Python Reference Manual
Release 2.3

Guido van Rossum
Fred L. Drake, Jr., editor

July 29, 2003

PythonLabs
Email: python-docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level
built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for rapid applica-
tion development, as well as for use as a scripting or glue language to connect existing components together. Python’s
simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python
supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and
the extensive standard library are available in source or binary form without charge for all major platforms, and can be
freely distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be exact
and complete. The semantics of non-essential built-in object types and of the built-in functions and modules are
described in th&@ython Library Referencd-or an informal introduction to the language, seeRkéon Tutorial For

C or C++ programmers, two additional manuals exisktending and Embedding the Python Interpretescribes the
high-level picture of how to write a Python extension module, andPyteon/C API Reference Manudéscribes the
interfaces available to CAS- programmers in detail.

CONTENTS

Introduction 1

1.1 Notation o e 1
Lexical analysis 3

2.1 LINeSIUCIUre o e e e 3
2.2 Othertokens. e 6
2.3 ldentifiersand keywords L e e e 6
2.4 Literals. e e e e e e e 7
2.5 Operators e e 10
2.6 Delimiters e e 10
Data model 13

3.1 Objects,valuesandtypes e 13
3.2 Thestandardtype hierarchy. 14
3.3 Specialmethodnames. e 20
Execution model 33

4.1 Namingandbinding. e 33
4.2 EXCEPtiONS. e e e e 34
Expressions 37

5.1 Arithmetic CONVersions e 37
5.2 AIOMS . . . o e e 37
5.3 Primaries. 39
5.4 The power operator. o o v i i i e e e 42
55 Unaryarithmeticoperations 43
5.6 Binary arithmeticoperations. e 43
5.7 Shiftingoperations e e 44
5.8 Binary bit-wise operations e e e e e 44
5.9 COMPAriSONS. . . . o v v e e e e 44
5.10 Boolean operations. e 46
5,11 Lambdas. 46
5.12 EXpression lists e e e 46
5.13 Evaluationorder. 47
5.14 SUMMATY. o o e e e e e e e e e e e 47
Simple statements 49

6.1 Expressionstatements. e e e 49
6.2 Assertstatements. e e e 49
6.3 Assignmentstatements. L L e 50

6.4 Thepass statement. e e e 52
6.5 Thedel statement e e 52
6.6 Theprint statement. L 53
6.7 Thereturn statement e e e e e e e e 53
6.8 Theyield statement. e 53
6.9 Theraise statement. e 54
6.10 Thebreak statement. e e 54
6.11 Thecontinue statement e e e 55
6.12 Theimport statement. e 55
6.13 Theglobal statement. e e 57
6.14 Theexec statement. e e e 57
7 Compound statements 59
7.1 Theif statement e e e e e 60
7.2 Thewhile statement. 60
7.3 Thefor statement e 60
7.4 Thetry statement 61
7.5 Functiondefinitions. L e e e 62
7.6 Classdefinitions. e e e e e 63
8 Top-level components 65
8.1 Complete Python programs o o e 65
8.2 Fileinput. e e e 65
8.3 Interactive INpUt. e e e 65
8.4 EXPressioninpuL e e e e 66
A History and License 67
A.1l Historyofthesoftware e e 67
A.2 Terms and conditions for accessing or otherwise using Python 68
Index 71

CHAPTER
ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While | am trying to be as precise as possible, | chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently
only one Python implementation in widespread use (although a second one now exists!), and its particular quirks are
sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore,
you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not documented here,
but in the separatéython Library Referencdocument. A few built-in modules are mentioned when they interact in a
significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name: Ic_letter (Ic_letter | "_")*

LU

Ic_letter: "a".."z

The first line says that aameis anlc _letter followed by a sequence of zero or mdee_letter s and under-
scores. Aric _letter in turn is any of the single charactew through ‘z’. (This rule is actually adhered to for
the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A verti¢glibarsed to separate
alternatives; it is the least binding operator in this notation. A gtameans zero or more repetitions of the preceding

item; likewise, a plus{) means one or more repetitions, and a phrase enclosed in square bradkétméans zero

or one occurrences (in other words, the enclosed phrase is optional. arte+ operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) rargecafcharacters. A phrase between angular
brackets €...>) gives an informal description of the symbol defined; e.g., this could be used to describe the notion
of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER
TWO

Lexical analysis

A Python program is read bygarser. Input to the parser is a streamtokens generated by thiexical analyzer This
chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bitscii character set for program text. New in version 2.3: An encoding declaration can be used
to indicate that string literals and comments use an encoding different from ASCII.. For compatibility with older
versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either declaring an
explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a sugenset of

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(anAscii superset that covers most western languages that use the Latin alphabet), but it is possible that in the future
Unicode text editors will become common. These generally use the UTF-8 encoding, which is afsnissuperset,

but with very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it
is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This
applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a numberlogical lines

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or mopdysical linesy following the explicit or implicitline joining rules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines.NOq, this is theascii
LF (linefeed) character. On Windows, it is thecil sequence CR LF (return followed by linefeed). On Macintosh, it
is theAascil CR (return) character.

2.1.3 Comments

A comment starts with a hash charactéy that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored
by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
‘coding[=:]\s*([\w- _.]+) 4 this comment is processed as an encoding declaration; the first group of
this expression names the encoding of the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
("\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among others, by Microsutijsad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are

converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation

starts. The encoding declaration must appear on a line of its own.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charadgteas follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24\
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = [Januari’, 'Februari’, 'Maart’, # These are the
"April’, 'Mer’, "Juni’, # Dutch names
"Juli’, 'Augustus’, 'September’, # for the months

'Oktober’, 'November’, 'December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

4 Chapter 2. Lexical analysis

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as usedx)y The total

number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be
split over multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smalteusitbe one of the numbers occurring on

the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is
generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger
than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of |
if len(l) <= 1L:
return [I]
r=1]
for i in range(len(l)):
s = I[:i] + I[i+1:]
p = perm(s)
for x in p:
r.append(lfi:i+1] + Xx)
return r

The following example shows various indentation errors:

2.1. Line structure 5

def perm(): # error: first line indented
for i in range(len(l)): # error: not indented
s = L] + I[i+1:]
p = perm(I[:i] + I[i+1:]) # error: unexpected indent
for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation ofreturn r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens
Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be

used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens ekientifiers keywordsliterals,
operators anddelimiters Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to amme$ are described by the following lexical definitions:

identifier = (letter|" _") (letter | digit | ")
letter == lowercase | uppercase

lowercase n= 0 Matlzt

uppercase n= 0 "ANLZY

digit m= """

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved wordkeywordsof the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

6 Chapter 2. Lexical analysis

Note that although the identifiers can be used as part of the syntaximfoort statements, it is not currently a
reserved word.

In some future version of Python, the identifias andNone will both become keywords.

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These are:

Form | Meaning | Notes
_* Not imported by from module import * * | (1)
__*__ | System-defined name

__* Class-private name mangling

See sections: 6.12, “Thmport statement”; 3.3, “Special method names”; 5.2.1, “Identifiers (Names)”".
Note:

(1) The special identifier!’ is used in the interactive interpreter to store the result of the last evaluation; it is stored
inthe __builtin ~ __ module. When not in interactive mode, ‘has no special meaning and is not defined.

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral
stringprefix
shortstring
longstring

[stringprefix](shortstring | longstring)

r] "ut | Mur" | "R"] MUY | "UR™ | MU | "uR"

""" shortstringitem* ™" | shortstringitem* ™"
longstringitem* """

| ™ longstringitem* "

shortstringchar | escapeseq

longstringchar | escapeseq

<any ASCII character except "\" or newline or the quote>
<any ASCII character except "\">

"\" <any ASCII character>

mnn

shortstringitem
longstringitem
shortstringchar
longstringchar
escapeseq

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal.

In plain English: String literals can be enclosed in matching single qub)es double quotes’(). They can also be
enclosed in matching groups of three single or double quotes (these are generally referteégle@soted strings

The backslash\() character is used to escape characters that otherwise have a special meaning, such as newline,
backslash itself, or the quote character. String literals may optionally be prefixed with arléttef R’; such strings

are calledaw stringsand use different rules for interpreting backslash escape sequences. A prafigrofy makes

the string a Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and
ISO 10646. Some additional escape sequences, described below, are available in Unicode strings. The two prefix
characters may be combined; in this casémust appear before °.

2.4. Literals 7

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the string. (A “quote” is the character used to open the string, i.e. @ittie)

Unless ant’ or ‘R prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning Notes
\ newline Ignored

\\ Backslash\()

\V Single quote’()

\" Double quote()

\a Ascli Bell (BEL)

\b Ascll Backspace (BS)

\f Ascll Formfeed (FF)

\n Ascll Linefeed (LF)

\N{ namé Character namedamein the Unicode database (Unicode only)

\r Ascli Carriage Return (CR)

\t Ascli Horizontal Tab (TAB)

\u XxXxX Character with 16-bit hex valuexxx(Unicode only) 1)
AU XXXXXXXX Character with 32-bit hex valuexxxxxxxUnicode only) (2)
\v Ascll Vertical Tab (VT)

\ 000 Ascli character with octal valueoo 3)
\x hh AsclII character with hex valuleh 4)

Notes:

(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will
be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default). Individual code
units which form parts of a surrogate pair can be encoded using this escape sequence.

(3) Asin Standard C, up to three octal digits are accepted.

(4) Unlike in Standard C, at most two hex digits are accepted.

Unlike Standard C, all unrecognized escape sequences are left in the string unchangjesl piaekslash is left in the

string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode only)” in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.

When an t’ or ‘R prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the strinfor example, the string literédl\n" consists of two characters: a backslash and

a lowercasen’. String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double djilotejs not a valid string

literal (even a raw string cannot end in an odd number of backslashes). Specifically, string cannot end in a

single backslaslfsince the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the stit@g, a line continuation.

When an t' or ‘R prefix is used in conjunction with au® or ‘U prefix, then the\uXXXX escape sequence is
processed whilall other backslashes are left in the stringor example, the string literair"\u0062\n" consists
of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and ‘LATIN SMALL LETTER
N’. Backslashes can be escaped with a preceding backslash; however, both remain in the string. ASLEXpEXixit,
escape sequences are only recognized when there are an odd number of backslashes.

8 Chapter 2. Lexical analysis

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed,
and their meaning is the same as their concatenation. Theis" 'world’ is equivalent td'helloworld"

This feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long
lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be
used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles
for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary nhumber).

Note that numeric literals do not include a sign; a phrase-ikds actually an expression composed of the unary
operator - " and the literall.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer ("I" | "L")
integer decimalinteger | octinteger | hexinteger

decimalinteger = nonzerodigit digit* | "0"
octinteger = "0" octdigit+

hexinteger = "0" (X" | "X") hexdigit+
nonzerodigit = "ot

octdigit S A

hexdigit 2= digit | "a".."f" | "A"."F"

Although both lower casd ° and upper casd.’ are allowed as suffix for long integers, it is strongly recommended to
always usel'’, since the letterl'’ looks too much like the digit1’.

Plain integer decimal literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-
bit arithmetic) are accepted as if they were long integers instead. Octal and hexadecimal literals behave similarly, but
when in the range just above the largest representable plain integer but below the largest unsigned 32-bit number (on
a machine using 32-bit arithmetic), 4294967296, they are taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value. There is no limit for long integer literals apart from what can be stored in avail-
able memory. For example, Oxdeadbeef is taken, on a 32-bit machine, as the value -559038737, while Oxdeadbeeffeed
is taken as the value 244837814107885L.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177 0x80000000
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeeffeed

2.4. Literals 9

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart "."
exponentfloat = (intpart | pointfloat) exponent
intpart m= digit+

fraction n= " digit+

exponent = (e | "EY) [+ | "] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For example077e010 ' is legal, and denotes the same number7a®10 . The allowed range of floating
point literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the operator
and the literall.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:
imagnumber ::= (floatnumber | intpart) (j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.(8+4j) . Some examples of imaginary literals:

3.14j 10 10j 001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * *x / 1 %
<< >> & | - -
< > <= >= == 1= <>

The comparison operatoss> and!= are alternate spellings of the same operdtoris the preferred spellings> is
obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

10 Chapter 2. Lexical analysis

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printingAscii characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

The following printingAscii characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

@ $?

2.6. Delimiters 11

12

CHAPTER
THREE

Data model

3.1 Objects, values and types

Objectsare Python's abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code is
also represented by objects.)

Every object has an identity, a type and a value. An objedésatity never changes once it has been created; you
may think of it as the object’s address in memory. Tise'‘operator compares the identity of two objects; i@

function returns an integer representing its identity (currently implemented as its address). An ojgedssalso
unchangeablé An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and
also defines the possible values for objects of that type.tyliie() function returns an object’s type (which is an
object itself). Thevalueof some objects can change. Objects whose value can change are saidutabke objects

whose value is unchangeable once they are created areicatedable (The value of an immutable container object

that contains a reference to a mutable object can change when the latter’'s value is changed; however the container is
still considered immutable, because the collection of objects it contains cannot be changed. So, immutability is not
strictly the same as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type;
for instance, numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable. (Imple-
mentation note: the current implementation uses a reference-counting scheme with (optional) delayed detection of
cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. SeePtlibon Library Referenctor information on controlling the
collection of cyclic garbage.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception wittnya *...except ' statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, ustlag@ method. Programs are

strongly recommended to explicitly close such objects. The . finally ' statement provides a convenient way

to do this.

Some objects contain references to other objects; these are catitdners Examples of containers are tuples, lists
and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability

1Since Python 2.2, a gradual merging of types and classes has been started that makes this and a few other assertions made in this manual
not 100% accurate and complete: for examplés itow possible in some cases to change an object’s type, under certain controlled conditions.
Until this manual undergoes extensive revision, it must now be taken as authoritative only regarding “classic classes”, that are still the default, for
compatibility purposes, in Python 2.2 and 2.3.

13

of a container, only the identities of the immediately contained objects are implied. So, if an immutable container (like
a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g.,after1; b = 1 ’, a andb may

or may not refer to the same object with the value one, depending on the implementation, bat aft¢;‘d =

[1 ', c andd are guaranteed to refer to two different, unique, newly created empty lists. (Note tkatd = [] ’

assigns the same object to batlandd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don't explicitly return anything. Its truth value is false.

Notimplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in nameNotimplemented . Numeric methods and rich comparison methods may return this value
if they do not implement the operation for the operands provided. (The interpreter will then try the reflected
operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . It is used to indicate the presence of the ‘' syntax in a slice. Its truth value is
true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in
functions. Numeric objects are immutable; once created their value never changes. Python numbers are of
course strongly related to mathematical numbers, but subject to the limitations of numerical representation in
computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may
be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the
exceptiorOverflowError is raised instead). For the purpose of shift and mask operations, integers
are assumed to have a binary, 2's complement notation using 32 or more bits, and hiding no bits from
the user (i.e., all 4294967296 different bit patterns correspond to different values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative hum-
bers are represented in a variant of 2's complement which gives the illusion of an infinite string of
sign bits extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean
values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that
when converted to a string, the strinf&lse” or"True" are returned, respectively.

14 Chapter 3. Data model

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers and the least surprises when switching between the plain and
long integer domains. Any operation except left shift, if it yields a result in the plain integer domain without
causing overflow, will yield the same result in the long integer domain or when using mixed operands.

Floating point numbers These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings
in processor and memory usage that are usually the reason for using these is dwarfed by the overhead of
using objects in Python, so there is no reason to complicate the language with two kinds of floating point
numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision floating point
numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of a complex
numberz can be retrieved through the read-only attribitesal andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in fiemg}ionreturns
the number of items of a sequence. When the length of a sequemabésindex set contains the numbers 0, 1,
...,n-1. Itemi of sequenceai is selected by i] .

Sequences also support slicing:i: j] selects all items with indek such that <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts

at 0.
Some sequences also support “extended slicing” with a third “step” pararagtei: k] selects all items o4
with indexxwherex = i + n*k,n>=0 andi <= x<].

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however,
the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is represented
by a string of one item. Characters represent (at least) 8-bit bytes. The built-in fundhighs and
ord() convert between characters and nonnegative integers representing the byte values. Bytes with
the values 0-127 usually represent the correspondg@! values, but the interpretation of values is
up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read
from a file.

(On systems whose native character set isagatil, strings may use EBCDIC in their internal rep-
resentation, provided the functioebr() andord() implement a mapping betweexscii and
EBCDIC, and string comparison preservesAlseil order. Or perhaps someone can propose a better
rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by a
Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode ordinal
(the maximum value for the ordinal is given §ys.maxunicode , and depends on how Python
is configured at compile time). Surrogate pairs may be present in the Unicode object, and will be
reported as two separate items. The built-in functiomshr() andord() convert between code
units and nonnegative integers representing the Unicode ordinals as defined in the Unicode Standard
3.0. Conversion from and to other encodings are possible through the Unicode reetioat and
the built-in functionunicode()

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing
a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

3.2. The standard type hierarchy 15

Mutable sequencesMutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignmerdeinddelete) statements.

There is currently a single intrinsic mutable sequence type:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list
of expressions in square brackets. (Note that there are no special cases needed to form lists of length
Oorl)

The extension modularray provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript afkhticselects
the item indexed bk from the mapping; this can be used in expressions and as the target of assignments or
del statements. The built-in functidan() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values
not acceptable as keys are values containing lists or dictionaries or other mutable types that are compared
by value rather than by object identity, the reason being that the efficient implementation of dictionaries
requires a key's hash value to remain constant. Numeric types used for keys obey the normal rules for nu-
meric comparison: if two numbers compare equal (d.gnd1.0) then they can be used interchangeably
to index the same dictionary entry.

Dictionaries are mutable; they can be created by{thle notation (see section 5.2.5, “Dictionary Dis-
plays”).
The extension moduletbm, gdbm, bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section 5.3.4, “Calls”) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section 7.5,
“Function definitions”). It should be called with an argument list containing the same number of items
as the function’s formal parameter list.

Special attributesfunc _doc or __doc __ is the function’s documentation string, Nione if unavail-
able;func _name or __name__is the function’s name;._module __ is the name of the module the
function was defined in, ddone if unavailable;func _defaults is atuple containing default argument
values for those arguments that have defaultdlare if no arguments have a default valdenc _code

is the code object representing the compiled function by _globals is (a reference to) the dic-
tionary that holds the function’s global variables — it defines the global namespace of the module in which

the function was definedunc _dict or __dict __ contains the namespace supporting arbitrary func-
tion attributesfunc _closure is None or a tuple of cells that contain bindings for the function’s free
variables.

Of thesefunc _code, func _defaults ,func _doc/__doc__, andfunc _dict /__dict __ may

be writable; the others can never be changed. Additional information about a function’s definition can be
retrieved from its code object; see the description of internal types below.

User-defined methodsA user-defined method object combines a class, a class instanbioiie) and any
callable object (normally a user-defined function).
Special read-only attributesm _self is the class instance objedtm _func is the function object;
im _class isthe class oim _self for bound methods or the class that asked for the method for unbound
methods;__doc __ is the method’s documentation (samermas_func. __doc __); __name__is the
method name (same &s _func. __name__); __module __ is the name of the module the method
was defined in, oNone if unavailable. Changed in version 2ith _self used to refer to the class that
defined the method.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function
object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance
of that class), if that attribute is a user-defined function object, an unbound user-defined method object, or

16 Chapter 3. Data model

a class method object. When the attribute is a user-defined method object, a new method object is only
created if the class from which it is being retrieved is the same as, or a derived class of, the class stored in
the original method object; otherwise, the original method object is used as it is.

When a user-defined method object is created by retrieving a user-defined function object from a class,
its im _self attribute isNone and the method object is said to be unbound. When one is created by
retrieving a user-defined function object from a class via one of its instances, itelf attribute is the
instance, and the method object is said to be bound. In either case, the new miethariésss attribute

is the class from which the retrieval takes place, anahitsfunc attribute is the original function object.

When a user-defined method object is created by retrieving another method object from a class or instance,
the behaviour is the same as for a function object, except thamnth&inc attribute of the new instance
is not the original method object but its _func attribute.

When a user-defined method object is created by retrieving a class method object from a class or instance,
itsim _self attribute is the class itself (the same asithe class attribute), and itém _func attribute
is the function object underlying the class method.

When an unbound user-defined method object is called, the underlying furintiofufic) is called, with
the restriction that the first argument must be an instance of the properiofasdgss) or of a derived
class thereof.

When a bound user-defined method object is called, the underlying funictiafinc) is called, inserting

the class instancéng _self) in front of the argument list. For instance, wh@is a class which contains

a definition for a functiori() , andx is an instance of, callingx.f(1) is equivalent to calling.f(x,

1).

When a user-defined method object is derived from a class method object, the “class instance” stored in
im _self will actually be the class itself, so that calling eithef(1) or C.f(1) is equivalent to
callingf(C,1) wheref is the underlying function.

Note that the transformation from function object to (unbound or bound) method object happens each time
the attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the
attribute to a local variable and call that local variable. Also notice that this transformation only happens

for user-defined functions; other callable objects (and all non-callable objects) are retrieved without trans-
formation. It is also important to note that user-defined functions which are attributes of a class instance
are not converted to bound methods; thiidy happens when the function is an attribute of the class.

Generator functions A function or method which uses thgeld statement (see section 6.8, “Thield
statement”) is called generator functionSuch a function, when called, always returns an iterator object
which can be used to execute the body of the function: calling the iteratex¥) method will cause
the function to execute until it provides a value usingyledd statement. When the function executes a
return statement or falls off the end,&toplteration exception is raised and the iterator will have
reached the end of the set of values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in func-
tions arelen() andmath.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributetoc __ is the function’s
documentation string, dlone if unavailable;__name__ is the function’s name;__self __is setto
None (but see the next item); _module __ is the name of the module the function was defined in or
None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in methadlssappend() ,
assumingalist is a list object. In this case, the special read-only attributself __ is set to the object
denoted byist.

Class TypesClass types, or “new-style classes,” are callable. These objects normally act as factories for new
instances of themselves, but variations are possible for class types that ovemiel®__() . The argu-
ments of the call are passed tanew__() and, in the typical case, ta_init __() to initialize the
new instance.

3.2. The standard type hierarchy 17

Classic ClassesClass objects are described below. When a class object is called, a new class instance (also
described below) is created and returned. This implies a call to the clasg® __() method if it has
one. Any arguments are passed on to thénit __() method. If there is na_init __() method,
the class must be called without arguments.

Class instancesClass instances are described below. Class instances are callable only when the class has a
__call __() methodxx(arguments) is a shorthand fox. __call __(arguments)

Modules Modules are imported by thienport statement (see section 6.12, “Tingport statement”). A module

object has a namespace implemented by a dictionary object (this is the dictionary referenced by ifjie s
attribute of functions defined in the module). Attribute references are translated to lookups in this dictionary,
e.g.,m.x is equivalent tan.__dict __["x"] . A module object does not contain the code object used to
initialize the module (since it isn't needed once the initialization is done).

Attribute assignment updates the module’'s namespace dictionary, eagx, = 1’ is equivalent to
‘m.__dict __['x] =1 "

Special read-only attribute:_dict __ is the module’s namespace as a dictionary object.

Predefined (writable) attributes:_name__ is the module’s name;_doc __ is the module’s documentation
string, orNone if unavailable;__file __ is the pathname of the file from which the module was loaded, if
it was loaded from a file. The_file __ attribute is not present for C modules that are statically linked into

the interpreter; for extension modules loaded dynamically from a shared library, it is the pathname of the shared
library file.

ClassesClass objects are created by class definitions (see section 7.6, “Class definitions”). A class has a nhamespace

implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g.,
‘C.x’istranslated toC. __dict __["x"] ’. When the attribute name is not found there, the attribute search
continues in the base classes. The search is depth-first, left-to-right in the order of occurrence in the base class
list.

When a class attribute reference (for cl&ssay) would yield a user-defined function object or an unbound
user-defined method object whose associated class is €ittieone of its base classes, it is transformed into

an unbound user-defined method object whaseclass attribute isC. When it would yield a class method
object, it is transformed into a bound user-defined method object whoselass andim _self attributes

are bothC. When it would yield a static method object, it is transformed into the object wrapped by the static
method object. See section 3.3.2 for another way in which attributes retrieved from a class may differ from those
actually contained in its _dict __.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes.__name__ is the class name;_module __ is the module name in which the class was
defined;__dict __isthe dictionary containing the class’s namespacdiases __ is a tuple (possibly empty
or a singleton) containing the base classes, in the order of their occurrence in the base clasddist;_ is
the class’s documentation string, or None if undefined.

Class instancesA class instance is created by calling a class object (see above). A class instance has a hamespace

implemented as a dictionary which is the first place in which attribute references are searched. When an attribute
is not found there, and the instance’s class has an attribute by that name, the search continues with the class
attributes. If a class attribute is found that is a user-defined function object or an unbound user-defined method
object whose associated class is the class (a@)ldaf the instance for which the attribute reference was initiated

or one of its bases, it is transformed into a bound user-defined method objectiwhosass attribute isC

whoseim _self attribute is the instance. Static method and class method objects are also transformed, as if they
had been retrieved from cla€ssee above under “Classes”. See section 3.3.2 for another way in which attributes

of a class retrieved via its instances may differ from the objects actually stored in the clad&gs __. If
no class attribute is found, and the object’s class hasgetattr __() method, that is called to satisfy the
lookup.

18

Chapter 3. Data model

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a__setattr __() or__delattr __() method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section 3.3, “Special method names.”

Special attributes: _dict __ is the attribute dictionary; _class __ is the instance’s class.

Files A file object represents an open file. File objects are created bgghr() built-in function, and also by
os.popen() ,os.fdopen() , and themakefile() method of socket objects (and perhaps by other func-
tions or methods provided by extension modules). The obggststdin -~ , sys.stdout andsys.stderr
are initialized to file objects corresponding to the interpreter’'s standard input, output and error streams. See the
Python Library Referenciar complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change
with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represehyte-compilecexecutable Python code, bytecode The difference be-
tween a code object and a function object is that the function object contains an explicit reference to the
function’s globals (the module in which it was defined), while a code object contains no context; also the
default argument values are stored in the function object, not in the code object (because they represent val-
ues calculated at run-time). Unlike function objects, code objects are immutable and contain no references
(directly or indirectly) to mutable objects.
Special read-only attributeso _name gives the function nameso _argcount is the number of posi-
tional arguments (including arguments with default values);nlocals is the number of local variables
used by the function (including argumentsy _varnames is a tuple containing the names of the local
variables (starting with the argument namex);_cellvars is a tuple containing the names of local
variables that are referenced by nested functions;freevars s a tuple containing the names of free
variables;co _code is a string representing the sequence of bytecode instructons;onsts is a tu-
ple containing the literals used by the bytecode;_names is a tuple containing the names used by the
bytecodero _filename is the filename from which the code was compiled;_firstlineno is the
first line number of the functionco _Inotab is a string encoding the mapping from byte code offsets
to line numbers (for details see the source code of the interpreterstacksize is the required stack
size (including local variablesgo _flags is an integer encoding a number of flags for the interpreter.
The following flag bits are defined fao _flags : bit 0x04 is set if the function uses thédrguments ’
syntax to accept an arbitrary number of positional arguments)X8i8 is set if the function uses the
‘**keywords ' syntax to accept arbitrary keyword arguments;®i20 is set if the function is a gener-
ator.
Future feature declarationdrom __future __ import division ") also use bits irco _flags
to indicate whether a code object was compiled with a particular feature enablég2000 is set if the
function was compiled with future division enabled; fitsl0 and0x1000 were used in earlier versions
of Python.
Other bits inco _flags are reserved for internal use.

If a code object represents a function, the first itentan_consts is the documentation string of the
function, orNone if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below).
Special read-only attribute$:_back is to the previous stack frame (towards the caller)None if this
is the bottom stack framd;_code is the code object being executed in this frarhejocals is the
dictionary used to look up local variables; globals is used for global variabled;_builtins is
used for built-in (intrinsic) names;_restricted is a flag indicating whether the function is executing
in restricted execution modé;_lasti gives the precise instruction (this is an index into the bytecode
string of the code object).
Special writable attributed: _trace , if not None, is a function called at the start of each source code
line (this is used by the debuggef); exc _type ,f _exc _value ,f _exc _traceback represent the

3.2. The standard type hierarchy 19

most recent exception caught in this frarhejineno is the current line number of the frame — writing
to this from within a trace function jumps to the given line (only for the bottom-most frame). A debugger
can implement a Jump command (aka Set Next Statement) by writindinemo.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section 7idy “Tdtate-
ment.”) It is accessible asys.exc _traceback , and also as the third item of the tuple returned by
sys.exc _info() . The latter is the preferred interface, since it works correctly when the program is
using multiple threads. When the program contains no suitable handler, the stack trace is written (nicely
formatted) to the standard error stream; if the interpreter is interactive, it is also made available to the user
assys.last _traceback

Special read-only attributesb _next is the next level in the stack trace (towards the frame where the
exception occurred), ddone if there is no next leveltb _frame points to the execution frame of the
current leveltb _lineno gives the line number where the exception occurtied;lasti indicates the
precise instruction. The line number and last instruction in the traceback may differ from the line number
of its frame object if the exception occurred itrg statement with no matching except clause or with a

finally clause.

Slice objects Slice objects are used to represent slices wddended slice syntag used. This is a slice using
two colons, or multiple slices or ellipses separated by commasafi:gstep] ,afizj, ki , or
al..., il . They are also created by the builtslice() ~ function.

Special read-only attributestart is the lower boundstop is the upper boundstep is the step value;

each isNone if omitted. These attributes can have any type.

Slice objects support one method:

indices (self, length
This method takes a single integer argumiemigth and computes information about the extended
slice that the slice object would describe if applied to a sequentengthitems. It returns a tuple
of three integers; respectively these aregtat andstopindices and theatepor stride length of the
slice. Missing or out-of-bounds indices are handled in a manner consistent with regular slices. New
in version 2.3.

Static method objects Static method objects provide a way of defeating the transformation of function objects
to method objects described above. A static method object is a wrapper around any other object, usually a
user-defined method object. When a static method object is retrieved from a class or a class instance, the
object actually returned is the wrapped object, which is not subject to any further transformation. Static
method objects are not themselves callable, although the objects they wrap usually are. Static method
objects are created by the builtstaticmethod() constructor.

Class method objectsA class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of
class method objects upon such retrieval is described above, under “User-defined methods”. Class method
objects are created by the builtégtassmethod() constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscript-
ing and slicing) by defining methods with special names. This is Python’s approapkrator overloadingallowing

classes to define their own behavior with respect to language operators. For instance, if a class defines a method
named__getitem __() , andx is an instance of this class, thefi] is equivalent tax. __getitem __(i)

Except where mentioned, attempts to execute an operation raise an exception when no appropriate method is defined.

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with

20 Chapter 3. Data model

retrieval of individual elements, but extracting a slice may not make sense. (One example of thisdsl&hést
interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

_init __(self[, ...])
Called when the instance is created. The arguments are those passed to the class constructor expres-
sion. If a base class has aninit __() method, the derived class’s_init __() method, if any,
must explicitly call it to ensure proper initialization of the base class part of the instance; for example:
‘BaseClass. __init __(self, [args..]) '. As a special contraint on constructors, no value may be
returned; doing so will causeTeypeError to be raised at runtime.

__del __(self)

Called when the instance is about to be destroyed. This is also called a destructor. If a base class has a
__del __() method, the derived class's del __() method, if any, must explicitly call it to ensure proper
deletion of the base class part of the instance. Note that it is possible (though not recommended!) for the
__del __() method to postpone destruction of the instance by creating a new reference to it. It may then be
called at a later time when this new reference is deleted. It is not guaranteed delt __ () methods are

called for objects that still exist when the interpreter exits.

Note: ‘del x ' doesn't directly callx. __del __() — the former decrements the reference countxfdry

one, and the latter is only called whers reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.g., a
doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the stack
frame of a function that caught an exception (the traceback storggbsiaxc _traceback keeps the stack

frame alive); or a reference to the object on the stack frame that raised an unhandled exception in interactive
mode (the traceback storedsgys.last _traceback keeps the stack frame alive). The first situation can
only be remedied by explicitly breaking the cycles; the latter two situations can be resolved by Sloniag

in sys.exc _traceback orsys.last _traceback . Circular references which are garbage are detected
when the option cycle detector is enabled (it's on by default), but can only be cleaned up if there are no Python-
level __del __() methods involved. Refer to the documentation for tltemodulefor more information
abouthow__del __() methods are handled by the cycle detector, particularly the descriptiongdithage

value.
Warning: Due to the precarious circumstances under whicldel __() methods are invoked, excep-
tions that occur during their execution are ignored, and a warning is printegststderr instead. Also,

when__del __() is invoked in response to a module being deleted (e.g., when execution of the program is
done), other globals referenced by thedel __() method may already have been deleted. For this reason,
__del __() methods should do the absolute minimum needed to maintain external invariants. Starting with
version 1.5, Python guarantees that globals whose name begins with a single underscore are deleted from their
module before other globals are deleted; if no other references to such globals exist, this may help in assuring
that imported modules are still available at the time whenthdel __() method is called.

__repr __(self)
Called by therepr() built-in function and by string conversions (reverse quotes) to compute the “official”
string representation of an object. If at all possible, this should look like a valid Python expression that could be
used to recreate an object with the same value (given an appropriate environment). If this is not possible, a string
of the form <...some useful descriptiorr’.should be returned. The return value must be a string object. If a
class defines _repr __() butnot__str __() ,then__repr __() is also used when an “informal” string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambigu-
ous.

__str __(self)
Called by thestr() built-in function and by therint statement to compute the “informal” string represen-
tation of an object. This differs from_repr __() in that it does not have to be a valid Python expression: a

3.3. Special method names 21

more convenient or concise representation may be used instead. The return value must be a string object.

__It __(self, othe}

__le __(self, othe}

__eq__(self, othejy

__ne__(self, othe}

__gt __(self, othe}

__ge__(self, othe}
New in version 2.1. These are the so-called “rich comparison” methods, and are called for comparison operators
in preference ta__cmp__() below. The correspondence between operator symbols and method names is as
follows: x<y callsx. __It __(y), x<=ycallsx. __le __(y), x==y callsx. __eq__(y), xI=y andx<>y
callx. __ne__(y),x>ycallsx. __gt __(y), andx>=ycallsx. __ge__(y). These methods can return any
value, but if the comparison operator is used in a Boolean context, the return value should be interpretable as a
Boolean value, else BypeError will be raised. By conventiorialse is used for false and@irue for true.

There are no implied relationships among the comparison operators. The txathyatoes not imply that!=y
is false. Accordingly, when defining_eq__, one should also define_ne __ so that the operators will behave
as expected.

There are no reflected (swapped-argument) versions of these methods (to be used when the left argument does
not support the operation but the right argument does); rathdt, __() and__gt __() are each other’s
reflection,__le __() and__ge__() are each other’s reflection, andeq__() and__ne__() are their

own reflection.

Arguments to rich comparison methods are never coerced. A rich comparison method may return
Notlmplemented if it does not implement the operation for a given pair of arguments.

__cmp__(self, othe}
Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other , zeroifself == other , a positive integer iself > other . Ifno __cmp__() ,
__eqg__() or__ne__() operation is defined, class instances are compared by object identity (“address”).
See also the description of hash __() for some important notes on creating objects which support cus-
tom comparison operations and are usable as dictionary keys. (Note: the restriction that exceptions are not
propagated by _cmp__() has been removed since Python 1.5.)

__rcmp __(self, othe}
Changed in version 2.1: No longer supported.

__hash __(self)
Called for the key object for dictionary operations, and by the built-in fundtiash() . Should return a 32-
bit integer usable as a hash value for dictionary operations. The only required property is that objects which
compare equal have the same hash value; it is advised to somehow mix together (e.g., using exclusive or) the
hash values for the components of the object that also play a part in comparison of objects. If a class does not
definea__cmp__() method it should not define.a_hash __() operation either; if it defines_cmp__() or
__eg__() butnot__hash __() ,itsinstances will not be usable as dictionary keys. If a class defines mutable
objects and implements.a.cmp__() or __eq__() method, it should not implement_hash __() , since
the dictionary implementation requires that a key’s hash value is immutable (if the object’s hash value changes,
it will be in the wrong hash bucket).

__nonzero __(self)
Called to implement truth value testing, and the built-in operatiool() ; should returrFalse or True , or
their integer equivalent8 or 1. When this method is not defined, len __() is called, if it is defined (see
below). If a class defines neitherlen __() nor__nonzero __() , allits instances are considered true.

__unicode __(self)
Called to implementinicode() builtin; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system
default encoding.

22 Chapter 3. Data model

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

__getattr __(self, namg
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree faelf). nameis the attribute name. This method should return the (computed)
attribute value or raise attributeError exception.

Note that if the attribute is found through the normal mechanisngetattr __() is not called. (This is an
intentional asymmetry between getattr __() and__setattr __() .) This is done both for efficiency
reasons and because otherwisesetattr __() would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See_thetattribute __() method

below for a way to actually get total control in new-style classes.

__setattr __(self, name, valye
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary)ameis the attribute namesalueis the value to be assigned to it.

If __setattr __() wants to assign to an instance attribute, it should not simply exeseté ‘ name

= value ' — this would cause a recursive call to itself. Instead, it should insert the value in the dictio-
nary of instance attributes, e.gself. __dict __[namg = value '. For new-style classes, rather than
accessing the instance dictionary, it should call the base class method with the same name, for example,
‘object. __setattr __(self, name, value) .

__delattr __(self, namg
Like __setattr __() but for attribute deletion instead of assignment. This should only be implemented if
‘del obj. nameis meaningful for the object.

More attribute access for new-style classes

The following methods only apply to new-style classes.

__getattribute __(self, namg
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr __, it will never be called (unless called explicitly). This method should return the (computed)
attribute value or raise afittributeError exception. In order to avoid infinite recursion in this method, its
implementation should always call the base class method with the same name to access any attributes it needs,
for example, bbject. __getattribute __(self, name) .

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a saleatiggtorclass)
appears in the class dictionary of another new-style class, known asviigr class. In the examples below, “the
attribute” refers to the attribute whose name is the key of the property in the owner claBst

__get __(self, instance, owngr
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute acces)owneris always the owner class, whilestanceis the instance that the attribute was accessed
through, oNone when the attribute is accessed throughdhaer. This method should return the (computed)
attribute value or raise afsttributeError exception.

__set __(self, instance, valge
Called to set the attribute on an instamestanceof the owner class to a new valualue

3.3. Special method names 23

__delete __(self, instanck
Called to delete the attribute on an instantstanceof the owner class.

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocal_get __() , __set __() , and__delete __() . If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a.X has a lookup chain starting with __dict __['xX] , thentype(a). __dict __['x] , and continuing
through the base classestgpe(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style
objects or classes (ones that subclatggct() ortype()).

The starting point for descriptor invocation is a bindiags . How the arguments are assembled depends on

Direct Call The simplest and least common call is when user code directly invokes a descriptor methodet __(a) .

Instance Binding If binding to a new-style object instance,a.x is transformed into the call

type(a). __dict __[X]. __get __(a, type(a))

Class Binding If binding to a new-style classx is transformed into the callA. __dict __['X]. __get __(None,
A).

SuperBinding If a is an instance of super , then the binding super(B, obj).m() searches
obj. __class __. __mro__ for the base clas® immediately precedindg@ and then invokes the de-
scriptor with the callA. __dict __['m’]. __get __(obj, A)

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are defined.
Data descriptors define both get __() and__set __() . Non-data descriptors have justtheget __() method.

Data descriptors always override a redefinition in an instance dictionary. In contrast, non-data descriptors can be
overridden by instances.

Python methods (includingtaticmethod() andclassmethod()) are implemented as non-data descriptors.
Accordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that
differ from other instances of the same class.

Theproperty() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for
objects having very few instance variables. The space consumption can become acute when creating large numbers of
instances.

The default can be overridden by definingslots__ in a new-style class definition. The_slots__ declaration takes
a sequence of instance variables and reserves just enough space in each instance to hold a value for each variable.
Space is saved becausedict__ is not created for each instance.

__slots __
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. If defined in a new-style class,slots__ reserves space for the declared variables and prevents the
automatic creation of _dict__ and__weakref__ for each instance. New in version 2.2.

24 Chapter 3. Data model

Notes on using__slots__

e Without a__dict__ variable, instances cannot be assigned new variables not listed_in shats _ definition.

Attempts to assign to an unlisted variable name rafsgsbuteError . If dynamic assignment of new
variables is desired, then ald _dict __’' to the sequence of strings in theslots__ declaration. Changed
in version 2.3: Previously, addirig__dict __' to the__slots__ declaration would not enable the assignment

of new attributes not specifically listed in the sequence of instance variable names.

e Without a__weakref _ variable for each instance, classes defininglots__ do not support weak references
to its instances. If weak reference support is needed, theh addeakref __’ to the sequence of strings in
the __slots__ declaration. Changed in version 2.3: Previously, addingweakref __' to the__slots _
declaration would not enable support for weak references.

e __slots__ are implemented at the class level by creating descriptors (3.3.2) for each variable name. As a result,
class attributes cannot be used to set default values for instance variables definesddty _; otherwise, the
class attribute would overwrite the descriptor assignment.

e If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

e The action of a__slots__ declaration is limited to the class where it is defined. As a result, subclasses will have
a__dict__ unless they also define_slots__.

e __slots__ do not work for classes derived from “variable-length” built-in types sudbrag , str andtuple

e Any non-string iterable may be assigned_taslots _. Mappings may also be used; however, in the future,
special meaning may be assigned to the values corresponding to each key.

3.3.3 Customizing class creation
By default, new-style classes are constructed usipg() . A class definition is read into a separate namespace and
the value of class name is bound to the resutyp&(name, bases, dict)
When the class definition is read, if metaclass_ is defined then the callable assigned to it will be called instead of
type() . The allows classes or functions to be written which monitor or alter the class creation process:

e Modifying the class dictionary prior to the class being created.

e Returning an instance of another class — essentially performing the role of a factory function.

__metaclass
This variable can be any callable accepting argumentadare, bases , anddict . Upon class creation, the
callable is used instead of the builttype() . New in version 2.2.

The appropriate metaclass is determined by the following precedence rules:

o If dict __metaclass __'] exists, itis used.

e Otherwise, if there is at least one base class, its metaclass is used (this looks tdass _ attribute first and
if not found, uses its type).

e Otherwise, if a global variable named metaclass_ exists, it is used.
e Otherwise, the old-style, classic metaclass (types.ClassType) is used.
The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, interface

checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource lock-
ing/synchronization.

3.3. Special method names 25

3.3.4 Emulating callable objects

_call __(self[, args...])
Called when the instance is “called” as a function; if this method is defix@dgl, arg2, ...) is a
shorthand fox. __call __(argl, arg2, ...)

3.3.5 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods
is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable
keys should be the integekdor whichO <= k < N whereN is the length of the sequence, or slice objects, which
define a range of items. (For backwards compatibility, the methagetslice __() (see below) can also be de-

fined to handle simple, but not extended slices.) It is also recommended that mappings provide the keg#fpds

values() ,items() , has_key() , get() , clear() , setdefault() , iterkeys() , itervalues() ,
iteritems() , pop() , popitem() , copy() , andupdate() behaving similar to those for Python’s standard
dictionary objects. Thé&serDict module provides ®ictMixin class to help create those methods from a base

set of __getitem __() , __setitem __() , __delitem __() , andkeys() . Mutable sequences should pro-

vide methodsappend() ,count() ,index() ,extend() ,insert() ,pop() ,remove() ,reverse() and

sort() , like Python standard list objects. Finally, sequence types should implement addition (meaning concatena-
tion) and multiplication (meaning repetition) by defining the methodadd __() , __radd __() , __iadd __() ,
—mul__() ,——rmul __() and__imul __() described below; they should not definecoerce __() or other
numerical operators. It is recommended that both mappings and sequences implementah&ins __()

method to allow efficient use of the operator; for mappingsn should be equivalent dias _key() ; for se-

guences, it should search through the values. It is further recommended that both mappings and sequences implement
the__iter __() method to allow efficient iteration through the container; for mappingser __() should be

the same agerkeys() ; for sequences, it should iterate through the values.

__len __(self)
Called to implement the built-in functiolen() . Should return the length of the object, an integerO.
Also, an object that doesn't define.anonzero __() method and whose_len __() method returns zero
is considered to be false in a Boolean context.

__getitem __(self, key
Called to implement evaluation e€lf| key] . For sequence types, the accepted keys should be integers and slice
objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence type) is
uptothe__getitem __() method. Ifkeyis of an inappropriate typ&ypeError may be raised,; if of a value
outside the set of indexes for the sequence (after any special interpretation of negative adeggyror
should be raisedNote: for loops expect that aindexError will be raised for illegal indexes to allow
proper detection of the end of the sequence.

__setitem __(self, key, valug
Called to implement assignment self[key} . Same note as for_getitem __() . This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised for kepvahezs as for
the__getitem __() method.

__delitem __(self, key
Called to implement deletion cfelf[key] . Same note as far_getitem __() . This should only be im-
plemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for imgeypatues as for the _getitem __()
method.

__iter __(self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the

26 Chapter 3. Data model

container, and should also be made available as the métrkdys()

Iterator objects also need to implement this method; they are required to return themselves. For more information
on iterator objects, seéterator Typesin the Python Library Reference

The membership test operatoia (andnot in) are normally implemented as an iteration through a sequence.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be a sequence.

__contains __(self, iten)
Called to implement membership test operators. Should return triteenifis in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

3.3.6 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences methods
should at most only define_getslice __() ; mutable sequences might define all three three methods.

__getslice __(self,i,)
Deprecated since release 2.@Gupport slice objects as parameters to_thgetitem __() method.

Called to implement evaluation sElff i: j] . The returned object should be of the same typsedfs Note that

missingi or j in the slice expression are replaced by zeresys.maxint , respectively. If negative indexes

are used in the slice, the length of the sequence is added to that index. If the instance does not implement
the __len __() method, arAttributeError is raised. No guarantee is made that indexes adjusted this
way are not still negative. Indexes which are greater than the length of the sequence are not modified. If no
__getslice __() isfound, a slice object is created instead, and passedgetitem __() instead.

__setslice __(self, i,], sequenge
Called to implement assignmentgelf] i: j] . Same notes farandj as for__getslice __() .

This method is deprecated. If na setslice __() is found, or for extended slicing of the forselff i: j: k] ,
a slice object is created, and passed tsetitem __() , instead of__setslice __() being called.

__delslice __(self,i,)
Called to implement deletion afelf[i: j] . Same notes farandj as for__getslice __() . This method is
deprecated. If na_delslice __() is found, or for extended slicing of the forself] i: j: k] , a slice object
is created, and passed_tadelitem __() ,instead of__delslice __() being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is avail-
able. For slice operations involving extended slice notation, or in absence of the slice methgetstem __() ,
__setitem __() or__delitem __() is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods _getitem __() , __setitem __() and__delitem __() support slice objects as ar-
guments):

3.3. Special method names 27

class MyClass:
def _ getitem__(self, index):
def _ setitem__(self, index, value):

def __ delitem__(self, index):

if sys.version_info < (2, 0):
They won't be defined if version is at least 2.0 final

def __ getslice__(self, i, j):

return selffmax(0, i):max(0, j):]
def __ setslice__(self, i, j, seq):

selffmax(0, i):max(0, j):] = seq
def _ delslice__(self, i, j):

del selffmax(0, i):max(0, j):]

Note the calls tanax() ; these are necessary because of the handling of negative indices beforéghee __()

methods are called. When negative indexes are used, ttilem __() methods receive them as provided, but the
__*slice __() methods get a “cooked” form of the index values. For each negative index value, the length of
the sequence is added to the index before calling the method (which may still result in a negative index); this is the
customary handling of negative indexes by the built-in sequence types, and*tem __() methods are expected

to do this as well. However, since they should already be doing that, negative indexes cannot be passed in; they must be
be constrained to the bounds of the sequence before being passed. tdgitken __() methods. Callingnax(O,

i) conveniently returns the proper value.

3.3.7 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

__add __(self, othe}

__sub __(self, othe}

__mul __(self, othe}

__floordiv __(self, othe}

__mod__(self, othe}

__divmod __(self, othe}

__pow__(self, othef, modulo])

__lIshift __(self, othe}

__rshift __(self, othe}

__and __(self, othe}

__xor __(self, othe}

__or __(self, othe}
These methods are called to implement the binary arithmetic operatipns®, // , % divmod() , pow() ,
<<, >> & 7, |). Forinstance, to evaluate the expressien, wherex is an instance of a class that has
an__add__() methodx. __add__(y) iscalled. The__divmod __() method should be the equivalent to
using__floordiv. __() and__mod__() ;itshould not be related to_truediv __() (described below).
Note that__pow__() should be defined to accept an optional third argument if the ternary version of the
built-in pow() function is to be supported.

28 Chapter 3. Data model

__div __(self, othe}

__truediv __(self, othe}
The division operator/() is implemented by these methods. Thetruediv. __() method is used when
__future __.division is in effect, otherwise__div __() is used. If only one of these two methods is

defined, the object will not support division in the alternate confepeError will be raised instead.

__radd __(self, othe}

__rsub __(self, othe}

__rmul __(self, othe}

__rdiv __(self, othe}

__rtruediv __(self, othe}

__rfloordiv __(self, othey

__rmod __(self, othe}

__rdivmod __(self, othe}

__rpow __(self, othe}

__rlshift __(self, othe}

__rrshift __(self, othe}

__rand __(self, othe}

__rxor __(self, othe}

__ror __(self, othe)
These methods are called to implement the binary arithmetic operatiors t, / , % divmod() , pow() ,
<<, >> &, 7, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation. For instance, to evaluate the expressiaherey is an instance of
aclass that has an_rsub __() method,y. __rsub __(x) is called. Note that ternargow() will not try
calling __rpow __() (the coercion rules would become too complicated).

__iadd __(self, othe}

__isub __(self, othe}

__imul __(self, othe}

__idiv __(self, othe}

__itruediv __(self, othe}

__ifloordiv __(self, othey

__imod __(self, othe

__ipow __(self, otheE, modulo])

__llshift __(self, othe}

__irshift __(self, othe}

__iand __(self, othe}

__ixor __(self, othe}

__ior __(self, othe}
These methods are called to implement the augmented arithmetic operatiors (*=, /=, %= **= , <<=,
>>=, &=, "=, |=). These methods should attempt to do the operation in-place (modsgifijgand return the
result (which could be, but does not have tod®df). If a specific method is not defined, the augmented operation
falls back to the normal methods. For instance, to evaluate the expressiprwherex is an instance of a class
thathasan _iadd __() methodx. __iadd __(y) is called. Ifxis an instance of a class that does not define
a__iadd() methodx. __add__(y) andy. __radd __(x) are considered, as with the evaluatiorxef.

__neg__(self)
__pos __(self)
__abs __(self)
__invert __(self)

Called to implement the unary arithmetic operations#, abs() and™).

__complex __(self)
__int __(self)
__long __(self)
__float __(self)

3.3. Special method names 29

Called to implement the built-in functioromplex() ,int() ,long() , andfloat() . Should return a
value of the appropriate type.

__oct __(self)
__hex __(self)
Called to implement the built-in functiort() andhex() . Should return a string value.

__coerce __(self, othej
Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple contaglfrapdother
converted to a common numeric type,Mone if conversion is impossible. When the common type would be
the type ofother , it is sufficient to returrNone, since the interpreter will also ask the other object to attempt
a coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the
conversion to the other type here). A return valu®ofimplemented is equivalent to returninijlone.

3.3.8 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become
hard to document precisely; documenting what one version of one particular implementation does is undesirable.
Instead, here are some informal guidelines regarding coercion. In Python 3.0, coercion will not be supported.

¢ Ifthe left operand of a % operator is a string or Unicode object, no coercion takes place and the string formatting
operation is invoked instead.

e Itis no longer recommended to define a coercion operation. Mixed-mode operations on types that don't define
coercion pass the original arguments to the operation.

e New-style classes (those derived fraject) never invoke the_ _coerce __() method in response to a
binary operator; the only time_coerce __() isinvoked is when the built-in functiocoerce() s called.

e For most intents and purposes, an operator that refdatsnplemented is treated the same as one that is
not implemented at all.

e Below,__op__() and__rop __() are used to signify the generic method names corresponding to an opera-
tor; __iop __is used for the corresponding in-place operator. For example, for the operator add __()
and__radd __() are used for the left and right variant of the binary operator, ariddd __ for the in-place
variant.

e For objectsx andy, firstx. __op__(y) is tried. If this is not implemented or returidotimplemented
y. __rop __(x) is tried. If this is also not implemented or returNstimplemented , aTypeError ex-
ception is raised. But see the following exception:

e Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and the
right operand is an instance of a proper subclass of that type or class, the right operang’s__() method
is tried beforethe left operand’'s_op__() method. This is done so that a subclass can completely override
binary operators. Otherwise, the left operand’op__ method would always accept the right operand: when
an instance of a given class is expected, an instance of a subclass of that class is always acceptable.

e When either operand type defines a coercion, this coercion is called before that typgis () or
__rop __() method is called, but no sooner. If the coercion returns an object of a different type for the
operand whose coercion is invoked, part of the process is redone using the new object.

e When an in-place operator (like<") is used, if the left operand implementsiop __() , itis invoked without
any coercion. When the operation falls back toop__() and/or__rop __() , the normal coercion rules

apply.

e In x+y, if xis a sequence that implements sequence concatenation, sequence concatenation is invoked.

30 Chapter 3. Data model

e In x*y, if one operator is a sequence that implements sequence repetition, and the other is animteger (
long), sequence repetition is invoked.

e Rich comparisons (implemented by methad®q__() and so on) never use coercion. Three-way comparison
(implemented by _cmp__()) does use coercion under the same conditions as other binary operations use it.

¢ In the current implementation, the built-in numeric tyjrets , long andfloat do not use coercion; the type
complex however does use it. The difference can become apparent when subclassing these types. Over time,
the typecomplex may be fixed to avoid coercion. All these types implement aoerce __() method, for
use by the built-ircoerce() function.

3.3. Special method names 31

32

CHAPTER
FOUR

Execution model

4.1 Naming and binding

Namegefer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program
text refers to thdinding of that name established in the innermost function block containing the use.

A blockis a piece of Python program text that is executed as a unit. The following are blocks: a module, a function
body, and a class definition. Each command typed interactively is a block. A script file (a file given as standard input
to the interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a
command specified on the interpreter command line with-tieption) is a code block. The file read by the built-in
functionexecfile() is a code block. The string argument passed to the built-in funetiaf() and to theexec
statement is a code block. The expression read and evaluated by the built-in fumgtitfh is a code block.

A code block is executed in axecution frameA frame contains some administrative information (used for debug-
ging) and determines where and how execution continues after the code block’s execution has completed.

A scopedefines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name. The scope of hames defined in a class block is
limited to the class block; it does not extend to the code blocks of methods.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible
to a code block is called the bloclesvironment

If a name is bound in a block, it is a local variable of that block. If a name is bound at the module level, it is a global
variable. (The variables of the module code block are local and global.) If a variable is used in a code block but not
defined there, it is &ee variable

When a name is not found at allNameError exception is raised. If the name refers to a local variable that has not
been bound, &nboundLocalError exception is raisedJnboundLocalError is a subclass dilameError .

The following constructs bind names: formal parameters to functiomsprt statements, class and function def-
initions (these bind the class or function name in the defining block), and targets that are identifiers if occurring in
an assignmenfpr loop header, or in the second position ofextept clause header. Thenport statement of

the form “from ...import * binds all names defined in the imported module, except those beginning with an
underscore. This form may only be used at the module level.

A target occurring in alel statement is also considered bound for this purpose (though the actual semantics are to
unbind the name). Itis illegal to unbind a name that is referenced by an enclosing scope; the compiler will report a
SyntaxError

Each assignment or import statement occurs within a block defined by a class or function definition or at the module
level (the top-level code block).

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound.

33

The previous rule is a subtle. Python lacks declarations and allows name binding operations to occur anywhere within
a code block. The local variables of a code block can be determined by scanning the entire text of the block for name
binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding of that
name in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtin namespace, the namespace of the module
__builtin __. The global nhamespace is searched first. If the name is not found there, the builtin namespace is
searched. The global statement must precede all uses of the name.

The built-in namespace associated with the execution of a code block is actually found by looking up the name
__builtins __in its global namespace; this should be a dictionary or a module (in the latter case the module’s dic-
tionary is used). Normally, the_builtins ~ __ namespace is the dictionary of the built-in modulebuiltin

(note: no ‘s’). Ifitisn't, restricted execution mode is in effect.

The namespace for a module is automatically created the first time a module is imported. The main module for a script
is always called__main __.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.

A class definition is an executable statement that may use and define names. These references follow the normal
rules for name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names
defined at the class scope are not visible in methods.

4.1.1 Interaction with dynamic features

There are several cases where Python statements are illegal when used in conjunction with nested scopes that contain
free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at compile
time.

If the wild card form of import —import * *—is used in a function and the function contains or is a nested block
with free variables, the compiler will raise a SyntaxError.

If exec is used in a function and the function contains or is a nested block with free variables, the compiler will raise a
SyntaxError unless the exec explicitly specifies the local namespace faxbe . (In other words,exec obj ’
would be illegal, butéxec obj in ns "would be legal.)

Theeval() , execfile() , andinput() functions and thexec statement do not have access to the full envi-
ronment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables
are not resolved in the nearest enclosing namespace, but in the global namegpacexec statement and the

eval() andexecfile() functions have optional arguments to override the global and local namespace. If only
one namespace is specified, it is used for both.

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exceptionréggsedat the point where the error is detected; it mayhaedledby

the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with thise statement. Exception handlers are specified with the

1This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

34 Chapter 4. Execution model

try ... except statement. Thery ... finally statement specifies cleanup code which does not handle the
exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-
entering the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack backtrace, except when the exce@istesnExit

Exceptions are identified by class instances. Selection of a matching except clause is based on object identity. The
except clause must reference the same class or a base class of it.

When an exception is raised, an object (malMo@e) is passed as the exceptionalue this object does not affect the
selection of an exception handler, but is passed to the selected exception handler as additional information. For class
exceptions, this object must be an instance of the exception class being raised.

Warning: Messages to exceptions are not part of the Python API. Their contents may change from one version of
Python to the next without warning and should not be relied on by code which will run under multiple versions of the
interpreter.

See also the description of thng statement in section 7.4 angise statement in section 6.9.

4.2. Exceptions 35

36

CHAPTER
FIVE

EXxpressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes:In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name := othername

and no semantics are given, the semantics of this formaofe are the same as fathername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common
type,” the arguments are coerced using the coercion rules listed at the end of chapter 3. If both arguments are standard
numeric types, the following coercions are applied:

o If either argument is a complex number, the other is converted to complex;

e otherwise, if either argument is a floating point number, the other is converted to floating point;

e otherwise, if either argument is a long integer, the other is converted to long integer;

e otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator). Extensions can
define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
reverse quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms
is:

atom = identifier | literal | enclosure
enclosure = parenth _form | list _display
| dict _display | string _conversion

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See Section 4.1 for documentation of naming and binding.

37

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raisesdameError exception.

Private name manglingwhen an identifier that textually occurs in a class definition begins with two or more under-
score characters and does not end in two or more underscores, it is consigenrateanameof that class. Private

names are transformed to a longer form before code is generated for them. The transformation inserts the class name in
front of the name, with leading underscores removed, and a single underscore inserted in front of the class name. For
example, the identifier_spam occurring in a class namddamwill be transformed ta_Ham__spam. This transfor-

mation is independent of the syntactical context in which the identifier is used. If the transformed name is extremely
long (longer than 255 characters), implementation defined truncation may happen. If the class name consists only of
underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal ::= stringliteral | integer | longinteger
| floathumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See section 2.4 for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:
parenth _form == "(" [expression _list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is the
empty tuple, for which parenthesage required — allowing unparenthesized “nothing” in expressions would cause
ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

test = and _test ("or" and test)* | lambda form
testlist test (" test)* ["]

list _display = "[" [listmaker] "]"

listmaker = expression (list _for | ("" expression)* [")"])
list _iter = list _for | list _if

list _for = "for" expression _list "in" testlist [list _iter]
list _if n= it test list _iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right

38 Chapter 5. Expressions

and placed into the list object in that order. When a list comprehension is supplied, it consists of a single expression
followed by at least onéor clause and zero or mofer orif clauses. In this case, the elements of the new list

are those that would be produced by considering each dbtheor if clauses a block, nesting from left to right, and
evaluating the expression to produce a list element each time the innermost block is reached.

5.2.5 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict _display = "{" [key _datum _list] "}"
key _datum _list = key _datum ("," key _datum)* [","]
key _datum = expression ":" expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key object is used as a
key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in section 3.2. (To summarize,the key type should be hash-
able, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last datum (textually
rightmost in the display) stored for a given key value prevails.

5.2.6 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string _conversion n= expression _list

A string conversion evaluates the contained expression list and converts the resulting object into a string according to
rules specific to its type.

If the object is a string, a numbéexone, or a tuple, list or dictionary containing only objects whose type is one of
these, the resulting string is a valid Python expression which can be passed to the built-in femalfpn to yield
an expression with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape sequences that are
safe to print.)

Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or indirectly)
use ... ' to indicate a recursive reference, and the result cannot be passadli) to get an equal value
(SyntaxError will be raised instead).

The built-in functionrepr() performs exactly the same conversion in its argument as enclosing it in parentheses and
reverse quotes does. The built-in funct&tn) performs a similar but more user-friendly conversion.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary == atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

5.3. Primaries 39

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance.
This object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the
exceptionAttributeError is raised. Otherwise, the type and value of the object produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:
subscription @= primary "[" expression _list "]"
The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the
mapping, and the subscription selects the value in the mapping that corresponds to that key. (The expression list is a
tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative, the length of
the sequence is added to it (so that, xgl] selects the last item of.) The resulting value must be a nonnegative
integer less than the number of items in the sequence, and the subscription selects the item whose index is that value
(counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly one character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or del statements. The syntax for a slicing:

slicing = simple _slicing | extended _slicing
simple _slicing = primary "[" short _slice ""
extended _slicing = primary "[" slice _list "7"

slice _list = slice _item ("," slice _item)* [","]
slice _item = expression | proper _slice | ellipsis
proper _slice = short _slice | long _slice

short _slice = [lower _bound] ™" [upper _bound]
long _slice = short _slice ":" [stride]

lower _bound 1= expression

upper _bound = expression

stride ;= expression

ellipsis = "

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by
defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is
the case if the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice
and no trailing comma, the interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zerogysdttaxint , respectively. If

either bound is negative, the sequence’s length is added to it. The slicing now selects all items wiksinclexhai

<= k < jwherei andj are the specified lower and upper bounds. This may be an empty sequence. It is not an error
if i orj lie outside the range of valid indexes (such items don't exist so they aren't selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed
with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is
a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The

40 Chapter 5. Expressions

conversion of a slice item that is an expression is that expression. The conversion of an ellipsis slice item is the built-in
Ellipsis object. The conversion of a proper slice is a slice object (see section 3.2) sthdse, stop andstep

attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting
None for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call
argument _list

primary "(" [argument _list [T ™"

positional _arguments ["," keyword _arguments]
[, ™" expression]

[" expression]

| keyword _arguments ["," "*" expression]

[, ™" expression]

| ™" expression ["," "™*" expression]

| "**" expression

positional ~ _arguments = expression ("," expression)*
keyword _arguments = keyword _item ("," keyword _item)*
keyword _item = identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and certain class instances themselves are callable; extensions may define
additional callable object types). All argument expressions are evaluated before the call is attempted. Please refer to
section 7.5 for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next,
for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as
the first formal parameter name, the first slot is used, and so on). If the slot is already filigzeError exception

is raised. Otherwise, the value of the argument is placed in the slot, filling it (even if the expredéaoreist fills the

slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is
specified, aypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter gigpeBrror exception is raised, unless
a formal parameter using the syntaidentifier "is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter ndiyigeBrror exception is raised, unless a

formal parameter using the syntakidentifier "is present; in this case, that formal parameter receives a dictio-

nary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding
values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression ' appears in the function callekpression ' must evaluate to a sequence. Elements
from this sequence are treated as if they were additional positional arguments; if there are postional arjumeNts

, and ‘expression ' evaluates to a sequengé,...yM, this is equivalent to a call with M+N positional arguments
x1,...xN,y1,...yM.

A consequence of this is that although theXpression ' syntax appearafter any keyword arguments, it is pro-
cessedeforethe keyword arguments (and thgeéxpression ' argument, if any — see below). So:

5.3. Primaries 41

>>> def f(a, b):
print a, b

>>> f(b=1, *(2))
21
>>> f(a=1, *(2,)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: f() got multiple values for keyword argument 'a’
>>> (1, *(2))
12

It is unusual for both keyword arguments and thexpression ' syntax to be used in the same call, so in practice
this confusion does not arise.

If the syntax **expression ' appears in the function callekpression ' must evaluate to a (subclass of) dictio-
nary, the contents of which are treated as additional keyword arguments. In the case of a keyword appearing in both
‘expression ' and as an explicit keyword argumentTgpeError exception is raised.

Formal parameters using the syntaidéentifier " or ‘**identifier ' cannot be used as positional argument

slots or as keyword argument names. Formal parameters using the iguotalist) ' cannot be used as keyword
argument names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is
assigned to the sublist using the usual tuple assignment rules after all other parameter processing is done.

A call always returns some value, possiblgne, unless it raises an exception. How this value is computed depends
on the type of the callable object.

Ifitis—
a user-defined function: The code block for the function is executed, passing it the argument list. The first thing the

code block will do is bind the formal parameters to the arguments; this is described in section 7.5. When the
code block executesraturn statement, this specifies the return value of the function call.

a built-in function or method: The result is up to the interpreter; see thghon Library Referencfor the descrip-
tions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method:The corresponding user-defined function is called, with an argument list that is one longer
than the argument list of the call: the instance becomes the first argument.

a class instance:The class must definea call __() method; the effect is then the same as if that method was
called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power = primary ["**" u _expr]
Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands).

The power operator has the same semantics as the bpittwt) function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type. The result type is that of the arguments after coercion.

42 Chapter 5. Expressions

With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands,
the result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For exd{i2, returns100, but10**-2 returns

0.01 . (This last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types
and the second argument was negative, an exception was raised).

Raising0.0 to a negative power results inZeroDivisionError . Raising a negative number to a fractional
power results in &alueError

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr = power | u _expr | "+" u _expr | u _expr
The unary- (minus) operator yields the negation of its numeric argument.
The unary+ (plus) operator yields its numeric argument unchanged.

The unary™ (invert) operator yields the bit-wise inversion of its plain or long integer argument. The bit-wise inversion
of x is defined as(x+1) . It only applies to integral numbers.

In all three cases, if the argument does not have the proper typgekError exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

meexpr = u_expr | m _expr ™" u _expr | m _expr "//" u _expr | m _expr "/" u _expr
| m_expr "%" u _expr
a_expr = mexpr | a _expr "+'' m _expr | a _expr " m _expr

The* (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers
are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a
negative repetition factor yields an empty sequence.

The/ (division) and// (floor division) operators yield the quotient of their arguments. The numeric arguments
are first converted to a common type. Plain or long integer division yields an integer of the same type; the re-
sult is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the
ZeroDivisionError exception.

The %(modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raisésr tiigvisionError exception.

The arguments may be floating point numbers, 8.44%0.7 equal€0.34 (since3.14 equalA*0.7 + 0.34)

The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of
the result is strictly smaller than the absolute value of the second ogerand

The integer division and modulo operators are connected by the following idertity= (X/y)*y + (x%y)
Integer division and modulo are also connected with the built-in functiemod() : divmod(x, y) == (x/y,

Iwhile abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in ordefl&éhd00 %1el100 have the same sign 48100, the
computed result isle-100 + 1e100 , which is numerically exactly equal tbe100. Functionfmod() in themath module returns a result
whose sign matches the sign of the first argument instead, and so reterh80 in this case. Which approach is more appropriate depends on
the application.

5.5. Unary arithmetic operations 43

x%y) . These identities don’t hold for floating point numbers; there similar identities hold approximately x¥fere
is replaced byloor(x/y) orfloor(xfy) - 1 2,

Deprecated since release 2.3The floor division operator, the modulo operator, anddhenod() function are
no longer defined for complex numbers. Instead, convert to a floating point number usialgs(he function if
appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:
shift _expr = a_expr | shift _expr ("<<" | ">>") a _expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They
shift the first argument to the left or right by the number of bits given by the second argument.

A right shift by n bits is defined as division bgow(2, n). A left shift by n bits is defined as multiplication with
pow(2, n); for plain integers there is no overflow check so in that case the operation drops bits and flips the sign if
the result is not less thggow(2,31) in absolute value. Negative shift counts raiséadueError exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

and _expr ;= shift _expr | and _expr "&" shift _expr
Xor _expr = and_expr | xor _expr "™ and _expr
or _expr = Xor _expr | or _expr "|" xor _expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type.

The™ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

The| operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers. The arguments
are converted to a common type.

5.9 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions bke< b < c¢ have the interpretation that is conventional
in mathematics:

comparison
comp_operator

or _expr (comp _operator or _expr)*
ll<ll | II>II | II::lI | II>:II | II<:lI | II<>II | ll!:Il
| "iS" [Ilnotll] I [Ilnotll] llinll

2|f x is very close to an exact integer multiple of y, it's possible flopr(x/y) to be one larger thafx-x%y)/y due to rounding. In such
cases, Python returns the latter result, in order to preservditmod(x,y)[0] * v + X % y be very close tx.

44 Chapter 5. Expressions

Comparisons yield boolean valuégue or False .

Comparisons can be chained arbitrarily, exgs y <= z isequivalenttx < y and y <= z , exceptthay is
evaluated only once (but in both cages not evaluated at all when < y is found to be false).

Formally, ifa, b, ¢, ...,y, zare expressions arapa oph, ...,opyare comparison operators, thempa b opb c..y
opy zis equivalent ta opa band b opb cand ...y opy z except that each expression is evaluated at most once.

Note thata opa b opb doesn’t imply any kind of comparison betweagandc, so that, e.gx < y > z is perfectly
legal (though perhaps not pretty).

The forms<> and!= are equivalent; for consistency with (5, is preferred; wheré= is mentioned below> is also
accepted. The> spelling is considered obsolescent.

The operators, >, ==, >=, <=, and!= compare the values of two objects. The objects need not have the same
type. If both are numbers, they are converted to a common type. Otherwise, objects of differeaivtygyssompare
unequal, and are ordered consistently but arbitrarily.

(This unusual definition of comparison was used to simplify the definition of operations like sorting and #mel
not in operators. In the future, the comparison rules for objects of different types are likely to change.)

Comparison of objects of the same type depends on the type:

e Numbers are compared arithmetically.

e Strings are compared lexicographically using the numeric equivalents (the result of the built-in fandfjon)
of their characters. Unicode and 8-bit strings are fully interoperable in this behavior.

e Tuples and lists are compared lexicographically using comparison of corresponding elements. This means that
to compare equal, each element must compare equal and the two sequences must be of the same type and have
the same length.

If not equal, the sequences are ordered the same as their first differing elements. For ecap(fle2,x],
[1,2,y]) returns the same a&snp(x,y) . If the corresponding element does not exist, the shorter sequence
is ordered first (for exampl¢1,2] < [1,2,3]).

e Mappings (dictionaries) compare equal if and only if their sorted (key, value) lists compare®equatomes
other than equality are resolved consistently, but are not otherwise défined.

e Most other types compare unequal unless they are the same object; the choice whether one object is considered
smaller or larger than another one is made arbitrarily but consistently within one execution of a program.

The operatorén andnot in test for set membershix in s evaluates to true ik is a member of the sef and

false otherwisex not in sreturns the negation of in s. The set membership test has traditionally been bound

to sequences; an object is a member of a set if the set is a sequence and contains an element equal to that object.
However, it is possible for an object to support membership tests without being a sequence. In particular, dictionaries
support memership testing as a nicer way of spekieg in dict; other mapping types may follow suit.

For the list and tuple typeg, in yis true if and only if there exists an indésuch thax == y[i] is true.

For the Unicode and string types,in yis true if and only ifx is a substring of. An equivalent test ig.find(x)

I= -1 . Note,xandy need not be the same type; consequentgh’ in 'abc’ will return True . Empty strings
are always considered to be a substring of any other strinyj, go "abc" will return True . Changed in version
2.3: Previouslyx was required to be a string of length

For user-defined classes which define thecontains __() method, x in y is true if and only if
y. __contains __(X) istrue.

3The implementation computes this efficiently, without constructing lists or sorting.

4Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case of
comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people expected
to be able to test a dictionary for emptiness by comparing{i to

5.9. Comparisons 45

For user-defined classes which do not defineontains __() and do define__getitem __() ,x in yistrue
if and only if there is a non-negative integer indesuch thatx == y[i] , and all lower integer indices do not raise
IndexError exception. (If any other exception is raised, it is asifraised that exception).

The operatonot in is defined to have the inverse true valuerof

The operator$s andis not test for object identityx is v is true if and only ifx andy are the same objeck
is not yyields the inverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression = or_test | lambda _form

or _test »= and_test | or _test "or" and _test
and _test = not _test | and _test "and" not = _test
not _test ’= comparison | "not" not _test

lambda _form "lambda" [parameter _list]: expression

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as fal$¢one, numeric zero of all types, empty sequences (strings, tuples and lists), and empty
mappings (dictionaries). All other values are interpreted as true.

The operatonot yields1 if its argument is false) otherwise.

The expressiom and Yy first evaluates; if x is false, its value is returned; otherwigds evaluated and the resulting
value is returned.

The expression or Y first evaluatex; if x is true, its value is returned; otherwisgis evaluated and the resulting
value is returned.

(Note that neitheand nor or restrict the value and type they return@andl, but rather return the last evaluated
argument. This is sometimes useful, e.gs ik a string that should be replaced by a default value if it is empty, the
expressiors or 'foo’ yields the desired value. Becausat has to invent a value anyway, it does not bother to
return a value of the same type as its argument, sor@y.,foo’ yieldsO, not”)

5.11 Lambdas

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a shorthand to create
anonymous functions; the expressimmbda arguments expressioryields a function object. The unnamed
object behaves like a function object defined with

def name(arguments):
return expression

See section 7.5 for the syntax of parameter lists. Note that functions created with lambda forms cannot contain
statements.

5.12 Expression lists

expression _list = expression ("," expression)* [")"]

46 Chapter 5. Expressions

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions
in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.ksingletor); it is optional in all other cases. A
single expression without a trailing comma doesn't create a tuple, but rather yields the value of that expression. (To
create an empty tuple, use an empty pair of parenthések:

5.13 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, exprd
(exprl, expr2, expr3, exprd)
{exprl: expr2, expr3: expr4}
exprl + expr2 * (expr3 - expré)
func(exprl, expr2, *expr3, **expr4)
expr3, exprd = exprl, expr2

5.14 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for comparisons, which chain from left to
right — see above, and exponentiation, which groups from right to left).

5.13. Evaluation order 47

Operator Description
lambda Lambda expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in , notin Membership tests
is ,is not Identity tests
<, <=, >,>=, <>, 1= == | Comparisons
| Bitwise OR
h Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
* 1, % Multiplication, division, remainder
+X, - X Positive, negative
X Bitwise not
* Exponentiation
X. attribute Attribute reference
X[indeX Subscription
X[index indexq Slicing
f(arguments.) Function call
(expressions.) Binding or tuple display
[expressions.] List display
{ key datum..} Dictionary display
‘ expressions.’ String conversion

Chapter 5. Expressions

CHAPTER
SIX

Simple statements

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple _stmt = expression _stmt
assert _stmt
assignment _stmt
augmented _assignment _stmt

pass _stmt
del _stmt
print _stmt
return _stmt
raise _stmt
break _stmt

continue _stmt
import _stmt
global _stmt

I
I
I
I
I
I
I
| yield _stmt
I
I
I
I
I
| exec _stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the Nale). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression _stmt = expression _list
An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is nbtone, it is converted to a string using the builtdiapr() function and the
resulting string is written to standard output (see section 6.6) on a line by itself. (Expression statementsNariding
are not written, so that procedure calls do not cause any output.)

6.2 Assert statements

Assert statements are a convenient way to insert debugging assertions into a program:

assert _stmt = T“assert" expression ["," expression]

The simple form, assert expression ', is equivalent to

49

if __debug__:
if not expression: raise AssertionError

The extended formassert expressionl, expression2 ', is equivalent to

if __debug__:
if not expressionl: raise AssertionError, expression2

These equivalences assume thaidebug __ and AssertionError refer to the built-in variables with those
names. In the current implementation, the built-in variablelebug __ is 1 under normal circumstances, 0 when
optimization is requested (command line option -O). The current code generator emits no code for an assert state-
ment when optimization is requested at compile time. Note that it is unnecessary to include the source code for the
expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments ta__debug __ are illegal. The value for the built-in variable is determined when the interpreter starts.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment _stmt = (target _list "=")+ expression _list
target _list = target (",)" target)* [)"]
target = identifier
| "(" target _list ™)"
"[* target _list """

|
| attributeref
| subscription
| slicing

(See section 5.3 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object
(an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide
about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types
and the exceptions raised are given with the definition of the object types (see section 3.2).

Assignment of an object to a target list is recursively defined as follows.

¢ If the target list is a single target: The object is assigned to that target.

o If the target list is a comma-separated list of targets: The object must be a sequence with the same number of
items as the there are targets in the target list, and the items are assigned, from left to right, to the corresponding
targets. (This rule is relaxed as of Python 1.5; in earlier versions, the object had to be a tuple. Since strings are
sequences, an assignment like ‘b = "xy" ’is now legal as long as the string has the right length.)

Assignment of an object to a single target is recursively defined as follows.

¢ If the target is an identifier (name):

50 Chapter 6. Simple statements

— If the name does not occur ingdobal statement in the current code block: the name is bound to the
object in the current local namespace.

— Otherwise: the name is bound to the object in the current global namespace.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

o Ifthe target is a target list enclosed in parentheses or in square brackets: The object must be a sequence with the
same number of items as there are targets in the target list, and its items are assigned, from left to right, to the
corresponding targets.

e If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the cas@eError is raised. That object is then asked to assign
the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but
not necessarihAttributeError).

¢ If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a
mutable sequence object (e.g., a list) or a mapping object (e.g., a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (e.g., a list), the subscript must yield a plain integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range,IndexError s raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (e.g., a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

e Ifthe targetis a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (e.g., alist). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The
bounds should evaluate to (small) integers. If either bound is negative, the sequence’s length is added to it.
The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the object
allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is
rejected during the code generation phase, causing less detailed error messages.)

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-hand
side are ‘safe’ (e.g..@, b = b, a ’swaps two variables), overlapgithin the collection of assigned-to variables
are not safe! For instance, the following program prifds ‘2] :

6.3.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

6.3. Assignment statements 51

augmented _assignment _stmt
augop

target augop expression _list
||+:u | n_—n | k1 | u/:n | ||%:u | Hkk—1
| ll>>=ll | ll<<:ll | Il&:ll | ll":u | II|:II

(See section 5.3 for the syntax definitions for the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression hkker= 1 can be rewritten a8 = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented versioris only evaluated once. Also, when possible, the actual operation is
performedin-place meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of tha{possible
placebehavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the initial value is retrieved vgighaditr() and the result is assigned
with a setattr() . Notice that the two methods do not necessarily refer to the same variable. g&tadin()
refers to a class variableetattr() still writes to an instance variable. For example:

class A:
x =3 # class variable
a = A
ax += 1 # writes a.x as 4 leaving Ax as 3

6.4 The pass statement

pass _stmt = '"pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

6.5 The del statement

del _stmt = "del" target _list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in global statement in the same code block. If the name is unbouN&naeError exception will
be raised.

Itis illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

52 Chapter 6. Simple statements

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing
is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced
object).

6.6 The print statement

print _stmt = "print" ([expression ("," expression)* []]
)

| ">>" expression [(" expression)+ [1]

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object
is not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string
is then written. A space is written before each object is (converted and) written, unless the output system believes
it is positioned at the beginning of a line. This is the case (1) when no characters have yet been written to standard
output, (2) when the last character written to standard outpin i br (3) when the last write operation on standard
output was not @rint statement. (In some cases it may be functional to write an empty string to standard output for
this reason.Note: Objects which act like file objects but which are not the built-in file objects often do not properly
emulate this aspect of the file object’s behavior, so it is best not to rely on this.

A ‘\n ’ character is written at the end, unless firent statement ends with a comma. This is the only action if the
statement contains just the keywaqndnt

Standard output is defined as the file object nastddut in the built-in modulesys . If no such object exists, or if
it does not have arite() method, aRuntimeError exception is raised.

print also has an extended form, defined by the second portion of the syntax described above. This form is some-
times referred to asptint chevron.” In this form, the first expression after tie must evaluate to a “file-like”

object, specifically an object that hasveite() = method as described above. With this extended form, the subse-
guent expressions are printed to this file object. If the first expression evaluesd¢gthensys.stdout is used

as the file for output.

6.7 The return statement

return _stmt = "return" [expression _list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, &lsae is substituted.
return leaves the current function call with the expression listNone) as return value.

Whenreturn passes control out of y statement with dinally clause, thafinally clause is executed
before really leaving the function.

In a generator function, theeturn statement is not allowed to include arpression _list . In that context, a
barereturn indicates that the generator is done and will casisplteration to be raised.

6.8 Theyield statement

yield _stmt = “yield" expression _list

Theyield statement is only used when defining a generator function, and is only used in the body of the generator
function. Using ayield statement in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator.

6.6. The print statement 53

The body of the generator function is executed by calling the genera®it§) method repeatedly until it raises an
exception.

When ayield statement is executed, the state of the generator is frozen and the valgredsion _list is

returned tonext() s caller. By “frozen” we mean that all local state is retained, including the current bindings of
local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next
timenext() isinvoked, the function can proceed exactly as ifyldd statement were just another external call.

Theyield statementis not allowed in they clause of ary ... finally construct. The difficulty is that there’s
no guarantee the generator will ever be resumed, hence no guarantee fimaithe block will ever get executed.

Note: In Python 2.2, thgsield statement is only allowed when tgenerators feature has been enabled. It will
always be enabled in Python 2.3. Thisfuture __ import statment can be used to enable the feature:

from _ future__ import generators

See Also:

PEP 0255, Simple Generatofs
The proposal for adding generators andyledd statement to Python.

6.9 Theraise statement

raise _stmt = ‘"raise" [expression ['," expression ["," expression]]]

If no expressions are preserdjse re-raises the last expression that was active in the current scope. If no exception
is active in the current scope, an exception is raised indicating this error.

Otherwiseraise evaluates the expressions to get three objects, ldng as the value of omitted expressions. The
first two objects are used to determine tipeandvalueof the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value,
and the second object must Hene.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception
value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is
used as the argument list for the class constructor; iffage, an empty argument list is used, and any other object

is treated as a single argument to the constructor. The instance so created by calling the constructor is used as the
exception value.

If a third object is present and niione, it must be a traceback object (see section 3.2), and it is substituted instead of
the current location as the place where the exception occurred. If the third object is present and not a traceback object
or None, aTypeError exception is raised. The three-expression formaife is useful to re-raise an exception
transparently in an except clause, baise with no expressions should be preferred if the exception to be re-raised
was the most recently active exception in the current scope.

Additional information on exceptions can be found in section 4.2, and information about handling exceptions is in
section 7.4.

6.10 The break statement

break _stmt = "break"

break may only occur syntactically nested if@ or while loop, but not nested in a function or class definition
within that loop.

54 Chapter 6. Simple statements

It terminates the nearest enclosing loop, skipping the optieisal clause if the loop has one.
If afor loop is terminated bypreak , the loop control target keeps its current value.

Whenbreak passes control out oftey statement with &inally clause, thatinally clause is executed before
really leaving the loop.

6.11 The continue statement

continue _stmt ;= "continue"

continue may only occur syntactically nested infar or while loop, but not nested in a function or class
definition ortry statement within that looplt continues with the next cycle of the nearest enclosing loop.

6.12 The import statement

import _stmt = '"import" module ['as" name] ("," module ['as" name])*
| "from" module "import" identifier ["as" name]
("" identifier ["as" name])*

| "from" module "import" "*"

(identifier ".")* identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or
names in the local namespace (of the scope wher@nthert statement occurs). The first form (withdiuom)

repeats these steps for each identifier in the list. The formfidgth performs step (1) once, and then performs step

(2) repeatedly.

module

In this context, to “initialize” a built-in or extension module means to call an initialization function that the module
must provide for the purpose (in the reference implementation, the function’s name is obtained by prepending string
“init” to the module’s name); to “initialize” a Python-coded module means to execute the module’s body.

The system maintains a table of modules that have been or are being initialized, indexed by module name. This table
is accessible asys.modules . When a module name is found in this table, step (1) is finished. If not, a search for a
module definition is started. When a module is found, it is loaded. Details of the module searching and loading process
are implementation and platform specific. It generally involves searching for a “built-in” module with the given name
and then searching a list of locations giversgs.path

If a built-in module is found, its built-in initialization code is executed and step (1) is finished. If no matching file is
found, ImportError is raised. If a file is found, it is parsed, yielding an executable code block. If a syntax error
occursSyntaxError israised. Otherwise, an empty module of the given name is created and inserted in the module
table, and then the code block is executed in the context of this module. Exceptions during this execution terminate
step (2).

When step (1) finishes without raising an exception, step (2) can begin.

The first form ofimport statement binds the module name in the local namespace to the module object, and then
goes on to import the next identifier, if any. If the module name is followeddythe name followingas is used as
the local name for the module.

Thefrom form does not bind the module name: it goes through the list of identifiers, looks each one of them up in
the module found in step (1), and binds the name in the local namespace to the object thus found. As with the first
form of import , an alternate local name can be supplied by specifyasy [bcalname”. If a name is not found,
ImportError is raised. If the list of identifiers is replaced by a stér) all public names defined in the module

are bound in the local namespace of itmport statement..

11t may occur within arexcept orelse clause. The restriction on occurring in tirg clause is implementor’s laziness and will eventually
be lifted.

6.11. The continue statement 55

The public namesdefined by a module are determined by checking the module’s namespace for a variable named
__all __; if defined, it must be a sequence of strings which are names defined or imported by that module. The
names given in__all __ are all considered public and are required to exist._1&ll __is not defined, the set of

public names includes all names found in the module’s namespace which do not begin with an underscore character
(‘). —_all __should contain the entire public API. It is intended to avoid accidentally exporting items that are not
part of the API (such as library modules which were imported and used within the module).

The from form with **’ may only occur in a module scope. If the wild card form of import #mport * ' —
is used in a function and the function contains or is a nested block with free variables, the compiler will raise a
SyntaxError

Hierarchical module names:when the module names contains one or more dots, the module search path is carried out
differently. The sequence of identifiers up to the last dot is used to find a “package”; the final identifier is then searched
inside the package. A package is generally a subdirectory of a direct@ysgmath that has a file __init__.py’.

[XXX Can't be bothered to spell this out right now; see the URIip://www.python.org/doc/essays/packages.html for

more details, also about how the module search works from inside a package.]

The built-in function__import __() is provided to support applications that determine which modules need to be
loaded dynamically; refer tBuilt-in Functionsin the Python Library Referenctr additional information.

6.12.1 Future statements

A future statemeris a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python. The future statement is intended to ease migration to
future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a
per-module basis before the release in which the feature becomes standard.

future _statement n= "from" " __future __" "import" feature ['as" name]
("," feature ["as" name])*

feature = identifier

name = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

e the module docstring (if any),
e comments,
e blank lines, and

e other future statements.

The features recognized by Python 2.3 gqerferators ', ‘division ’and ‘nested _scopes '. ‘generators '’
and nested _scopes ’are redundant in 2.3 because they are always enabled.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new incom-
patible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently.
Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if
a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard_nfotiule __,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

56 Chapter 6. Simple statements

Note that there is nothing special about the statement:

import __ future__ [as name]

That is not a future statement; it's an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by an exec statement or calls to the builtin functiomspile() and execfile() that occur
in a moduleM containing a future statement will, by default, use the new syntax or semantics associated with the
future statement. This can, starting with Python 2.2 be controlled by optional argumeoispide() — see the

documentation of that function in the library reference for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with thé option, is passed a script name to execute, and the script includes a future statement, it
will be in effect in the interactive session started after the script is executed.

6.13 The global statement

global _stmt := “global" identifier ("," identifier)*

Theglobal statementis a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable wititmlt , although free
variables may refer to globals without being declared global.

Names listed in alobal statement must not be used in the same code block textually precedingdhat
statement.

Names listed in global statement must not be defined as formal parameters doin doop control targetclass
definition, function definition, oimport statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this freedom,
as future implementations may enforce them or silently change the meaning of the program.)

Programmer’s note: theglobal is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular,global statement contained in &xec statement does not affect the code block
containingtheexec statement, and code contained inexec statement is unaffected loyobal statements in the

code containing thexec statement. The same applies to &wal() , execfile() andcompile() functions.

6.14 The exec statement

exec _stmt = ‘"exec" expression ['In" expression [',)" expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a string, an
open file object, or a code object. If it is a string, the string is parsed as a suite of Python statements which is then
executed (unless a syntax error occurs). If it is an open file, the file is parse@ ontiind executed. If it is a code

object, it is simply executed.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression
afterin is specified, it should be a dictionary, which will be used for both the global and the local variables. If two
expressions are given, both must be dictionaries and they are used for the global and local variables, respectively.

As a side effect, an implementation may insert additional keys into the dictionaries given besides those corresponding
to variable names set by the executed code. For example, the current implementation may add a reference to the
dictionary of the built-in module _builtin -~ __ under the key__builtins __ (!).

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in funetath() . The built-in

6.13. The global statement 57

functionsglobals() andlocals() return the current global and local dictionary, respectively, which may be
useful to pass around for use byec .

58 Chapter 6. Simple statements

CHAPTER
SEVEN

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other state-
ments in some way. In general, compound statements span multiple lines, although in simple incarnations a whole
compound statement may be contained in one line.

Theif , while andfor statements implement traditional control flow construdty. specifies exception han-
dlers and/or cleanup code for a group of statements. Function and class definitions are also syntactically compound
statements.

Compound statements consist of one or more ‘clauses.’” A clause consists of a header and a ‘suite.” The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one
or more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can
be one or more indented statements on subsequent lines. Only the latter form of suite can contain nested compound
statements; the following is illegal, mostly because it wouldn’t be clear to whicblause a followingelse clause

would belong:

if testl: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of theprint statements are executed:

if X <y < z print x; print y; print z

Summarizing:

compound _stmt if _stmt
| while _stmt
| for _stmt
| try _stmt
| funcdef
| classdef
suite = stmt _list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement = stmt _list NEWLINE | compound _stmt

stmt _list = simp|e _stmt (";" Simple ,Stmt)* [";--]

Note that statements always end iINBEWLINEpossibly followed by &EDENTAIso note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the &sagling
problem is solved in Python by requiring nestedstatements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

59

7.1 Theif statement

Theif statement is used for conditional execution:

if _stmt = "if* expression "" suite
("elif" expression ":" suite)*
['else" ™" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section 5.10
for the definition of true and false); then that suite is executed (and no other partibf tstatement is executed or
evaluated). If all expressions are false, the suite okthe clause, if present, is executed.

7.2 The while statement

Thewhile statement is used for repeated execution as long as an expression is true:

while _stmt = “"while" expression ™" suite
['else" ™" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of teése clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executirejsthe clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

7.3 The for statement

Thefor statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for _stmt = "for" target _list "in" expression _list ™" suite
[llelsell n.an Suite]

The expression list is evaluated once; it should yield a sequence. The suite is then executed once for each item in the
sequence, in the order of ascending indices. Each item in turn is assigned to the target list using the standard rules for
assignments, and then the suite is executed. When the items are exhausted (which is immediately when the sequence
is empty), the suite in thelse clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executirejsthe clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with the
else clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to
at all by the loop. Hint: the built-in functiorange() returns a sequence of integers suitable to emulate the effect of
Pascal'dor i := a to b do ;e.g.,range(3) returns the lisf0, 1, 2]

Warning: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable
sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and this is incremented on
each iteration. When this counter has reached the length of the sequence the loop terminates. This means that if the
suite deletes the current (or a previous) item from the sequence, the next item will be skipped (since it gets the index
of the current item which has already been treated). Likewise, if the suite inserts an item in the sequence before the
current item, the current item will be treated again the next time through the loop. This can lead to nasty bugs that can
be avoided by making a temporary copy using a slice of the whole sequence, e.g.,

60 Chapter 7. Compound statements

for x in a[]:
if x < 0: a.remove(x)

7.4 The try statement

Thetry statement specifies exception handlers and/or cleanup code for a group of statements:

try _stmt n= try _exc _stmt | try _fin _stmt
try _exc _stmt = try" ™" suite
("except" [expression ['* target]] ":" suite)+
['else" ™" suite]
try _fin _stmt = "try" ™" suite “"finally" ™" suite
There are two forms dfy statementtry ..except andtry ..finally . These forms cannot be mixed (but they

can be nested in each other).

Thetry ..except form specifies one or more exception handlers ékeept clauses). When no exception occurs

in thetry clause, no exception handler is executed. When an exception occurstip theite, a search for an ex-

ception handler is started. This search inspects the except clauses in turn until one is found that matches the exception.
An expression-less except clause, if present, must be last; it matches any exception. For an except clause with an
expression, that expression is evaluated, and the clause matches the exception if the resulting object is “compatible”
with the exception. An object is compatible with an exception if it is either the object that identifies the exception, or
(for exceptions that are classes) it is a base class of the exception, or it is a tuple containing an item that is compatible
with the exception. Note that the object identities must match, i.e. it must be the same object, not just an object with
the same value.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if
the entiretry statement raised the exception).

When a matching except clause is found, the exception’s parameter is assigned to the target specified in that except
clause, if present, and the except clause’s suite is executed. All except clauses must have an executable block. When
the end of this block is reached, execution continues normally after the entire try statement. (This means that if two
nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler, the outer
handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three varialdgs in the
module:sys.exc _type receives the object identifying the exceptieys.exc _value receives the exception’s
parametersys.exc _traceback receives a traceback object (see section 3.2) identifying the point in the program
where the exception occurred. These details are also available throughstlesc _info() function, which

returns a tuplé exc_type exc.valug exc_traceback. Use of the corresponding variables is deprecated in favor

of this function, since their use is unsafe in a threaded program. As of Python 1.5, the variables are restored to their
previous values (before the call) when returning from a function that handled an exception.

The optionalelse clause is executed if and when control flows off the end oftthe clause! Exceptions in the
else clause are not handled by the precedigept clauses.

Thetry ..finally form specifies a ‘cleanup’ handler. Ty clause is executed. When no exception occurs,
thefinally clause is executed. When an exception occurs irirthe clause, the exception is temporarily saved,
the finally clause is executed, and then the saved exception is re-raised. fifidhg clause raises another
exception or executesraturn or break statement, the saved exception is lostcaghtinue statement is illegal

1Currently, control “flows off the end” except in the case of an exception or the executioretfra , continue , orbreak statement.

7.4. The try statement 61

in thefinally clause. (The reason is a problem with the current implementation — this restriction may be lifted in
the future). The exception information is not available to the program during executionfofahg clause.

When areturn , break orcontinue statementis executed in thy suite of atry ..finally statement, the
finally clause is also executed ‘on the way out.céntinue statementis illegal in thénally clause. (The
reason is a problem with the current implementation — this restriction may be lifted in the future).

Additional information on exceptions can be found in section 4.2, and information on usingigke statement to
generate exceptions may be found in section 6.9.

7.5 Function definitions

A function definition defines a user-defined function object (see section 3.2):

funcdef
parameter _list

"def" funcname "(" [parameter _list] M)" ™" suite
(defparameter ",")*

("*" identifier [, "*" identifier]

| "*" identifier | defparameter [","])

defparameter = parameter ['=" expression]
sublist .= parameter ("," parameter)* [","]
parameter = identifier | "(" sublist ")"
funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.

When one or more top-level parameters have the foanameter= expressionthe function is said to have “default
parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters
must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executedhis means that the expression

is evaluated once, when the function is defined, and that that same “pre-computed” value is used for each call. This
is especially important to understand when a default parameter is a mutable object, such as a list or a dictionary: if
the function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is
generally not what was intended. A way around this is toNi@ee as the default, and explicitly test for it in the body

of the function, e.g.:

def whats_on_the_telly(penguin=None):
if penguin is None:
penguin = []
penguin.append("property of the zoo")
return penguin

Function call semantics are described in more detail in section 5.3.4. A function call always assigns values to all
parameters mentioned in the parameter list, either from position arguments, from keyword arguments, or from default
values. If the form *identifier " is present, it is initialized to a tuple receiving any excess positional parameters,
defaulting to the empty tuple. If the fornf*identifier " is present, it is initialized to a new dictionary receiving

any excess keyword arguments, defaulting to a new empty dictionary.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda forms, described in section 5.11. Note that the lambda form is merely a shorthand for a simplified
function definition; a function defined in aléf ” statement can be passed around or assigned to another name just

62 Chapter 7. Compound statements

like a function defined by a lambda form. Theef ” form is actually more powerful since it allows the execution of
multiple statements.

Programmer’s note: Functions are first-class objects. Aef ” form executed inside a function definition defines a
local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section 4.1 for details.

7.6 Class definitions

A class definition defines a class object (see section 3.2):

classdef = "class" classname [inheritance] ":" suite
inheritance = "(" [expression _list] ")"
classname ©= identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the inheri-
tance list should evaluate to a class object. The class’s suite is then executed in a new execution frame (see section 4.1),
using a newly created local namespace and the original global namespace. (Usually, the suite contains only function
definitions.) When the class’s suite finishes execution, its execution frame is discarded but its local namespace is
saved. A class object is then created using the inheritance list for the base classes and the saved local namespace for
the attribute dictionary. The class name is bound to this class object in the original local namespace.

Programmer’s note: variables defined in the class definition are class variables; they are shared by all instances. To
define instance variables, they must be given a value in the tidt __() method or in another method. Both

class and instance variables are accessible through the nots¢iibndme ", and an instance variable hides a class
variable with the same name when accessed in this way. Class variables with immutable values can be used as defaults
for instance variables.

7.6. Class definitions 63

64

CHAPTER
EIGHT

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, excgys férarious system services),
__builtin __ (built-in functions, exceptions ardone) and__main __. The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program
but reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a
complete program; each statement is executed in the namespacmain __.

Under WNIX, a complete program can be passed to the interpreter in three forms: wit gtreng command line
option, as a file passed as the first command line argument, or as standard input. If the file or standard input is a tty
device, the interpreter enters interactive mode; otherwise, it executes the file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:
file _input = (NEWLINE | statement)*

This syntax is used in the following situations:

e when parsing a complete Python program (from a file or from a string);
e when parsing a module;

e when parsing a string passed to theesc statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

65

interactive _input n= [stmt _list] NEWLINE | compound _stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argumai{)to must have
the following form:

eval _input = expression _list NEWLINE*
The input line read bynput() must have the following form:
input _input = expression _list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in functeom _input() or the
readline() method of file objects.

66 Chapter 8. Top-level components

APPENDIX
A

History and License

A.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://mwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF,tsge//www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (s&e//www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru1.2 n/a 1991-1995 CWwiI yes
1.3thru1.5.2 1.2 1995-1999 CNRI yes

1.6 15.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
211 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 2.11 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
222 221 2002 PSF yes
223 222 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

67

A.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.3

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-

ganization (“Licensee”) accessing and otherwise using Python 2.3 software in source or binary form and its
associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 2.3 alone or in any derivative version, provided, however, that PSF’s
License Agreement and PSF'’s notice of copyright, i.e., “Copyri@H2001-2003 Python Software Foundation;

All Rights Reserved” are retained in Python 2.3 alone or in any derivative version prepared by Licensee.

. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.3 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.3.

. PSF is making Python 2.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.3 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.3 FOR ANY IN-

CIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint

venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.3, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,

Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee

a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-

SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

68

Appendix A. History and License

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI's License Agreement and CNRI’s notice of copyright, i.e., “Copyri@htL995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URtp://hdl.handle.net/1895.22/1013."

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-

ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,

. Terms and conditions for accessing or otherwise using Python 69

and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

70 Appendix A. History and License

INDEX

Symbols __get __() (object method), 23

__abs__() (numeric object method), 29 ——getattr __() (object method), 23
__add__() (numeric object method), 28 __getattribute __() (object method), 23
__add__() (sequence object method), 26 __getitem __() (container object method), 26
__all __ (optional module attribute), 56 ——getitem __() (mapping object method), 20
__and__() (numeric object method), 28 __getslice __() (sequence object method), 27
__bases __ (class attribute), 18 ——gt () (object method), 22

__builtin __ (built-in module), 57, 65 ——hash __() (object method), 22

__builtins __, 57 __hex__() (numeric object method), 30
__call __() (object method), 26 __iadd __() (numeric object method), 29
__call __() (object method), 42 __iadd __() (sequence object method), 26
__class __ (instance attribute), 19 ——and __() (numeric object method), 29
__cmp__() (object method), 22 __idiv. __() (numeric object method), 29
__cmp__() (object method), 22 __ifloordiv __() (numeric object method), 29
__coerce __() (numeric object method), 30 —lshift ~ __() (numeric object method), 29
__coerce __() (numeric object method), 26 ——imod __() (numeric object method), 29
__complex __() (numeric object method), 29 ——import __() (built-in function), 56
__contains __() (container object method), 27 —imul __() (numeric object method), 29
__contains __() (mapping object method), 26 —imul __() (sequence object method), 26
__contains __() (sequence object method), 26 —nit__() (object method), 21

__debug __, 50 __init __() (object method), 18

__del __() (object method), 21 —init __.py , 56

__delattr __() (object method), 23 —_int __() (numeric object method), 29
__delete __() (object method), 24 ,f!nvert _—() (numeric object method), 29
__delitem __() (container object method), 26 —or __() (numeric object method), 29
__delslice __() (sequence object method), 27 ——ipow __() (numeric object method), 29
__dict __ (class attribute), 18 __irshift __() (numeric object method), 29
__dict __ (function attribute), 16 ——isub __() (numeric object method), 29
__dict __ (instance attribute), 19, 23 __iter __() (container object method), 26
__dict __ (module attribute), 18 __iter __() (sequence object method), 26
__div __() (numeric object method), 29 ,f?truediv __() (numeric object method), 29
__divmod __() (numeric object method), 28 ——ixor __() (numeric object method), 29
__doc __ (class attribute), 18 ——le —_() (object method), 22

__doc __ (function attribute), 16 ——len __() (container object method), 26
__doc __ (method attribute), 16 ——len __() (mapping object method), 22
__doc __ (module attribute), 18 __long __() (numeric object method), 29
__eq__() (object method), 22 __lIshift ~ __() (numeric object method), 28
__file __(module attribute), 18 —It __() (object method), 22

__float __() (numeric object method), 29 ——main __ (built-in module), 34, 65

__floordiv. __() (numeric object method), 28 ——metaclass __ (datain), 25

__ge__() (object method), 22 __mod__() (numeric object method), 28

__module __ (class attribute), 18

71

__module __ (function attribute), 16
__module __ (method attribute), 16
__mul__() (numeric object method), 28
__mul __() (sequence object method), 26
__name__ (class attribute), 18

__name__ (function attribute), 16

__name__ (method attribute), 16

__name__ (module attribute), 18

__ne__() (object method), 22

__neg__() (numeric object method), 29
__nonzero __() (object method), 22
__nonzero __() (object method), 26

__oct __() (numeric object method), 30
__or __() (numeric object method), 28
__pos __() (numeric object method), 29
__pow__() (numeric object method), 28
__radd __() (numeric object method), 29
__radd __() (sequence object method), 26
__rand __() (numeric object method), 29
__rcmp __() (object method), 22

__rdiv __() (numeric object method), 29
__rdivmod __() (numeric object method), 29
__repr __() (object method), 21

__rfloordiv. __() (numeric object method), 29
__rlshift ~ __() (numeric object method), 29
__rmod__() (numeric object method), 29
__rmul __() (numeric object method), 29
__rmul __() (sequence object method), 26
__ror __() (numeric object method), 29
__rpow __() (numeric object method), 29

__rrshift ~ __() (numeric object method), 29
__rshift __() (numeric object method), 28
__rsub __() (numeric object method), 29
__rtruediv. __() (numeric object method), 29

__rxor __() (numeric object method), 29
__set __() (objectmethod), 23

__setattr __() (object method), 23
__setattr __() (object method), 23
__setitem __() (container object method), 26
__setslice __() (sequence object method), 27

__slots __(datain), 24

__str __() (objectmethod), 21

__sub__() (numeric object method), 28
__truediv __() (numeric object method), 29
__unicode __() (object method), 22

__xor __() (numeric object method), 28

A

abs() (built-in function), 29
addition, 44
and
bit-wise, 44
and
operator, 46

anonmymous
function, 46
append() (sequence object method), 26
argument
function, 16
arithmetic
conversion, 37
operation, binary, 43
operation, unary, 43
array (standard module), 16
Ascll, 2,7,8,11,15
assert
statement, 49
AssertionError
exception, 50
assertions
debugging, 49
assignment
attribute, 50, 51
augmented, 51
class attribute, 18
class instance attribute, 19
slicing, 51
statement, 16, 50
subscription, 51
target list, 50
atom, 37
attribute, 14
assignment, 50, 51
assignment, class, 18
assignment, class instance, 19
class, 18
class instance, 18
deletion, 53
generic special, 14
reference, 39
special, 14
AttributeError
exception, 40
augmented
assignment, 51

B

back-quotes, 21, 39
backslash character, 4
backward

quotes, 21, 39
binary

arithmetic operation, 43

bit-wise operation, 44
binding

global name, 57

name, 33, 50, 55, 62, 63
bit-wise

72

Index

and, 44
operation, binary, 44
operation, unary, 43
or,44
xor, 44
blank line, 5
block, 33
code, 33
BNF, 1, 37
Boolean
object, 14
operation, 46
break
statement, 54, 60—62
bsddb (standard module), 16
built-in
method, 17
module, 55
built-in function
call, 42
object, 17, 42
built-in method
call, 42
object, 17, 42
byte, 15
bytecode, 19

C

C,8
language, 14, 15, 17, 44
call, 41
built-in function, 42
built-in method, 42
class instance, 42
class object, 18, 42
function, 16, 42
instance, 26, 42
method, 42
procedure, 49
user-defined function, 42
callable
object, 16, 41
chaining
comparisons, 45
character, 15, 40
character set, 15
chr() (built-in function), 15
class
attribute, 18
attribute assignment, 18
constructor, 21
definition, 53, 63
instance, 18
name, 63

object, 18, 42, 63
class

statement, 63
class instance

attribute, 18

attribute assignment, 19

call, 42

object, 18, 42
class object

call, 18, 42
clause, 59
clear() (mapping object method), 26
cmp() (built-in function), 22
co _argcount (code object attribute), 19
co_cellvars (code object attribute), 19
co _code (code object attribute), 19
co_consts (code object attribute), 19
co _filename (code object attribute), 19

co _firstlineno (code object attribute), 19

co_flags (code object attribute), 19
co _freevars (code object attribute), 19
co_lnotab (code object attribute), 19
co _name (code object attribute), 19
co _names (code object attribute), 19
co_nlocals (code object attribute), 19
co _stacksize (code object attribute), 19
co _varnames (code object attribute), 19
code

block, 33

object, 19
code block, 55
comma, 38

trailing, 47, 53
command line, 65
comment, 3
comparison, 44

string, 15
comparisons, 22

chaining, 45
compile() (built-in function), 57
complex

literal, 9

number, 15

object, 15
complex() (built-in function), 30
compound

statement, 59
comprehensions

list, 38
constant, 7
constructor

class, 21
container, 14, 18
continue

Index

73

statement, 55, 60-62
conversion

arithmetic, 37

string, 21, 39, 49

copy() (mapping object method), 26
count() (sequence object method), 26

D
dangling

else, 59
data, 13

type, 14

type, immutable, 38
datum, 39
dbm (standard module), 16
debugging

assertions, 49
decimal literal, 9
DEDENT token, 5, 59
def

statement, 62
default

parameter value, 62
definition

class, 53, 63

function, 53, 62
del

statement, 16, 21, 52
delete, 16
deletion

attribute, 53

target, 52

target list, 52
delimiters, 10
destructor, 21, 51
dictionary

display, 39

object, 16, 18, 22, 39, 40, 51
display

dictionary, 39

list, 38

tuple, 38
division, 43
divmod() (built-in function), 28, 29
documentation string, 19

E

EBCDIC, 15
elif
keyword, 60
Ellipsis
object, 14
else
dangling, 59

else

keyword, 55, 60, 61
empty

list, 39

tuple, 15, 38
environment, 33
error handling, 34
errors, 34
escape sequence, 8
eval() (built-in function), 57, 58, 66
evaluation

order, 47
exc _info (in module sys), 20

exc _traceback (in module sys), 20, 61

exc _type (in module sys), 61
exc _value (in module sys), 61
except
keyword, 61
exception, 34, 54
AssertionError , 50
AttributeError , 40
handler, 20
ImportError , 55
NameError , 38

raising, 54
RuntimeError , 53
Stoplteration , 53

SyntaxError , 55

TypeError , 43

ValueError , 44

ZeroDivisionError , 43
exception handler, 34
exclusive

or, 44
exec

statement, 57
execfile() (built-in function), 57
execution

frame, 33, 63

restricted, 34

stack, 20
execution model, 33
expression, 37

lambda, 46

list, 46, 49, 50

statement, 49

extend() (sequence object method), 26

extended

slicing, 40
extended print statement, 53
extended slicing, 15

extension
filename, 55
module, 14

74

Index

F

f _back (frame attribute), 19

f _builtins (frame attribute), 19

f _code (frame attribute), 19

f _exc _traceback (frame attribute), 20
f _exc _type (frame attribute), 20

f _exc _value (frame attribute), 20

f _globals (frame attribute), 19

f _lasti (frame attribute), 19

f _lineno (frame attribute), 20

f _locals (frame attribute), 19

f _restricted (frame attribute), 19
f _trace (frame attribute), 20
False , 14
file
object, 19, 66
filename
extension, 55
finally

keyword, 53, 55, 62
float() (built-in function), 30
floating point

number, 15

object, 15
floating point literal, 9
for

statement, 54, 55, 60
form

lambda, 46, 63
frame

execution, 33, 63

object, 19
free

variable, 33, 52
from

keyword, 55, 56

statement, 33, 56
func _closure (function attribute), 16
func _code (function attribute), 16
func _defaults (function attribute), 16
func _dict (function attribute), 16
func _doc (function attribute), 16
func _globals (function attribute), 16
function

anonmymous, 46

argument, 16

call, 16, 42

call, user-defined, 42

definition, 53, 62

generator, 53

name, 62

object, 16, 17, 42, 62

user-defined, 16
future

statement, 56

G

garbage collection, 13
gdbm (standard module), 16
generator
function, 17, 53
iterator, 17, 53
object, 19
generic
special attribute, 14
get() (mapping object method), 26
global
name binding, 57
namespace, 16
global
statement, 51, 52, 57
globals() (built-in function), 58
grammar, 1
grouping, 5

H

handle an exception, 34
handler

exception, 20
has _key() (mapping object method), 26
hash() (built-in function), 22
hash character, 3
hex() (built-in function), 30
hexadecimal literal, 9
hierarchical

module names, 56
hierarchy

type, 14

id() (built-in function), 13
identifier, 6, 37
identity

test, 46
identity of an object, 13
if

statement, 60
im_class (method attribute), 17
im _func (method attribute), 16, 17
im_self (method attribute), 16, 17
imaginary literal, 9
immutable

data type, 38

object, 15, 38, 39
immutable object, 13
immutable sequence

object, 15
import

Index

75

statement, 18, 55
ImportError
exception, 55

in
keyword, 60
operator, 46
inclusive
or, 44

INDENT token, 5
indentation, 5
index operation, 15
index() (sequence object method), 26
indices() (slice method), 20
inheritance, 63
initialization
module, 55
input, 66
raw, 66
input() (built-in function), 66
insert() (sequence object method), 26
instance
call, 26, 42
class, 18
object, 18, 42
int() (built-in function), 30
integer, 15
object, 14
representation, 15
integer literal, 9
interactive mode, 65
internal type, 19
interpreter, 65
inversion, 43
invocation, 16
is
operator, 46
is not
operator, 46
item
sequence, 40
string, 40
item selection, 15
items() (mapping object method), 26

iteritems() (mapping object method), 26
iterkeys() (mapping object method), 26
itervalues() (mapping object method), 26
J
Java

language, 15
K
key, 39

key/datum pair, 39

keys() (mapping object method), 26
keyword, 6

elif ,60

else , 55, 60, 61

except , 61

finally , 53,55, 62

from , 55, 56

in , 60

L

lambda
expression, 46
form, 46, 63
language
C, 14,15,17,44
Java, 15
Pascal, 60
last _traceback (in module sys), 20
leading whitespace, 5
len() (built-in function), 15, 16, 26
lexical analysis, 3
lexical definitions, 2
line continuation, 4
line joining, 3, 4
line structure, 3
list
assignment, target, 50
comprehensions, 38
deletion target, 52
display, 38
empty, 39
expression, 46, 49, 50
object, 16, 39, 40, 51
target, 50, 60
literal, 7, 38
locals() (built-in function), 58
logical line, 3
long() (built-in function), 30
long integer
object, 14
long integer literal, 9
loop
over mutable sequence, 60
statement, 54, 55, 60
loop control
target, 55

M

makefile()
mangling
name, 38
mapping
object, 16, 19, 40, 51
membership

(socket method), 19

76

Index

test, 46

method
built-in, 17
call, 42

object, 16, 17, 42
user-defined, 16
minus, 43
module
built-in, 55
extension, 14
importing, 55
initialization, 55
name, 55
names, hierarchical, 56
namespace, 18
object, 18, 40
search path, 55
user-defined, 55
modules (in module sys), 55
modulo, 43
multiplication, 43
mutable
object, 16, 50, 51
mutable object, 13
mutable sequence
loop over, 60
object, 16

N

name, 6, 33, 37
binding, 33, 50, 55, 62, 63
binding, global, 57
class, 63
function, 62
mangling, 38
module, 55
rebinding, 50
unbinding, 52
NameError
exception, 38
NameError (built-in exception), 33
names
hierarchical module, 56
private, 38
namespace, 33
global, 16
module, 18
negation, 43
newline
suppression, 53
NEWLINE token, 3, 59
None, 14, 49
object, 14
not

operator, 46
not in

operator, 46
notation, 1
Notimplemented , 14

object, 14
null

operation, 52
number, 9

complex, 15

floating point, 15
numeric

object, 14, 19
numeric literal, 9

O

object, 13
Boolean, 14
built-in function, 17, 42
built-in method, 17, 42
callable, 16, 41
class, 18, 42, 63
class instance, 18, 42
code, 19
complex, 15

dictionary, 16, 18, 22, 39, 40, 51

Ellipsis, 14

file, 19, 66

floating point, 15
frame, 19

function, 16, 17, 42, 62
generator, 19
immutable, 15, 38, 39
immutable sequence, 15
instance, 18, 42
integer, 14

list, 16, 39, 40, 51

long integer, 14
mapping, 16, 19, 40, 51
method, 16, 17, 42
module, 18, 40
mutable, 16, 50, 51
mutable sequence, 16
None, 14
Notimplemented |, 14
numeric, 14, 19

plain integer, 14
recursive, 39

sequence, 15, 19, 40, 46, 51, 60

slice, 26

string, 15, 40
traceback, 20, 54, 61
tuple, 15, 40, 47
unicode, 15

Index

77

user-defined function, 16, 42, 62

user-defined method, 16
oct() (built-in function), 30
octal literal, 9
open() (built-in function), 19
operation

binary arithmetic, 43

binary bit-wise, 44

Boolean, 46

null, 52

shifting, 44

unary arithmetic, 43

unary bit-wise, 43
operator

and, 46

in , 46

is , 46

is not ,46

not , 46

not in ,46

or, 46

overloading, 20

precedence, 47
operators, 10

or
bit-wise, 44
exclusive, 44
inclusive, 44
or

operator, 46
ord() (built-in function), 15
order
evaluation, 47
output, 49, 53
standard, 49, 53
OverflowError (built-in exception), 14
overloading
operator, 20

P

packages, 56
parameter

value, default, 62
parenthesized form, 38
parser, 3
Pascal

language, 60
pass

statement, 52
path

module search, 55
physical line, 3, 4, 8
plain integer

object, 14

plain integer literal, 9
plus, 43
pop()
mapping object method, 26
sequence object method, 26
popen() (in module os), 19
popitem() (mapping object method), 26
pow() (built-in function), 28, 29
precedence
operator, 47
primary, 39
print
statement, 21, 53
private
names, 38
procedure
call, 49
program, 65
Python Enhancement Proposals
PEP 0255, 54

Q

quotes
backward, 21, 39
reverse, 21, 39

R

raise
statement, 54
raise an exception, 34
raising
exception, 54
range() (built-in function), 60
raw input, 66
raw string, 7
raw _input() (built-in function), 66
readline() (file method), 66
rebinding
name, 50
recursive
object, 39
reference
attribute, 39
reference counting, 13
remove() (sequence object method), 26
repr() (built-in function), 21, 39, 49
representation
integer, 15
reserved word, 6
restricted
execution, 34
return
statement, 53, 61, 62
reverse

78

Index

quotes, 21, 39
reverse() (sequence object method), 26
RuntimeError

exception, 53

S

scope, 33
search
path, module, 55
sequence
item, 40
object, 15, 19, 40, 46, 51, 60
setdefault() (mapping object method), 26
shifting
operation, 44
simple
statement, 49
singleton
tuple, 15
slice, 40
object, 26
slice() (built-in function), 20
slicing, 15, 16, 40
assignment, 51
extended, 40
sort() (sequence object method), 26
space, 5
special
attribute, 14
attribute, generic, 14
stack
execution, 20
trace, 20
standard
output, 49, 53
Standard C, 8
standard input, 65
start (slice object attribute), 20, 41
statement
assert ,49
assignment, 16, 50
assignment, augmented, 51
break , 54, 60—62
class , 63
compound, 59
continue , 55, 60-62
def , 62
del , 16, 21, 52
exec, 57
expression, 49
for , 54,55, 60
from , 33, 56
future, 56
global ,51,52,57

if ,60
import , 18, 55
loop, 54, 55, 60
pass , 52
print , 21,53
raise , 54
return , 53, 61, 62
simple, 49
try , 20,61
while , 54, 55, 60
yield , 53
statement grouping, 5
stderr (in module sys), 19
stdin (in module sys), 19
stdio, 19
stdout (in module sys), 19, 53
step (slice object attribute), 20, 41
stop (slice object attribute), 20, 41
Stoplteration
exception, 53
str() (built-in function), 21, 39
string
comparison, 15
conversion, 21, 39, 49
item, 40
object, 15, 40
Unicode, 7
string literal, 7
subscription, 15, 16, 40
assignment, 51
subtraction, 44
suite, 59
suppression
newline, 53
syntax, 1, 37
SyntaxError
exception, 55
sys (built-in module), 53, 55, 61, 65
sys.exc _info , 20
sys.exc _traceback 20
sys.last _traceback , 20
sys.modules , 55
sys.stderr 19
sys.stdin , 19
sys.stdout , 19
SystemExit (built-in exception), 35

T

tab, 5

target, 50
deletion, 52
list, 50, 60

list assignment, 50
list, deletion, 52

Index

79

loop control, 55
tb _frame (traceback attribute), 20
tb _lasti (traceback attribute), 20
tb _lineno (traceback attribute), 20
tb _next (traceback attribute), 20
termination model, 35

test

identity, 46

membership, 46
token, 3
trace

stack, 20
traceback

object, 20, 54, 61
trailing

comma, 47, 53
triple-quoted string, 7
True , 14
try

statement, 20, 61
tuple

display, 38

empty, 15, 38

object, 15, 40, 47

singleton, 15
type, 14

data, 14

hierarchy, 14

immutable data, 38
type() (built-in function), 13
type of an object, 13
TypeError

exception, 43
types, internal, 19

U

unary
arithmetic operation, 43
bit-wise operation, 43
unbinding
name, 52
UnboundLocalError 33
unichr() (built-in function), 15
Unicode, 15
unicode
object, 15
unicode() (built-in function), 15, 22
Unicode Consortium, 7
UNIX, 65
unreachable object, 13
unrecognized escape sequence, 8

update() (mapping object method), 26

user-defined
function, 16

function call, 42
method, 16
module, 55
user-defined function
object, 16, 42, 62
user-defined method
object, 16

Vv

value
default parameter, 62
value of an object, 13
ValueError
exception, 44
values
writing, 49, 53
values() (mapping object method), 26
variable
free, 33, 52

w

while
statement, 54, 55, 60
whitespace, 5

writing

values, 49, 53
X
xor

bit-wise, 44
Y
yield

statement, 53

Z

ZeroDivisionError
exception, 43

80

Index

	1 Introduction
	1.1 Notation

	2 Lexical analysis
	2.1 Line structure
	2.1.1 Logical lines
	2.1.2 Physical lines
	2.1.3 Comments
	2.1.4 Encoding declarations
	2.1.5 Explicit line joining
	2.1.6 Implicit line joining
	2.1.7 Blank lines
	2.1.8 Indentation
	2.1.9 Whitespace between tokens

	2.2 Other tokens
	2.3 Identifiers and keywords
	2.3.1 Keywords
	2.3.2 Reserved classes of identifiers

	2.4 Literals
	2.4.1 String literals
	2.4.2 String literal concatenation
	2.4.3 Numeric literals
	2.4.4 Integer and long integer literals
	2.4.5 Floating point literals
	2.4.6 Imaginary literals

	2.5 Operators
	2.6 Delimiters

	3 Data model
	3.1 Objects, values and types
	3.2 The standard type hierarchy
	3.3 Special method names
	3.3.1 Basic customization
	3.3.2 Customizing attribute access
	More attribute access for new-style classes
	Implementing Descriptors
	Invoking Descriptors
	protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}slotsprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}

	3.3.3 Customizing class creation
	3.3.4 Emulating callable objects
	3.3.5 Emulating container types
	3.3.6 Additional methods for emulation of sequence types
	3.3.7 Emulating numeric types
	3.3.8 Coercion rules

	4 Execution model
	4.1 Naming and binding
	4.1.1 Interaction with dynamic features

	4.2 Exceptions

	5 Expressions
	5.1 Arithmetic conversions
	5.2 Atoms
	5.2.1 Identifiers (Names)
	5.2.2 Literals
	5.2.3 Parenthesized forms
	5.2.4 List displays
	5.2.5 Dictionary displays
	5.2.6 String conversions

	5.3 Primaries
	5.3.1 Attribute references
	5.3.2 Subscriptions
	5.3.3 Slicings
	5.3.4 Calls

	5.4 The power operator
	5.5 Unary arithmetic operations
	5.6 Binary arithmetic operations
	5.7 Shifting operations
	5.8 Binary bit-wise operations
	5.9 Comparisons
	5.10 Boolean operations
	5.11 Lambdas
	5.12 Expression lists
	5.13 Evaluation order
	5.14 Summary

	6 Simple statements
	6.1 Expression statements
	6.2 Assert statements
	6.3 Assignment statements
	6.3.1 Augmented assignment statements

	6.4 The pass statement
	6.5 The del statement
	6.6 The print statement
	6.7 The return statement
	6.8 The yield statement
	6.9 The raise statement
	6.10 The break statement
	6.11 The continue statement
	6.12 The import statement
	6.12.1 Future statements

	6.13 The global statement
	6.14 The exec statement

	7 Compound statements
	7.1 The if statement
	7.2 The while statement
	7.3 The for statement
	7.4 The try statement
	7.5 Function definitions
	7.6 Class definitions

	8 Top-level components
	8.1 Complete Python programs
	8.2 File input
	8.3 Interactive input
	8.4 Expression input

	A History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python

	Index

