distutils.sysconfig --- System configuration information
	11.23 distutils.textunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip file --- The TextFile class
	11.24 distutils.version --- Version number classes
	11.25 distutils.cmd --- Abstract base class for Distutils commands
	11.26 distutils.command --- Individual Distutils commands
	11.27 distutils.command.bdist --- Build a binary installer
	11.28 distutils.command.bdistunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip packager --- Abstract base class for packagers
	11.29 distutils.command.bdistunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip dumb --- Build a ``dumb'' installer
	11.30 distutils.command.bdistunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip msi --- Build a Microsoft Installer binary package
	11.31 distutils.command.bdistunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip rpm --- Build a binary distribution as a Redhat RPM and SRPM
	11.32 distutils.command.bdistunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip wininst --- Build a Windows installer
	11.33 distutils.command.sdist --- Build a source distribution
	11.34 distutils.command.build --- Build all files of a package
	11.35 distutils.command.buildunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip clib --- Build any C libraries in a package
	11.36 distutils.command.buildunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip ext --- Build any extensions in a package
	11.37 distutils.command.buildunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip py --- Build the .py/.pyc files of a package
	11.38 distutils.command.buildunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip scripts --- Build the scripts of a package
	11.39 distutils.command.clean --- Clean a package build area
	11.40 distutils.command.config --- Perform package configuration
	11.41 distutils.command.install --- Install a package
	11.42 distutils.command.installunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip data --- Install data files from a package
	11.43 distutils.command.installunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip headers --- Install C/C++ header files from a package
	11.44 distutils.command.installunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip lib --- Install library files from a package
	11.45 distutils.command.installunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip scripts --- Install script files from a package
	11.46 distutils.command.register --- Register a module with the Python Package Index
	11.47 Creating a new Distutils command

	Module Index
	Index

