
Python Library Reference
Release 2.3.5

Guido van Rossum
Fred L. Drake, Jr., editor

February 8, 2005

PythonLabs
Email: docs@python.org

Copyright c© 2001, 2002, 2003 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While thePython Reference Manualdescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file I/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; thePython Reference Manualremains the highest authority on syntactic and semantic questions.
Finally, the manual entitledExtending and Embedding the Python Interpreterdescribes how to add new extensions
to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in Functions . 3
2.2 Non-essential Built-in Functions. 13
2.3 Built-in Types . 14
2.4 Built-in Exceptions. 31
2.5 Built-in Constants . 35

3 Python Runtime Services 37
3.1 sys — System-specific parameters and functions. 37
3.2 gc — Garbage Collector interface. 43
3.3 weakref — Weak references. 45
3.4 fpectl — Floating point exception control. 49
3.5 atexit — Exit handlers . 50
3.6 types — Names for built-in types. 51
3.7 UserDict — Class wrapper for dictionary objects. 53
3.8 UserList — Class wrapper for list objects. 54
3.9 UserString — Class wrapper for string objects. 54
3.10 operator — Standard operators as functions.. 55
3.11 inspect — Inspect live objects. 59
3.12 traceback — Print or retrieve a stack traceback. 63
3.13 linecache — Random access to text lines. 65
3.14 pickle — Python object serialization. 66
3.15 cPickle — A fasterpickle . 74
3.16 copy reg — Registerpickle support functions . 74
3.17 shelve — Python object persistence. 75
3.18 copy — Shallow and deep copy operations. 77
3.19 marshal — Internal Python object serialization. 78
3.20 warnings — Warning control . 79
3.21 imp — Access theimport internals . 81
3.22 zipimport — Import modules from Zip archives. 84
3.23 pkgutil — Package extension utility. 86
3.24 code — Interpreter base classes. 86
3.25 codeop — Compile Python code. 88
3.26 pprint — Data pretty printer . 89
3.27 repr — Alternaterepr() implementation . 91
3.28 new — Creation of runtime internal objects. 93
3.29 site — Site-specific configuration hook. 93
3.30 user — User-specific configuration hook. 94
3.31 builtin — Built-in functions . 95
3.32 main — Top-level script environment. 95
3.33 future — Future statement definitions. 95

i

4 String Services 97
4.1 string — Common string operations. 97
4.2 re — Regular expression operations. 100
4.3 struct — Interpret strings as packed binary data. 110
4.4 difflib — Helpers for computing deltas. 112
4.5 fpformat — Floating point conversions. 119
4.6 StringIO — Read and write strings as files. 119
4.7 cStringIO — Faster version ofStringIO . 120
4.8 textwrap — Text wrapping and filling . 120
4.9 codecs — Codec registry and base classes. 122
4.10 unicodedata — Unicode Database. 130
4.11 stringprep — Internet String Preparation. 131

5 Miscellaneous Services 133
5.1 pydoc — Documentation generator and online help system. 133
5.2 doctest — Test docstrings represent reality. 134
5.3 unittest — Unit testing framework . 141
5.4 test — Regression tests package for Python. 152
5.5 test.test support — Utility functions for tests . 154
5.6 math — Mathematical functions. 155
5.7 cmath — Mathematical functions for complex numbers. 157
5.8 random — Generate pseudo-random numbers. 158
5.9 whrandom — Pseudo-random number generator. 161
5.10 bisect — Array bisection algorithm . 162
5.11 heapq — Heap queue algorithm. 163
5.12 array — Efficient arrays of numeric values. 165
5.13 sets — Unordered collections of unique elements. 167
5.14 itertools — Functions creating iterators for efficient looping. 170
5.15 ConfigParser — Configuration file parser . 176
5.16 fileinput — Iterate over lines from multiple input streams. 178
5.17 xreadlines — Efficient iteration over a file. 180
5.18 calendar — General calendar-related functions. 180
5.19 cmd — Support for line-oriented command interpreters. 182
5.20 shlex — Simple lexical analysis. 184

6 Generic Operating System Services 187
6.1 os — Miscellaneous operating system interfaces. 187
6.2 os.path — Common pathname manipulations. 204
6.3 dircache — Cached directory listings. 206
6.4 stat — Interpretingstat() results. 207
6.5 statcache — An optimization ofos.stat() . 209
6.6 statvfs — Constants used withos.statvfs() . 210
6.7 filecmp — File and Directory Comparisons. 210
6.8 popen2 — Subprocesses with accessible I/O streams. 212
6.9 datetime — Basic date and time types. 214
6.10 time — Time access and conversions. 230
6.11 sched — Event scheduler . 235
6.12 mutex — Mutual exclusion support . 236
6.13 getpass — Portable password input. 237
6.14 curses — Terminal handling for character-cell displays. 237
6.15 curses.textpad — Text input widget for curses programs. 251
6.16 curses.wrapper — Terminal handler for curses programs. 252
6.17 curses.ascii — Utilities for ASCII characters. 252
6.18 curses.panel — A panel stack extension for curses.. 254
6.19 getopt — Parser for command line options. 255
6.20 optparse — Powerful parser for command line options.. 257
6.21 tempfile — Generate temporary files and directories. 281
6.22 errno — Standard errno system symbols. 282

ii

6.23 glob — UNIX style pathname pattern expansion. 288
6.24 fnmatch — UNIX filename pattern matching. 288
6.25 shutil — High-level file operations. 289
6.26 locale — Internationalization services. 290
6.27 gettext — Multilingual internationalization services. 295
6.28 logging — Logging facility for Python. 303

7 Optional Operating System Services 319
7.1 signal — Set handlers for asynchronous events. 319
7.2 socket — Low-level networking interface . 321
7.3 select — Waiting for I/O completion. 330
7.4 thread — Multiple threads of control. 331
7.5 threading — Higher-level threading interface. 332
7.6 dummy thread — Drop-in replacement for thethread module 339
7.7 dummy threading — Drop-in replacement for thethreading module 339
7.8 Queue — A synchronized queue class. 340
7.9 mmap— Memory-mapped file support. 341
7.10 anydbm — Generic access to DBM-style databases. 342
7.11 dbhash — DBM-style interface to the BSD database library. 343
7.12 whichdb — Guess which DBM module created a database. 344
7.13 bsddb — Interface to Berkeley DB library. 344
7.14 dumbdbm— Portable DBM implementation. 346
7.15 zlib — Compression compatible withgzip . 347
7.16 gzip — Support forgzip files . 349
7.17 bz2 — Compression compatible withbzip2 . 350
7.18 zipfile — Work with ZIP archives. 352
7.19 tarfile — Read and write tar archive files. 355
7.20 readline — GNU readline interface. 360
7.21 rlcompleter — Completion function for GNU readline. 361

8 Unix Specific Services 363
8.1 posix — The most common POSIX system calls. 363
8.2 pwd — The password database. 364
8.3 grp — The group database. 365
8.4 crypt — Function to check UNIX passwords . 365
8.5 dl — Call C functions in shared objects. 366
8.6 dbm— Simple “database” interface. 367
8.7 gdbm — GNU’s reinterpretation of dbm. 368
8.8 termios — POSIX style tty control. 369
8.9 TERMIOS— Constants used with thetermios module . 370
8.10 tty — Terminal control functions . 370
8.11 pty — Pseudo-terminal utilities. 370
8.12 fcntl — Thefcntl() andioctl() system calls. 371
8.13 pipes — Interface to shell pipelines. 373
8.14 posixfile — File-like objects with locking support. 374
8.15 resource — Resource usage information. 376
8.16 nis — Interface to Sun’s NIS (Yellow Pages). 378
8.17 syslog — UNIX syslog library routines. 378
8.18 commands — Utilities for running commands. 379

9 The Python Debugger 381
9.1 Debugger Commands. 382
9.2 How It Works . 384

10 The Python Profiler 387
10.1 Introduction to the profiler. 387
10.2 How Is This Profiler Different From The Old Profiler?. 387
10.3 Instant Users Manual. 388
10.4 What Is Deterministic Profiling?. 389

iii

10.5 Reference Manual. 390
10.6 Limitations . 393
10.7 Calibration . 393
10.8 Extensions — Deriving Better Profilers. 394
10.9 hotshot — High performance logging profiler. 394
10.10 timeit — Measure execution time of small code snippets. 396

11 Internet Protocols and Support 399
11.1 webbrowser — Convenient Web-browser controller. 399
11.2 cgi — Common Gateway Interface support.. 401
11.3 cgitb — Traceback manager for CGI scripts. 408
11.4 urllib — Open arbitrary resources by URL. 408
11.5 urllib2 — extensible library for opening URLs. 413
11.6 httplib — HTTP protocol client . 420
11.7 ftplib — FTP protocol client. 423
11.8 gopherlib — Gopher protocol client. 426
11.9 poplib — POP3 protocol client. 426
11.10 imaplib — IMAP4 protocol client . 428
11.11nntplib — NNTP protocol client. 432
11.12smtplib — SMTP protocol client. 436
11.13 telnetlib — Telnet client . 439
11.14urlparse — Parse URLs into components. 441
11.15SocketServer — A framework for network servers. 443
11.16BaseHTTPServer — Basic HTTP server. 445
11.17SimpleHTTPServer — Simple HTTP request handler. 447
11.18CGIHTTPServer — CGI-capable HTTP request handler. 448
11.19Cookie — HTTP state management. 448
11.20xmlrpclib — XML-RPC client access. 452
11.21SimpleXMLRPCServer — Basic XML-RPC server. 455
11.22DocXMLRPCServer — Self-documenting XML-RPC server. 457
11.23asyncore — Asynchronous socket handler. 458
11.24asynchat — Asynchronous socket command/response handler. 460

12 Internet Data Handling 465
12.1 formatter — Generic output formatting. 465
12.2 email — An email and MIME handling package. 469
12.3 mailcap — Mailcap file handling.. 494
12.4 mailbox — Read various mailbox formats. 495
12.5 mhlib — Access to MH mailboxes. 497
12.6 mimetools — Tools for parsing MIME messages. 498
12.7 mimetypes — Map filenames to MIME types . 500
12.8 MimeWriter — Generic MIME file writer . 502
12.9 mimify — MIME processing of mail messages. 502
12.10multifile — Support for files containing distinct parts. 504
12.11rfc822 — Parse RFC 2822 mail headers. 505
12.12base64 — Encode and decode MIME base64 data. 509
12.13binascii — Convert between binary andASCII . 509
12.14binhex — Encode and decode binhex4 files. 511
12.15quopri — Encode and decode MIME quoted-printable data. 512
12.16uu — Encode and decode uuencode files. 512
12.17xdrlib — Encode and decode XDR data. 513
12.18netrc — netrc file processing. 515
12.19robotparser — Parser for robots.txt. 516
12.20csv — CSV File Reading and Writing. 517

13 Structured Markup Processing Tools 521
13.1 HTMLParser — Simple HTML and XHTML parser . 521
13.2 sgmllib — Simple SGML parser. 523
13.3 htmllib — A parser for HTML documents. 525

iv

13.4 htmlentitydefs — Definitions of HTML general entities. 527
13.5 xml.parsers.expat — Fast XML parsing using Expat. 527
13.6 xml.dom — The Document Object Model API. 534
13.7 xml.dom.minidom — Lightweight DOM implementation 543
13.8 xml.dom.pulldom — Support for building partial DOM trees. 547
13.9 xml.sax — Support for SAX2 parsers. 548
13.10xml.sax.handler — Base classes for SAX handlers. 549
13.11xml.sax.saxutils — SAX Utilities . 553
13.12xml.sax.xmlreader — Interface for XML parsers . 554
13.13xmllib — A parser for XML documents . 558

14 Multimedia Services 561
14.1 audioop — Manipulate raw audio data. 561
14.2 imageop — Manipulate raw image data. 564
14.3 aifc — Read and write AIFF and AIFC files. 565
14.4 sunau — Read and write Sun AU files. 567
14.5 wave — Read and write WAV files. 569
14.6 chunk — Read IFF chunked data. 571
14.7 colorsys — Conversions between color systems. 572
14.8 rgbimg — Read and write “SGI RGB” files. 573
14.9 imghdr — Determine the type of an image. 573
14.10sndhdr — Determine type of sound file. 574
14.11ossaudiodev — Access to OSS-compatible audio devices. 574

15 Cryptographic Services 579
15.1 hmac — Keyed-Hashing for Message Authentication. 579
15.2 md5— MD5 message digest algorithm. 579
15.3 sha — SHA-1 message digest algorithm. 580
15.4 mpz — GNU arbitrary magnitude integers. 581
15.5 rotor — Enigma-like encryption and decryption. 582

16 Graphical User Interfaces with Tk 585
16.1 Tkinter — Python interface to Tcl/Tk . 585
16.2 Tix — Extension widgets for Tk. 596
16.3 ScrolledText — Scrolled Text Widget . 601
16.4 turtle — Turtle graphics for Tk . 601
16.5 Idle . 602
16.6 Other Graphical User Interface Packages. 606

17 Restricted Execution 607
17.1 rexec — Restricted execution framework. 607
17.2 Bastion — Restricting access to objects. 610

18 Python Language Services 613
18.1 parser — Access Python parse trees. 613
18.2 symbol — Constants used with Python parse trees. 622
18.3 token — Constants used with Python parse trees. 622
18.4 keyword — Testing for Python keywords. 623
18.5 tokenize — Tokenizer for Python source. 623
18.6 tabnanny — Detection of ambiguous indentation. 624
18.7 pyclbr — Python class browser support. 624
18.8 py compile — Compile Python source files. 625
18.9 compileall — Byte-compile Python libraries. 626
18.10dis — Disassembler for Python byte code. 626
18.11distutils — Building and installing Python modules. 633

19 Python compiler package 635
19.1 The basic interface. 635
19.2 Limitations . 636

v

19.3 Python Abstract Syntax. 636
19.4 Using Visitors to Walk ASTs. 640
19.5 Bytecode Generation. 641

20 SGI IRIX Specific Services 643
20.1 al — Audio functions on the SGI. 643
20.2 AL — Constants used with theal module . 645
20.3 cd — CD-ROM access on SGI systems. 645
20.4 fl — FORMS library for graphical user interfaces. 648
20.5 FL — Constants used with thefl module . 653
20.6 flp — Functions for loading stored FORMS designs. 653
20.7 fm — Font Managerinterface . 653
20.8 gl — Graphics Libraryinterface . 654
20.9 DEVICE— Constants used with thegl module . 656
20.10GL— Constants used with thegl module . 656
20.11 imgfile — Support for SGI imglib files . 656
20.12 jpeg — Read and write JPEG files. 657

21 SunOS Specific Services 659
21.1 sunaudiodev — Access to Sun audio hardware. 659
21.2 SUNAUDIODEV— Constants used withsunaudiodev . 660

22 MS Windows Specific Services 661
22.1 msvcrt – Useful routines from the MS VC++ runtime . 661
22.2 winreg – Windows registry access. 662
22.3 winsound — Sound-playing interface for Windows. 666

A Undocumented Modules 669
A.1 Frameworks . 669
A.2 Miscellaneous useful utilities. 669
A.3 Platform specific modules. 669
A.4 Multimedia . 670
A.5 Obsolete . 670
A.6 SGI-specific Extension modules. 671

B Reporting Bugs 673

C History and License 675
C.1 History of the software. 675
C.2 Terms and conditions for accessing or otherwise using Python. 676

Module Index 679

Index 683

vi

CHAPTER

ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of animport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’thaveto read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see modulerandom) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

1

2

CHAPTER

TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.1

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of thePython Reference Manualfor the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

import (name[, globals[, locals[, fromlist]]])
This function is invoked by theimport statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semantics of theimport statement. For
examples of why and how you would do this, see the standard library modulesihooks andrexec . See
also the built-in moduleimp , which defines some useful operations out of which you can build your own

import () function.

For example, the statement ‘import spam ’ results in the following call: import (’spam’,
globals(), locals(), []) ; the statement ‘from spam.ham import eggs ’ results in
‘ import (’spam.ham’, globals(), locals(), [’eggs’]) ’. Note that even though
locals() and [’eggs’] are passed in as arguments, theimport () function does not set the
local variable namedeggs ; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not use itslocals argument at all, and uses itsglobalsonly to
determine the package context of theimport statement.)

When thenamevariable is of the formpackage.module , normally, the top-level package (the name up
till the first dot) is returned,not the module named byname. However, when a non-emptyfromlistargument
is given, the module named bynameis returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when using ‘import spam.ham.eggs ’, the top-level
packagespam must be placed in the importing namespace, but when using ‘from spam.ham import
eggs ’, the spam.ham subpackage must be used to find theeggs variable. As a workaround for this
behavior, usegetattr() to extract the desired components. For example, you could define the following
helper:

def my_import(name):
mod = __import__(name)
components = name.split(’.’)
for comp in components[1:]:

mod = getattr(mod, comp)
return mod

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

3

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass forstr andunicode . It cannot be called or instantiated, but it can be
used to test whether an object is an instance ofstr or unicode . isinstance(obj, basestring)
is equivalent toisinstance(obj, (str, unicode)) . New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedure. Ifx is false or omitted, this returns
False ; otherwise it returnsTrue . bool is also a class, which is a subclass ofint . Classbool cannot
be subclassed further. Its only instances areFalse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function returnsFalse .

callable (object)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they have acall () method.

chr (i)
Return a string of one character whoseASCII code is the integeri. For example,chr(97) returns the string
’a’ . This is the inverse oford() . The argument must be in the range [0..255], inclusive;ValueError
will be raised ifi is outside that range.

classmethod (function)
Return a class method forfunction.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
def f(cls, arg1, arg2, ...): ...
f = classmethod(f)

It can be called either on the class (such asC.f()) or on an instance (such asC().f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, seestaticmethod() in
this section. New in version 2.2.

cmp(x, y)
Compare the two objectsx andy and return an integer according to the outcome. The return value is negative
if x < y, zero ifx == y and strictly positive ifx > y.

compile (string, filename, kind[, flags[, dont inherit]])
Compile thestring into a code object. Code objects can be executed by anexec statement or evaluated by
a call toeval() . Thefilenameargument should give the file from which the code was read; pass some
recognizable value if it wasn’t read from a file (’<string>’ is commonly used). Thekindargument spec-
ifies what kind of code must be compiled; it can be’exec’ if string consists of a sequence of statements,
’eval’ if it consists of a single expression, or’single’ if it consists of a single interactive statement
(in the latter case, expression statements that evaluate to something else thanNone will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character (’\n’), and the input must be terminated by at least one newline character. If line
endings are represented by’\r\n’ , use the stringreplace() method to change them into’\n’ .

The optional argumentsflagsanddont inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilation ofstring. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compile. If theflagsargu-
ment is given anddont inherit is not (or is zero) then the future statements specified by theflagsargument
are used in addition to those that would be used anyway. Ifdont inherit is a non-zero integer then theflags
argument is it – the future statements in effect around the call to compile are ignored.

4 Chapter 2. Built-In Objects

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found as thecompiler flag attribute on the
Feature instance in the future module.

complex ([real[, imag]])
Create a complex number with the valuereal + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). Ifimag is omitted, it defaults to zero and the function serves as a
numeric conversion function likeint() , long() andfloat() . If both arguments are omitted, returns
0j .

delattr (object, name)
This is a relative ofsetattr() . The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example,delattr(x, ’ foobar’) is equivalent todel x. foobar.

dict ([mapping-or-sequence])
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one": 2, "two": 3} :

•dict({’one’: 2, ’two’: 3})

•dict({’one’: 2, ’two’: 3}.items())

•dict({’one’: 2, ’two’: 3}.iteritems())

•dict(zip((’one’, ’two’), (2, 3)))

•dict([[’two’, 3], [’one’, 2]])

•dict(one=2, two=3)

•dict([([’one’, ’two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the object’sdict
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the object is a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’, ’struct’]
>>> dir(struct)
[’__doc__’, ’__name__’, ’calcsize’, ’error’, ’pack’, ’unpack’]

Note: Becausedir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

2.1. Built-in Functions 5

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the same as(a / b, a % b) . For floating point numbers
the result is(q, a % b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. In any
caseq * b + a % b is very close toa, if a % b is non-zero it has the same sign asb, and0 <= abs(a
% b) < abs(b) .

Changed in version 2.3: Usingdivmod() with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate object.iterablemust be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned byenumerate() returns a tuple containing a
count (from zero) and the corresponding value obtained from iterating overiterable. enumerate() is
useful for obtaining an indexed series:(0, seq[0]) , (1, seq[1]) , (2, seq[2]) , New in
version 2.3.

eval (expression[, globals[, locals]])
The arguments are a string and two optional dictionaries. Theexpressionargument is parsed and evaluated
as a Python expression (technically speaking, a condition list) using theglobalsand localsdictionaries as
global and local name space. If theglobals dictionary is present and lacks ’ builtins ’, the current
globals are copied intoglobalsbeforeexpressionis parsed. This means thatexpressionnormally has full
access to the standard builtin module and restricted environments are propagated. If thelocals
dictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are omitted, the expression is
executed in the environment whereeval is called. The return value is the result of the evaluated expression.
Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created bycompile()). In
this case pass a code object instead of a string. The code object must have been compiled passing’eval’
as thekind argument.

Hints: dynamic execution of statements is supported by theexec statement. Execution of statements from
a file is supported by theexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use byeval() or
execfile() .

execfile (filename[, globals[, locals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new module.2

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using theglobalsand locals dictionaries as global and local
namespace. If thelocalsdictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment whereexecfile() is called. The return value is
None.

Warning: The defaultlocalsact as described for functionlocals() below: modifications to the default
locals dictionary should not be attempted. Pass an explicitlocals dictionary if you need to see effects of
the code onlocalsafter functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

file (filename[, mode[, bufsize]])
Return a new file object (described in section 2.3.8, “File Objects”). The first two arguments are the same
as forstdio ’s fopen() : filenameis the file name to be opened,modeindicates how the file is to be
opened:’r’ for reading,’w’ for writing (truncating an existing file), and’a’ opens it for appending
(which onsomeUNIX systems means thatall writes append to the end of the file, regardless of the current
seek position).

2It is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-In Objects

Modes’r+’ , ’w+’ and’a+’ open the file for updating (note that’w+’ truncates the file). Append’b’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files (else
it is ignored). If the file cannot be opened,IOError is raised.

In addition to the standardfopen() valuesmodemay be’U’ or ’rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by any of’\n’ ,
the Unix end-of-line convention,’\r’ , the Macintosh convention or’\r\n’ , the Windows convention.
All of these external representations are seen as’\n’ by the Python program. If Python is built without
universal newline supportmode’U’ is the same as normal text mode. Note that file objects so opened also
have an attribute callednewlines which has a value ofNone (if no newlines have yet been seen),’\n’ ,
’\r’ , ’\r\n’ , or a tuple containing all the newline types seen.

If modeis omitted, it defaults to’r’ . When opening a binary file, you should append’b’ to themode
value for improved portability. (It’s useful even on systems which don’t treat binary and text files differently,
where it serves as documentation.) The optionalbufsizeargument specifies the file’s desired buffer size:
0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negativebufsizemeans to use the system default, which is usually line buffered for tty devices
and fully buffered for other files. If omitted, the system default is used.3

Thefile() constructor is new in Python 2.2. The previous spelling,open() , is retained for compatibil-
ity, and is an alias forfile() .

filter (function, list)
Construct a list from those elements oflist for which functionreturns true.list may be either a sequence,
a container which supports iteration, or an iterator, Iflist is a string or a tuple, the result also has that type;
otherwise it is always a list. Iffunctionis None, the identity function is assumed, that is, all elements oflist
that are false (zero or empty) are removed.

Note that filter(function, list) is equivalent to [item for item in list if
function(item)] if function is not None and [item for item in list if item] if
function isNone.

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possi-
bly signed decimal or floating point number, possibly embedded in whitespace; this behaves identical to
string.atof(x) . Otherwise, the argument may be a plain or long integer or a floating point number,
and a floating point number with the same value (within Python’s floating point precision) is returned. If no
argument is given, returns0.0 .

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed ofobject. namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example,getattr(x, ’foobar’)
is equivalent tox.foobar . If the named attribute does not exist,defaultis returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result isTrue if the string is the name of one of the object’s
attributes,False if not. (This is implemented by callinggetattr(object, name) and seeing whether
it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly

3Specifying a buffer size currently has no effect on systems that don’t havesetvbuf() . The interface to specify the buffer size is not
done using a method that callssetvbuf() , because that may dump core when called after any I/O has been performed, and there’s no
reliable way to determine whether this is the case.

2.1. Built-in Functions 7

compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expres-
sion. Note: this always yields an unsigned literal. For example, on a 32-bit machine,hex(-1) yields
’0xffffffff’ . When evaluated on a machine with the same word size, this literal is evaluated as -1; at
a different word size, it may turn up as a large positive number or raise anOverflowError exception.

id (object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw input(prompt)) . Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically valid, aSyntaxError will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, theninput() will use it to provide elaborate line editing and
history features.

Consider using theraw input() function for general input from users.

int ([x[, radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace. Theradix parameter
gives the base for the conversion and may be any integer in the range [2, 36], or zero. Ifradix is zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified andx is not a string,TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, returns0.

isinstance (object, classinfo)
Return true if theobject argument is an instance of theclassinfoargument, or of a (direct or indirect)
subclass thereof. Also return true ifclassinfois a type object andobject is an object of that type. Ifobject
is not a class instance or an object of the given type, the function always returns false. Ifclassinfois neither
a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted). Ifclassinfois not a class, type, or tuple of classes,
types, and such tuples, aTypeError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfo)
Return true ifclassis a subclass (direct or indirect) ofclassinfo. A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entry inclassinfowill be checked. In any other
case, aTypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument,o must be a collection object which supports the iteration
protocol (the iter () method), or it must support the sequence protocol (thegetitem ()
method with integer arguments starting at0). If it does not support either of those protocols,TypeError
is raised. If the second argument,sentinel, is given, theno must be a callable object. The iterator created in
this case will callo with no arguments for each call to itsnext() method; if the value returned is equal to

8 Chapter 2. Built-In Objects

sentinel, StopIteration will be raised, otherwise the value will be returned. New in version 2.2.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequence])
Return a list whose items are the same and in the same order assequence’s items. sequencemay be either
a sequence, a container that supports iteration, or an iterator object. Ifsequenceis already a list, a copy is
made and returned, similar tosequence[:] . For instance,list(’abc’) returns[’a’, ’b’, ’c’]
andlist((1, 2, 3)) returns[1, 2, 3] . If no argument is given, returns a new empty list,[] .

locals ()
Update and return a dictionary representing the current local symbol table.Warning: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long ([x[, radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace; this behaves identical tostring.atol(x) .
Theradix argument is interpreted in the same way as forint() , and may only be given whenx is a string.
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with
the same value is returned. Conversion of floating point numbers to integers truncates (towards zero). If no
arguments are given, returns0L .

map(function, list, ...)
Apply functionto every item oflist and return a list of the results. If additionallist arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended withNone items. If function is None, the identity function
is assumed; if there are multiple list arguments,map() returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). Thelist arguments may be any kind of
sequence; the result is always a list.

max(s[, args...])
With a single arguments, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

min (s[, args...])
With a single arguments, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

object ()
Return a new featureless object.object() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit machine,oct(-1) yields’037777777777’ .
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word
size, it may turn up as a large positive number or raise anOverflowError exception.

open (filename[, mode[, bufsize]])
An alias for thefile() function above.

ord (c)
Return theASCII value of a string of one character or a Unicode character. E.g.,ord(’a’) returns the
integer97 , ord(u’\u2020’) returns8224 . This is the inverse ofchr() for strings and ofunichr()
for Unicode characters.

pow(x, y[, z])
Returnx to the powery; if z is present, returnx to the powery, moduloz (computed more efficiently than
pow(x, y) % z). The arguments must have numeric types. With mixed operand types, the coercion rules

2.1. Built-in Functions 9

for binary arithmetic operators apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case, all arguments are converted
to float and a float result is delivered. For example,10**2 returns100 , but10**-2 returns0.01 . (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and
the second argument was negative, an exception was raised.) If the second argument is negative, the third
argument must be omitted. Ifz is present,x andy must be of integer types, andy must be non-negative.
(This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argumentpow() returned
platform-dependent results depending on floating-point rounding accidents.)

property ([fget[, fset[, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that derive fromobject).

fget is a function for getting an attribute value, likewisefsetis a function for setting, andfdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def getx(self): return self.__x
def setx(self, value): self.__x = value
def delx(self): del self.__x
x = property(getx, setx, delx, "I’m the ’x’ property.")

New in version 2.2.

range ([start,] stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used infor
loops. The arguments must be plain integers. If thestepargument is omitted, it defaults to1. If the start
argument is omitted, it defaults to0. The full form returns a list of plain integers[start, start + step,
start + 2 * step, ...] . If stepis positive, the last element is the largeststart + i * stepless than
stop; if stepis negative, the last element is the largeststart + i * stepgreater thanstop. stepmust not be
zero (or elseValueError is raised). Example:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]

raw input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. WhenEOF

is read,EOFError is raised. Example:

>>> s = raw_input(’--> ’)
--> Monty Python’s Flying Circus
>>> s
"Monty Python’s Flying Circus"

If the readline module was loaded, thenraw input() will use it to provide elaborate line editing and
history features.

reduce (function, sequence[, initializer])
Apply functionof two arguments cumulatively to the items ofsequence, from left to right, so as to reduce

10 Chapter 2. Built-In Objects

the sequence to a single value. For example,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates((((1+2)+3)+4)+5) . The left argument,x, is the accumulated value and the right argument,
y, is the update value from thesequence. If the optionalinitializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the sequence is empty. Ifinitializer is not
given andsequencecontains only one item, the first item is returned.

reload (module)
Re-parse and re-initialize an already importedmodule. The argument must be a module object, so it must
have been successfully imported before. This is useful if you have edited the module source file using an
external editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as themoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firstimport statement for it does not bind
its name locally, but does store a (partially initialized) module object insys.modules . To reload the
module you must firstimport it again (this will bind the name to the partially initialized module object)
before you canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys , main and builtin . In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usingfrom . . . import . . . , calling reload() for
the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to useimport and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed toeval() .

round (x[, n])
Return the floating point valuex rounded ton digits after the decimal point. Ifn is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for example,round(0.5)
is 1.0 andround(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart ofgetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For example,setattr(x, ’ foobar’, 123) is equivalent tox. foobar =
123 .

slice ([start,] stop[, step])
Return a slice object representing the set of indices specified byrange(start, stop, step) . Thestartand
steparguments default toNone. Slice objects have read-only data attributesstart , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: ‘a[start:stop:step] ’ or ‘ a[start:stop, i] ’.

staticmethod (function)
Return a static method forfunction.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

2.1. Built-in Functions 11

class C:
def f(arg1, arg2, ...): ...
f = staticmethod(f)

It can be called either on the class (such asC.f()) or on an instance (such asC().f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod() in this section. New in version 2.2.

str ([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference withrepr(object) is thatstr(object) does not always attempt to return a string
that is acceptable toeval() ; its goal is to return a printable string. If no argument is given, returns the
empty string,’’ .

sum(sequence[, start])
Sumsstart and the items of asequence, from left to right, and returns the total.start defaults to0. These-
quence’s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by calling’’.join(sequence) . Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New in version 2.3.

super (type[, object-or-type])
Return the superclass oftype. If the second argument is omitted the super object returned is unbound. If the
second argument is an object,isinstance(obj, type) must be true. If the second argument is a type,
issubclass(type2, type) must be true.super() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):

super(C, self).meth(arg)

New in version 2.2.

tuple ([sequence])
Return a tuple whose items are the same and in the same order assequence’s items. sequencemay be
a sequence, a container that supports iteration, or an iterator object. Ifsequenceis already a tuple, it is
returned unchanged. For instance,tuple(’abc’) returns(’a’, ’b’, ’c’) andtuple([1, 2,
3]) returns(1, 2, 3) . If no argument is given, returns a new empty tuple,() .

type (object)
Return the type of anobject. The return value is a type object. The standard moduletypes defines names
for all built-in types that don’t already have built-in names. For instance:

>>> import types
>>> x = ’abc’
>>> if type(x) is str: print "It’s a string"
...
It’s a string
>>> def f(): pass
...
>>> if type(f) is types.FunctionType: print "It’s a function"
...
It’s a function

The isinstance() built-in function is recommended for testing the type of an object.

unichr (i)
Return the Unicode string of one character whose Unicode code is the integeri. For example,unichr(97)
returns the stringu’a’ . This is the inverse oford() for Unicode strings. The argument must be in the
range [0..65535], inclusive.ValueError is raised otherwise. New in version 2.0.

12 Chapter 2. Built-In Objects

unicode ([object[, encoding[, errors]]])
Return the Unicode string version ofobjectusing one of the following modes:

If encodingand/orerrorsare given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec forencoding. Theencodingparameter is a string giving the name of
an encoding; if the encoding is not known,LookupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encoding. Iferrors is
’strict’ (the default), aValueError is raised on errors, while a value of’ignore’ causes errors to
be silently ignored, and a value of’replace’ causes the official Unicode replacement character,U+FFFD,
to be used to replace input characters which cannot be decoded. See also thecodecs module.

If no optional parameters are given,unicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More precisely, ifobject is a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a unicode () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encoding in’strict’ mode.

New in version 2.0. Changed in version 2.2: Support forunicode () added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that has adict attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefined.4

xrange ([start,] stop[, step])
This function is very similar torange() , but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage ofxrange() over range() is minimal (sincexrange() still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

zip (seq1, ...)
This function returns a list of tuples, where thei-th tuple contains thei-th element from each of the argument
sequences. At least one sequence is required, otherwise aTypeError is raised. The returned list is
truncated in length to the length of the shortest argument sequence. When there are multiple argument
sequences which are all of the same length,zip() is similar tomap() with an initial argument ofNone.
With a single sequence argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatability with programs written for older versions of
Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, args[, keywords])
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and theargsargument must be a sequence. Thefunctionis called withargsas the argument list; the
number of arguments is the length of the tuple. If the optionalkeywordsargument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.
Calling apply() is different from just callingfunction(args) , since in that case there is always exactly
one argument. The use ofapply() is equivalent tofunction(* args, ** keywords) . Use ofapply() is
not necessary since the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.3.Use the extended call syntax instead, as described above.

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

2.2. Non-essential Built-in Functions 13

buffer (object[, offset[, size]])
The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which references theobjectargument. The buffer object will
be a slice from the beginning ofobject (or from the specifiedoffset). The slice will extend to the end of
object(or will have a length given by thesizeargument).

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, raiseTypeError .

intern (string)
Enterstring in the table of “interned” strings and return the interned string – which isstring itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return value ofintern() around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-
in types have differed from user-defined types because it was not possible to use the built-in types as the basis
for object-oriented inheritance. With the 2.2 release this situation has started to change, although the intended
unification of user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth
value, and converted to a string (with the‘ . . .‘ notation). The latter conversion is implicitly used when an object
is written by theprint statement. (Information onprint statementand other language statements can be found
in thePython Reference Manualand thePython Tutorial.)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use in anif or while condition or as operand of the Boolean
operations below. The following values are considered false:

• None

• False

• zero of any numeric type, for example,0, 0L , 0.0 , 0j .

• any empty sequence, for example,’’ , () , [] .

• any empty mapping, for example,{} .

• instances of user-defined classes, if the class defines anonzero () or len () method, when
that method returns the integer zero orbool valueFalse .5

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return0 or False for false and1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations ‘or ’ and ‘and ’ always return one
of their operands.)

5Additional information on these special methods may be found in thePython Reference Manual.

14 Chapter 2. Built-In Objects

2.3.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, theny, elsex (1)

x and y if x is false, thenx, elsey (1)
not x if x is false, thenTrue , elseFalse (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operators, sonot a == b is interpreted asnot (a == b) ,
anda == not b is a syntax error.

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for example,x < y <= z is equivalent tox <
y and y <= z, except thaty is evaluated only once (but in both casesz is not evaluated at all whenx < y is
found to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than

<= less than or equal
> strictly greater than

>= greater than or equal
== equal
!= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and!= are alternate spellings for the same operator.!= is the preferred spelling;<> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently. The<, <=, > and
>= operators will raise aTypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class defines thecmp () method. Refer to
thePython Reference Manualfor information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in ’ and ‘not in ’, are supported only by sequence types
(below).

2.3.4 Numeric Types

There are four distinct numeric types:plain integers, long integers, floating point numbers, andcomplex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just calledintegers) are implemented

2.3. Built-in Types 15

usinglong in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating
point numbers are implemented usingdouble in C. All bets on their precision are off unless you happen to know
the machine you are working with.

Complex numbers have a real and imaginary part, which are each implemented usingdouble in C. To extract
these parts from a complex numberz, usez.real andz.imag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex and octal numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer. Integer literals with an ‘L’ or ‘ l ’ suffix yield
long integers (‘L’ is preferred because ‘1l ’ looks too much like eleven!). Numeric literals containing a decimal
point or an exponent sign yield floating point numbers. Appending ‘j ’ or ‘ J ’ to a numeric literal yields a complex
number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than
long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed
type use the same rule.6 The constructorsint() , long() , float() , andcomplex() can be used to produce
numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
x + y sum ofx andy
x - y difference ofx andy
x * y product ofx andy
x / y quotient ofx andy (1)
x % y remainder ofx / y (4)

- x x negated
+x x unchanged

abs(x) absolute value or magnitude ofx
int(x) x converted to integer (2)

long(x) x converted to long integer (2)
float(x) x converted to floating point

complex(re, im) a complex number with real partre, imaginary partim. im defaults to zero.
c.conjugate() conjugate of the complex numberc
divmod(x, y) the pair(x / y, x % y) (3)(4)

pow(x, y) x to the powery
x ** y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() andceil() in themath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, anddivmod() .

Deprecated since release 2.3.Instead convert to float usingabs() if appropriate.

Bit-string Operations on Integer Types

6As a consequence, the list[1, 2] is considered equal to[1.0, 2.0] , and similarly for tuples.

16 Chapter 2. Built-In Objects

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ‘˜ ’ has the same priority as the other unary numeric operations (‘+’ and ‘- ’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same
priority):

Operation Result Notes
x | y bitwiseor of x andy
x ˆ y bitwiseexclusive orof x andy
x & y bitwiseandof x andy

x << n x shifted left byn bits (1), (2)
x >> n x shifted right byn bits (1), (3)

˜ x the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and cause aValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication bypow(2, n) without overflow check.

(3) A right shift byn bits is equivalent to division bypow(2, n) without overflow check.

2.3.5 Iterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

iter ()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form theiterator
protocol:

iter ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to thetp iter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raise theStopIteration exception.
This method corresponds to thetp iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’snext() method raisesStopIteration , it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

2.3. Built-in Types 17

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
iter () method is implemented as a generator, it will automatically return an iterator object (technically, a

generator object) supplying the iter () andnext() methods.

2.3.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotes:’xyzzy’ , "frobozz" . See chapter 2 of thePython
Reference Manualfor more about string literals. Unicode strings are much like strings, but are specified in the
syntax using a preceeding ‘u’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating
items with commas:[a, b, c] . Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such asa, b,
c or () . A single item tuple must have a trailing comma, such as(d,) .

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don’t support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don’t support slicing, concatenation or repetition, and usingin , not in , min()
or max() on them is inefficient.

Most sequence types support the following operations. The ‘in ’ and ‘not in ’ operations have the same priori-
ties as the comparison operations. The ‘+’ and ‘* ’ operations have the same priority as the corresponding numeric
operations.7

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the table,s andt are sequences of the same type;n, i andj are integers:

Operation Result Notes
x in s 1 if an item ofs is equal tox, else0 (1)

x not in s 0 if an item ofs is equal tox, else1 (1)
s + t the concatenation ofs andt

s * n, n * s n shallow copies ofs concatenated (2)
s[i] i’th item of s, origin 0 (3)

s[i: j] slice ofs from i to j (3), (4)
s[i: j: k] slice ofs from i to j with stepk (3), (5)
len(s) length ofs
min(s) smallest item ofs
max(s) largest item ofs

Notes:

(1) Whens is a string or Unicode string object thein andnot in operations act like a substring test. In Python
versions before 2.3,x had to be a string of length 1. In Python 2.3 and beyond,x may be a string of any
length.

(2) Values ofn less than0 are treated as0 (which yields an empty sequence of the same type ass). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

7They must have since the parser can’t tell the type of the operands.

18 Chapter 2. Built-In Objects

What has happened is thatlists is a list containing three copies of the list[[]] (a one-element list
containing an empty list), but the contained list is shared by each copy. You can create a list of different lists
this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]

(3) If i or j is negative, the index is relative to the end of the string:len(s) + i or len(s) + j is substituted.
But note that-0 is still 0.

(4) The slice ofs from i to j is defined as the sequence of items with indexk such thati <= k < j. If i or j is
greater thanlen(s) , uselen(s) . If i is omitted, use0. If j is omitted, uselen(s) . If i is greater than or
equal toj, the slice is empty.

(5) The slice ofs from i to j with stepk is defined as the sequence of items with indexx = i + n* k such that0
<= n < abs(i-j) . If i or j is greater thanlen(s) , uselen(s) . If i or j are omitted then they become
“end” values (which end depends on the sign ofk). Note,k cannot be zero.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize ()
Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width)
Return centered in a string of lengthwidth. Padding is done using spaces.

count (sub[, start[, end]])
Return the number of occurrences of substringsub in string S[start: end] . Optional argumentsstart and
endare interpreted as in slice notation.

decode ([encoding[, errors]])
Decodes the string using the codec registered forencoding. encodingdefaults to the default string encoding.
errors may be given to set a different error handling scheme. The default is’strict’ , meaning that
encoding errors raiseValueError . Other possible values are’ignore’ and ’replace’ . New in
version 2.2.

encode ([encoding[,errors]])
Return an encoded version of the string. Default encoding is the current default string encoding.errors
may be given to set a different error handling scheme. The default forerrors is ’strict’ , meaning that
encoding errors raise aValueError . Other possible values are’ignore’ and’replace’ . New in
version 2.0.

endswith (suffix[, start[, end]])
ReturnTrue if the string ends with the specifiedsuffix, otherwise returnFalse . With optionalstart, test
beginning at that position. With optionalend, stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spaces. Iftabsizeis not given, a tab
size of8 characters is assumed.

find (sub[, start[, end]])
Return the lowest index in the string where substringsub is found, such thatsub is contained in the range
[start, end). Optional argumentsstart andendare interpreted as in slice notation. Return-1 if subis not
found.

2.3. Built-in Types 19

index (sub[, start[, end]])
Like find() , but raiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

istitle ()
Return true if the string is a titlecased string and there is at least one character, i.e. uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq)
Return a string which is the concatenation of the strings in the sequenceseq. The separator between elements
is the string providing this method.

ljust (width)
Return the string left justified in a string of lengthwidth. Padding is done using spaces. The original string
is returned ifwidth is less thanlen(s) .

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

lstrip ([chars])
Return a copy of the string with leading characters removed. Ifchars is omitted orNone, whitespace
characters are removed. If given and notNone, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.2: Support for
thecharsargument.

replace (old, new[, count])
Return a copy of the string with all occurrences of substringold replaced bynew. If the optional argument
countis given, only the firstcountoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substringsub is found, such thatsub is contained within
s[start,end]. Optional argumentsstart andendare interpreted as in slice notation. Return-1 on failure.

rindex (sub[, start[, end]])
Like rfind() but raisesValueError when the substringsubis not found.

20 Chapter 2. Built-In Objects

rjust (width)
Return the string right justified in a string of lengthwidth. Padding is done using spaces. The original string
is returned ifwidth is less thanlen(s) .

rstrip ([chars])
Return a copy of the string with trailing characters removed. Ifchars is omitted orNone, whitespace
characters are removed. If given and notNone, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.2: Support for thechars
argument.

split ([sep[,maxsplit]])
Return a list of the words in the string, usingsepas the delimiter string. Ifmaxsplitis given, at mostmaxsplit
splits are done. (thus, the list will have at mostmaxsplit+1 elements). Ifmaxsplitis not specified or is zero,
then there is no limit on the number of splits (all possible splits are made). Consecutive delimiters are not
grouped together and are deemed to delimit empty strings (for example, ‘’1,,2’.split(’,’) ’ returns
‘ [’1’, ’’, ’2’] ’). The separgument may consist of multiple characters (for example, ‘’1, 2,
3’.split(’, ’) ’ returns ‘[’1’, ’2’, ’3’] ’). Splitting an empty string with a specified separator
returns an empty list.

If sepis not specified or isNone, a different splitting algorithm is applied. Words are separated by arbitrary
length strings of whitespace characters (spaces, tabs, newlines, returns, and formfeeds). Consecutive whites-
pace delimiters are treated as a single delimiter (‘’1 2 3’.split() ’ returns ‘[’1’, ’2’, ’3’] ’).
Splitting an empty string returns ‘[’’] ’.

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unlesskeependsis given and true.

startswith (prefix[, start[, end]])
ReturnTrue if string starts with theprefix, otherwise returnFalse . With optionalstart, test string begin-
ning at that position. With optionalend, stop comparing string at that position.

strip ([chars])
Return a copy of the string with leading and trailing characters removed. Ifchars is omitted orNone,
whitespace characters are removed. If given and notNone, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.2:
Support for thecharsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

title ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table[, deletechars])
Return a copy of the string where all characters occurring in the optional argumentdeletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

For Unicode objects, thetranslate() method does not accept the optionaldeletecharsargument. In-
stead, it returns a copy of thes where all characters have been mapped through the given translation table
which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode strings orNone. Unmapped
characters are left untouched. Characters mapped toNone are deleted. Note, a more flexible approach is
to create a custom character mapping codec using thecodecs module (seeencodings.cp1251 for an
example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zfill (width)

2.3. Built-in Types 21

Return the numeric string left filled with zeros in a string of lengthwidth. The original string is returned if
width is less thanlen(s) . New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operation: the%operator (modulo). This is also known as the
string formattingor interpolationoperator. Givenformat %values(whereformat is a string or Unicode object),
%conversion specifications informatare replaced with zero or more elements ofvalues. The effect is similar to
the usingsprintf() in the C language. Ifformat is a Unicode object, or if any of the objects being converted
using the%sconversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument,valuesmay be a single non-tuple object.8 Otherwise,valuesmust be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The ‘%’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,(somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an ‘* ’ (asterisk), the actual width is read from the next
element of the tuple invalues, and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a ‘. ’ (dot) followed by the precision. If specified as ‘* ’ (an asterisk), the
actual width is read from the next element of the tuple invalues, and the value to convert comes after the
precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the stringmustinclude a
parenthesised mapping key into that dictionary inserted immediately after the ‘%’ character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print ’%(language)s has %(#)03d quote types.’ % \
{’language’: "Python", "#": 2}

Python has 002 quote types.

In this case no* specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
‘#’ The value conversion will use the “alternate form” (where defined below).
‘0’ The conversion will be zero padded for numeric values.
‘ - ’ The converted value is left adjusted (overrides the ‘0’ conversion if both are given).
‘ ’ (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+’ A sign character (‘+’ or ‘ - ’) will precede the conversion (overrides a ”space” flag).

The length modifier may beh, l , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

22 Chapter 2. Built-In Objects

Conversion Meaning Notes
‘d’ Signed integer decimal.
‘ i ’ Signed integer decimal.
‘o’ Unsigned octal. (1)
‘u’ Unsigned decimal.
‘x ’ Unsigned hexidecimal (lowercase). (2)
‘X’ Unsigned hexidecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘E’ Floating point exponential format (uppercase).
‘ f ’ Floating point decimal format.
‘F’ Floating point decimal format.
‘g’ Same as ‘e’ if exponent is greater than -4 or less than precision, ‘f ’ otherwise.
‘G’ Same as ‘E’ if exponent is greater than -4 or less than precision, ‘F’ otherwise.
‘c ’ Single character (accepts integer or single character string).
‘ r ’ String (converts any python object usingrepr()). (3)
‘s ’ String (converts any python object usingstr()). (4)
‘%’ No argument is converted, results in a ‘%’ character in the result.

Notes:

(1) The alternate form causes a leading zero (‘0’) to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

(2) The alternate form causes a leading’0x’ or ’0X’ (depending on whether the ‘x ’ or ‘ X’ format was used) to
be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided is aunicode string, the resulting string will also beunicode .

Since Python strings have an explicit length,%sconversions do not assume that’\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50;%f conversions for numbers whose absolute value
is over 1e25 are replaced by%gconversions.9 All other errors raise exceptions.

Additional string operations are defined in standard modulesstring andre .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type
is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and thelen() function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
quence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (wherex is an arbitrary object):

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

2.3. Built-in Types 23

Operation Result Notes
s[i] = x item i of s is replaced byx

s[i: j] = t slice ofs from i to j is replaced byt
del s[i: j] same ass[i: j] = []

s[i: j: k] = t the elements ofs[i: j: k] are replaced by those oft (1)
del s[i: j: k] removes the elements ofs[i: j: k] from the list
s.append(x) same ass[len(s):len(s)] = [x] (2)
s.extend(x) same ass[len(s):len(s)] = x (3)
s.count(x) return number ofi’s for whichs[i] == x

s.index(x[, i[, j]]) return smallestk such thats[k] == x andi <= k < j (4)
s.insert(i, x) same ass[i: i] = [x] (5)

s.pop([i]) same asx = s[i]; del s[i]; return x (6)
s.remove(x) same asdel s[s.index(x)] (4)
s.reverse() reverses the items ofs in place (7)

s.sort([cmpfunc=None]) sort the items ofs in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) Raises an exception whenx is not a list object.

(4) RaisesValueError when x is not found ins. When a negative index is passed as the second or third
parameter to theindex() method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previously,index() didn’t have arguments
for specifying start and stop positions.

(5) When a negative index is passed as the first parameter to theinsert() method, the list length is added, as
for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argumenti defaults to-1 , so
that by default the last item is removed and returned.

(7) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

(8) The sort() method takes an optional argument specifying a comparison function of two arguments (list
items) which should return a negative, zero or positive number depending on whether the first argument
is considered smaller than, equal to, or larger than the second argument. Note that this slows the sorting
process down considerably; for example to sort a list in reverse order it is much faster to callsort()
followed byreverse() than to usesort() with a comparison function that reverses the ordering of the
elements. PassingNone as the comparison function is semantically equivalent to callingsort() with no
comparison function. Changed in version 2.3: Support forNone as an equivalent to omittingcmpfuncwas
added.

As an example of using thecmpfuncargument to thesort() method, consider sorting a list of sequences
by the second element of that list:

def mycmp(a, b):
return cmp(a[1], b[1])

mylist.sort(mycmp)

A more time-efficient approach for reasonably-sized data structures can often be used:

24 Chapter 2. Built-In Objects

tmplist = [(x[1], x) for x in mylist]
tmplist.sort()
mylist = [x for (key, x) in tmplist]

(9) Whether thesort() method is stable is not defined by the language (a sort is stable if it guarantees not
to change the relative order of elements that compare equal). In the C implementation of Python, sorts
were stable only by accident through Python 2.2. The C implementation of Python 2.3 introduced a stable
sort() method, but code that intends to be portable across implementations and versions must not rely on
stability.

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 makes the list appear empty for the duration, and raisesValueError if it
can detect that the list has been mutated during a sort.

2.3.7 Mapping Types

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, thedictionary. A dictionary’s keys are almost arbitrary values. Only values
containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity)
may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two
numbers compare equal (such as1 and1.0) then they can be used interchangeably to index the same dictionary
entry.

Dictionaries are created by placing a comma-separated list ofkey: value pairs within braces, for example:
{’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’} .

The following operations are defined on mappings (wherea andb are mappings,k is a key, andv andx are arbitrary
objects):

Operation Result Notes
len(a) the number of items ina

a[k] the item ofa with keyk (1)
a[k] = v seta[k] to v
del a[k] removea[k] from a (1)

a.clear() remove all items froma
a.copy() a (shallow) copy ofa

a.has key(k) True if a has a keyk, elseFalse
k in a Equivalent toa.has key(k) (2)

k not in a Equivalent tonot a.has key(k) (2)
a.items() a copy ofa’s list of (key, value) pairs (3)
a.keys() a copy ofa’s list of keys (3)

a.update(b) for k in b.keys(): a[k] = b[k]

a.fromkeys(seq[, value]) Creates a new dictionary with keys fromseqand values set tovalue (7)
a.values() a copy ofa’s list of values (3)

a.get(k[, x]) a[k] if k in a, elsex (4)
a.setdefault(k[, x]) a[k] if k in a, elsex (also setting it) (5)

a.pop(k[, x]) a[k] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrary (key, value) pair (6)

a.iteritems() return an iterator over (key, value) pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)

a.itervalues() return an iterator over the mapping’s values (2), (3)

Notes:

(1) Raises aKeyError exception ifk is not in the map.

2.3. Built-in Types 25

(2) New in version 2.2.

(3) Keys and values are listed in random order. Ifitems() , keys() , values() , iteritems() ,
iterkeys() , and itervalues() are called with no intervening modifications to the dictionary,
the lists will directly correspond. This allows the creation of(value, key) pairs usingzip() :
‘pairs = zip(a.values(), a.keys()) ’. The same relationship holds for theiterkeys()
and itervalues() methods: ‘pairs = zip(a.itervalues(), a.iterkeys()) ’ provides
the same value forpairs . Another way to create the same list is ‘pairs = [(v, k) for (k, v)
in a.iteritems()] ’.

(4) Never raises an exception ifk is not in the map, instead it returnsx. x is optional; whenx is not provided and
k is not in the map,None is returned.

(5) setdefault() is like get() , except that ifk is missing,x is both returned and inserted into the dictionary
as the value ofk.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

(7) fromkeys() is a class method that returns a new dictionary.valuedefaults toNone. New in version 2.3.

(8) pop() raises aKeyError when no default value is given and the key is not found. New in version 2.3.

2.3.8 File Objects

File objects are implemented using C’sstdio package and can be created with the built-in constructorfile()
described in section 2.1, “Built-in Functions.”10 File objects are also returned by some other built-in functions and
methods, such asos.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/O-related reason, the exceptionIOError is raised. This includes situations
where the operation is not defined for some reason, likeseek() on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise aValueError after the file has been closed. Callingclose() more than once is
allowed.

flush ()
Flush the internal buffer, likestdio ’s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as thefcntl module oros.read() and friends.Note: File-like objects which do not have a real file
descriptor shouldnotprovide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elseFalse . Note: If a file-like object is not
associated with a real file, this method shouldnotbe implemented.

next ()
A file object is its own iterator, for exampleiter(f) returnsf (unlessf is closed). When a file is used
as an iterator, typically in afor loop (for example,for line in f: print line), thenext()
method is called repeatedly. This method returns the next input line, or raisesStopIteration whenEOF

is hit. In order to make afor loop the most efficient way of looping over the lines of a file (a very common
operation), thenext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead
buffer, combiningnext() with other file methods (likereadline()) does not work right. However,
usingseek() to reposition the file to an absolute position will flush the read-ahead buffer. New in version
2.3.

10file() is new in Python 2.2. The older built-inopen() is an alias forfile() .

26 Chapter 2. Built-In Objects

read ([size])
Read at mostsizebytes from the file (less if the read hitsEOF before obtainingsizebytes). If thesize
argument is negative or omitted, read all data untilEOF is reached. The bytes are returned as a string object.
An empty string is returned whenEOF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after anEOF is hit.) Note that this method may call the underlying C function
fread() more than once in an effort to acquire as close tosizebytes as possible. Also note that when
in non-blocking mode, less data than what was requested may be returned, even if nosizeparameter was
given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string11 (but may be absent
when a file ends with an incomplete line). If thesizeargument is present and non-negative, it is a maximum
byte count (including the trailing newline) and an incomplete line may be returned. An empty string is
returnedonlywhenEOF is encountered immediately.Note: Unlike stdio ’s fgets() , the returned string
contains null characters (’\0’) if they occurred in the input.

readlines ([sizehint])
Read untilEOF usingreadline() and return a list containing the lines thus read. If the optionalsizehint
argument is present, instead of reading up toEOF, whole lines totalling approximatelysizehintbytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thing asiter(f) . New in version 2.1.Deprecated since release 2.3.Use
for line in file instead.

seek (offset[, whence])
Set the file’s current position, likestdio ’s fseek() . Thewhenceargument is optional and defaults to0
(absolute file positioning); other values are1 (seek relative to the current position) and2 (seek relative to
the file’s end). There is no return value. Note that if the file is opened for appending (mode’a’ or ’a+’),
anyseek() operations will be undone at the next write. If the file is only opened for writing in append
mode (mode’a’), this method is essentially a no-op, but it remains useful for files opened in append mode
with reading enabled (mode’a+’). If the file is opened in text mode (mode’t’), only offsets returned by
tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, likestdio ’s ftell() .

truncate ([size])
Truncate the file’s size. If the optionalsizeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, many UNIX variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until theflush() or close() method is called.

writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to matchreadlines() ; writelines()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same result asfile.readline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

11The advantage of leaving the newline on is that returning an empty string is then an unambiguousEOF indication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.3. Built-in Types 27

closed
bool indicating the current state of the file object. This is a read-only attribute; theclose() method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may also beNone,
in which case the file uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The I/O mode for the file. If the file was created using theopen() built-in function, this will be the value
of themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usingopen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form ‘<...> ’. This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the--with-universal-newlines option (the default) this read-only at-
tribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can take are’\r’ , ’\n’ , ’\r\n’ , None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conven-
tions were encountered. For files not opened in universal newline read mode the value of this attribute will
beNone.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a writablesoftspace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writablesoftspace attribute.Note: This attribute is not used to control theprint statement, but to
allow the implementation ofprint to keep track of its internal state.

2.3.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access:m. name, wherem is a module andnameaccesses a
name defined inm’s symbol table. Module attributes can be assigned to. (Note that theimport statement is not,
strictly speaking, an operation on a module object;import foo does not require a module object namedfoo to
exist, rather it requires an (external)definitionfor a module namedfoosomewhere.)

A special member of every module is dict . This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thedict
attribute is not possible (you can writem. dict [’a’] = 1 , which definesm.a to be1, but you can’t
write m. dict = {}).

Modules built into the interpreter are written like this:<module ’sys’ (built-in)> . If loaded from a file,
they are written as<module ’os’ from ’/usr/local/lib/python2.3/os.pyc’> .

Classes and Class Instances

See chapters 3 and 7 of thePython Reference Manualfor these.

28 Chapter 2. Built-In Objects

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributes:f .func code is a function’scode object(see be-
low) and f .func globals is the dictionary used as the function’s global namespace (this is the same as
m. dict wherem is the module in which the functionf was defined).

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes.Note that the cur-
rent implementation only supports function attributes on user-defined functions. Function attributes on built-in
functions may be supported in the future.

Functions have another special attributef . dict (a.k.a. f .func dict) which contains the namespace
used to support function attributes. dict andfunc dict can be accessed directly or set to a dictionary
object. A function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods:m.im self is the object on
which the method operates, andm.im func is the function implementing the method. Callingm(arg-1, arg-
2, . . ., arg-n) is completely equivalent to callingm.im func(m.im self, arg-1, arg-2, . . ., arg-
n) .

Class instance methods are eitherboundor unbound, referring to whether the method was accessed through an
instance or a class, respectively. When a method is unbound, itsim self attribute will beNone and if called, an
explicit self object must be passed as the first argument. In this case,self must be an instance of the unbound
method’s class (or a subclass of that class), otherwise aTypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.im func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results in aTypeError being raised. In
order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):

pass

c = C()
c.method.im_func.whoami = ’my name is c’

See thePython Reference Manualfor more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-incompile() function and can be extracted from function
objects through theirfunc code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to theexec statement or the
built-in eval() function.

See thePython Reference Manualfor more information.

2.3. Built-in Types 29

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in functiontype() .
There are no special operations on types. The standard moduletypes defines names for all standard built-in
types.

Types are written like this:<type ’int’> .

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedNone (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (see thePython Reference Manual). It supports no special operations.
There is exactly one ellipsis object, namedEllipsis (a built-in name).

It is written asEllipsis .

Boolean Values

Boolean values are the two constant objectsFalse andTrue . They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in functionbool() can be
used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written asFalse andTrue , respectively.

Internal Objects

See thePython Reference Manualfor this information. It describes stack frame objects, traceback objects, and
slice objects.

2.3.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by thedir() built-in function.

dict
A dictionary or other mapping object used to store an object’s (writable) attributes.

methods
Deprecated since release 2.2.Use the built-in functiondir() to get a list of an object’s attributes. This
attribute is no longer available.

members
Deprecated since release 2.2.Use the built-in functiondir() to get a list of an object’s attributes. This
attribute is no longer available.

class
The class to which a class instance belongs.

bases
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

30 Chapter 2. Built-In Objects

name
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the moduleexceptions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as theexceptions
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will
raise aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force program-
mers to use exception names rather than their string value when specifying exception handlers. The string value of
all built-in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined
by library modules.

For class exceptions, in atry statement with anexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from whichit is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string explaining the code). The associated value
is the second argument to theraise statement. For string exceptions, the associated value itself will be stored
in the variable named as the second argument of theexcept clause (if any). For class exceptions, that variable
receives the exception instance. If the exception class is derived from the standard root classException , the
associated value is present as the exception instance’sargs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from theException base class. More information on defining exceptions is available in
thePython Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforced. Thestr() function, when applied to
an instance of this class (or most derived classes) returns the string value of the argument or arguments, or
an empty string if no arguments were given to the constructor. When used as a sequence, this accesses the
arguments given to the constructor (handy for backward compatibility with old code). The arguments are
also available on the instance’sargs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exceptStopIteration andSystemExit . StandardError
itself is derived from the root classException .

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:OverflowError ,
ZeroDivisionError , FloatingPointError .

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError , KeyError . This can be raised directly bysys.setdefaultencoding() .

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python system:IOError , OSError . When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’serrno attribute

2.4. Built-in Exceptions 31

(it is assumed to be an error number), and the second item is available on thestrerror attribute (it is
usually the associated error message). The tuple itself is also available on theargs attribute. New in
version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on thefilename attribute. However, for backwards compatibility,
theargs attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 arguments. Theerrno
andstrerror attributes are alsoNone when the instance was created with other than 2 or 3 arguments.
In this last case,args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anassert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references
or attribute assignments at all,TypeError is raised.)

exceptionEOFError
Raised when one of the built-in functions (input() or raw input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: theread() andreadline() methods of file objects return an empty
string when they hitEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the--with-fpectl option, or theWANTSIGFPE HANDLERsymbol is defined in
the ‘pyconfig.h’ file.

exceptionIOError
Raised when an I/O operation (such as aprint statement, the built-inopen() function or a method of a
file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived fromEnvironmentError . See the discussion above for more information on
exception instance attributes.

exceptionImportError
Raised when animport statement fails to find the module definition or when afrom . . . import fails
to find a name that is to be imported.

exceptionIndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer,TypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardInterrupt
Raised when the user hits the interrupt key (normallyControl-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in functioninput() or raw input() is
waiting for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecture (C’smalloc() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exceptionNotImplementedError
This exception is derived fromRuntimeError . In user defined base classes, abstract methods should

32 Chapter 2. Built-In Objects

raise this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived fromEnvironmentError and is used primarily as theos module’sos.error
exception. SeeEnvironmentError above for a description of the possible associated values. New in
version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiseMemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits
than raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created by theweakref .proxy() function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see theweakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exceptionRuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exceptionStopIteration
Raised by an iterator’snext() method to signal that there are no further values. This is derived from
Exception rather thanStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occur in animport statement, in anexec
statement, in a call to the built-in functioneval() or input() , or when reading the initial script or
standard input (also interactively).

Instances of this class have atttributesfilename , lineno , offset andtext for easier access to the
details.str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version ; it is also printed at the start of an interactive Python session),
the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exceptionSystemExit
This exception is raised by thesys.exit() function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C’sexit() function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

Instances have an attributecode which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly fromException and notStandardError , since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses oftry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. exit() function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call tofork()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

2.4. Built-in Exceptions 33

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass ofNameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass ofValueError . New
in version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass ofUnicodeError . New in
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass ofUnicodeError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass ofUnicodeError . New
in version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such asIndexError .

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to anerrno
value. Theerrno andstrerror values are created from the return values of theGetLastError()
and FormatMessage() functions from the Windows Platform API. This is a subclass ofOSError .
New in version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see thewarnings module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

34 Chapter 2. Built-In Objects

Exception
+-- SystemExit
+-- StopIteration
+-- StandardError
| +-- KeyboardInterrupt
| +-- ImportError
| +-- EnvironmentError
| | +-- IOError
| | +-- OSError
| | +-- WindowsError
| +-- EOFError
| +-- RuntimeError
| | +-- NotImplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning

+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning
+-- RuntimeWarning
+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thebool type. New in version 2.3.

True
The true value of thebool type. New in version 2.3.

None
The sole value oftypes .NoneType . None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function.

2.5. Built-in Constants 35

NotImplemented
Special value which can be returned by the “rich comparison” special methods (eq () , lt () ,
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

36 Chapter 2. Built-In Objects

CHAPTER

THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.
gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.
types Names for built-in types.
UserDict Class wrapper for dictionary objects.
UserList Class wrapper for list objects.
UserString Class wrapper for string objects.
operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.
linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version ofpickle , but not subclassable.
copy reg Registerpickle support functions.
shelve Python object persistence.
copy Shallow and deep copy operations.
marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of theimport statement.
zipimport support for importing Python modules from ZIP archives.
pkgutil Utilities to support extension of packages.
code Base classes for interactive Python interpreters.
codeop Compile (possibly incomplete) Python code.
pprint Data pretty printer.
repr Alternaterepr() implementation with size limits.
new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.
user A standard way to reference user-specific modules.

builtin The set of built-in functions.
main The environment where the top-level script is run.
future Future statement definitions

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script.argv[0] is the script name (it is operating

37

system dependent whether this is a full pathname or not). If the command was executed using the-c
command line option to the interpreter,argv[0] is set to the string’-c’ . If no script name was passed
to the Python interpreter,argv has zero length.

byteorder
An indicator of the native byte order. This will have the value’big’ on big-endian (most-signigicant byte
first) platforms, and’little’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin module names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way —modules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value)
If valueis notNone, this function prints it tosys.stdout , and saves it in builtin . .

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook .

excepthook (type, value, traceback)
This function prints out a given traceback and exception tosys.stderr .

When an exception is raised and uncaught, the interpreter callssys.excepthook with three arguments,
the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook .

displayhook
excepthook

These objects contain the original values ofdisplayhook andexcepthook at the start of the program.
They are saved so thatdisplayhook and excepthook can be restored in case they happen to get
replaced with broken objects.

exc info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception”
is defined as “executing or having executed an except clause.” For any stack frame, only information about
the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containing threeNone values is returned.
Otherwise, the values returned are(type, value, traceback) . Their meaning is:typegets the exception
type of the exception being handled (a class object);valuegets the exception parameter (itsassociated value
or the second argument toraise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

If exc clear() is called, this function will return threeNone values until either another exception is
raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

Warning: Assigning thetracebackreturn value to a local variable in a function that is handling an exception
will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback,
the best solution is to use something likeexctype, value = sys.exc info()[:2] to extract
only the exception type and value. If you do need the traceback, make sure to delete it after use (best
done with atry ... finally statement) or to callexc info() in a function that does not itself handle
an exception.Note: Beginning with Python 2.2, such cycles are automatically reclaimed when garbage

38 Chapter 3. Python Runtime Services

collection is enabled and they become unreachable, but it remains more efficient to avoid creating cycles.

exc clear ()
This function clears all information relating to the current or last exception that occured in the current thread.
After calling this function,exc info() will return threeNone values until another exception is raised in
the current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling
systems that report information on the last or current exception. This function can also be used to try to free
resources and trigger object finalization, though no guarantee is made as to what objects will be freed, if
any. New in version 2.3.

exc type
exc value
exc traceback

Deprecated since release 1.5.Useexc info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handled,exc type is set toNone and the other two are
undefined.

exec prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed;
by default, this is also’/usr/local’ . This can be set at build time with the--exec-prefixargument
to theconfigure script. Specifically, all configuration files (e.g. the ‘pyconfig.h’ header file) are installed
in the directoryexec prefix + ’/lib/python version/config’ , and shared library modules are
installed in exec prefix + ’/lib/python version/lib-dynload’ , whereversion is equal to
version[:3] .

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes
sense.

exit ([arg])
Exit from Python. This is implemented by raising theSystemExit exception, so cleanup actions specified
by finally clauses oftry statements are honored, and it is possible to intercept the exit attempt at an outer
level. The optional argumentarg can be an integer giving the exit status (defaulting to zero), or another
type of object. If it is an integer, zero is considered “successful termination” and any nonzero value is
considered “abnormal termination” by shells and the like. Most systems require it to be in the range 0-127,
and produce undefined results otherwise. Some systems have a convention for assigning specific meanings
to specific exit codes, but these are generally underdeveloped; UNIX programs generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of object is passed,None is equivalent to
passing zero, and any other object is printed tosys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify
a clean-up action at program exit. When set, it should be a parameterless function. This function will be
called when the interpreter exits. Only one function may be installed in this way; to allow multiple functions
which will be called at termination, use theatexit module.Note: The exit function is not called when
the program is killed by a signal, when a Python fatal internal error is detected, or whenos. exit() is
called.

getcheckinterval ()
Return the interpreter’s “check interval”; seesetcheckinterval() . New in version 2.3.

getdefaultencoding ()
Return the name of the current default string encoding used by the Unicode implementation. New in
version 2.0.

getdlopenflags ()
Return the current value of the flags that are used fordlopen() calls. The flag constants are defined in
thedl andDLFCNmodules. Availability: UNIX . New in version 2.2.

getfilesystemencoding ()

3.1. sys — System-specific parameters and functions 39

Return the name of the encoding used to convert Unicode filenames into system file names, orNone if the
system default encoding is used. The result value depends on the operating system:

•On Windows 9x, the encoding is “mbcs”.

•On Mac OS X, the encoding is “utf-8”.

•On Unix, the encoding is the user’s preference according to the result of nllanginfo(CODESET), or
None if the nl langinfo(CODESET) failed.

•On Windows NT+, file names are Unicode natively, so no conversion is performed.

New in version 2.3.

getrefcount (object)
Return the reference count of theobject. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument togetrefcount() .

getrecursionlimit ()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This
limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set
by setrecursionlimit() .

getframe ([depth])
Return a frame object from the call stack. If optional integerdepthis given, return the frame object that
many calls below the top of the stack. If that is deeper than the call stack,ValueError is raised. The
default fordepthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements
aremajor, minor, build, platform, andtext. textcontains a string while all other values are integers.

platformmay be one of the following values:

0 (VER PLATFORMWIN32s)Win32s on Windows 3.1.

1 (VER PLATFORMWIN32 WINDOWS)Windows 95/98/ME

2 (VER PLATFORMWIN32 NT)Windows NT/2000/XP

3 (VER PLATFORMWIN32 CE)Windows CE.

This function wraps the Win32GetVersionEx() function; see the Microsoft Documentation for more
information about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature
...

else:
use an alternative implementation or warn the user
...

This is called ‘hexversion ’ since it only really looks meaningful when viewed as the result of passing
it to the built-in hex() function. Theversion info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last type
last value

40 Chapter 3. Python Runtime Services

last traceback
These three variables are not always defined; they are set when an exception is not handled and the inter-
preter prints an error message and a stack traceback. Their intended use is to allow an interactive user to
import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical use is ‘import pdb; pdb.pm() ’ to enter the post-mortem debugger; see
chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return values fromexc info() above. (Since
there is only one interactive thread, thread-safety is not a concern for these variables, unlike forexc type
etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer is-maxint-1 — the asymmetry results from the use of 2’s complement binary arithmetic.

maxunicode
An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be ma-
nipulated to force reloading of modules and other tricks. Note that removing a module from this dictionary
is not the same as callingreload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this list,path[0] , is the directory containing the script
that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard input),path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is inserted
beforethe entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.

Changed in version 2.3: Unicode strings are no longer ignored..

platform
This string contains a platform identifier, e.g.’sunos5’ or ’linux1’ . This can be used to append
platform-specific components topath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the string’/usr/local’ . This can be set at build time with the--prefix argument to
theconfigurescript. The main collection of Python library modules is installed in the directoryprefix +
’/lib/python version’ while the platform independent header files (all except ‘pyconfig.h’) are stored
in prefix + ’/include/python version’ , whereversionis equal toversion[:3] .

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the inter-
preter is in interactive mode. Their initial values in this case are’>>> ’ and ’... ’ . If a non-string
object is assigned to either variable, itsstr() is re-evaluated each time the interpreter prepares to read a
new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for
periodic things such as thread switches and signal handlers. The default is100 , meaning the check is
performed every 100 Python virtual instructions. Setting it to a larger value may increase performance for
programs using threads. Setting it to a value<= 0 checks every virtual instruction, maximizing responsive-
ness as well as overhead.

setdefaultencoding (name)
Set the current default string encoding used by the Unicode implementation. Ifnamedoes not match any
available encoding,LookupError is raised. This function is only intended to be used by thesite module

3.1. sys — System-specific parameters and functions 41

implementation and, where needed, bysitecustomize . Once used by thesite module, it is removed
from thesys module’s namespace. New in version 2.0.

setdlopenflags (n)
Set the flags used by the interpreter fordlopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD NOW | dl.RTLD GLOBAL). Symbolic names for the flag mod-
ules can be either found in thedl module, or in theDLFCNmodule. IfDLFCNis not available, it can be
generated from ‘/usr/include/dlfcn.h’ using theh2py script. Availability: UNIX . New in version 2.2.

setprofile (profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See chapter 10 for more information on the Python profiler. The system’s profile function is called similarly
to the system’s trace function (seesettrace()), but it isn’t called for each executed line of code (only
on call and return, but the return event is reported even when an exception has been set). The function is
thread-specific, but there is no way for the profiler to know about context switches between threads, so it
does not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it
can simply returnNone.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stack tolimit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific;
for a debugger to support multiple threads, it must be registered usingsettrace() for each thread being
debugged.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams.stdin is used for all
interpreter input except for scripts but including calls toinput() andraw input() . stdout is used
for the output ofprint and expression statements and for the prompts ofinput() andraw input() .
The interpreter’s own prompts and (almost all of) its error messages go tostderr . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it has awrite() method that takes a
string argument. (Changing these objects doesn’t affect the standard I/O streams of processes executed by
os.popen() , os.system() or theexec*() family of functions in theos module.)

stdin
stdout
stderr

These objects contain the original values ofstdin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in
case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback
information printed when an unhandled exception occurs. The default is1000 . When set to0 or less, all
traceback information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. It has a value of the form’ version (# build number, build date,
build time) [compiler]’ . The first three characters are used to identify the version in the installation
directories (where appropriate on each platform). An example:

42 Chapter 3. Python Runtime Services

>>> import sys
>>> sys.version
’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

api version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version info
A tuple containing the five components of the version number:major, minor, micro, releaselevel, andse-
rial . All values exceptreleaselevelare integers; the release level is’alpha’ , ’beta’ , ’candidate’ ,
or ’final’ . The version info value corresponding to the Python version 2.0 is(2, 0, 0,
’final’, 0) . New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three characters ofversion . It is provided in
thesys module for informational purposes; modifying this value has no effect on the registry keys used by
Python. Availability: Windows.

See Also:

Modulesite (section 3.29):
This describes how to use .pth files to extendsys.path .

3.2 gc — Garbage Collector interface

Thegc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, anImportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by callinggc.disable() . To debug a leaking program callgc.set debug(gc.DEBUG LEAK) .

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set debug (flags)
Set the garbage collection debugging flags. Debugging information will be written tosys.stderr . See
below for a list of debugging flags which can be combined using bit operations to control debugging.

get debug ()
Return the debugging flags currently set.

get objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set threshold (threshold0[, threshold1[, threshold2]])

3.2. gc — Garbage Collector interface 43

Set the garbage collection thresholds (the collection frequency). Settingthreshold0to zero disables collec-
tion.

The GC classifies objects into three generations depending on how many collection sweeps they have sur-
vived. New objects are placed in the youngest generation (generation0). If an object survives a collection
it is moved into the next older generation. Since generation2 is the oldest generation, objects in that gener-
ation remain there after a collection. In order to decide when to run, the collector keeps track of the number
object allocations and deallocations since the last collection. When the number of allocations minus the
number of deallocations exceedsthreshold0, collection starts. Initially only generation0 is examined. If
generation0 has been examined more thanthreshold1times since generation1 has been examined, then
generation1 is examined as well. Similarly,threshold2controls the number of collections of generation1
before collecting generation2.

get threshold ()
Return the current collection thresholds as a tuple of(threshold0, threshold1, threshold2) .

get referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently live
objects, callcollect() before callingget referrers() .

New in version 2.2.

get referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-leveltp traverse methods (if any), and may not be all objects actually
directly reachable.tp traverse methods are supported only by objects that support garbage collection,
and are only required to visit objects that may be involved in a cycle. So, for example, if an integer is
directly reachable from an argument, that integer object may or may not appear in the result list.

New in version 2.3.

The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
By default, this list contains only objects with del () methods.1 Objects that have del ()
methods and are part of a reference cycle cause the entire reference cycle to be uncollectable, including
objects not necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automati-
cally because, in general, it isn’t possible for Python to guess a safe order in which to run thedel ()
methods. If you know a safe order, you can force the issue by examining thegarbagelist, and explicitly
breaking cycles due to your objects within the list. Note that these objects are kept alive even so by virtue of
being in thegarbagelist, so they should be removed fromgarbagetoo. For example, after breaking cycles,
do del gc.garbage[:] to empty the list. It’s generally better to avoid the issue by not creating cycles
containing objects with del () methods, andgarbagecan be examined in that case to verify that no
such cycles are being created.

If DEBUGSAVEALLis set, then all unreachable objects will be added to this list rather than freed.

The following constants are provided for use withset debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to thegarbage list.

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only those withdel () methods.

44 Chapter 3. Python Runtime Services

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEor DEBUGUNCOLLECTABLEis set, print information about instance ob-
jects found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEor DEBUGUNCOLLECTABLEis set, print information about objects other
than instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appended togarbagerather than being freed. This can be
useful for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking pro-
gram (equal toDEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGINSTANCES |
DEBUGOBJECTS | DEBUGSAVEALL).

3.3 weakref — Weak references

New in version 2.1.

Theweakref module allows the Python programmer to createweak referencesto objects.

In the following, the termreferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it’s
desired that a large object not be kept alive solely because it appears in a cache or mapping. For example, if you
have a number of large binary image objects, you may wish to associate a name with each. If you used a Python
dictionary to map names to images, or images to names, the image objects would remain alive just because they
appeared as values or keys in the dictionaries. TheWeakKeyDictionary andWeakValueDictionary
classes supplied by theweakref module are an alternative, using weak references to construct mappings that
don’t keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a
value in aWeakValueDictionary , then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in
weak mappings are simply deleted.

WeakKeyDictionary andWeakValueDictionary use weak references in their implementation, setting
up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need – it’s not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed by theweakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), and methods (both bound and unbound). Extension types can easily be made to support
weak references; see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (object[, callback])
Return a weak reference toobject. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will causeNone to be
returned. Ifcallbackis provided and notNone, it will be called when the object is about to be finalized; the
weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’sdel () method.

Weak references are hashable if theobject is hashable. They will maintain their hash value even after the
objectwas deleted. Ifhash() is called the first time only after theobjectwas deleted, the call will raise

3.3. weakref — Weak references 45

TypeError .

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of thecallback). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

proxy (object[, callback])
Return a proxy toobjectwhich uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of eitherProxyType or CallableProxyType , depending on whetherobject is callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to their
fundamentally mutable nature, and prevent their use as dictionary keys.callbackis the same as the parameter
of the same name to theref() function.

getweakrefcount (object)
Return the number of weak references and proxies which refer toobject.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer toobject.

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because aWeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for aWeakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish ”by magic”
(as a side effect of garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because aWeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for aWeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish ”by magic”
(as a side effect of garbage collection).

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standardReferenceError exception.

See Also:

PEP 0205, “Weak References”
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

46 Chapter 3. Python Runtime Services

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
... pass
...
>>> o = Object()
>>> r = weakref.ref(o)
>>> o2 = r()
>>> o is o2
True

If the referent no longer exists, calling the reference object returnsNone:

>>> del o, o2
>>> print r()
None

Testing that a weak reference object is still live should be done using the expressionref() is not None .
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:

referent has been garbage collected
print "Object has been allocated; can’t frobnicate."

else:
print "Object is still live!"
o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3. weakref — Weak references 47

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must include aPyObject* field in the instance structure
for the use of the weak reference mechanism; it must be initialized toNULLby the object’s constructor. It must
also set thetp weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs
to addPy TPFLAGS HAVE WEAKREFSto the tp flags slot. For example, the instance type is defined with the
following structure:

typedef struct {
PyObject_HEAD
PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"module.instance",

/* Lots of stuff omitted for brevity... */

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_WEAKREFS /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */

};

The type constructor is responsible for initializing the weak reference list toNULL:

static PyObject *
instance_new() {

/* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;
}

The only further addition is that the destructor needs to call the weak reference manager to clear any weak ref-
erences. This should be done before any other parts of the destruction have occurred, but is only required if the
weak reference list is non-NULL:

48 Chapter 3. Python Runtime Services

static void
instance_dealloc(PyInstanceObject *inst)
{

/* Allocate temporaries if needed, but do not begin
destruction just yet.

*/

if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */
}

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any
real computer, some floating point operations produce results that cannot be expressed as a normal floating point
value. For example, try

>>> import math
>>> math.exp(1000)
inf
>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) ”Inf” is a special, non-
numeric value in IEEE-754 that stands for ”infinity”, and ”nan” means ”not a number.” Note that, other than the
non-numeric results, nothing special happened when you asked Python to carry out those calculations. That is in
fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Thefpectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generation ofSIGFPE whenever
any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair
of wrapper macros that are inserted into the C code comprising your python system,SIGFPE is trapped and
converted into the PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon sigfpe ()
Turn on the generation ofSIGFPE, and set up an appropriate signal handler.

turnoff sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation of thefpectl module.

3.4. fpectl — Floating point exception control 49

>>> import fpectl
>>> import fpetest
>>> fpectl.turnon_sigfpe()
>>> fpetest.test()
overflow PASS
FloatingPointError: Overflow

div by 0 PASS
FloatingPointError: Division by zero

[more output from test elided]
>>> import math
>>> math.exp(1000)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-
architecture basis. You may have to modifyfpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE START PROTECTandPyFPE END PROTECTbe inserted into your code in an appropriate fashion.
Python itself has been modified to support thefpectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.

See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The in-
clude file ‘Include/pyfpe.h’ discusses the implementation of this module at some length. ‘Modules/fpetestmodule.c’
gives several examples of use. Many additional examples can be found in ‘Objects/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are auto-
matically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whenos. exit() is called.

This is an alternate interface to the functionality provided by thesys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that setssys.exitfunc . In partic-
ular, other core Python modules are free to useatexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to useatexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit and register the function that had been bound tosys.exitfunc .

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed to
funcmust be passed as arguments toregister() .

At normal program termination (for instance, ifsys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower level
modules will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

50 Chapter 3. Python Runtime Services

Modulereadline (section 7.20):
Useful example ofatexit to read and writereadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:
_count = int(open("/tmp/counter").read())

except IOError:
_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passed toregister() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print ’Goodbye, %s, it was %s to meet you.’ % (name, adjective)

import atexit
atexit.register(goodbye, ’Donny’, ’nice’)

or:
atexit.register(goodbye, adjective=’nice’, name=’Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such thelistiterator type. It is safe to use ‘from types import * ’ — the module does
not export any names besides the ones listed here. New names exported by future versions of this module will all
end in ‘Type ’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):

if type(item) is IntType:
del mylist[item]

else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions such asint() andstr() are also names for the corresponding

3.6. types — Names for built-in types 51

types. This is now the preferred way to access the type instead of using thetypes module. Accordingly, the
example above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):

del mylist[item]
else:

mylist.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returned bytype()).

BooleanType
The type of thebool valuesTrue andFalse ; this is an alias of the built-inbool() function. New in
version 2.3.

IntType
The type of integers (e.g.1).

LongType
The type of long integers (e.g.1L).

FloatType
The type of floating point numbers (e.g.1.0).

ComplexType
The type of complex numbers (e.g.1.0j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e.g.’Spam’).

UnicodeType
The type of Unicode character strings (e.g.u’Spam’). This is not defined if Python was built without
Unicode support.

TupleType
The type of tuples (e.g.(1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g.[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g.{’Bacon’: 1, ’Ham’: 0}).

DictionaryType
An alternate name forDictType .

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name forFunctionType .

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returned bycompile() .

ClassType
The type of user-defined classes.

52 Chapter 3. Python Runtime Services

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name forMethodType .

BuiltinFunctionType
The type of built-in functions likelen() or sys.exit() .

BuiltinMethodType
An alternate name forBuiltinFunction .

ModuleType
The type of modules.

FileType
The type of open file objects such assys.stdout .

XRangeType
The type of range objects returned byxrange() .

SliceType
The type of objects returned byslice() .

EllipsisType
The type ofEllipsis .

TracebackType
The type of traceback objects such as found insys.exc traceback .

FrameType
The type of frame objects such as found intb.tb frame if tb is a traceback object.

BufferType
The type of buffer objects created by thebuffer() function.

StringTypes
A sequence containingStringType andUnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only containsUnicodeType if it has been built in the running version of Python. For example:
isinstance(s, types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from the built-indict
type.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way
one can add new behaviors to dictionaries.

The module also defines a mixin defining all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the shelve
module).

TheUserDict module defines theUserDict class andDictMixin :

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute ofUserDict instances. Ifinitialdata is provided,data is initialized with its
contents; note that a reference toinitialdata will not be kept, allowing it be used for other purposes.

3.7. UserDict — Class wrapper for dictionary objects 53

In addition to supporting the methods and operations of mappings (see section 2.3.7),UserDict instances pro-
vide the following attribute:

data
A real dictionary used to store the contents of theUserDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including

getitem () , setitem () , delitem () , andkeys() .

This mixin should be used as a superclass. Adding each of the above methods adds progressively more
functionality. For instance, defining all but delitem will preclude onlypop andpopitem from
the full interface.

In addition to the four base methods, progessively more efficiency comes with defining
contains () , iter () , anditeritems() .

Since the mixin has no knowledge of the subclass constructor, it does not defineinit () or copy() .

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from the built-inlist
type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines theUserList class:

classUserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via thedata
attribute ofUserList instances. The instance’s contents are initially set to a copy oflist, defaulting to the
empty list[] . list can be either a regular Python list, or an instance ofUserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.3.6),UserList in-
stances provide the following attribute:

data
A real Python list object used to store the contents of theUserList class.

Subclassing requirements:Subclasses ofUserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutabledata attribute. Earlier versions of Python did not attempt to create instances of
the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-instr type instead of usingUserString (there is no built-in equivalent to
MutableString).

54 Chapter 3. Python Runtime Services

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case forMutableString .

TheUserString module defines the following classes:

classUserString ([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via thedata attribute ofUserString instances. The instance’s
contents are initially set to a copy ofsequence. sequencecan be either a regular Python string or Unicode
string, an instance ofUserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-instr() function.

classMutableString ([sequence])
This class is derived from theUserString above and redefines strings to bemutable. Mutable strings
can’t be used as dictionary keys, because dictionaries requireimmutableobjects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the

hash () method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String
Methods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of theUserString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For example,operator.add(x, y) is equivalent to the expressionx+y . The function names are
those used for special class methods; variants without leading and trailing ‘’ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations,
sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

lt (a, b)
le (a, b)
eq(a, b)
ne(a, b)
ge(a, b)
gt (a, b)

lt (a, b)
le (a, b)
eq (a, b)
ne (a, b)
ge (a, b)
gt (a, b)

Perform “rich comparisons” betweena andb. Specifically,lt(a, b) is equivalent toa < b, le(a, b)
is equivalent toa <= b, eq(a, b) is equivalent toa == b, ne(a, b) is equivalent toa != b, gt(a,
b) is equivalent toa > b andge(a, b) is equivalent toa >= b. Note that unlike the built-incmp() ,
these functions can return any value, which may or may not be interpretable as a Boolean value. See the
Python Reference Manualfor more informations about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

3.10. operator — Standard operators as functions. 55

not (o)
not (o)

Return the outcome ofnot o. (Note that there is no not () method for object instances; only the
interpreter core defines this operation. The result is affected by thenonzero () and len ()
methods.)

truth (o)
ReturnTrue if o is true, andFalse otherwise. This is equivalent to using thebool constructor.

is (a, b)
Returna is b. Tests object identity. New in version 2.3.

is not (a, b)
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (o)
abs (o)

Return the absolute value ofo.

add (a, b)
add (a, b)

Returna + b, for a andb numbers.

and (a, b)
and (a, b)

Return the bitwise and ofa andb.

div (a, b)
div (a, b)

Returna / b when future .division is not in effect. This is also known as “classic” division.

floordiv (a, b)
floordiv (a, b)

Returna // b. New in version 2.2.

inv (o)
invert (o)

inv (o)
invert (o)

Return the bitwise inverse of the numbero. This is equivalent tõ o. The namesinvert() and
invert () were added in Python 2.0.

lshift (a, b)
lshift (a, b)

Returna shifted left byb.

mod(a, b)
mod (a, b)

Returna %b.

mul (a, b)
mul (a, b)

Returna * b, for a andb numbers.

neg (o)
neg (o)

Returno negated.

or (a, b)
or (a, b)

Return the bitwise or ofa andb.

pos (o)
pos (o)

56 Chapter 3. Python Runtime Services

Returno positive.

pow(a, b)
pow (a, b)

Returna ** b, for a andb numbers. New in version 2.3.

rshift (a, b)
rshift (a, b)

Returna shifted right byb.

sub (a, b)
sub (a, b)

Returna - b.

truediv (a, b)
truediv (a, b)

Returna / b when future .division is in effect. This is also known as division. New in version
2.2.

xor (a, b)
xor (a, b)

Return the bitwise exclusive or ofa andb.

Operations which work with sequences include:

concat (a, b)
concat (a, b)

Returna + b for a andb sequences.

contains (a, b)
contains (a, b)

Return the outcome of the testb in a. Note the reversed operands. The namecontains () was
added in Python 2.0.

countOf (a, b)
Return the number of occurrences ofb in a.

delitem (a, b)
delitem (a, b)

Remove the value ofa at indexb.

delslice (a, b, c)
delslice (a, b, c)

Delete the slice ofa from indexb to indexc-1 .

getitem (a, b)
getitem (a, b)

Return the value ofa at indexb.

getslice (a, b, c)
getslice (a, b, c)

Return the slice ofa from indexb to indexc-1 .

indexOf (a, b)
Return the index of the first of occurrence ofb in a.

repeat (a, b)
repeat (a, b)

Returna * b wherea is a sequence andb is an integer.

sequenceIncludes (...)
Deprecated since release 2.0.Usecontains() instead.

Alias for contains() .

setitem (a, b, c)
setitem (a, b, c)

Set the value ofa at indexb to c.

3.10. operator — Standard operators as functions. 57

setslice (a, b, c, v)
setslice (a, b, c, v)

Set the slice ofa from indexb to indexc-1 to the sequencev.

Theoperator module also defines a few predicates to test the type of objects.Note: Be careful not to misin-
terpret the results of these functions; onlyisCallable() has any measure of reliability with instance objects.
For example:

>>> class C:
... pass
...
>>> import operator
>>> o = C()
>>> operator.isMappingType(o)
True

isCallable (o)
Deprecated since release 2.0.Use thecallable() built-in function instead.

Returns true if the objecto can be called like a function, otherwise it returns false. True is returned for func-
tions, bound and unbound methods, class objects, and instance objects which support thecall ()
method.

isMappingType (o)
Returns true if the objecto supports the mapping interface. This is true for dictionaries and all instance
objects.Warning: There is no reliable way to test if an instance supports the complete mapping protocol
since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (o)
Returns true if the objecto represents a number. This is true for all numeric types implemented in C, and for
all instance objects.Warning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (o)
Returns true if the objecto supports the sequence protocol. This returns true for all objects which define
sequence methods in C, and for all instance objects.Warning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals from0 to 256 to their character equivalents.

>>> import operator
>>> d = {}
>>> keys = range(256)
>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions
in theoperator module.

58 Chapter 3. Python Runtime Services

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test o in seq contains(seq, o)
Division a / b div(a, b) # without future .division
Division a / b truediv(a, b) # with future .division
Division a // b floordiv(a, b)
Bitwise And a & b and (a, b)
Bitwise Exclusive Or a ˆ b xor(a, b)
Bitwise Inversion ˜ a invert(a)
Bitwise Or a | b or (a, b)
Exponentiation a ** b pow(a, b)
Identity a is b is (a, b)
Identity a is not b is not(a, b)
Indexed Assignment o[k] = v setitem(o, k, v)
Indexed Deletion del o[k] delitem(o, k)
Indexing o[k] getitem(o, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not (a)
Right Shift a >> b rshift(a, b)
Sequence Repitition seq * i repeat(seq, i)
Slice Assignment seq[i: j] = values setslice(seq, i, j, values)
Slice Deletion del seq[i: j] delslice(seq, i, j)
Slicing seq[i: j] getslice(seq, i, j)
String Formatting s % o mod(s, o)
Subtraction a - b sub(a, b)
Truth Test o truth(o)
Ordering a < b lt(a, b)
Ordering a <= b le(a, b)
Equality a == b eq(a, b)
Difference a != b ne(a, b)
Ordering a >= b ge(a, b)
Ordering a > b gt(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

The inspect module provides several useful functions to help get information about live objects such as mod-
ules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The eleven
functions whose names begin with “is” are mainly provided as convenient choices for the second argument to
getmembers() . They also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 59

Type Attribute Description Notes
module doc documentation string

file filename (missing for built-in modules)
class doc documentation string

module name of module in which this class was defined
method doc documentation string

name name with which this method was defined
im class class object that asked for this method (1)
im func function object containing implementation of method
im self instance to which this method is bound, orNone

function doc documentation string
name name with which this function was defined

func code code object containing compiled function bytecode
func defaults tuple of any default values for arguments
func doc (same as doc)
func globals global namespace in which this function was defined
func name (same as name)

traceback tb frame frame object at this level
tb lasti index of last attempted instruction in bytecode
tb lineno current line number in Python source code
tb next next inner traceback object (called by this level)

frame f back next outer frame object (this frame’s caller)
f builtins built-in namespace seen by this frame
f code code object being executed in this frame
f exc traceback traceback if raised in this frame, orNone
f exc type exception type if raised in this frame, orNone
f exc value exception value if raised in this frame, orNone
f globals global namespace seen by this frame
f lasti index of last attempted instruction in bytecode
f lineno current line number in Python source code
f locals local namespace seen by this frame
f restricted 0 or 1 if frame is in restricted execution mode
f trace tracing function for this frame, orNone

code co argcount number of arguments (not including * or ** args)
co code string of raw compiled bytecode
co consts tuple of constants used in the bytecode
co filename name of file in which this code object was created
co firstlineno number of first line in Python source code
co flags bitmap: 1=optimized| 2=newlocals| 4=*arg | 8=**arg
co lnotab encoded mapping of line numbers to bytecode indices
co name name with which this code object was defined
co names tuple of names of local variables
co nlocals number of local variables
co stacksize virtual machine stack space required
co varnames tuple of names of arguments and local variables

builtin doc documentation string
name original name of this function or method
self instance to which a method is bound, orNone

Note:

(1) Changed in version 2.2:im class used to refer to the class that defined the method.

getmembers (object[, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optionalpredicate
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path)
Return a tuple of values that describe how Python will interpret the file identified bypath if it is a module,

60 Chapter 3. Python Runtime Services

or None if it would not be identified as a module. The return tuple is(name, suffix, mode, mtype) ,
wherenameis the name of the module without the name of any enclosing package,suffixis the trailing part
of the file name (which may not be a dot-delimited extension),modeis theopen() mode that would be
used (’r’ or ’rb’), andmtypeis an integer giving the type of the module.mtypewill have a value which
can be compared to the constants defined in theimp module; see the documentation for that module for
more information on module types.

getmodulename (path)
Return the name of the module named by the filepath, without including the names of enclosing packages.
This uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be
matched according to the interpreter’s rules,None is returned.

ismodule (object)
Return true if the object is a module.

isclass (object)
Return true if the object is a class.

ismethod (object)
Return true if the object is a method.

isfunction (object)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (object)
Return true if the object is a traceback.

isframe (object)
Return true if the object is a frame.

iscode (object)
Return true if the object is a code.

isbuiltin (object)
Return true if the object is a built-in function.

isroutine (object)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (object)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of int.add . An object passing this test has a
get attribute but not a set attribute, but beyond that the set of attributes varies.name is

usually sensible, and doc often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethod-
descriptor() test, simply because the other tests promise more – you can, e.g., count on having the imfunc
attribute (etc) when an object passes ismethod().

isdatadescriptor (object)
Return true if the object is a data descriptor.

Data descriptors have both a get and a set attribute. Examples are properties (defined in Python)
and getsets and members (defined in C). Typically, data descriptors will also havename and doc
attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New
in version 2.3.

3.11.2 Retrieving source code

getdoc (object)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second
line onwards is removed.

getcomments (object)

3.11. inspect — Inspect live objects 61

Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (object)
Return the name of the (text or binary) file in which an object was defined. This will fail with aTypeError
if the object is a built-in module, class, or function.

getmodule (object)
Try to guess which module an object was defined in.

getsourcefile (object)
Return the name of the Python source file in which an object was defined. This will fail with aTypeError
if the object is a built-in module, class, or function.

getsourcelines (object)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code
was found. AnIOError is raised if the source code cannot be retrieved.

getsource (object)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single string. AnIOError is raised if
the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classes[, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains
classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing
a class and a tuple of its base classes. If theuniqueargument is true, exactly one entry appears in the
returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their
descendants will appear multiple times.

getargspec (func)
Get the names and default values of a function’s arguments. A tuple of four things is returned:(args,
varargs, varkw, defaults) . argsis a list of the argument names (it may contain nested lists).varargsand
varkware the names of the* and** arguments orNone. defaultsis a tuple of default argument values or
None if there are not any; if the tuple hasn elements, they correspond to the lastn elements listed inargs.

getargvalues (frame)
Get information about arguments passed into a particular frame. A tuple of four things is returned:(args,
varargs, varkw, locals) . args is a list of the argument names (it may contain nested lists).varargsand
varkware the names of the* and** arguments orNone. locals is the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultformat])
Format a pretty argument spec from the four values returned bygetargspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valueformat])
Format a pretty argument spec from the four values returned bygetargvalues() . The other four ar-
guments are the corresponding optional formatting functions that are called to turn names and values into
strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

62 Chapter 3. Python Runtime Services

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the
filename, the line number of the current line, the function name, a list of lines of context from the source code,
and the index of the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records these func-
tions return, can cause your program to create reference cycles. Once a reference cycle has been created, the
lifespan of all objects which can be accessed from the objects which form the cycle can become much longer
even if Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure
they are explicitly broken to avoid the delayed destruction of objects and increased memory consumption
which occurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made deter-
ministic by removing the cycle in afinally clause. This is also important if the cycle detector was disabled
when Python was compiled or usinggc .disable() . For example:

def handle_stackframe_without_leak():
frame = inspect.currentframe()
try:

do something with the frame
finally:

del frame

The optionalcontextargument supported by most of these functions specifies the number of lines of context to
return, which are centered around the current line.

getframeinfo (frame[, context])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame[, context])
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame. The first entry in the returned list representsframe; the last entry represents the outermost
call onframe’s stack.

getinnerframes (traceback[, context])
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence offrame. The first entry in the list representstraceback; the last entry represents where
the exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([context])
Return a list of frame records for the caller’s stack. The first entry in the returned list represents the caller;
the last entry represents the outermost call on the stack.

trace ([context])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variablessys.exc traceback
(deprecated) andsys.last traceback and returned as the third item fromsys.exc info() .

3.12. traceback — Print or retrieve a stack traceback 63

The module defines the following functions:

print tb (traceback[, limit[, file]])
Print up tolimit stack trace entries fromtraceback. If limit is omitted orNone, all entries are printed. Iffile
is omitted orNone, the output goes tosys.stderr ; otherwise it should be an open file or file-like object
to receive the output.

print exception (type, value, traceback[, limit[, file]])
Print exception information and up tolimit stack trace entries fromtracebackto file. This differs from
print tb() in the following ways: (1) iftracebackis notNone, it prints a header ‘Traceback (most
recent call last): ’; (2) it prints the exceptiontypeandvalueafter the stack trace; (3) iftype is
SyntaxError andvaluehas the appropriate format, it prints the line where the syntax error occurred
with a caret indicating the approximate position of the error.

print exc ([limit[, file]])
This is a shorthand for print exception(sys.exc type, sys.exc value,
sys.exc traceback, limit, file) . (In fact, it usessys.exc info() to retrieve the same
information in a thread-safe way instead of using the deprecated variables.)

print last ([limit[, file]])
This is a shorthand for print exception(sys.last type, sys.last value,
sys.last traceback, limit, file) .

print stack ([f [, limit[, file]]])
This function prints a stack trace from its invocation point. The optionalf argument can be used to spec-
ify an alternate stack frame to start. The optionallimit andfile arguments have the same meaning as for
print exception() .

extract tb (traceback[, limit])
Return a list of up tolimit “pre-processed” stack trace entries extracted from the traceback objecttraceback.
It is useful for alternate formatting of stack traces. Iflimit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadruple (filename, line number, function name, text) representing the
information that is usually printed for a stack trace. Thetext is a string with leading and trailing whitespace
stripped; if the source is not available it isNone.

extract stack ([f [, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract tb() . The optionalf andlimit arguments have the same meaning as forprint stack() .

format list (list)
Given a list of tuples as returned byextract tb() or extract stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items whose
source text line is notNone.

format exception only (type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as given
by sys.last type and sys.last value . The return value is a list of strings, each ending in a
newline. Normally, the list contains a single string; however, forSyntaxError exceptions, it contains
several lines that (when printed) display detailed information about where the syntax error occurred. The
message indicating which exception occurred is the always last string in the list.

format exception (type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as the cor-
responding arguments toprint exception() . The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as doesprint exception() .

format tb (tb[, limit])
A shorthand forformat list(extract tb(tb, limit)) .

format stack ([f [, limit]])
A shorthand forformat list(extract stack(f , limit)) .

tb lineno (tb)

64 Chapter 3. Python Runtime Services

This function returns the current line number set in the traceback object. This function was necessary
because in versions of Python prior to 2.3 when the-O flag was passed to Python thetb.tb lineno was
not updated correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to thecode module.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")
try:

exec source in envdir
except:

print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally, using
a cache, the common case where many lines are read from a single file. This is used by thetraceback module
to retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

getline (filename, lineno)
Get linelineno from file namedfilename. This function will never throw an exception — it will return’’
on errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search path,sys.path .

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously read usinggetline() .

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version.

Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\n’

3.13. linecache — Random access to text lines 65

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte
stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierar-
chy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalling,”2 or “flattening”, however,
to avoid confusion, the terms used here are “pickling” and “unpickling”.

This documentation describes both thepickle module and thecPickle module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called thecPickle module. As its name implies,cPickle
is written in C, so it can be up to 1000 times faster thanpickle . However it does not support subclassing
of the Pickler() andUnpickler() classes, because incPickle these are functions, not classes. Most
applications have no need for this functionality, and can benefit from the improved performance ofcPickle .
Other than that, the interfaces of the two modules are nearly identical; the common interface is described in this
manual and differences are pointed out where necessary. In the following discussions, we use the term “pickle” to
collectively describe thepickle andcPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module calledmarshal , but in generalpickle should always be the
preferred way to serialize Python objects.marshal exists primarily to support Python’s ‘.pyc’ files.

Thepickle module differs frommarshal several significant ways:

• Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won’t be serialized again.marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the
same object in different places in the object hierarchy being serialized.pickle stores such objects only
once, and ensures that all other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

• marshal cannot be used to serialize user-defined classes and their instances.pickle can save and restore
class instances transparently, however the class definition must be importable and live in the same module
as when the object was stored.

• The marshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support ‘.pyc’ files, the Python implementers reserve the right to change the serial-
ization format in non-backwards compatible ways should the need arise. Thepickle serialization format
is guaranteed to be backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constructed
data. Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althoughpickle reads and writes file objects,
it does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. Thepickle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do
with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store
them in a database. The moduleshelve provides a simple interface to pickle and unpickle objects on DBM-style
database files.

2Don’t confuse this with themarshal module

66 Chapter 3. Python Runtime Services

3.14.2 Data stream format

The data format used bypickle is Python-specific. This has the advantage that there are no restrictions imposed
by external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printableASCII representation. This is slightly more voluminous than a
binary representation. The big advantage of using printableASCII (and of some other characteristics ofpickle ’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

• Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of
Python.

• Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

• Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. Ifprotocol is specified as a negative value or
HIGHEST PROTOCOL, the highest protocol version available will be used.

Changed in version 2.3: Thebin parameter is deprecated and only provided for backwards compatibility. You
should use theprotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value for thebin argument
to thePickler constructor or thedump() anddumps() functions. Aprotocolversion ¿= 1 implies use of a
binary format.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the pickler’sdump() method. To de-
serialize a data stream, you first create an unpickler, then you call the unpickler’sload() method. Thepickle
module provides the following constant:

HIGHEST PROTOCOL
The highest protocol version available. This value can be passed as aprotocolvalue. New in version 2.3.

Thepickle module provides the following functions to make this process more convenient:

dump(object, file[, protocol[, bin]])
Write a pickled representation ofobject to the open file objectfile. This is equivalent toPickler(file,
protocol, bin).dump(object) .

If the protocol parameter is ommitted, protocol 0 is used. Ifprotocol is specified as a negative value or
HIGHEST PROTOCOL, the highest protocol version will be used.

Changed in version 2.3: Theprotocol parameter was added. Thebin parameter is deprecated and only
provided for backwards compatibility. You should use theprotocolparameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have awrite() method that accepts a single string argument. It can thus be a file object opened
for writing, aStringIO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objectfile and interpret it as a pickle data stream, reconstructing and
returning the original object hierarchy. This is equivalent toUnpickler(file).load() .

file must have two methods, aread() method that takes an integer argument, and areadline() method
that requires no arguments. Both methods should return a string. Thusfile can be a file object opened for
reading, aStringIO object, or any other custom object that meets this interface.

3.14. pickle — Python object serialization 67

This function automatically determines whether the data stream was written in binary mode or not.

dumps(object[, protocol[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is ommitted, protocol 0 is used. Ifprotocol is specified as a negative value or
HIGHEST PROTOCOL, the highest protocol version will be used.

Changed in version 2.3: Theprotocol parameter was added. Thebin parameter is deprecated and only
provided for backwards compatibility. You should use theprotocolparameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representa-
tion are ignored.

Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherits fromException .

exceptionPicklingError
This exception is raised when an unpicklable object is passed to thedump() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may also
be raised during unpickling, including (but not necessarily limited to)AttributeError , EOFError ,
ImportError , andIndexError .

Thepickle module also exports two callables,3 Pickler andUnpickler :

classPickler (file[, protocol[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is ommitted, protocol 0 is used. Ifprotocol is specified as a negative value, the
highest protocol version will be used.

Changed in version 2.3: Thebin parameter is deprecated and only provided for backwards compatibility.
You should use theprotocolparameter instead.

Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwise theASCII

format is used (this is the default).

file must have awrite() method that accepts a single string argument. It can thus be an open file object,
aStringIO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(object)
Write a pickled representation ofobjectto the open file object given in the constructor. Either the binary or
ASCII format will be used, depending on the value of thebin flag passed to the constructor.

clear memo()
Clears the pickler’s “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3,clear memo() was only available on the picklers created bycPickle . In
thepickle module, picklers have an instance variable calledmemowhich is a Python dictionary. So to
clear the memo for apickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simply useclear memo() .

3In the pickle module these callables are classes, which you could subclass to customize the behavior. However, in thecPickle
module these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can
actually be unpickled. See section 3.14.6 for more details.

68 Chapter 3. Python Runtime Services

It is possible to make multiple calls to thedump() method of the samePickler instance. These must then be
matched to the same number of calls to theload() method of the correspondingUnpickler instance. If the
same object is pickled by multipledump() calls, theload() will all yield references to the same object4.

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag as in thePickler
factory.

file must have two methods, aread() method that takes an integer argument, and areadline() method
that requires no arguments. Both methods should return a string. Thusfile can be a file object opened for
reading, aStringIO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the recon-
stituted object hierarchy specified therein.

noload ()
This is just like load() except that it doesn’t actually create any objects. This is useful primarily for
finding what’s called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5
below for more details.

Note: the noload() method is currently only available onUnpickler objects created with the
cPickle module.pickle moduleUnpickler s do not have thenoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

• None, True , andFalse

• integers, long integers, floating point numbers, complex numbers

• normal and Unicode strings

• tuples, lists, and dictionaries containing only picklable objects

• functions defined at the top level of a module

• built-in functions defined at the top level of a module

• classes that are defined at the top level of a module

• instances of such classes whosedict or setstate () is picklable (see section 3.14.5 for
details)

Attempts to pickle unpicklable objects will raise thePicklingError exception; when this happens, an unspec-
ified number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither
the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable
in the unpickling environment, and the module must contain the named object, otherwise an exception will be
raised5.

4Warning: this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the samePickler instance, the object is not pickled again — a reference to it is pickled and the
Unpickler will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a
minimal set of changes. Garbage Collection may also become a problem here.

5The exception raised will likely be anImportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 69

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class attributeattr is not
restored in the unpickling environment:

class Foo:
attr = ’a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and
still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that
will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class’ssetstate () method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the ob-
jects that are being serialized. This protocol provides a standard way for you to define, customize, and control how
your objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations
that you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see
section 3.14.6 for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsinit () method is normallynot invoked. If it is
desirable that the init () method be called on unpickling, an old-style class can define a method

getinitargs () , which should return atuple containing the arguments to be passed to the class con-
structor (i.e. init ()). The getinitargs () method is called at pickle time; the tuple it returns is
incorporated in the pickle for the instance.

New-style types can provide a getnewargs () method that is used for protocol 2. Implementing this
method is needed if the type establishes some internal invariants when the instance is created, or if the memory
allocation is affected by the values passed to thenew () method for the type (as it is for tuples and strings).
Instances of a new-style typeCare created using

obj = C.__new__(C, * args)

where args is the result of calling getnewargs () on the original object; if there is no
getnewargs () , an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the methodgetstate () ,
it is called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s
dictionary. If there is no getstate () method, the instance’s dict is pickled.

Upon unpickling, if the class also defines the methodsetstate () , it is called with the unpickled state6.
If there is no setstate () method, the pickled state must be a dictionary and its items are assigned to the
new instance’s dictionary. If a class defines bothgetstate () and setstate () , the state object
needn’t be a dictionary and these methods can do what they want.7

Warning: For new-style classes, if getstate () returns a false value, the setstate ()
method will not be called.

6These methods can also be used to implement copying class instances.
7This protocol is also used by the shallow and deep copying operations defined in thecopy module.

70 Chapter 3. Python Runtime Services

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks
in two places for a hint of how to pickle it. One alternative is for the object to implement areduce ()
method. If provided, at pickling time reduce () will be called with no arguments, and it must return either
a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is returned,
it must be of length two or three, with the following semantics:

• A callable object, which in the unpickling environment must be either a class, a callable registered as a “safe
constructor” (see below), or it must have an attributesafe for unpickling with a true value.
Otherwise, anUnpicklingError will be raised in the unpickling environment. Note that as usual, the
callable itself is pickled by name.

• A tuple of arguments for the callable object, orNone. Deprecated since release 2.3.Use the tuple of
arguments instead

• Optionally, the object’s state, which will be passed to the object’ssetstate () method as described
in section 3.14.5. If the object has no setstate () method, then, as above, the value must be a
dictionary and it will be added to the object’s dict .

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the tuple of
arguments; it should return the unpickled object.

If the second item wasNone, then instead of calling the callable directly, itsbasicnew () method is called
without arguments. It should also return the unpickled object.

Deprecated since release 2.3.Use the tuple of arguments instead

An alternative to implementing a reduce () method on the object to be pickled, is to register the callable
with the copy reg module. This module provides a way for programs to register “reduction functions”
and constructors for user-defined types. Reduction functions have the same semantics and interface as the

reduce () method described above, except that they are called with a single argument, the object to be
pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, thepickle module supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of
printableASCII characters. The resolution of such names is not defined by thepickle module; it will delegate
this resolution to user defined functions on the pickler and unpickler8.

To define external persistent id resolution, you need to set thepersistent id attribute of the pickler object
and thepersistent load attribute of the unpickler object.

To pickle objects that have an external persistent id, the pickler must have a custompersistent id() method
that takes an object as an argument and returns eitherNone or the persistent id for that object. WhenNone is
returned, the pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will
pickle that string, along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a custompersistent load() function that takes a
persistent id string and returns the referenced object.

Here’s a silly example thatmightshed more light:

8The actual mechanism for associating these user defined functions is slightly different forpickle andcPickle . The description given
here works the same for both implementations. Users of thepickle module could also use subclassing to effect the same results, overriding
thepersistent id() andpersistent load() methods in the derived classes.

3.14. pickle — Python object serialization 71

import pickle
from cStringIO import StringIO

src = StringIO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, ’x’):

return ’the value %d’ % obj.x
else:

return None

p.persistent_id = persistent_id

class Integer:
def __init__(self, x):

self.x = x
def __str__(self):

return ’My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringIO(datastream)

up = pickle.Unpickler(dst)

class FancyInteger(Integer):
def __str__(self):

return ’I am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith(’the value ’):

value = int(persid.split()[2])
return FancyInteger(value)

else:
raise pickle.UnpicklingError, ’Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j

In the cPickle module, the unpickler’spersistent load attribute can also be set to a Python list, in
which case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this
list. This functionality exists so that a pickle data stream can be “sniffed” for object references without actually
instantiating all the objects in a pickle9. Settingpersistent load to a list is usually used in conjunction with
thenoload() method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets
unpickled and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different

9We’ll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

72 Chapter 3. Python Runtime Services

depending on whether you’re usingpickle or cPickle .10.

In the pickle module, you need to derive a subclass fromUnpickler , overriding theload global()
method.load global() should read two lines from the pickle data stream where the first line will the name
of the module containing the class and the second line will be the name of the instance’s class. It then looks up the
class, possibly importing the module and digging out the attribute, then it appends what it finds to the unpickler’s
stack. Later on, this class will be assigned to theclass attribute of an empty class, as a way of magically
creating an instance without calling its class’sinit () . Your job (should you choose to accept it), would
be to haveload global() push onto the unpickler’s stack, a known safe version of any class you deem safe to
unpickle. It is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling
of instances. If this sounds like a hack, you’re right. Refer to the source code to make this work.

Things are a little cleaner withcPickle , but not by much. To control what gets unpickled, you can set the
unpickler’sfind global attribute to a function orNone. If it is None then any attempts to unpickle instances
will raise anUnpicklingError . If it is a function, then it should accept a module name and a class name,
and return the corresponding class object. It is responsible for looking up the class and performing any necessary
imports, and it may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. TheTextReader class opens a text file,
and returns the line number and line contents each time itsreadline() method is called. If aTextReader
instance is pickled, all attributesexceptthe file object member are saved. When the instance is unpickled, the
file is reopened, and reading resumes from the last location. Thesetstate () and getstate ()
methods are used to implement this behavior.

class TextReader:
"""Print and number lines in a text file."""
def __init__(self, file):

self.file = file
self.fh = open(file)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:

return None
if line.endswith("\n"):

line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __getstate__(self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict[’fh’] # remove filehandle entry
return odict

def __setstate__(self,dict):
fh = open(dict[’file’]) # reopen file
count = dict[’lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1

self.__dict__.update(dict) # update attributes
self.fh = fh # save the file object

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of
Python. We intend to someday provide a common interface for controlling this behavior, which will work in eitherpickle or cPickle .

3.14. pickle — Python object serialization 73

A sample usage might be something like this:

>>> import TextReader
>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()
’1: #!/usr/local/bin/python’
>>> # (more invocations of obj.readline() here)
... obj.readline()
’7: class TextReader:’
>>> import pickle
>>> pickle.dump(obj,open(’save.p’,’w’))

If you want to see thatpickle works across Python processes, start another Python session, before continuing.
What follows can happen from either the same process or a new process.

>>> import pickle
>>> reader = pickle.load(open(’save.p’))
>>> reader.readline()
’8: "Print and number lines in a text file."’

See Also:

Modulecopy reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; usespickle .

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

The cPickle module supports serialization and de-serialization of Python objects, providing an interface and
functionality nearly identical to thepickle module. There are several differences, the most important being
performance and subclassability.

First,cPickle can be up to 1000 times faster thanpickle because the former is implemented in C. Second, in
thecPickle module the callablesPickler() andUnpickler() are functions, not classes. This means that
you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance of thecPickle module.

The pickle data stream produced bypickle andcPickle are identical, so it is possible to usepickle and
cPickle interchangeably with existing pickles11.

There are additional minor differences in API betweencPickle andpickle , however for most applications,
they are interchangable. More documentation is provided in thepickle module documentation, which includes
a list of the documented differences.

3.16 copy reg — Register pickle support functions

11Since the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will
always be able to read each other’s data streams.

74 Chapter 3. Python Runtime Services

Thecopy reg module provides support for thepickle andcPickle modules. Thecopy module is likely
to use this in the future as well. It provides configuration information about object constructors which are not
classes. Such constructors may be factory functions or class instances.

constructor (object)
Declaresobject to be a valid constructor. Ifobject is not callable (and hence not valid as a constructor),
raisesTypeError .

pickle (type, function[, constructor])
Declares thatfunctionshould be used as a “reduction” function for objects of typetype; typemust not be
a “classic” class object. (Classic classes are handled differently; see the documentation for thepickle
module for details.)functionshould return either a string or a tuple containing two or three elements.

The optionalconstructorparameter, if provided, is a callable object which can be used to reconstruct the
object when called with the tuple of arguments returned byfunctionat pickling time.TypeError will be
raised ifobjectis a class orconstructoris not callable.

See thepickle module for more details on the interface expected offunctionandconstructor.

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the
keys!) in a shelf can be essentially arbitrary Python objects — anything that thepickle module can handle. This
includes most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are
ordinary strings.

open (filename[,flag=’c’[,protocol=None[,writeback=False [,binary=None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The optionalflag pararameter has the same
interpretation as theflagparameter ofanydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. Changed in version 2.3: Theprotocol parameter was added. Thebinary
parameter is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the
optionalwritebackparameter is set toTrue, all entries accessed are cached in memory, and written back at
close time; this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries
are accessed, it can consume vast amounts of memory for the cache, and it can make the close operation
very slow since all accessed entries are written back (there is no way to determine which accessed entries
are mutable, nor which ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based
scripts to those requiring persistent storage.

3.17.1 Restrictions

• The choice of which database package will be used (such asdbm, gdbm or bsddb) depends on which
interface is available. Therefore it is not safe to open the database directly usingdbm. The database is also
(unfortunately) subject to the limitations ofdbm, if it is used — this means that (the pickled representation
of) the objects stored in the database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

• Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush
changes to disk. The del method of theShelf class calls theclose method, so the programmer
generally need not do this explicitly.

• Theshelve module does not supportconcurrentread/write access to shelved objects. (Multiple simulta-
neous read accesses are safe.) When a program has a shelf open for writing, no other program should have
it open for reading or writing. UNIX file locking can be used to solve this, but this differs across UNIX

versions and requires knowledge about the database implementation used.

3.17. shelve — Python object persistence 75

classShelf (dict[, protocol=None[, writeback=False[, binary=None]]])
A subclass ofUserDict.DictMixin which stores pickled values in thedict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be speci-
fied with theprotocolparameter. See thepickle documentation for a discussion of the pickle protocols.
Changed in version 2.3: Theprotocolparameter was added. Thebinary parameter is deprecated and pro-
vided for backwards compatibility only.

If the writebackparameter isTrue , the object will hold a cache of all entries accessed and write them back
to thedict at sync and close times. This allows natural operations on mutable entries, but can consume much
more memory and make sync and close take a long time.

classBsdDbShelf (dict[, protocol=None[, writeback=False[, binary=None]]])
A subclass ofShelf which exposesfirst , next , previous , last andset location which are
available in thebsddb module but not in other database modules. Thedict object passed to the construc-
tor must support those methods. This is generally accomplished by calling one ofbsddb.hashopen ,
bsddb.btopen or bsddb.rnopen . The optionalprotocol, writeback, andbinary parameters have the
same interpretation as for theShelf class.

classDbfilenameShelf (filename[, flag=’c’[, protocol=None[, writeback=False[, binary=None]]]])
A subclass ofShelf which accepts afilenameinstead of a dict-like object. The underlying file will be
opened usinganydbm.open . By default, the file will be created and opened for both read and write.
The optionalflag parameter has the same interpretation as for theopen function. The optionalprotocol,
writeback, andbinaryparameters have the same interpretation as for theShelf class.

3.17.2 Example

To summarize the interface (key is a string,data is an arbitrary object):

import shelve

d = shelve.open(filename) # open -- file may get suffix added by low-level
library

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:
d[’xx’] = range(4) # this works as expected, but...
d[’xx’].append(5) # *this doesn’t!* -- d[’xx’] is STILL range(4)!!!
having opened d without writeback=True, you need to code carefully:
temp = d[’xx’] # extracts the copy
temp.append(5) # mutates the copy
d[’xx’] = temp # stores the copy right back, to persist it
or, d=shelve.open(filename,writeback=True) would let you just code
d[’xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface todbm-style databases.

76 Chapter 3. Python Runtime Services

Modulebsddb (section 7.13):
BSDdb database interface.

Moduledbhash (section 7.11):
Thin layer around thebsddb which provides anopen function like the other database modules.

Moduledbm (section 8.6):
Standard UNIX database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thedbm interface.

Modulegdbm (section 8.7):
GNU database interface, based on thedbm interface.

Modulepickle (section 3.14):
Object serialization used byshelve .

ModulecPickle (section 3.15):
High-performance version ofpickle .

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y

For module specific errors,copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

• A shallow copyconstructs a new compound object and then (to the extent possible) insertsreferencesinto
it to the objects found in the original.

• A deep copyconstructs a new compound object and then, recursively, insertscopiesinto it of the objects
found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

• Because deep copy copieseverythingit may copy too much, e.g., administrative data structures that should
be shared even between copies.

Thedeepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket,
window, array, or any similar types.

3.18. copy — Shallow and deep copy operations 77

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
modulepickle for information on these methods. Thecopy module does not use thecopy reg registration
module.

In order for a class to define its own copy implementation, it can define special methodscopy () and
deepcopy () . The former is called to implement the shallow copy operation; no additional arguments

are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the deepcopy () implementation needs to make a deep copy of a component, it should call
thedeepcopy() function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific
to Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC,
transport the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may
change between Python versions (although it rarely does).12

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulespickle andshelve . Themarshal module exists mainly to support reading and writing
the “pseudo-compiled” code for Python modules of ‘.pyc’ files. Therefore, the Python maintainers reserve the
right to modify the marshal format in backward incompatible ways should the need arise. If you’re serializing and
de-serializing Python objects, use thepickle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constructed
data. Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported:None, integers,
long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where
it should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein
are themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C’slong int type has more than 32 bits (such as the DEC Alpha), it is possible
to create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a
machine where C’slong int type has only 32 bits, a Python long integer object is returned instead. While of a
different type, the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the
least-significant 32 bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file)
Write the value on the open file. The value must be a supported type. The file must be an open file object
such assys.stdout or returned byopen() or posix.popen() . It must be opened in binary mode
(’wb’ or ’w+b’).

If the value has (or contains an object that has) an unsupported type, aValueError exception is raised —
but garbage data will also be written to the file. The object will not be properly read back byload() .

load (file)
Read one value from the open file and return it. If no valid value is read, raiseEOFError , ValueError
or TypeError . The file must be an open file object opened in binary mode (’rb’ or ’r+b’).

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “mar-
shalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to
external form (in an RPC buffer for instance) and “unmarshalling” for the reverse process.

78 Chapter 3. Python Runtime Services

Warning: If an object containing an unsupported type was marshalled withdump() , load() will substi-
tuteNone for the unmarshallable type.

dumps(value)
Return the string that would be written to a file bydump(value, file) . The value must be a supported
type. Raise aValueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raiseEOFError , ValueError or TypeError .
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a
program, where that condition (normally) doesn’t warrant raising an exception and terminating the program. For
example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling thewarn() function defined in this module. (C programmers use
PyErr Warn() ; see thePython/C API Reference Manualfor details).

Warning messages are normally written tosys.stderr , but their disposition can be changed flexibly, from
ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning
category (see below), the text of the warning message, and the source location where it is issued. Repetitions of a
particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence
of matching rules and actions. Rules can be added to the filter by callingfilterwarnings() and reset to its
default state by callingresetwarnings() .

The printing of warning messages is done by callingshowwarning() , which may be overidden; the default
implementation of this function formats the message by callingformatwarning() , which is also available for
use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be
able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description
Warning This is the base class of all warning category classes. It is a subclass ofException .
UserWarning The default category forwarn() .
DeprecationWarning Base category for warnings about deprecated features.
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.
FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to
the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A
warning category must always be a subclass of theWarning class.

3.20. warnings — Warning control 79

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of
the match. Each entry is a tuple of the form (action, message, category, module, lineno), where:

• action is one of the following strings:

Value Disposition
"error" turn matching warnings into exceptions
"ignore" never print matching warnings
"always" always print matching warnings
"default" print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

• messageis a string containing a regular expression that the warning message must match (the match is
compiled to always be case-insensitive)

• categoryis a class (a subclass ofWarning) of which the warning category must be a subclass in order to
match

• moduleis a string containing a regular expression that the module name must match (the match is compiled
to be case-sensitive)

• lineno is an integer that the line number where the warning occurred must match, or0 to match all line
numbers

Since theWarning class is derived from the built-inException class, to turn a warning into an error we simply
raisecategory(message) .

The warnings filter is initialized by-W options passed to the Python interpreter command line. The interpreter
saves the arguments for all-W options without interpretation insys.warnoptions ; thewarnings module
parses these when it is first imported (invalid options are ignored, after printing a message tosys.stderr).

3.20.3 Available Functions

warn (message[, category[, stacklevel]])
Issue a warning, or maybe ignore it or raise an exception. Thecategoryargument, if given, must be a warn-
ing category class (see above); it defaults toUserWarning . Alternativelymessagecan be aWarning
instance, in which casecategorywill be ignored andmessage. class will be used. In this case the
message text will bestr(message) . This function raises an exception if the particular warning issued
is changed into an error by the warnings filter see above. Thestacklevelargument can be used by wrapper
functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer todeprecation() ’s caller, rather than to the source ofdeprecation()
itself (since the latter would defeat the purpose of the warning message).

warn explicit (message, category, filename, lineno[, module[, registry]])
This is a low-level interface to the functionality ofwarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the

warningregistry dictionary of the module). The module name defaults to the filename with
.py stripped; if no registry is passed, the warning is never suppressed.messagemust be a string andcat-
egorya subclass ofWarning or messagemay be aWarning instance, in which casecategorywill be
ignored.

80 Chapter 3. Python Runtime Services

showwarning (message, category, filename, lineno[, file])
Write a warning to a file. The default implementation callsformatwarning(message, category, file-
name, lineno) and writes the resulting string tofile, which defaults tosys.stderr . You may replace
this function with an alternative implementation by assigning towarnings.showwarning .

formatwarning (message, category, filename, lineno)
Format a warning the standard way. This returns a string which may contain embedded newlines and ends
in a newline.

filterwarnings (action[, message[, category[, module[, lineno[, append]]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by default; ifappendis true,
it is inserted at the end. This checks the types of the arguments, compiles the message and module regular
expressions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries
inserted earlier, if both match a particular warning. Omitted arguments default to a value that matches
everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous calls tofilterwarnings() , including
that of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implement theimport statement. It defines the
following constants and functions:

get magic ()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value may be
different for each Python version.)

get suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has the form(suffix, mode,
type) , wheresuffixis a string to be appended to the module name to form the filename to search for,mode
is the mode string to pass to the built-inopen() function to open the file (this can be’r’ for text files or
’rb’ for binary files), andtypeis the file type, which has one of the valuesPY SOURCE, PY COMPILED,
or C EXTENSION, described below.

find module (name[, path])
Try to find the modulenameon the search pathpath. If path is a list of directory names, each directory
is searched for files with any of the suffixes returned byget suffixes() above. Invalid names in the
list are silently ignored (but all list items must be strings). Ifpath is omitted orNone, the list of directory
names given bysys.path is searched, but first it searches a few special places: it tries to find a built-in
module with the given name (C BUILTIN), then a frozen module (PY FROZEN), and on some systems
some other places are looked in as well (on the Mac, it looks for a resource (PY RESOURCE); on Windows,
it looks in the registry which may point to a specific file).

If search is successful, the return value is a triple(file, pathname, description) wherefile is an open file
object positioned at the beginning,pathnameis the pathname of the file found, anddescriptionis a triple as
contained in the list returned byget suffixes() describing the kind of module found. If the module
does not live in a file, the returnedfile is None, filenameis the empty string, and thedescriptiontuple
contains empty strings for its suffix and mode; the module type is as indicate in parentheses above. If the
search is unsuccessful,ImportError is raised. Other exceptions indicate problems with the arguments
or environment.

This function does not handle hierarchical module names (names containing dots). In order to findP.M, that
is, submoduleM of packageP, usefind module() andload module() to find and load packageP,
and then usefind module() with thepathargument set toP. path . WhenP itself has a dotted
name, apply this recipe recursively.

load module (name, file, filename, description)
Load a module that was previously found byfind module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module was already
imported, it is equivalent to areload() ! The nameargument indicates the full module name (including

3.21. imp — Access the import internals 81

the package name, if this is a submodule of a package). Thefile argument is an open file, andfilenameis
the corresponding file name; these can beNone and’’ , respectively, when the module is not being loaded
from a file. Thedescriptionargument is a tuple, as would be returned byget suffixes() , describing
what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing thefile argument, if it was notNone, even when an excep-
tion is raised. This is best done using atry ... finally statement.

new module (name)
Return a new empty module object calledname. This object isnot inserted insys.modules .

lock held ()
ReturnTrue if the import lock is currently held, elseFalse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn
prevents other threads from seeing incomplete module objects constructed by the original thread while in
the process of completing its import (and the imports, if any, triggered by that).

acquire lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to
ensure thread-safety when importing modules. On platforms without threads, this function does nothing.
New in version 2.3.

release lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in
version 2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find module() .

PY SOURCE
The module was found as a source file.

PY COMPILED
The module was found as a compiled code object file.

C EXTENSION
The module was found as dynamically loadable shared library.

PY RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG DIRECTORY
The module was found as a package directory.

C BUILTIN
The module was found as a built-in module.

PY FROZEN
The module was found as a frozen module (seeinit frozen()).

The following constant and functions are obsolete; their functionality is available throughfind module() or
load module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init builtin (name)
Initialize the built-in module callednameand return its module object. If the module was already initialized,
it will be initialized again. A few modules cannot be initialized twice — attempting to initialize these again
will raise anImportError exception. If there is no built-in module calledname, None is returned.

init frozen (name)
Initialize the frozen module callednameand return its module object. If the module was already initialized,

82 Chapter 3. Python Runtime Services

it will be initialized again. If there is no frozen module calledname, None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’sfreezeutility. See ‘Tools/freeze/’ for now.)

is builtin (name)
Return1 if there is a built-in module callednamewhich can be initialized again. Return-1 if there is a
built-in module callednamewhich cannot be initialized again (seeinit builtin()). Return0 if there
is no built-in module calledname.

is frozen (name)
ReturnTrue if there is a frozen module (seeinit frozen()) calledname, orFalse if there is no such
module.

load compiled (name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializedagain. Thenameargument is used to create or access
a module object. Thepathnameargument points to the byte-compiled code file. Thefile argument is the
byte-compiled code file, open for reading in binary mode, from the beginning. It must currently be a real
file object, not a user-defined class emulating a file.

load dynamic (name, pathname[, file])
Load and initialize a module implemented as a dynamically loadable shared library and return its module
object. If the module was already initialized, it will be initializedagain. Some modules don’t like that and
may raise an exception. Thepathnameargument must point to the shared library. Thenameargument is
used to construct the name of the initialization function: an external C function called ‘init name() ’ in
the shared library is called. The optionalfile argument is ignored. (Note: using shared libraries is highly
system dependent, and not all systems support it.)

load source (name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedagain. Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thefile argument is the source file, open for
reading as text, from the beginning. It must currently be a real file object, not a user-defined class emulating
a file. Note that if a properly matching byte-compiled file (with suffix ‘.pyc’ or ‘ .pyo’) exists, it will be used
instead of parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical module
names). (Thisimplementationwouldn’t work in that version, sincefind module() has been extended and
load module() has been added in 1.4.)

3.21. imp — Access the import internals 83

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:

pass

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)

finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

A more complete example that implements hierarchical module names and includes areload() function can be
found in the moduleknee . Theknee module can be found in ‘Demo/imputil/’ in the Python source distribution.

3.22 zipimport — Import modules from Zip archives

New in version 2.3.

This module adds the ability to import Python modules (‘*.py’, ‘ *.py[co]’) and packages from ZIP-format archives.
It is usually not needed to use thezipimport module explicitly; it is automatically used by the builtinimport
mechanism forsys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an item ofsys.path to
be a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package
imports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
‘ /tmp/example.zip/lib/’ would only import from the ‘lib/’ subdirectory within the archive.

Any files may be present in the ZIP archive, but only files ‘.py’ and ‘.py[co]’ are available for import. ZIP import
of dynamic modules (‘.pyd’, ‘ .so’) is disallowed. Note that if an archive only contains ‘.py’ files, Python will
not attempt to modify the archive by adding the corresponding ‘.pyc’ or ‘ .pyo’ file, meaning that if a ZIP archive
doesn’t contain ‘.pyc’ files, importing may be rather slow.

Using the built-inreload() function will fail if called on a module loaded from a ZIP archive; it is unlikely that
reload() would be needed, since this would imply that the ZIP has been altered during runtime.

The available attributes of this module are:

exceptionZipImporterError
Exception raised by zipimporter objects. It’s a subclass ofImportError , so it can be caught as
ImportError , too.

classzipimporter
The class for importing ZIP files. See “zipimporter Objects” (section 3.22.1) for constructor details.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)

Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

84 Chapter 3. Python Runtime Services

PEP 0273, “Import Modules from Zip Archives”
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification
in PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described in
PEP 302.

PEP 0302, “New Import Hooks”
The PEP to add the import hooks that help this module work.

3.22.1 zipimporter Objects

classzipimporter (archivepath)
Create a new zipimporter instance.archivepathmust be a path to a zipfile.ZipImportError is raised if
archivepathdoesn’t point to a valid ZIP archive.

find module (fullname[, path])
Search for a module specified byfullname. fullnamemust be the fully qualified (dotted) module name. It
returns the zipimporter instance itself if the module was found, orNone if it wasn’t. The optionalpath
argument is ignored—it’s there for compatibility with the importer protocol.

get code (fullname)
Return the code object for the specified module. RaiseZipImportError if the module couldn’t be
found.

get data (pathname)
Return the data associated withpathname. RaiseIOError if the file wasn’t found.

get source (fullname)
Return the source code for the specified module. RaiseZipImportError if the module couldn’t be
found, returnNone if the archive does contain the module, but has no source for it.

is package (fullname)
Return True if the module specified byfullnameis a package. RaiseZipImportError if the module
couldn’t be found.

load module (fullname)
Load the module specified byfullname. fullnamemust be the fully qualified (dotted) module name. It
returns the imported module, or raisesZipImportError if it wasn’t found.

3.22.2 Examples

Here is an example that imports a module from a ZIP archive - note that thezipimport module is not explicitly
used.

$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip

Length Date Time Name
-------- ---- ---- ----

8467 11-26-02 22:30 jwzthreading.py
-------- -------

8467 1 file
$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, ’/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
’/tmp/example.zip/jwzthreading.py’

3.22. zipimport — Import modules from Zip archives 85

3.23 pkgutil — Package extension utility

New in version 2.3.

This module provides a single function:

extend path (path, name)
Extend the search path for the modules which comprise a package. Intended use is to place the following
code in a package’s ‘ init .py’:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

This will add to the package’s path all subdirectories of directories onsys.path named after the
package. This is useful if one wants to distribute different parts of a single logical package as multiple
directories.

It also looks for ‘*.pkg’ files beginning where* matches thenameargument. This feature is similar to
‘ *.pth’ files (see thesite module for more information), except that it doesn’t special-case lines starting
with import . A ‘ *.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found in
a ‘*.pkg’ file are added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is
not modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed thatsys.path is a sequence. Items ofsys.path that are not (Unicode or 8-bit) strings
referring to existing directories are ignored. Unicode items onsys.path that cause errors when used as
filenames may cause this function to raise an exception (in line withos.path.isdir() behavior).

3.24 code — Interpreter base classes

Thecode module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classInteractiveInterpreter ([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffer-
ing or prompting or input file naming (the filename is always passed in explicitly). The optionallocals
argument specifies the dictionary in which code will be executed; it defaults to a newly created dictionary
with key ’ name ’ set to’ console ’ and key’ doc ’ set toNone.

classInteractiveConsole ([locals[, filename]])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiarsys.ps1 andsys.ps2 , and in-
put buffering.

interact ([banner[, readfunc[, local]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and setsreadfunc to be used as theraw input() method, if provided.
If local is provided, it is passed to theInteractiveConsole constructor for use as the default
namespace for the interpreter loop. Theinteract() method of the instance is then run withbanner
passed as the banner to use, if provided. The console object is discarded after use.

compile command(source[, filename[, symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-
eval-print loop). The tricky part is to determine when the user has entered an incomplete command that can
be completed by entering more text (as opposed to a complete command or a syntax error). This function
almostalways makes the same decision as the real interpreter main loop.

sourceis the source string;filenameis the optional filename from which source was read, defaulting to
’<input>’ ; andsymbolis the optional grammar start symbol, which should be either’single’ (the
default) or’eval’ .

86 Chapter 3. Python Runtime Services

Returns a code object (the same ascompile(source, filename, symbol)) if the command is complete
and valid;None if the command is incomplete; raisesSyntaxError if the command is complete and
contains a syntax error, or raisesOverflowError or ValueError if the command contains an invalid
literal.

3.24.1 Interactive Interpreter Objects

runsource (source[, filename[, symbol]])
Compile and run some source in the interpreter. Arguments are the same as forcompile command() ;
the default forfilenameis ’<input>’ , and forsymbolis ’single’ . One several things can happen:

•The input is incorrect; compile command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling theshowsyntaxerror()
method.runsource() returnsFalse .

•The input is incomplete, and more input is required;compile command() returnedNone.
runsource() returnsTrue .

•The input is complete;compile command() returned a code object. The code is executed
by calling theruncode() (which also handles run-time exceptions, except forSystemExit).
runsource() returnsFalse .

The return value can be used to decide whether to usesys.ps1 or sys.ps2 to prompt the next line.

runcode (code)
Execute a code object. When an exception occurs,showtraceback() is called to display a traceback.
All exceptions are caught exceptSystemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for
syntax errors. Iffilenameis given, it is stuffed into the exception instead of the default filename provided
by Python’s parser, because it always uses’<string>’ when reading from a string. The output is written
by thewrite() method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter
object implementation. The output is written by thewrite() method.

write (data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to provide
the appropriate output handling as needed.

3.24.2 Interactive Console Objects

TheInteractiveConsole class is a subclass ofInteractiveInterpreter , and so offers all the meth-
ods of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print
before the first interaction; by default it prints a banner similar to the one printed by the standard Python
interpreter, followed by the class name of the console object in parentheses (so as not to confuse this with
the real interpreter – since it’s so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreter’srunsource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was

3.24. code — Interpreter base classes 87

appended. The return value isTrue if more input is required,False if the line was dealt with in some
way (this is the same asrunsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user
enters theEOF key sequence,EOFError is raised. The base implementation uses the built-in function
raw input() ; a subclass may replace this with a different implementation.

3.25 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in
thecode module. As a result, you probably don’t want to use the module directly; if you want to include such a
loop in your program you probably want to use thecode module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to print ‘>>> or
‘ ... ’ next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these
in effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.

To do just the former:

compile command(source[, filename[, symbol]])
Tries to compilesource, which should be a string of Python code and return a code object ifsourceis
valid Python code. In that case, the filename attribute of the code object will befilename, which defaults to
’<input>’ . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem withsource, an exception will be raised.SyntaxError is raised if there is invalid
Python syntax, andOverflowError or ValueError if there is an invalid literal.

Thesymbolargument determines whethersourceis compiled as a statement (’single’ , the default) or as
an expression (’eval’). Any other value will causeValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example,
a backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the
API for the parser is better.

classCompile ()
Instances of this class have call () methods indentical in signature to the built-in function
compile() , but with the difference that if the instance compiles program text containing afuture
statement, the instance ’remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class have call () methods identical in signature tocompile command() ; the
difference is that if the instance compiles program text containing afuture statement, the instance
’remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: theCompile andCommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you
can either write

88 Chapter 3. Python Runtime Services

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler

except ImportError:
def CommandCompiler():

from codeop import compile_command
return compile_command

and then callCommandCompiler every time you need a fresh compiler object.

3.26 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can
be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. ConstructPrettyPrinter objects explicitly if you need to adjust the width
constraint.

Thepprint module defines one class:

classPrettyPrinter (...)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using thestreamkeyword; the only method used on the stream object is the
file protocol’swrite() method. If not specified, thePrettyPrinter adoptssys.stdout . Three
additional parameters may be used to control the formatted representation. The keywords areindent, depth,
andwidth. The amount of indentation added for each recursive level is specified byindent; the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled bydepth; if the data structure being printed is too deep, the
next contained level is replaced by ‘... ’. By default, there is no constraint on the depth of the objects
being formatted. The desired output width is constrained using thewidth parameter; the default is eighty
characters. If a structure cannot be formatted within the constrained width, a best effort will be made.

3.26. pprint — Data pretty printer 89

>>> import pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[[’’,

’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’],

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

>>>
>>> import parser
>>> tup = parser.ast2tuple(
... parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(266, (267, (307, (287, (288, (...))))))

ThePrettyPrinter class supports several derivative functions:

pformat (object)
Return the formatted representation ofobjectas a string. The default parameters for formatting are used.

pprint (object[, stream])
Prints the formatted representation ofobject on stream, followed by a newline. Ifstream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of aprint statement for
inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=869440>,

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

isreadable (object)
Determine if the formatted representation ofobject is “readable,” or can be used to reconstruct the value
usingeval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
False

isrecursive (object)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation ofobject, protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be represented as ‘<Recursion on type-
name with id= number>’. The representation is not otherwise formatted.

90 Chapter 3. Python Runtime Services

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=682968>, ’’, ’/usr/local/lib/python1.5’, ’/usr/loca
l/lib/python1.5/test’, ’/usr/local/lib/python1.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/python1.5/tkinter’]"

3.26.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation ofobject. This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (object)
Print the formatted representation ofobjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient since newPrettyPrinter objects don’t need to be
created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value usingeval() . Note that this returns false for recursive objects. If thedepthparameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of thesaferepr() implementation.

format (object, context, maxlevels, level)
Returns three values: the formatted version ofobject as a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which contains theid() of objects that are part of the current
presentation context (direct and indirect containers forobjectthat are affecting the presentation) as the keys;
if an object needs to be presented which is already represented incontext, the third return value should
be true. Recursive calls to theformat() method should add additionaly entries for containers to this
dictionary. The fourth argument,maxlevels, gives the requested limit to recursion; this will be0 if there
is no requested limit. This argument should be passed unmodified to recursive calls. The fourth argument,
levelgives the current level; recursive calls should be passed a value less than that of the current call. New
in version 2.3.

3.27 repr — Alternate repr() implementation

The repr module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the built-inrepr() ;
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

aRepr
This is an instance ofRepr which is used to provide therepr() function described below. Changing the
attributes of this object will affect the size limits used byrepr() and the Python debugger.

3.27. repr — Alternate repr() implementation 91

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

3.27.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is6.

maxdict
maxlist
maxtuple

Limits on the number of entries represented for the named object type. The default formaxdict is 4, for
the others,6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40 .

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is30 .

maxother
This limit is used to control the size of object types for which no specific formatting method is available on
theRepr object. It is applied in a similar manner asmaxstring . The default is20 .

repr (obj)
The equivalent to the built-inrepr() that uses the formatting imposed by the instance.

repr1 (obj, level)
Recursive implementation used byrepr() . This uses the type ofobj to determine which formatting
method to call, passing itobj andlevel. The type-specific methods should callrepr1() to perform recur-
sive formatting, withlevel - 1 for the value oflevel in the recursive call.

repr type(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method name,type is replaced bystring.join(string.split(type(obj). name ,
’ ’)) . Dispatch to these methods is handled byrepr1() . Type-specific methods which need to recur-
sively format a value should call ‘self.repr1(subobj, level - 1) ’.

3.27.2 Subclassing Repr Objects

The use of dynamic dispatching byRepr.repr1() allows subclasses ofRepr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

92 Chapter 3. Python Runtime Services

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name

else:
return ‘obj‘

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

3.28 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily in
marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instance ofclasswith dictionarydict without calling the init () constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound toinstance, or unbound ifinstanceis None. functionmust
be callable.

function (code, globals[, name[, argdefs]])
Returns a (Python) function with the given code and globals. Ifnameis given, it must be a string orNone.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code.co name. If argdefsis given, it must be a tuple and will be used to determine the default values of
parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno,
lnotab)

This function is an interface to thePyCode New() C function.

module (name)
This function returns a new module object with namename. namemust be a string.

classobj (name, baseclasses, dict)
This function returns a new class object, with namename, derived frombaseclasses(which should be a
tuple of classes) and with namespacedict.

3.29 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific
modules would place ‘import site ’ somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it usessys.prefix
andsys.exec prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Macintosh

3.28. new — Creation of runtime internal objects 93

or Windows) or it uses first ‘lib/python2.3/site-packages’ and then ‘lib/site-python’ (on UNIX). For each of the
distinct head-tail combinations, it sees if it refers to an existing directory, and if so, adds it tosys.path and also
inspects the newly added path for configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items (one
per line) to be added tosys.path . Non-existing items are never added tosys.path , but no check is made
that the item refers to a directory (rather than a file). No item is added tosys.path more than once. Blank lines
and lines beginning with# are skipped. Lines starting withimport are executed.

For example, supposesys.prefix andsys.exec prefix are set to ‘/usr/local’. The Python 2.3.5 library
is then installed in ‘/usr/local/lib/python2.3’ (where only the first three characters ofsys.version are used to
form the installation path name). Suppose this has a subdirectory ‘/usr/local/lib/python2.3/site-packages’ with
three subsubdirectories, ‘foo’, ‘ bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’. Assume
‘ foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added tosys.path , in this order:

/usr/local/lib/python2.3/site-packages/bar
/usr/local/lib/python2.3/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory because
‘bar.pth’ comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned in either path
configuration file.

After these path manipulations, an attempt is made to import a module namedsitecustomize , which can
perform arbitrary site-specific customizations. If this import fails with anImportError exception, it is silently
ignored.

Note that for some non-UNIX systems,sys.prefix andsys.exec prefix are empty, and the path manip-
ulations are skipped; however the import ofsitecustomize is still attempted.

3.30 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions
execute the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use
the mechanism must execute the statement

import user

Theuser module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened, executes it
(usingexecfile()) in its own (the moduleuser ’s) global namespace. Errors during this phase are not caught;

94 Chapter 3. Python Runtime Services

that’s up to the program that imports theuser module, if it wishes. The home directory is assumed to be named
by the HOME environment variable; if this is not set, the current directory is used.

The user’s ‘.pythonrc.py’ could conceivably test forsys.version if it wishes to do different things depending
on the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t know
which programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module. For example, a
modulespam that has a verbosity level can look for a variableuser.spam verbose , as follows:

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shouldnot import this module; a user can easily break into a program
by placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use shouldnot import this module; it may interfere with the operation of the importing
program.

See Also:

Modulesite (section 3.29):
Site-wide customization mechanism.

3.31 builtin — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g.builtin .open is the full
name for the built-in functionopen() . See section 2.1, “Built-in Functions.”

3.32 main — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes —
commands read either from standard input, from a script file, or from an interactive prompt. It is this environment
in which the idiomatic “conditional script” stanza causes a script to run:

if __name__ == "__main__":
main()

3.33 future — Future statement definitions

future is a real module, and serves three purposes:

• To avoid confusing existing tools that analyze import statements and expect to find the modules they’re
importing.

• To ensure that futurestatements run under releases prior to 2.1 at least yield runtime exceptions (the import
of future will fail, because there was no module of that name prior to 2.1).

3.31. builtin — Built-in functions 95

• To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programatically via importing

future and examining its contents.

Each statement in ‘ future .py’ is of the form:

FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
CompilerFlag ")"

where, normally, OptionalRelease is less then MandatoryRelease, and both are 5-tuples of the same form as
sys.version info :

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int
PY_MICRO_VERSION, # the 0; an int
PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int

)

OptionalRelease records the first release in which the feature was accepted.

In the case of MandatoryReleases that have not yet occurred, MandatoryRelease predicts the release in which the
feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules
no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also beNone, meaning that a planned feature got dropped.

Instances of class Feature have two corresponding methods,getOptionalRelease() and
getMandatoryRelease() .

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the builtin functioncompile()
to enable the feature in dynamically compiled code. This flag is stored in thecompiler flag attribute on
Future instances.

No feature description will ever be deleted fromfuture .

96 Chapter 3. Python Runtime Services

CHAPTER

FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.
difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringIO Read and write strings as if they were files.
cStringIO Faster version ofStringIO , but not subclassable.
textwrap Text wrapping and filling
encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.
stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.3.6, “String Methods.”

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See
the modulere for string functions based on regular expressions.

The constants defined in this module are:

ascii letters
The concatenation of theascii lowercase andascii uppercase constants described below. This
value is not locale-dependent.

ascii lowercase
The lowercase letters’abcdefghijklmnopqrstuvwxyz’ . This value is not locale-dependent and
will not change.

ascii uppercase
The uppercase letters’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. This value is not locale-dependent and will
not change.

digits
The string’0123456789’ .

hexdigits
The string’0123456789abcdefABCDEF’ .

letters
The concatenation of the stringslowercase anduppercase described below. The specific value is
locale-dependent, and will be updated whenlocale.setlocale() is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string ’abcdefghijklmnopqrstuvwxyz’ . Do not change its definition — the effect on the routines

97

upper() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

octdigits
The string’01234567’ .

punctuation
String ofASCII characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination ofdigits , letters ,
punctuation , andwhitespace .

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the routines
lower() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the char-
acters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on
the routinesstrip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see
“String Methods” (section 2.3.6) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.0.Use thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point
literal in Python, optionally preceded by a sign (‘+’ or ‘ - ’). Note that this behaves identical to the built-in
functionfloat() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

atoi (s[, base])
Deprecated since release 2.0.Use theint() built-in function.

Convert strings to an integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The basedefaults to 10. If it is 0, a default base is chosen depending
on the leading characters of the string (after stripping the sign): ‘0x ’ or ‘ 0X’ means 16, ‘0’ means 8,
anything else means 10. Ifbaseis 16, a leading ‘0x ’ or ‘ 0X’ is always accepted, though not required. This
behaves identically to the built-in functionint() when passed a string. (Also note: for a more flexible
interpretation of numeric literals, use the built-in functioneval() .)

atol (s[, base])
Deprecated since release 2.0.Use thelong() built-in function.

Convert strings to a long integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The baseargument has the same meaning as foratoi() . A trailing ‘ l ’ or
‘L’ is not allowed, except if the base is 0. Note that when invoked withoutbaseor with baseset to 10, this
behaves identical to the built-in functionlong() when passed a string.

capitalize (word)
Return a copy ofword with only its first character capitalized.

capwords (s)
Split the argument into words usingsplit() , capitalize each word usingcapitalize() , and join the
capitalized words usingjoin() . Note that this replaces runs of whitespace characters by a single space,
and removes leading and trailing whitespace.

expandtabs (s[, tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the
given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t

98 Chapter 4. String Services

understand other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub[, start[,end]])
Return the lowest index ins where the substringsub is found such thatsub is wholly contained in
s[start: end] . Return-1 on failure. Defaults forstart andend and interpretation of negative values is
the same as for slices.

rfind (s, sub[, start[, end]])
Like find() but find the highest index.

index (s, sub[, start[, end]])
Like find() but raiseValueError when the substring is not found.

rindex (s, sub[, start[, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substringsubin strings[start: end] . Defaults for
start andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy ofs, but with upper case letters converted to lower case.

maketrans (from, to)
Return a translation table suitable for passing totranslate() or regex.compile() , that will map
each character infrom into the character at the same position into; fromandto must have the same length.

Warning: Don’t use strings derived fromlowercase anduppercase as arguments; in some locales,
these don’t have the same length. For case conversions, always uselower() andupper() .

split (s[, sep[, maxsplit]])
Return a list of the words of the strings. If the optional second argumentsepis absent orNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the
second argumentsepis present and notNone, it specifies a string to be used as the word separator. The
returned list will then have one more item than the number of non-overlapping occurrences of the separator
in the string. The optional third argumentmaxsplitdefaults to 0. If it is nonzero, at mostmaxsplitnumber
of splits occur, and the remainder of the string is returned as the final element of the list (thus, the list will
have at mostmaxsplit+1 elements).

splitfields (s[, sep[, maxsplit]])
This function behaves identically tosplit() . (In the past,split() was only used with one argument,
while splitfields() was only used with two arguments.)

join (words[, sep])
Concatenate a list or tuple of words with intervening occurrences ofsep. The default value forsepis a single
space character. It is always true that ‘string.join(string.split(s, sep), sep) ’ equalss.

joinfields (words[, sep])
This function behaves identically tojoin() . (In the past,join() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there is nojoinfields() method on
string objects; use thejoin() method instead.

lstrip (s[, chars])
Return a copy of the string with leading characters removed. Ifchars is omitted orNone, whitespace
characters are removed. If given and notNone, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.3: Thechars
parameter was added. Thecharsparameter cannot be passed in earlier 2.2 versions.

rstrip (s[, chars])
Return a copy of the string with trailing characters removed. Ifchars is omitted orNone, whitespace
characters are removed. If given and notNone, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.3: Thecharsparameter
was added. Thecharsparameter cannot be passed in earlier 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removed. Ifchars is omitted orNone,

4.1. string — Common string operations 99

whitespace characters are removed. If given and notNone, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.3:
Thecharsparameter was added. Thecharsparameter cannot be passed in earlier 2.2 versions.

swapcase (s)
Return a copy ofs, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechars])
Delete all characters froms that are indeletechars(if present), and then translate the characters usingtable,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (s)
Return a copy ofs, but with lower case letters converted to upper case.

ljust (s, width)
rjust (s, width)
center (s, width)

These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at leastwidth characters wide, created by padding the strings with spaces until the
given width on the right, left or both sides. The string is never truncated.

zfill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

replace (str, old, new[, maxreplace])
Return a copy of stringstr with all occurrences of substringold replaced bynew. If the optional argument
maxreplaceis given, the firstmaxreplaceoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte using the\ numbernotation. Both patterns
and strings to be searched can be Unicode strings as well as 8-bit strings. There module is always available.

Regular expressions use the backslash character (‘\ ’) to indicate special forms or to allow special characters to
be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have to write’\\\\’ as the
pattern string, because the regular expression must be ‘\\ ’, and each backslash must be expressed as ‘\\ ’ inside
a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in
any special way in a string literal prefixed with ‘r ’. So r"\n" is a two-character string containing ‘\ ’ and ‘n’,
while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code
using this raw string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second edition of the book no
longer covers Python at all, but the first edition covered writing good regular expression patterns in great
detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; ifA andB are both regular expressions,
thenAB is also a regular expression. In general, if a stringp matchesA and another stringq matchesB, the stringpq

100 Chapter 4. String Services

will match AB. This holds unlessA or B contain low precedence operations; boundary conditions betweenA andB;
or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fromhttp://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ‘A’, ‘ a’, or
‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
sodlast cmatches the string’last’ . (In the rest of this section, we’ll write RE’s indthis special style c,
usually without quotes, and strings to be matched’in single quotes’ .)

Some characters, like ‘| ’ or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

The special characters are:

‘ . ’ (Dot.) In the default mode, this matches any character except a newline. If theDOTALLflag has been
specified, this matches any character including a newline.

‘ ˆ ’ (Caret.) Matches the start of the string, and inMULTILINE mode also matches immediately after
each newline.

‘$’ Matches the end of the string or just before the newline at the end of the string, and inMULTILINE
mode also matches before a newline.dfoo c matches both ’foo’ and ’foobar’, while the regular ex-
pressiondfoo$ c matches only ’foo’. More interestingly, searching fordfoo.$ c in ’foo1\nfoo2\n’
matches ’foo2’ normally, but ’foo1’ inMULTILINE mode.

‘* ’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as
are possible.dab* cwill match ’a’, ’ab’, or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE.dab+c will match ’a’
followed by any non-zero number of ’b’s; it will not match just ’a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.dab?c will match either ’a’
or ’ab’.

? , +?, ?? The ‘ ’, ‘ +’, and ‘?’ qualifiers are allgreedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the REd<.*> c is matched against’<H1>title</H1>’ , it will match
the entire string, and not just’<H1>’ . Adding ‘?’ after the qualifier makes it perform the match
in non-greedyor minimal fashion; asfewcharacters as possible will be matched. Usingd.*? c in the
previous expression will match only’<H1>’ .

{ m} Specifies that exactlymcopies of the previous RE should be matched; fewer matches cause the entire
RE not to match. For example,da{6} cwill match exactly six ‘a’ characters, but not five.

{ m, n} Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example,da{3,5} cwill match from 3 to 5 ‘a’ characters. Omitting
m specifies a lower bound of zero, and omittingn specifies an infinite upper bound. As an example,
da{4,}b cwill matchaaaab or a thousand ‘a’ characters followed by ab, but notaaab . The comma
may not be omitted or the modifier would be confused with the previously described form.

{ m, n}? Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on
the 6-character string’aaaaaa’ , da{3,5} cwill match 5 ‘a’ characters, whileda{3,5}? cwill only
match 3 characters.

‘ \ ’ Either escapes special characters (permitting you to match characters like ‘* ’, ‘ ?’, and so forth), or
signals a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash
as an escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser,
the backslash and subsequent character are included in the resulting string. However, if Python would

4.2. re — Regular expression operations 101

recognize the resulting sequence, the backslash should be repeated twice. This is complicated and
hard to understand, so it’s highly recommended that you use raw strings for all but the simplest
expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by a ‘- ’. Special characters are not active
inside sets. For example,d[akm$] cwill match any of the characters ‘a’, ‘ k ’, ‘ m’, or ‘$’; d[a-z] cwill
match any lowercase letter, and[a-zA-Z0-9] matches any letter or digit. Character classes such
as\w or \S (defined below) are also acceptable inside a range. If you want to include a ‘] ’ or a ‘- ’
inside a set, precede it with a backslash, or place it as the first character. The patternd[]] cwill match
’]’ , for example.

You can match the characters not within a range bycomplementingthe set. This is indicated by
including a ‘̂ ’ as the first character of the set; ‘ˆ ’ elsewhere will simply match the ‘ˆ ’ character. For
example,d[ˆ5] cwill match any character except ‘5’, andd[ˆˆ] cwill match any character except ‘ˆ ’.

‘ | ’ A|B , where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by the ‘| ’ in this way. This can be used inside groups
(see below) as well. As the target string is scanned, REs separated by ‘| ’ are tried from left to right.
When one pattern completely matches, that branch is accepted. This means that onceA matches,B
will not be tested further, even if it would produce a longer overall match. In other words, the ‘| ’
operator is never greedy. To match a literal ‘| ’, used\| c, or enclose it inside a character class, as in
d[|] c.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a
group; the contents of a group can be retrieved after a match has been performed, and can be matched
later in the string with thed\ numberc special sequence, described below. To match the literals ‘(’ or
‘) ’, used\(cor d\) c, or enclose them inside a character class:d[(] [)] c.

(?...) This is an extension notation (a ‘?’ following a ‘ (’ is not meaningful otherwise). The first character
after the ‘?’ determines what the meaning and further syntax of the construct is. Extensions usually
do not create a new group;d(?P< name>...) c is the only exception to this rule. Following are the
currently supported extensions.

(?iLmsux) (One or more letters from the set ‘i ’, ‘ L’, ‘ m’, ‘ s ’, ‘ u’, ‘ x ’.) The group matches the empty string; the
letters set the corresponding flags (re.I , re.L , re.M , re.S , re.U , re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing aflagargument to thecompile() function.

Note that thed(?x) cflag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the
flag, the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the groupcannotbe retrieved after performing a match or
referenced later in the pattern.

(?P< name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group namename. Group names must be valid Python identifiers, and each group name
must be defined only once within a regular expression. A symbolic group is also a numbered group,
just as if the group were not named. So the group named ’id’ in the example above can also be
referenced as the numbered group 1.

For example, if the pattern isd(?P<id>[a-zA-Z]\w*) c, the group can be referenced by its name
in arguments to methods of match objects, such asm.group(’id’) or m.end(’id’) , and also
by name in pattern text (for example,d(?P=id) c) and replacement text (such as\g<id>).

(?P= name) Matches whatever text was matched by the earlier group namedname.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches ifd... c matches next, but doesn’t consume any of the string. This is called a lookahead
assertion. For example,dIsaac (?=Asimov) c will match ’Isaac ’ only if it’s followed by
’Asimov’ .

102 Chapter 4. String Services

(?!...) Matches ifd... c doesn’t match next. This is a negative lookahead assertion. For example,dIsaac
(?!Asimov) cwill match ’Isaac ’ only if it’s not followed by ’Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match ford... c that ends at the cur-
rent position. This is called apositive lookbehind assertion. d(?<=abc)def c will find a match in
‘abcdef ’, since the lookbehind will back up 3 characters and check if the contained pattern matches.
The contained pattern must only match strings of some fixed length, meaning thatdabccor da|b care
allowed, butda* candda{3,4} care not. Note that patterns which start with positive lookbehind asser-
tions will never match at the beginning of the string being searched; you will most likely want to use
thesearch() function rather than thematch() function:

>>> import re
>>> m = re.search(’(?<=abc)def’, ’abcdef’)
>>> m.group(0)
’def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, ’spam-egg’)
>>> m.group(0)
’egg’

(?<!...) Matches if the current position in the string is not preceded by a match ford... c. This is called a
negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must
only match strings of some fixed length. Patterns which start with negative lookbehind assertions
may match at the beginning of the string being searched.

The special sequences consist of ‘\ ’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example,d\$ cmatches the character ‘$’.

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example,d(.+) \1 cmatches’the the’ or ’55 55’ , but not’the end’ (note the space after
the group). This special sequence can only be used to match one of the first 99 groups. If the first
digit of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as
the character with octal valuenumber. Inside the ‘[’ and ‘] ’ of a character class, all numeric escapes
are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-
alphanumeric, non-underscore character. Note that\b is defined as the boundary between\w and\W,
so the precise set of characters deemed to be alphanumeric depends on the values of theUNICODE
andLOCALEflags. Inside a character range,d\b crepresents the backspace character, for compatibility
with Python’s string literals.

\B Matches the empty string, but only when it isnot at the beginning or end of a word. This is just the
opposite of\b , so is also subject to the settings ofLOCALEandUNICODE.

\d Matches any decimal digit; this is equivalent to the setd[0-9] c.

\D Matches any non-digit character; this is equivalent to the setd[ˆ0-9] c.

\s Matches any whitespace character; this is equivalent to the setd[\t\n\r\f\v] c.

\S Matches any non-whitespace character; this is equivalent to the setd[ˆ \t\n\r\f\v] c.

4.2. re — Regular expression operations 103

\w When theLOCALEandUNICODEflags are not specified, matches any alphanumeric character and
the underscore; this is equivalent to the setd[a-zA-Z0-9] c. With LOCALE, it will match the set
d[0-9] c plus whatever characters are defined as alphanumeric for the current locale. IfUNICODE
is set, this will match the charactersd[0-9] c plus whatever is classified as alphanumeric in the
Unicode character properties database.

\W When theLOCALEandUNICODEflags are not specified, matches any non-alphanumeric character;
this is equivalent to the setd[ˆa-zA-Z0-9] c. With LOCALE, it will match any character not in the
setd[0-9] c, and not defined as alphanumeric for the current locale. IfUNICODEis set, this will
match anything other thand[0-9] cand characters marked as alphanumeric in the Unicode character
properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
\\

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are
accustomed to Perl’s semantics, the search operation is what you’re looking for. See thesearch() function and
corresponding method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning with ‘ˆ ’: ‘ ˆ ’ matches only at the start
of the string, or inMULTILINE mode also immediately following a newline. The “match” operation succeeds
only if the pattern matches at the start of the string regardless of mode, or at the starting position given by the
optionalposargument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile("ˆa").search("ba", 1) # fails; ’a’ not at start
re.compile("ˆa").search("\na", 1) # fails; ’a’ not at start
re.compile("ˆa", re.M).search("\na", 1) # succeeds
re.compile("ˆa", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern[, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifying aflagsvalue. Values can be any of the following
variables, combined using bitwise OR (the| operator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

104 Chapter 4. String Services

result = re.match(pat, str)

but the version usingcompile() is more efficient when the expression will be used several times in a
single program.

I
IGNORECASE

Perform case-insensitive matching; expressions liked[A-Z] c will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE

Maked\wc, d\Wc, d\b c, andd\B cdependent on the current locale.

M
MULTILINE

When specified, the pattern character ‘ˆ ’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ‘$’ matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ‘ˆ ’ matches only at the beginning
of the string, and ‘$’ only at the end of the string and immediately before the newline (if any) at the end of
the string.

S
DOTALL

Make the ‘. ’ special character match any character at all, including a newline; without this flag, ‘. ’ will
match anythingexcepta newline.

U
UNICODE

Maked\wc, d\Wc, d\b c, andd\B cdependent on the Unicode character properties database. New in version 2.0.

X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ‘#’
neither in a character class or preceded by an unescaped backslash, all characters from the leftmost such ‘#’
through the end of the line are ignored.

search (pattern, string[, flags])
Scan throughstring looking for a location where the regular expressionpatternproduces a match, and return
a correspondingMatchObject instance. ReturnNone if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

match (pattern, string[, flags])
If zero or more characters at the beginning ofstring match the regular expressionpattern, return a corre-
spondingMatchObject instance. ReturnNone if the string does not match the pattern; note that this is
different from a zero-length match.

Note: If you want to locate a match anywhere instring, usesearch() instead.

split (pattern, string[, maxsplit = 0])
Split string by the occurrences ofpattern. If capturing parentheses are used inpattern, then the text of all
groups in the pattern are also returned as part of the resulting list. Ifmaxsplitis nonzero, at mostmaxsplit
splits occur, and the remainder of the string is returned as the final element of the list. (Incompatibility note:
in the original Python 1.5 release,maxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]
>>> re.split(’(\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]
>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

4.2. re — Regular expression operations 105

This function combines and extends the functionality of the oldregsub.split() and
regsub.splitx() .

findall (pattern, string)
Return a list of all non-overlapping matches ofpattern in string. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty
matches are included in the result unless they touch the beginning of another match. New in version 1.5.2.

finditer (pattern, string)
Return an iterator over all non-overlapping matches for the REpatternin string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2.

sub (pattern, repl, string[, count])
Return the string obtained by replacing the leftmost non-overlapping occurrences ofpattern in string by
the replacementrepl. If the pattern isn’t found,string is returned unchanged.repl can be a string or a
function; if it is a string, any backslash escapes in it are processed. That is, ‘\n ’ is converted to a single
newline character, ‘\r ’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j ’ are left
alone. Backreferences, such as ‘\6 ’, are replaced with the substring matched by group 6 in the pattern. For
example:

>>> re.sub(r’def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):’,
... r’static PyObject*\npy_\1(void)\n{’,
... ’def myfunc():’)
’static PyObject*\npy_myfunc(void)\n{’

If repl is a function, it is called for every non-overlapping occurrence ofpattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
.... if matchobj.group(0) == ’-’: return ’ ’
.... else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must
use a RE object, or use embedded modifiers in a pattern; for example, ‘sub("(?i)b+", "x", "bbbb
BBBB") ’ returns’x x’ .

The optional argumentcount is the maximum number of pattern occurrences to be replaced;countmust
be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous match, so ‘sub(’x*’, ’-’, ’abc’) ’ returns
’-a-b-c-’ .

In addition to character escapes and backreferences as described above, ‘\g<name> ’ will use the substring
matched by the group named ‘name’, as defined by thed(?P<name>...) csyntax. ‘\g<number> ’ uses
the corresponding group number; ‘\g<2> ’ is therefore equivalent to ‘\2 ’, but isn’t ambiguous in a replace-
ment such as ‘\g<2>0 ’. ‘ \20 ’ would be interpreted as a reference to group 20, not a reference to group 2
followed by the literal character ‘0’. The backreference ‘\g<0> ’ substitutes in the entire substring matched
by the RE.

subn (pattern, repl, string[, count])
Perform the same operation assub() , but return a tuple(new string, number of subs made) .

escape (string)
Returnstringwith all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

106 Chapter 4. String Services

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos[, endpos]])
If zero or more characters at the beginning ofstring match this regular expression, return a corresponding
MatchObject instance. ReturnNone if the string does not match the pattern; note that this is different
from a zero-length match.

Note: If you want to locate a match anywhere instring, usesearch() instead.

The optional second parameterposgives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the’ˆ’ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parameterendposlimits how far the string will be searched; it will be as if the string is
endposcharacters long, so only the characters frompos to endpos - 1 will be searched for a match. If
endposis less thanpos, no match will be found, otherwise, ifrx is a compiled regular expression object,
rx.match(string, 0, 50) is equivalent torx.match(string[:50], 0) .

search (string[, pos[, endpos]])
Scan throughstring looking for a location where this regular expression produces a match, and return a
correspondingMatchObject instance. ReturnNone if no position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

The optionalposandendposparameters have the same meaning as for thematch() method.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (string)
Identical to thefindall() function, using the compiled pattern.

finditer (string)
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string[, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string[, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compiled, or0 if no flags were provided.

groupindex
A dictionary mapping any symbolic group names defined byd(?P< id>) c to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (template)
Return the string obtained by doing backslash substitution on the template stringtemplate, as done by the
sub() method. Escapes such as ‘\n ’ are converted to the appropriate characters, and numeric backrefer-
ences (‘\1 ’, ‘ \2 ’) and named backreferences (‘\g<1> ’, ‘ \g<name> ’) are replaced by the contents of the
corresponding group.

group ([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments,group1

4.2. re — Regular expression operations 107

defaults to zero (the whole match is returned). If agroupNargument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, anIndexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding result isNone. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

If the regular expression uses thed(?P< name>...) c syntax, thegroupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", ’3.14’)

After performing this match,m.group(1) is ’3’ , as ism.group(’int’) , and m.group(2) is
’14’ .

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. Thedefaultargument is used for groups that did not participate in the match; it defaults toNone.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all thenamedsubgroups of the match, keyed by the subgroup name. The
defaultargument is used for groups that did not participate in the match; it defaults toNone.

start ([group])
end ([group])

Return the indices of the start and end of the substring matched bygroup; groupdefaults to zero (meaning
the whole matched substring). Return-1 if groupexists but did not contribute to the match. For a match
objectm, and a groupg that did contribute to the match, the substring matched by groupg (equivalent to
m.group(g)) is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equal m.end(group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1)
andm.end(1) are both 2, andm.start(2) raises anIndexError exception.

span ([group])
ForMatchObject m, return the 2-tuple(m.start(group), m.end(group)) . Note that ifgroupdid
not contribute to the match, this is(-1, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to thesearch() or match() method of theRegexObject . This
is the index into the string at which the RE engine started looking for a match.

endpos
The value ofendposwhich was passed to thesearch() or match() method of theRegexObject .
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing group, orNone if no group was matched at all. For example,
the expressionsd(a)b c, d((a)(b)) c, andd((ab)) cwill have lastindex == 1 if applyied to the string
’ab’ , while the expressiond(a)(b) cwill have lastindex == 2 , if applyied to the same string.

lastgroup
The name of the last matched capturing group, orNone if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whosematch() or search() method produced thisMatchObject in-

108 Chapter 4. String Services

stance.

string
The string passed tomatch() or search() .

4.2.6 Examples

Simulating scanf()

Python does not currently have an equivalent toscanf() . Regular expressions are generally more powerful,
though also more verbose, thanscanf() format strings. The table below offers some more-or-less equivalent
mappings betweenscanf() format tokens and regular expressions.

scanf() Token Regular Expression
%c d. c
%5c d.{5} c

%d d[-+]?\d+ c

%e, %E, %f, %g d[-+]?(\d+(\.\d*)?|\d*\.\d+)([eE][-+]?\d+)? c

%i d[-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+) c

%o d0[0-7]* c

%s d\S+ c

%u d\d+ c

%x, %X d0[xX][\dA-Fa-f]+ c

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use ascanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the messagemaximum recursion limit exceeded. For example,

>>> import re
>>> s = ’Begin ’ + 1000*’a very long string ’ + ’end’
>>> re.match(’Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "/usr/local/lib/python2.3/sre.py", line 132, in match

return _compile(pattern, flags).match(string)
RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of thed*? cpattern are special-cased to avoid recursion. Thus, the above reg-
ular expression can avoid recursion by being recast asdBegin [a-zA-Z0-9]*?end c. As a further benefit,
such regular expressions will run faster than their recursive equivalents.

4.2. re — Regular expression operations 109

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses
format strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion
to/from Python values. This can be used in handling binary data stored in files or from network connections, among
other sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2, . . .)
Return a string containing the valuesv1, v2, . . . packed according to the given format. The arguments
must match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed bypack(fmt, . . .)) according to the given format. The result is
a tuple even if it contains exactly one item. The string must contain exactly the amount of data required by
the format (len(string) must equalcalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types:

Format C Type Python Notes
‘x ’ pad byte no value
‘c ’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘ i ’ int integer
‘ I ’ unsigned int long
‘ l ’ long integer
‘L’ unsigned long long
‘q’ long long long (1)
‘Q’ unsigned long long long (1)
‘ f ’ float float
‘d’ double float
‘s ’ char[] string
‘p’ char[] string
‘P’ void * integer

Notes:

(1) The ‘q’ and ‘Q’ conversion codes are available in native mode only if the platform C compiler supports C
long long , or, on Windows, int64 . They are always available in standard modes. New in version
2.2.

A format character may be preceded by an integral repeat count. For example, the format string’4h’ means
exactly the same as’hhhh’ .

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ‘s ’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for example,’10s’ means a single 10-byte string, while’10c’ means 10 characters. For
packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting
string always has exactly the specified number of bytes. As a special case,’0s’ means a single, empty string
(while ’0c’ means 0 characters).

110 Chapter 4. String Services

The ‘p’ format character encodes a ”Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255,
whichever is smaller. The bytes of the string follow. If the string passed in topack() is too long (longer than
the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note that forunpack() , the ‘p’ format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

For the ‘I ’, ‘ L’, ‘ q’ and ‘Q’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size needed to
hold a pointer when it has been cast to an integer type. ANULL pointer will always be returned as the Python
integer0. When packing pointer-sized values, Python integer or long integer objects may be used. For example,
the Alpha and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold
the pointer; other platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

Character Byte order Size and alignment
‘@’ native native
‘=’ native standard
‘<’ little-endian standard
‘>’ big-endian standard
‘ ! ’ network (= big-endian) standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun
processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiler’ssizeof expression. This is always combined
with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int and long are 4 bytes;long long (int64 on Windows) is 8 bytes;float and
double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference between ‘@’ and ‘=’: both use native byte order, but the size and alignment of the latter is
standardized.

The form ‘! ’ is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ‘<’ or ‘ >’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the ‘@’
byte order character). The byte order character ‘=’ chooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, so the ‘P’ format is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *
>>> pack(’hhl’, 1, 2, 3)
’\x00\x01\x00\x02\x00\x00\x00\x03’
>>> unpack(’hhl’, ’\x00\x01\x00\x02\x00\x00\x00\x03’)
(1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. For example, the format’llh0l’ specifies two pad bytes at the end,

4.3. struct — Interpret strings as packed binary data 111

assuming longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect;
standard size and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.12):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

classSequenceMatcher
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case.SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ usesSequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of aDiffer delta begins with a two-letter code:

Code Meaning
’- ’ line unique to sequence 1
’+ ’ line unique to sequence 2
’ ’ line common to both sequences
’? ’ line not present in either input sequence

Lines beginning with ‘? ’ attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

context diff (a, b[, fromfile[, tofile[, fromfiledate[, tofiledate[, n [, lineterm]]]]]])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set byn which defaults to three.

By default, the diff control lines (those with*** or ---) are created with a trailing newline. This is
helpful so that inputs created fromfile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set thelinetermargument to"" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings forfromfile, tofile, fromfiledate, andtofiledate. The modification times are
normally expressed in the format returned bytime.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.

New in version 2.3.

112 Chapter 4. String Services

get close matches (word, possibilities[, n[, cutoff]])
Return a list of the best “good enough” matches.word is a sequence for which close matches are desired
(typically a string), andpossibilitiesis a list of sequences against which to matchword (typically a list of
strings).

Optional argumentn (default3) is the maximum number of close matches to return;n must be greater than
0.

Optional argumentcutoff (default0.6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar toword are ignored.

The best (no more thann) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches(’appel’, [’ape’, ’apple’, ’peach’, ’puppy’])
[’apple’, ’ape’]
>>> import keyword
>>> get_close_matches(’wheel’, keyword.kwlist)
[’while’]
>>> get_close_matches(’apple’, keyword.kwlist)
[]
>>> get_close_matches(’accept’, keyword.kwlist)
[’except’]

ndiff (a, b[, linejunk[, charjunk]])
Comparea andb (lists of strings); return aDiffer -style delta (a generator generating the delta lines).

Optional keyword parameterslinejunkandcharjunkare for filter functions (orNone):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default is (None), starting with Python 2.3. Before then, the default was the module-level function
IS LINE JUNK() , which filters out lines without visible characters, except for at most one pound char-
acter (‘#’). As of Python 2.3, the underlyingSequenceMatcher class does a dynamic analysis of which
lines are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level functionIS CHARACTERJUNK() , which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiff(’one\ntwo\nthree\n’.splitlines(1),
... ’ore\ntree\nemu\n’.splitlines(1))
>>> print ’’.join(diff),
- one
? ˆ
+ ore
? ˆ
- two
- three
? -
+ tree
+ emu

restore (sequence, which)
Return one of the two sequences that generated a delta.

Given asequenceproduced byDiffer.compare() or ndiff() , extract lines originating from file 1
or 2 (parameterwhich), stripping off line prefixes.

Example:

4.4. difflib — Helpers for computing deltas 113

>>> diff = ndiff(’one\ntwo\nthree\n’.splitlines(1),
... ’ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ’’.join(restore(diff, 1)),
one
two
three
>>> print ’’.join(restore(diff, 2)),
ore
tree
emu

unified diff (a, b[, fromfile[, tofile[, fromfiledate[, tofiledate[, n [, lineterm]]]]]])
Comparea and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set byn which defaults to three.

By default, the diff control lines (those with--- , +++, or @@) are created with a trailing newline. This
is helpful so that inputs created fromfile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set thelinetermargument to"" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings forfromfile, tofile, fromfiledate, andtofiledate. The modification times are
normally expressed in the format returned bytime.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.

New in version 2.3.

IS LINE JUNK(line)
Return true for ignorable lines. The lineline is ignorable ifline is blank or contains a single ‘#’, otherwise
it is not ignorable. Used as a default for parameterlinejunk in ndiff() before Python 2.3.

IS CHARACTERJUNK(ch)
Return true for ignorable characters. The characterch is ignorable ifch is a space or tab, otherwise it is not
ignorable. Used as a default for parametercharjunkin ndiff() .

See Also:

Pattern Matching: The Gestalt Approach
(http://www.ddj.com/documents/s=1103/ddj8807c/)

Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published inDr. Dobb’s
Journal in July, 1988.

4.4.1 SequenceMatcher Objects

TheSequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk[, a[, b]]])
Optional argumentisjunk must beNone (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. PassingNone for b is
equivalent to passinglambda x: 0 ; in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

114 Chapter 4. String Services

The optional argumentsa andb are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

SequenceMatcher objects have the following methods:

set seqs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, useset seq2() to set the commonly used sequence once and
call set seq1() repeatedly, once for each of the other sequences.

set seq1 (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find longest match (alo, ahi, blo, bhi)
Find longest matching block ina[alo: ahi] andb[blo: bhi] .

If isjunkwas omitted orNone, get longest match() returns(i, j, k) such thata[i: i+k] is equal
to b[j: j+k] , wherealo <= i <= i+k <= ahi andblo <= j <= j+k <= bhi. For all (i’ , j’ , k’)
meeting those conditions, the additional conditionsk >= k’, i <= i’ , and if i == i’ , j <= j’ are also
met. In other words, of all maximal matching blocks, return one that starts earliest ina, and of all those
maximal matching blocks that start earliest ina, return the one that starts earliest inb.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(0, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents’ abcd’ from
matching the’ abcd’ at the tail end of the second sequence directly. Instead only the’abcd’ can
match, and matches the leftmost’abcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(1, 0, 4)

If no blocks match, this returns(alo, blo, 0) .

get matching blocks ()
Return list of triples describing matching subsequences. Each triple is of the form(i, j, n) , and means
thata[i: i+n] == b[j: j+n] . The triples are monotonically increasing ini andj.

The last triple is a dummy, and has the value(len(a), len(b), 0) . It is the only triple withn ==
0.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[(0, 0, 2), (3, 2, 2), (5, 4, 0)]

get opcodes ()
Return list of 5-tuples describing how to turna into b. Each tuple is of the form(tag, i1, i2, j1, j2) .
The first tuple hasi1 == j1 == 0, and remaining tuples havei1 equal to thei2 from the preceeding tuple,
and, likewise,j1 equal to the previousj2.

Thetagvalues are strings, with these meanings:

4.4. difflib — Helpers for computing deltas 115

Value Meaning
’replace’ a[i1: i2] should be replaced byb[j1: j2] .
’delete’ a[i1: i2] should be deleted. Note thatj1 == j2 in this case.
’insert’ b[j1: j2] should be inserted ata[i1: i1] . Note thati1 == i2 in this case.
’equal’ a[i1: i2] == b[j1: j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
... print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))

delete a[0:1] (q) b[0:0] ()
equal a[1:3] (ab) b[0:2] (ab)

replace a[3:4] (x) b[2:3] (y)
equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get grouped opcodes ([n])
Return a generator of groups with up ton lines of context.

Starting with the groups returned byget opcodes() , this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same format asget opcodes() . New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this is1.0 if the sequences are identical, and0.0 if they have nothing in common.

This is expensive to compute ifget matching blocks() or get opcodes() hasn’t already been
called, in which case you may want to tryquick ratio() or real quick ratio() first to get an
upper bound.

quick ratio ()
Return an upper bound onratio() relatively quickly.

This isn’t defined beyond that it is an upper bound onratio() , and is faster to compute.

real quick ratio ()
Return an upper bound onratio() very quickly.

This isn’t defined beyond that it is an upper bound onratio() , and is faster to compute than either
ratio() or quick ratio() .

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, althoughquick ratio() andreal quick ratio() are always at least as large
asratio() :

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75
>>> s.quick_ratio()
0.75
>>> s.real_quick_ratio()
1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

116 Chapter 4. String Services

>>> s = SequenceMatcher(lambda x: x == " ",
... "private Thread currentThread;",
... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, aratio()
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you’re only interested in where the sequences match,get matching blocks() is handy:

>>> for block in s.get_matching_blocks():
... print "a[%d] and b[%d] match for %d elements" % block
a[0] and b[0] match for 8 elements
a[8] and b[17] match for 6 elements
a[14] and b[23] match for 15 elements
a[29] and b[38] match for 0 elements

Note that the last tuple returned byget matching blocks() is always a dummy,(len(a), len(b),
0) , and this is the only case in which the last tuple element (number of elements matched) is0.

If you want to know how to change the first sequence into the second, useget opcodes() :

>>> for opcode in s.get_opcodes():
... print "%6s a[%d:%d] b[%d:%d]" % opcode

equal a[0:8] b[0:8]
insert a[8:8] b[8:17]

equal a[8:14] b[17:23]
equal a[14:29] b[23:38]

See also the functionget close matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim to beminimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

TheDiffer class has this constructor:

classDiffer ([linejunk[, charjunk]])
Optional keyword parameterslinejunkandcharjunkare for filter functions (orNone):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default isNone, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be

4.4. difflib — Helpers for computing deltas 117

obtained from thereadlines() method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is via thewritelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from thereadlines() method of file-like objects):

>>> text1 = ’’’ 1. Beautiful is better than ugly.
... 2. Explicit is better than implicit.
... 3. Simple is better than complex.
... 4. Complex is better than complicated.
... ’’’.splitlines(1)
>>> len(text1)
4
>>> text1[0][-1]
’\n’
>>> text2 = ’’’ 1. Beautiful is better than ugly.
... 3. Simple is better than complex.
... 4. Complicated is better than complex.
... 5. Flat is better than nested.
... ’’’.splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating aDiffer object we may pass functions to filter out line and character “junk.” See
theDiffer() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(text1, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[’ 1. Beautiful is better than ugly.\n’,

’- 2. Explicit is better than implicit.\n’,
’- 3. Simple is better than complex.\n’,
’+ 3. Simple is better than complex.\n’,
’? ++ \n’,
’- 4. Complex is better than complicated.\n’,
’? ˆ ---- ˆ \n’,
’+ 4. Complicated is better than complex.\n’,
’? ++++ ˆ ˆ \n’,
’+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

118 Chapter 4. String Services

>>> import sys
>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.
- 3. Simple is better than complex.
+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
? ˆ ---- ˆ
+ 4. Complicated is better than complex.
? ++++ ˆ ˆ
+ 5. Flat is better than nested.

4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done via the%string interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x, digs)
Formatx as[-]ddd.ddd with digsdigits after the point and at least one digit before. Ifdigs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one.digs is an integer.

Return value is a string.

sci (x, digs)
Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit before. Ifdigs <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one.digs is an integer.

Return value is a string.

exceptionNotANumber
Exception raised when a string passed tofix() or sci() as thex parameter does not look like a number.
This is a subclass ofValueError when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
’1.2’

4.6 StringIO — Read and write strings as files

This module implements a file-like class,StringIO , that reads and writes a string buffer (also known asmemory
files). See the description of file objects for operations (section 2.3.8).

classStringIO ([buffer])
When aStringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, theStringIO will start empty.

TheStringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bitASCII (that use the 8th bit) will cause a

4.5. fpformat — Floating point conversions 119

UnicodeError to be raised whengetvalue() is called.

The following methods ofStringIO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before theStringIO object’sclose() method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to raiseUnicodeError .

close ()
Free the memory buffer.

4.7 cStringIO — Faster version of StringIO

The modulecStringIO provides an interface similar to that of theStringIO module. Heavy use of
StringIO.StringIO objects can be made more efficient by using the functionStringIO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your
own version using subclassing. Use the originalStringIO module in that case.

Unlike the memory files implemented by theStringIO module, those provided by this module are not able to
accept Unicode strings that cannot be encoded as plainASCII strings.

Another difference from theStringIO module is that callingStringIO() with a string parameter creates a
read-only object. Unlike an object created without a string parameter, it does not have write methods.

The following data objects are provided as well:

InputType
The type object of the objects created by callingStringIO with a string parameter.

OutputType
The type object of the objects returned by callingStringIO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 textwrap — Text wrapping and filling

New in version 2.3.

Thetextwrap module provides two convenience functions,wrap() andfill() , as well asTextWrapper ,
the class that does all the work, and a utility functiondedent() . If you’re just wrapping or filling one or
two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap (text[, width[, ...]])
Wraps the single paragraph intext (a string) so every line is at mostwidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes ofTextWrapper , documented below.
widthdefaults to70 .

fill (text[, width[, ...]])
Wraps the single paragraph intext, and returns a single string containing the wrapped paragraph.fill()
is shorthand for

"\n".join(wrap(text, ...))

In particular,fill() accepts exactly the same keyword arguments aswrap() .

Both wrap() andfill() work by creating aTextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create

120 Chapter 4. String Services

your ownTextWrapper object.

An additional utility function,dedent() , is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

dedent (text)
Remove any whitespace that can be uniformly removed from the left of every line intext.

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
s = ’’’\
hello

world
’’’
print repr(s) # prints ’ hello\n world\n ’
print repr(dedent(s)) # prints ’hello\n world\n’

classTextWrapper (...)
TheTextWrapper constructor accepts a number of optional keyword arguments. Each argument corre-
sponds to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the sameTextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer thanwidth , TextWrapper guarantees that no output line will be longer thanwidth
characters.

expand tabs
(default:True) If true, then all tab characters intextwill be expanded to spaces using theexpandtabs()
method oftext.

replace whitespace
(default: True) If true, each whitespace character (as defined bystring.whitespace) remain-
ing after tab expansion will be replaced by a single space.Note: If expand tabs is false and
replace whitespace is true, each tab character will be replaced by a single space, which isnot the
same as tab expansion.

initial indent
(default: ’’) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent indent
(default: ’’) String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix sentence endings
(default:False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase

4.8. textwrap — Text wrapping and filling 121

letter followed by one of ‘. ’, ‘ ! ’, or ‘?’, possibly followed by one of ‘" ’ or ‘ ’ ’, followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix sentence endings is false by default.

Since the sentence detection algorithm relies onstring.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break long words
(default: True) If true, then words longer thanwidth will be broken in order to ensure that no lines are
longer thanwidth . If it is false, long words will not be broken, and some lines may be longer thanwidth .
(Long words will be put on a line by themselves, in order to minimize the amount by whichwidth is
exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (text)
Wraps the single paragraph intext (a string) so every line is at mostwidth characters long. All wrapping
options are taken from instance attributes of theTextWrapper instance. Returns a list of output lines,
without final newlines.

fill (text)
Wraps the single paragraph intext, and returns a single string containing the wrapped paragraph.

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search function)
Register a codec search function. Search functions are expected to take one argument, the encoding
name in all lower case letters, and return a tuple of functions(encoder, decoder, stream reader,
stream writer) taking the following arguments:

encoder and decoder: These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

stream readerandstream writer: These have to be factory functions providing the following interface:

factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors are’strict’ (raise an exception in case of an encoding error),’replace’ (re-
place malformed data with a suitable replacement marker, such as ‘?’), ’ignore’ (ignore malformed data
and continue without further notice),’xmlcharrefreplace’ (replace with the appropriate XML char-
acter reference (for encoding only)) and’backslashreplace’ (replace with backslashed escape se-
quences (for encoding only)) as well as any other error handling name defined viaregister error() .

In case a search function cannot find a given encoding, it should returnNone.

lookup (encoding)
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

122 Chapter 4. String Services

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, aLookupError is raised. Otherwise, the codecs tuple is stored in
the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which uselookup()
for the codec lookup:

getencoder (encoding)
Lookup up the codec for the given encoding and return its encoder function.

Raises aLookupError in case the encoding cannot be found.

getdecoder (encoding)
Lookup up the codec for the given encoding and return its decoder function.

Raises aLookupError in case the encoding cannot be found.

getreader (encoding)
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

Raises aLookupError in case the encoding cannot be found.

getwriter (encoding)
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

Raises aLookupError in case the encoding cannot be found.

register error (name, error handler)
Register the error handling functionerror handler under the namename. error handler will be called
during encoding and decoding in case of an error, whennameis specified as the errors parameter.

For encodingerror handlerwill be called with aUnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

lookup error (name)
Return the error handler previously register under the namename.

Raises aLookupError in case the handler cannot be found.

strict errors (exception)
Implements thestrict error handling.

replace errors (exception)
Implements thereplace error handling.

ignore errors (exception)
Implements theignore error handling.

xmlcharrefreplace errors errors (exception)
Implements thexmlcharrefreplace error handling.

backslashreplace errors errors (exception)
Implements thebackslashreplace error handling.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode[, encoding[, errors[, buffering]]])
Open an encoded file using the givenmodeand return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects
for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the file.

4.9. codecs — Codec registry and base classes 123

errors may be given to define the error handling. It defaults to’strict’ which causes aValueError
to be raised in case an encoding error occurs.

bufferinghas the same meaning as for the built-inopen() function. It defaults to line buffered.

EncodedFile (file, input[, output[, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the giveninput encoding and then written to
the original file as strings using theoutputencoding. The intermediate encoding will usually be Unicode
but depends on the specified codecs.

If outputis not given, it defaults toinput.

errorsmay be given to define the error handling. It defaults to’strict’ , which causesValueError to
be raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

BOM
BOMBE
BOMLE
BOMUTF8
BOMUTF16
BOMUTF16 BE
BOMUTF16 LE
BOMUTF32
BOMUTF32 BE
BOMUTF32 LE

These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOMUTF16 is eitherBOMUTF16 BE or BOMUTF16 LE depending on the platform’s native byte or-
der,BOMis an alias forBOMUTF16, BOMLE for BOMUTF16 LE andBOMBE for BOMUTF16 BE.
The others represent the BOM in UTF-8 and UTF-32 encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They are in the
early stages of development at the time of this writing — look in their FTP area for downloadable files.

4.9.1 Codec Base Classes

Thecodecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, theencode() anddecode() methods may implement different
error handling schemes by providing theerrors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning
’strict’ RaiseUnicodeError (or a subclass); this is the default.
’ignore’ Ignore the character and continue with the next.
’replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ’?’ on encoding.
’xmlcharrefreplace’ Replace with the appropriate XML character reference (only for encoding).
’backslashreplace’ Replace with backslashed escape sequences (only for encoding).

124 Chapter 4. String Services

The set of allowed values can be extended viaregister error .

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

encode (input[, errors])
Encodes the objectinput and returns a tuple (output object, length consumed). While codecs are not re-
stricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (e.g.,cp1252 or iso-8859-1).

errorsdefines the error handling to apply. It defaults to’strict’ handling.

The method may not store state in theCodec instance. UseStreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

decode (input[, errors])
Decodes the objectinput and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thebf getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errorsdefines the error handling to apply. It defaults to’strict’ handling.

The method may not store state in theCodec instance. UseStreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The StreamWriter andStreamReader classes provide generic working interfaces which can be used to
implement new encodings submodules very easily. Seeencodings.utf 8 for an example on how this is
done.

StreamWriter Objects

TheStreamWriter class is a subclass ofCodec and defines the following methods which every stream writer
must define in order to be compatible to the Python codec registry.

classStreamWriter (stream[, errors])
Constructor for aStreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providing theerrors keyword
argument. These parameters are predefined:

•’strict’ RaiseValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

•’xmlcharrefreplace’ Replace with the appropriate XML character reference

•’backslashreplace’ Replace with backslashed escape sequences.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of theStreamWriter
object.

The set of allowed values for theerrorsargument can be extended withregister error() .

4.9. codecs — Codec registry and base classes 125

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing thewrite() method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, theStreamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

TheStreamReader class is a subclass ofCodec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (stream[, errors])
Constructor for aStreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing theerrors keyword
argument. These parameters are defined:

•’strict’ RaiseValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of theStreamReader
object.

The set of allowed values for theerrorsargument can be extended withregister error() .

read ([size])
Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possible.sizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

readline ([size])
Read one line from the input stream and return the decoded data.

Unlike thereadlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method – there is currently no support for line breaking using the codec decoder
due to lack of line buffering. Sublcasses should however, if possible, try to implement this method using
their own knowledge of line breaking.

size, if given, is passed as size argument to the stream’sreadline() method.

readlines ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.

sizehint, if given, is passed assizeargument to the stream’sread() method.

126 Chapter 4. String Services

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, theStreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

TheStreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by thelookup() function to construct the
instance.

classStreamReaderWriter (stream, Reader, Writer, errors)
Creates aStreamReaderWriter instance.streammust be a file-like object.ReaderandWriter must
be factory functions or classes providing theStreamReader andStreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces ofStreamReader andStreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by thelookup() function to construct the
instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates aStreamRecoder instance which implements a two-way conversion:encodeanddecodework
on the frontend (the input toread() and output ofwrite()) while Readerand Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.

streammust be a file-like object.

encode, decodemust adhere to theCodec interface,Reader, Writer must be factory functions or classes
providing objects of theStreamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translation,ReaderandWriter for the backend translation.
The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use
Unicode as intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces ofStreamReader andStreamWriter classes.
They inherit all other methods and attribute from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs builtin, either implemented as C functions, or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.
Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases.

4.9. codecs — Codec registry and base classes 127

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

• an ISO 8859 codeset

• a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

• an IBM EBCDIC code page

• an IBM PC code page, which isASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedonian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp1006 Urdu
cp1026 ibm1026 Turkish
cp1140 ibm1140 Western Europe
cp1250 windows-1250 Central and Eastern Europe
cp1251 windows-1251 Bulgarian, Byelorussian, Macedonian, Russian, Serbian
cp1252 windows-1252 Western Europe
cp1253 windows-1253 Greek
cp1254 windows-1254 Turkish
cp1255 windows-1255 Hebrew
cp1256 windows1256 Arabic
cp1257 windows-1257 Baltic languages
cp1258 windows-1258 Vietnamese
latin 1 iso-8859-1, iso8859-1, 8859, cp819, latin, latin1, L1West Europe
iso8859 2 iso-8859-2, latin2, L2 Central and Eastern Europe
iso8859 3 iso-8859-3, latin3, L3 Esperanto, Maltese
iso8859 4 iso-8859-4, latin4, L4 Baltic languagues
iso8859 5 iso-8859-5, cyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbian
iso8859 6 iso-8859-6, arabic Arabic
iso8859 7 iso-8859-7, greek, greek8 Greek
iso8859 8 iso-8859-8, hebrew Hebrew
iso8859 9 iso-8859-9, latin5, L5 Turkish
iso8859 10 iso-8859-10, latin6, L6 Nordic languages
iso8859 13 iso-8859-13 Baltic languages

128 Chapter 4. String Services

Codec Aliases Languages
iso8859 14 iso-8859-14, latin8, L8 Celtic languages
iso8859 15 iso-8859-15 Western Europe
koi8 r Russian
koi8 u Ukrainian
mac cyrillic maccyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbian
mac greek macgreek Greek
mac iceland maciceland Icelandic
mac latin2 maclatin2, maccentraleurope Central and Eastern Europe
mac roman macroman Western Europe
mac turkish macturkish Turkish
utf 16 U16, utf16 all languages
utf 16 be UTF-16BE all languages (BMP only)
utf 16 le UTF-16LE all languages (BMP only)
utf 7 U7 all languages
utf 8 U8, UTF, utf8 all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don’t convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery
that any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the
“decoding” direction is listed as operand type in the table.

Codec Aliases Operand type Purpose
base64codec base64, base-64 byte string Convert operand to MIME base64
hex codec hex byte string Convert operand to hexadecimal representation, with two digits per byte
idna Unicode string Implements RFC 3490. New in version 2.3. See alsoencodings.idna
mbcs dbcs Unicode string Windows only: Encode operand according to the ANSI codepage (CPACP)
palmos Unicode string Encoding of PalmOS 3.5
punycode Unicode string Implements RFC 3492. New in version 2.3.
quopri codec quopri, quoted-printable, quotedprintablebyte string Convert operand to MIME quoted printable
raw unicode escape Unicode string Produce a string that is suitable as raw Unicode literal in Python source code
rot 13 rot13 byte string Returns the Caesar-cypher encryption of the operand
string escape byte string Produce a string that is suitable as string literal in Python source code
undefined any Raise an exception for all conversion. Can be used as the system encoding if no automatic coercion between byte and Unicode strings is desired.
unicode escape Unicode string Produce a string that is suitable as Unicode literal in Python source code
unicode internal Unicode string Return the internal represenation of the operand
uu codec uu byte string Convert the operand using uuencode
zlib codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3.

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon thepunycode encoding and
stringprep .

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name contain-
ing non-ASCII characters (such as “www.Alliancefrançaise.nu”) is converted into anASCII-compatible encoding
(ACE, such as “www.xn–alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places
where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTPHost: fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should trans-
parently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before
presenting them to the user.

4.9. codecs — Codec registry and base classes 129

Python supports this conversion in several ways: Theidna codec allows to convert between Unicode and the
ACE. Furthermore, thesocket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On top
of that, modules that have host names as function parameters, such ashttplib andftplib , accept Unicode
host names (httplib then also transparently sends an IDNA hostname in theHost: field if it sends that field at
all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The moduleencodings.idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

nameprep (label)
Return the nameprepped version oflabel. The implementation currently assumes query strings, so
AllowUnassigned is true.

ToASCII (label)
Convert a label toASCII, as specified in RFC 3490.UseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.10 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the ‘UnicodeData.txt’ file version 3.2.0 which is publically
available fromftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html). It defines the following functions:

lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found,KeyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode characterunichr as a string. If no name is defined,default is
returned, or, if not given,ValueError is raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode characterunichr as integer. If no such value is defined,
defaultis returned, or, if not given,ValueError is raised.

digit (unichr[, default])
Returns the digit value assigned to the Unicode characterunichr as integer. If no such value is defined,
defaultis returned, or, if not given,ValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode characterunichr as float. If no such value is defined,
defaultis returned, or, if not given,ValueError is raised.

category (unichr)
Returns the general category assigned to the Unicode characterunichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode characterunichr as string. If no such value is
defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode characterunichr as integer. Returns0 if no
combining class is defined.

130 Chapter 4. String Services

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode characterunichr as integer. Returns1 if the
character has been identified as a “mirrored” character in bidirectional text,0 otherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode characterunichras string. An empty
string is returned in case no such mapping is defined.

normalize (form, unistr)
Return the normal formform for the Unicode stringunistr. Valid values forform are ’NFC’, ’NFKC’,
’NFD’, and ’NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

New in version 2.3.

In addition, the module exposes the following constant:

unidata version
The version of the Unicode database used in this module.

New in version 2.3.

4.11 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of thestringprep procedure are part of the profile. One example of astringprep
profile isnameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated using themkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set,stringprep provides the “characteristic function”, i.e. a function that returns true
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

in table a1(code)
Determine whethercodeis in tableA.1 (Unassigned code points in Unicode 3.2).

4.11. stringprep — Internet String Preparation 131

in table b1(code)
Determine whethercodeis in tableB.1 (Commonly mapped to nothing).

map table b2(code)
Return the mapped value forcodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map table b3(code)
Return the mapped value forcodeaccording to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

in table c11 (code)
Determine whethercodeis in tableC.1.1 (ASCII space characters).

in table c12 (code)
Determine whethercodeis in tableC.1.2 (Non-ASCII space characters).

in table c11 c12 (code)
Determine whethercodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in table c21 (code)
Determine whethercodeis in tableC.2.1 (ASCII control characters).

in table c22 (code)
Determine whethercodeis in tableC.2.2 (Non-ASCII control characters).

in table c21 c22 (code)
Determine whethercodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in table c3 (code)
Determine whethercodeis in tableC.3 (Private use).

in table c4 (code)
Determine whethercodeis in tableC.4 (Non-character code points).

in table c5 (code)
Determine whethercodeis in tableC.5 (Surrogate codes).

in table c6 (code)
Determine whethercodeis in tableC.6 (Inappropriate for plain text).

in table c7 (code)
Determine whethercodeis in tableC.7 (Inappropriate for canonical representation).

in table c8 (code)
Determine whethercodeis in tableC.8 (Change display properties or are deprecated).

in table c9 (code)
Determine whethercodeis in tableC.9 (Tagging characters).

in table d1(code)
Determine whethercodeis in tableD.1 (Characters with bidirectional property “R” or “AL”).

in table d2(code)
Determine whethercodeis in tableD.2 (Characters with bidirectional property “L”).

132 Chapter 4. String Services

CHAPTER

FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions.
Here’s an overview:

pydoc Documentation generator and online help system.
doctest A framework for verifying examples in docstrings.
unittest Unit testing framework for Python.
test Regression tests package containing the testing suite for Python.
test.test support Support for Python regression tests.
math Mathematical functions (sin() etc.).
cmath Mathematical functions for complex numbers.
random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.
bisect Array bisection algorithms for binary searching.
heapq Heap queue algorithm (a.k.a. priority queue).
array Efficient arrays of uniformly typed numeric values.
sets Implementation of sets of unique elements.
itertools Functions creating iterators for efficient looping.
ConfigParser Configuration file parser.
fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.
calendar Functions for working with calendars, including some emulation of the UNIX cal program.
cmd Build line-oriented command interpreters.
shlex Simple lexical analysis for UNIX shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be
presented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp() invokes the online help system in the interactive interpreter, which usespydoc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside
the Python interpreter by runningpydoc as a script at the operating system’s command prompt. For example,
running

pydoc sys

at a shell prompt will display documentation on thesys module, in a style similar to the manual pages shown by
the UNIX man command. The argument topydoccan be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argument topydoc looks
like a path (that is, it contains the path separator for your operating system, such as a slash in UNIX), and refers to
an existing Python source file, then documentation is produced for that file.

133

Specifying a-w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a-k flag before the argument will search the synopsis lines of all available modules for the keyword
given as the argument, again in a manner similar to the UNIX man command. The synopsis line of a module is
the first line of its documentation string.

You can also usepydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browsers.pydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
athttp://localhost:1234/ in your preferred Web browser.pydoc -gwill start the server and additionally
bring up a smallTkinter -based graphical interface to help you search for documentation pages.

Whenpydocgenerates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter
and typed ‘import spam ’.

5.2 doctest — Test docstrings represent reality

Thedoctest module searches a module’s docstrings for text that looks like an interactive Python session, then
executes all such sessions to verify they still work exactly as shown. Here’s a complete but small example:

134 Chapter 5. Miscellaneous Services

"""
This is module example.

Example supplies one function, factorial. For example,

>>> factorial(5)
120
"""

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)
Traceback (most recent call last):

...
ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

...
ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

...
OverflowError: n too large
"""

5.2. doctest — Test docstrings represent reality 135

import math
if not n >= 0:

raise ValueError("n must be >= 0")
if math.floor(n) != n:

raise ValueError("n must be exact integer")
if n+1 == n: # catch a value like 1e300

raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:

try:
result *= factor

except OverflowError:
result *= long(factor)

factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if __name__ == "__main__":
_test()

If you run ‘example.py’ directly from the command line,doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass-v to the script, anddoctest
prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v
Running example.__doc__
Trying: factorial(5)
Expecting: 120
ok
0 of 1 examples failed in example.__doc__
Running example.factorial.__doc__
Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]
ok
Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]
ok
Trying: factorial(30)
Expecting: 265252859812191058636308480000000L
ok

And so on, eventually ending with:

136 Chapter 5. Miscellaneous Services

Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

...
OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc__
2 items passed all tests:

1 tests in example
8 tests in example.factorial

9 tests in 2 items.
9 passed and 0 failed.
Test passed.
$

That’s all you need to know to start making productive use ofdoctest ! Jump in. The docstrings in ‘doctest.py’
contain detailed information about all aspects ofdoctest , and we’ll just cover the more important points here.

5.2.1 Normal Usage

In normal use, end each moduleMwith:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M) # ditto

if __name__ == "__main__":
_test()

If you want to test the module as the main module, you don’t need to pass M totestmod() ; in this case, it will
test the current module.

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of output is’Test failed.’ .

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passingverbose=1 to testmod() , or prohibit it by passingverbose=0 . In
either of those cases,sys.argv is not examined bytestmod() .

In any case,testmod() returns a 2-tuple of ints(f , t) , wheref is the number of docstring examples that failed
andt is the total number of docstring examples attempted.

5.2.2 Which Docstrings Are Examined?

See the docstrings in ‘doctest.py’ for all the details. They’re unsurprising: the module docstring, and all function,
class and method docstrings are searched. Optionally, the tester can be directed to exclude docstrings attached to

5.2. doctest — Test docstrings represent reality 137

objects with private names. Objects imported into the module are not searched.

In addition, if M. test exists and ”is true”, it must be a dict, and each entry maps a (string) name to
a function object, class object, or string. Function and class object docstrings found fromM. test are
searched even if the tester has been directed to skip over private names in the rest of the module. In output, a key
K in M. test appears with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested
classes. While private names reached fromM’s globals can be optionally skipped, all names reached from
M. test are searched.

5.2.3 What’s the Execution Context?

By default, each timetestmod() finds a docstring to test, it uses acopyof M’s globals, so that running tests
on a module doesn’t change the module’s real globals, and so that one test inMcan’t leave behind crumbs that
accidentally allow another test to work. This means examples can freely use any names defined at top-level inM,
and names defined earlier in the docstring being run.

You can force use of your own dict as the execution context by passingglobs=your dict to testmod()
instead. Presumably this would be a copy ofM. dict merged with the globals from other imported modules.

5.2.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback). The
various “File” lines in between can be left out (unless they add significantly to the documentation value of the
example).

5.2.5 Advanced Usage

Several module level functions are available for controlling how doctests are run.

debug (module, name)
Debug a single docstring containing doctests.

Provide themodule(or dotted name of the module) containing the docstring to be debugged and thename
(within the module) of the object with the docstring to be debugged.

The doctest examples are extracted (see functiontestsource()), and written to a temporary file. The
Python debugger,pdb , is then invoked on that file. New in version 2.3.

testmod ()
This function provides the most basic interface to the doctests. It creates a local instance of classTester ,
runs appropriate methods of that class, and merges the results into the globalTester instance,master .

To get finer control thantestmod() offers, create an instance ofTester with custom policies, or run
methods ofmaster directly. SeeTester. doc for details.

138 Chapter 5. Miscellaneous Services

testsource (module, name)
Extract the doctest examples from a docstring.

Provide themodule(or dotted name of the module) containing the tests to be extracted and thename(within
the module) of the object with the docstring containing the tests to be extracted.

The doctest examples are returned as a string containing Python code. The expected output blocks in the
examples are converted to Python comments. New in version 2.3.

DocTestSuite ([module])
Convert doctest tests for a module to aunittest .TestSuite .

The returnedTestSuite is to be run by the unittest framework and runs each doctest in the module. If
any of the doctests fail, then the synthesized unit test fails, and aDocTestTestFailure exception is
raised showing the name of the file containing the test and a (sometimes approximate) line number.

The optionalmoduleargument provides the module to be tested. It can be a module object or a (possibly
dotted) module name. If not specified, the module calling this function is used.

Example using one of the many ways that theunittest module can use aTestSuite :

import unittest
import doctest
import my_module_with_doctests

suite = doctest.DocTestSuite(my_module_with_doctests)
runner = unittest.TextTestRunner()
runner.run(suite)

New in version 2.3. Warning: This function does not currently searchM. test and its search
technique does not exactly matchtestmod() in every detail. Future versions will bring the two into
convergence.

5.2.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine—just make sure the leading whitespace
is rigidly consistent (you can mix tabs and spaces if you’re too lazy to do it right, butdoctest is not in the
business of guessing what you think a tab means).

>>> # comments are ignored
>>> x = 12
>>> x
12
>>> if x == 13:
... print "yes"
... else:
... print "no"
... print "NO"
... print "NO!!!"
...
no
NO
NO!!!
>>>

Any expected output must immediately follow the final’>>> ’ or ’... ’ line containing the code, and the
expected output (if any) extends to the next’>>> ’ or all-whitespace line.

The fine print:

• Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected
output.

5.2. doctest — Test docstrings represent reality 139

• Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different
means).

• If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
need to double the backslash in the docstring version. This is simply because you’re in a string, and so the
backslash must be escaped for it to survive intact. Like:

>>> if "yes" == \\
... "y" + \\
... "es":
... print ’yes’
yes

• The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math

>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
’>>> ’ line that triggered it.

5.2.7 Warnings

1. doctest is serious about requiring exact matches in expected output. If even a single character doesn’t
match, the test fails. This will probably surprise you a few times, as you learn exactly what Python does
and doesn’t guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the
key-value pairs will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True
>>>

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d
[(’Harry’, ’broomstick’), (’Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

140 Chapter 5. Miscellaneous Services

Floating-point numbers are also subject to small output variations across platforms, because Python defers
to the platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285
>>> print 1./7 # safer
0.142857142857
>>> print round(1./7, 6) # much safer
0.142857

Numbers of the formI/2.**J are safe across all platforms, and I often contrive doctest examples to
produce numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

2. Be careful if you have code that must only execute once.

If you have module-level code that must only execute once, a more foolproof definition oftest() is

def _test():
import doctest, sys
doctest.testmod()

3. WYSIWYG isn’t always the case, starting in Python 2.3. The string form of boolean results changed from
’0’ and’1’ to ’False’ and’True’ in Python 2.3. This makes it clumsy to write a doctest showing
boolean results that passes under multiple versions of Python. In Python 2.3, by default, and as a special
case, if an expected output block consists solely of’0’ and the actual output block consists solely of
’False’ , that’s accepted as an exact match, and similarly for’1’ versus’True’ . This behavior can
be turned off by passing the new (in 2.3) module constantDONT ACCEPT TRUE FOR 1 as the value
of testmod() ’s new (in 2.3) optionaloptionflagsargument. Some years after the integer spellings of
booleans are history, this hack will probably be removed again.

5.2.8 Soapbox

The first word in “doctest” is “doc,” and that’s why the author wrotedoctest : to keep documentation up to date.
It so happens thatdoctest makes a pleasant unit testing environment, but that’s not its primary purpose.

Choose docstring examples with care. There’s an art to this that needs to be learned—it may not be natural at
first. Examples should add genuine value to the documentation. A good example can often be worth many words.
If possible, show just a few normal cases, show endcases, show interesting subtle cases, and show an example
of each kind of exception that can be raised. You’re probably testing for endcases and subtle cases anyway in an
interactive shell:doctest wants to make it as easy as possible to capture those sessions, and will verify they
continue to work as designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to collect
them many times over as the years go by and things change. I’m still amazed at how often one of mydoctest
examples stops working after a “harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, define atest dict instead.
That’s what it’s for.

5.3 unittest — Unit testing framework

5.3. unittest — Unit testing framework 141

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’s Smalltalk testing framework. Each is the de
facto standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework. Theunittest module provides classes that make
it easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup
actions. This may involve, for example, creating temporary or proxy databases, directories, or starting a
server process.

test case
A test caseis the smallest unit of testing. It checks for a specific response to a particular set of inputs.
PyUnit provides a base class,TestCase , which may be used to create new test cases.

test suite
A test suiteis a collection of test cases, test suites, or both. It is used to aggregate tests that should be
executed together.

test runner
A test runneris a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results
of executing the tests.

The test case and test fixture concepts are supported through theTestCase andFunctionTestCase classes;
the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures usingTestCase , thesetUp() andtearDown()
methods can be overridden to provide initialization and cleanup for the fixture. WithFunctionTestCase ,
existing functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization
is run first; if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of
the test. Each instance of theTestCase will only be used to run a single test method, so a new fixture is created
for each test.

Test suites are implemented by theTestSuite class. This class allows individual tests and test suites to be
aggregated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single method,run() , which accepts aTestCase or TestSuite
object as a parameter, and returns a result object. The classTestResult is provided for use as the result object.
PyUnit provide theTextTestRunner as an example test runner which reports test results on the standard error
stream by default. Alternate runners can be implemented for other environments (such as graphical environments)
without any need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)

The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)

Kent Beck’s original paper on testing frameworks using the pattern shared byunittest .

5.3.1 Basic example

Theunittest module provides a rich set of tools for constructing and running tests. This section demonstrates
that a small subset of the tools suffice to meet the needs of most users.

142 Chapter 5. Miscellaneous Services

Here is a short script to test three functions from therandom module:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):

self.assert_(element in self.seq)

if __name__ == ’__main__’:
unittest.main()

A testcase is created by subclassingunittest.TestCase . The three individual tests are defined with methods
whose names start with the letterstest . This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call toassertEqual() to check for an expected result;assert () to verify
a condition; orassertRaises() to verify that an expected exception gets raised. These methods are used
instead of theassert statement so the test runner can accumulate all test results and produce a report.

When asetUp() method is defined, the test runner will run that method prior to each test. Likewise, if
a tearDown() method is defined, the test runner will invoke that method after each test. In the example,
setUp() was used to create a fresh sequence for each test.

The final block shows a simple way to run the tests.unittest.main() provides a command line interface to
the test script. When run from the command line, the above script produces an output that looks like this:

...
--
Ran 3 tests in 0.000s

OK

Instead ofunittest.main() , there are other ways to run the tests with a finer level of control, less terse
output, and no requirement to be run from the command line. For example, the last two lines may be replaced
with:

suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(TestSequenceFunctions))
unittest.TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

5.3. unittest — Unit testing framework 143

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

--
Ran 3 tests in 0.110s

OK

The above examples show the most commonly usedunittest features which are sufficient to meet many
everyday testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing aretest cases— single scenarios that must be set up and checked for
correctness. In PyUnit, test cases are represented by instances of theTestCase class in theunittest module.
To make your own test cases you must write subclasses ofTestCase , or useFunctionTestCase .

An instance of aTestCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of aTestCase instance should be entirely self contained, such that it can be run either in
isolation or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply override therunTest() method in order to perform specific testing
code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def runTest(self):

widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one of theassert*() or fail*() methods provided by
the TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing
framework will identify the test case as afailure. Other exceptions that do not arise from checks made through the
assert*() andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case,
we call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a
“Widget” in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method calledsetUp() , which the testing frame-
work will automatically call for us when we run the test:

144 Chapter 5. Miscellaneous Services

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.failUnless(self.widget.size() == (50,50),
’incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),

’wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and therunTest() method will not be executed.

Similarly, we can provide atearDown() method that tidies up after therunTest() method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, thetearDown() method will be run regardless of whether or notrunTest() suc-
ceeded.

Such a working environment for the testing code is called afixture.

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes such asDefaultWidgetSizeTestCase .
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),

’incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),

’wrong size after resize’)

5.3. unittest — Unit testing framework 145

Here we have not provided arunTest() method, but have instead provided two different test methods. Class
instances will now each run one of thetest*() methods, withself.widget created and destroyed separately
for each instance. When creating an instance we must specify the test method it is to run. We do this by passing
the method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this:
thetest suite , represented by the classTestSuite in theunittest module:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object
that returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest.TestSuite):
def __init__(self):

unittest.TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",

"testResize")))

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to create aTestCase subclass with many similarly named test functions, there is a
convenience function calledmakeSuite() provided in theunittest module that constructs a test suite that
comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,’test’)

Note that when using themakeSuite() function, the order in which the various test cases will be run by the
test suite is the order determined by sorting the test function names using thecmp() built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sinceTestSuite instances can be added to aTestSuite just asTestCase instances can be added to
aTestSuite :

suite1 = module1.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest.TestSuite((suite1, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
‘widget.py’), but there are several advantages to placing the test code in a separate module, such as ‘widgettests.py’:

146 Chapter 5. Miscellaneous Services

• The test module can be run standalone from the command line.

• The test code can more easily be separated from shipped code.

• There is less temptation to change test code to fit the code it tests without a good reason.

• Test code should be modified much less frequently than the code it tests.

• Tested code can be refactored more easily.

• Tests for modules written in C must be in separate modules anyway, so why not be consistent?

• If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to aTestCase subclass.

For this reason, PyUnit provides aFunctionTestCase class. This subclass ofTestCase can be used to
wrap an existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
...

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they
can also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use ofAssertionError as an indicator of test failure, but does not recommend it.
Future versions may treatAssertionError differently.

5.3.4 Classes and functions

classTestCase ()
Instances of theTestCase class represent the smallest testable units in a set of tests. This class is intended
to be used as a base class, with specific tests being implemented by concrete subclasses. This class imple-
ments the interface needed by the test runner to allow it to drive the test, and methods that the test code can
use to check for and report various kinds of failures.

classFunctionTestCase (testFunc[, setUp[, tearDown[, description]]])
This class implements the portion of theTestCase interface which allows the test runner to drive the test,
but does not provide the methods which test code can use to check and report errors. This is used to create
test cases using legacy test code, allowing it to be integrated into aunittest -based test framework.

5.3. unittest — Unit testing framework 147

classTestSuite ([tests])
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregation. Iftestsis
given, it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite . It can load all tests within a given module orTestCase class. When loading from a
module, it considers allTestCase -derived classes. For each such class, it creates an instance for each
method with a name beginning with the string ‘test ’.

defaultTestLoader
Instance of theTestLoader class which can be shared. If no customization of theTestLoader is
needed, this instance can always be used instead of creating new instances.

classTextTestRunner ([stream[, descriptions[, verbosity]]])
A basic test runner implementation which prints results on standard output. It has a few configurable
parameters, but is essentially very simple. Graphical applications which run test suites should provide
alternate implementations.

main ([module[, defaultTest[, argv[, testRunner[, testRunner]]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently
executable. The simplest use for this function is:

if __name__ == ’__main__’:
unittest.main()

In some cases, the existing tests may have be written using thedoctest module. If so, that module provides
a DocTestSuite class that can automatically buildunittest.TestSuite instances from the existing test
code. New in version 2.3.

5.3.5 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests
— the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the
test itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any
exception raised by this method will be considered an error rather than a test failure. The default implemen-
tation does nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called
even if the test method raised an exception, so the implementation in subclasses may need to be particularly
careful about checking internal state. Any exception raised by this method will be considered an error rather
than a test failure. This method will only be called if thesetUp() succeeds, regardless of the outcome of
the test method. The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passed asresult. If result is omitted orNone,
a temporary result object is created and used, but is not made available to the caller. This is equivalent to
simply calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propogated to the

148 Chapter 5. Miscellaneous Services

caller, and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert (expr[, msg])
failUnless (expr[, msg])

Signal a test failure ifexpr is false; the explanation for the error will bemsgif given, otherwise it will be
None.

assertEqual (first, second[, msg])
failUnlessEqual (first, second[, msg])

Test thatfirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg, or None. Note that usingfailUnlessEqual() improves upon doing the comparison as
the first parameter tofailUnless() : the default value formsgcan be computed to include representa-
tions of bothfirst andsecond.

assertNotEqual (first, second[, msg])
failIfEqual (first, second[, msg])

Test thatfirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg, orNone. Note that usingfailIfEqual() improves upon doing the comparison as the first
parameter tofailUnless() is that the default value formsgcan be computed to include representations
of bothfirst andsecond.

assertAlmostEqual (first, second[, places[, msg]])
failUnlessAlmostEqual (first, second[, places[, msg]])

Test thatfirst andsecondare approximately equal by computing the difference, rounding to the given num-
ber ofplaces, and comparing to zero. Note that comparing a given number of decimal places is not the same
as comparing a given number of significant digits. If the values do not compare equal, the test will fail with
the explanation given bymsg, or None.

assertNotAlmostEqual (first, second[, places[, msg]])
failIfAlmostEqual (first, second[, places[, msg]])

Test thatfirst andsecondare not approximately equal by computing the difference, rounding to the given
number ofplaces, and comparing to zero. Note that comparing a given number of decimal places is not the
same as comparing a given number of significant digits. If the values do not compare equal, the test will fail
with the explanation given bymsg, or None.

assertRaises (exception, callable, ...)
failUnlessRaises (exception, callable, ...)

Test that an exception is raised whencallable is called with any positional or keyword arguments that are
also passed toassertRaises() . The test passes ifexceptionis raised, is an error if another exception
is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the
exception classes may be passed asexception.

failIf (expr[, msg])
The inverse of thefailUnless() method is thefailIf() method. This signals a test failure ifexpr is
true, withmsgor None for the error message.

fail ([msg])
Signals a test failure unconditionally, withmsgor None for the error message.

failureException
This class attribute gives the exception raised by thetest() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to
“play fair” with the framework. The initial value of this attribute isAssertionError .

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object. ForTestCase instances, this will always be
1, but this method is also implemented by theTestSuite class, which can return larger values.

defaultTestResult ()
Return the default type of test result object to be used to run this test.

5.3. unittest — Unit testing framework 149

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including
the module and class names.

shortDescription ()
Returns a one-line description of the test, orNone if no description has been provided. The default imple-
mentation of this method returns the first line of the test method’s docstring, if available, orNone.

5.3.6 TestSuite Objects

TestSuite objects behave much likeTestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to
add tests toTestSuite instances:

addTest (test)
Add aTestCase or TestSuite to the set of tests that make up the suite.

addTests (tests)
Add all the tests from a sequence ofTestCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

run (result)
Run the tests associated with this suite, collecting the result into the test result object passed asresult. Note
that unlikeTestCase.run() , TestSuite.run() requires the result object to be passed in.

In the typical usage of aTestSuite object, therun() method is invoked by aTestRunner rather than by
the end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. TheTestCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top ofunittest may want access to theTestResult object generated by running
a set of tests for reporting purposes; aTestResult instance is returned by theTestRunner.run() method
for this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among
those test runs. The collections contain tuples of(testcase, traceback) , wheretracebackis a string containing a
formatted version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running
a set of tests:

errors
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which raised an
exception but did not signal a test failure. Changed in version 2.2: Contains formatted tracebacks instead
of sys.exc info() results.

failures
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which signalled
a failure in the code under test. Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc info() results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of theTestResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools
which support interactive reporting while tests are being run.

150 Chapter 5. Miscellaneous Services

startTest (test)
Called when the test casetestis about to be run.

stopTest (test)
Called when the test casetesthas been executed, regardless of the outcome.

addError (test, err)
Called when the test casetestraises an exception without signalling a test failure.err is a tuple of the form
returned bysys.exc info() : (type, value, traceback) .

addFailure (test, err)
Called when the test casetestsignals a failure.err is a tuple of the form returned bysys.exc info() :
(type, value, traceback) .

addSuccess (test)
This method is called for a test that does not fail;testis the test case object.

One additional method is available forTestResult objects:

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been
called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need
to create an instance of this class; theunittest module provides an instance that can be shared as the
defaultTestLoader module attribute. Using a subclass or instance would allow customization of some
configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClass)
Return a suite of all tests cases contained in theTestCase -derived classtestCaseClass .

loadTestsFromModule (module)
Return a suite of all tests cases contained in the given module. This method searchesmodulefor classes
derived fromTestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy ofTestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does
not play well with this method. Doing so, however, can be useful when the fixtures are different and defined
in subclasses.

loadTestsFromName (name[, module])
Return a suite of all tests cases given a string specifier.

The specifiername is a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returns aTestCase or TestSuite in-
stance. For example, if you have a moduleSampleTests containing aTestCase -derived class
SampleTestCase with three test methods (test one() , test two() , andtest three()), the
specifier’SampleTests.SampleTestCase’ would cause this method to return a suite which will run
all three test methods. Using the specifier’SampleTests.SampleTestCase.test two’ would
cause it to return a test suite which will run only thetest two() test method. The specifier can refer to
modules and packages which have not been imported; they will be imported as a side-effect.

The method optionally resolvesnamerelative to a given module.

loadTestsFromNames (names[, module])
Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClass)
Return a sorted sequence of method names found withintestCaseClass.

5.3. unittest — Unit testing framework 151

The following attributes of aTestLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
’test’ .

sortTestMethodsUsing
Function to be used to compare method names when sorting them ingetTestCaseNames() . The default
value is the built-incmp() function; it can be set toNone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is theTestSuite class.

5.4 test — Regression tests package for Python

The test package contains all regression tests for Python as well as the modulestest.test support and
test.regrtest . test.test support is used to enhance your tests whiletest.regrtest drives the
testing suite.

Each module in thetest package whose name starts with ‘test ’ is a testing suite for a specific module or
feature. All new tests should be written using theunittest module; usingunittest is not required but makes
the tests more flexible and maintenance of the tests easier. Some older tests are written to usedoctest and a
“traditional” testing style; these styles of tests will not be covered.

See Also:

Moduleunittest (section 5.3):
Writing PyUnit regression tests.

Moduledoctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 Writing Unit Tests for the test package

It is preferred that tests for thetest package use theunittest module and follow a few guidelines. One is
to have the name of all the test methods start with ‘’test ’ ’ as well as the module’s name. This is needed so
that the methods are recognized by the test driver as test methods. Also, no documentation string for the method
should be included. A comment (such as ‘#Tests function returns only True or False ’) should
be used to provide documentation for test methods. This is done because documentation strings get printed out if
they exist and thus what test is being run is not stated.

A basic boilerplate is often used:

152 Chapter 5. Miscellaneous Services

import unittest
from test import test_support

class MyTestCase1(unittest.TestCase):

Only use setUp() and tearDown() if necessary

def setUp(self):
... code to execute in preparation for tests ...

def tearDown(self):
... code to execute to clean up after tests ...

def test_feature_one(self):
Test feature one.
... testing code ...

def test_feature_two(self):
Test feature two.
... testing code ...

... more test methods ...

class MyTestCase2(unittest.TestCase):
... same structure as MyTestCase1 ...

... more test classes ...

def test_main():
test_support.run_unittest(MyTestCase1,

MyTestCase2,
... list other tests ...

)

if __name__ == ’__main__’:
test_main()

This boilerplate code allows the testing suite to be run bytest.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

• The testing suite should exercise all classes, functions, and constants. This includes not just the external
API that is to be presented to the outside world but also ”private” code.

• Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and
edge cases are tested.

• Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

• Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as
many different paths through the code are taken.

• Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not
crop up again if the code is changed in the future.

• Make sure to clean up after your tests (such as close and remove all temporary files).

• Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of
tests and also minimizes possible anomalous behavior from side-effects of importing a module.

5.4. test — Regression tests package for Python 153

• Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is
used. Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):

func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = ’abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code.

5.4.2 Running tests Using test.regrtest

test.regrtest can be used as a script to drive Python’s regression test suite. Running the script by itself
automatically starts running all regression tests in thetest package. It does this by finding all modules in
the package whose name starts with ‘test ’, importing them, and executing the functiontest main() if
present. The names of tests to execute may also be passed to the script. Specifying a single regression test
(python regrtest.py test spam.py) will minimize output and only print whether the test passed or failed and thus
minimize output.

Runningtest.regrtest directly allows what resources are available for tests to use to be set. You do this
by using the-u command-line option. Runpython regrtest.py -uall to turn on all resources; specifyingall
as an option for-u enables all possible resources. If all but one resource is desired (a more common case), a
comma-separated list of resources that are not desired may be listed afterall. The commandpython regrtest.py
-uall,-audio,-largefile will run test.regrtest with all resources except theaudio and largefile resources.
For a list of all resources and more command-line options, runpython regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On
UNIX , you can runmake testat the top-level directory where Python was built. On Windows, executingrt.bat
from your ‘PCBuild’ directory will run all regression tests.

5.5 test.test support — Utility functions for tests

Thetest.test support module provides support for Python’s regression tests.

This module defines the following exceptions:

exceptionTestFailed
Exception to be raised when a test fails.

exceptionTestSkipped
Subclass ofTestFailed . Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exceptionResourceDenied
Subclass ofTestSkipped . Raised when a resource (such as a network connection) is not available.

154 Chapter 5. Miscellaneous Services

Raised by therequires() function.

Thetest.test support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about
a running test.verboseis set bytest.regrtest .

have unicode
True when Unicode support is available.

is jython
True if the running interpreter is Jython.

TESTFN
Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

Thetest.test support module defines the following functions:

forget (module name)
Removes the module namedmodule namefrom sys.modules and deletes any byte-compiled files of the
module.

is resource enabled (resource)
ReturnsTrue if resourceis enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires (resource[, msg])
RaisesResourceDenied if resourceis not available.msgis the argument toResourceDenied if it is
raised. Always returns true if called by a function whosename is ’ main ’ . Used when tests
are executed bytest.regrtest .

findfile (filename)
Return the path to the file namedfilename. If no match is foundfilenameis returned. This does not equal a
failure since it could be the path to the file.

run unittest (*classes)
Executeunittest.TestCase subclasses passed to the function. The function scans the classes for
methods starting with the prefix ‘test ’ and executes the tests individually. This is the preferred way to
execute tests.

run suite (suite[, testclass])
Execute theunittest.TestSuite instancesuite. The optional argumenttestclassaccepts one of the
test classes in the suite so as to print out more detailed information on where the testing suite originated
from.

5.6 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from thecmath
module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats:

acos (x)
Return the arc cosine ofx.

asin (x)

5.6. math — Mathematical functions 155

Return the arc sine ofx.

atan (x)
Return the arc tangent ofx.

atan2 (y, x)
Returnatan(y / x) .

ceil (x)
Return the ceiling ofx as a float.

cos (x)
Return the cosine ofx.

cosh (x)
Return the hyperbolic cosine ofx.

degrees (x)
Converts anglex from radians to degrees.

exp (x)
Returne** x.

fabs (x)
Return the absolute value ofx.

floor (x)
Return the floor ofx as a float.

fmod (x, y)
Returnfmod(x, y) , as defined by the platform C library. Note that the Python expressionx % y may not
return the same result.

frexp (x)
Return the mantissa and exponent ofx as the pair(m, e) . m is a float ande is an integer such thatx ==
m * 2** e. If x is zero, returns(0.0, 0) , otherwise0.5 <= abs(m) < 1 .

hypot (x, y)
Return the Euclidean distance,sqrt(x* x + y* y) .

ldexp (x, i)
Returnx * (2** i) .

log (x[, base])
Returns the logarithm ofx to the givenbase. If the baseis not specified, returns the natural logarithm ofx.
Changed in version 2.3:baseargument added.

log10 (x)
Return the base-10 logarithm ofx.

modf (x)
Return the fractional and integer parts ofx. Both results carry the sign ofx. The integer part is returned as
a float.

pow(x, y)
Returnx** y.

radians (x)
Converts anglex from degrees to radians.

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)
Return the square root ofx.

tan (x)

156 Chapter 5. Miscellaneous Services

Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constantpi.

e
The mathematical constante.

Note: The math module consists mostly of thin wrappers around the platform C math library functions. Be-
havior in exceptional cases is loosely specified by the C standards, and Python inherits much of its math-
function error-reporting behavior from the platform C implementation. As a result, the specific exceptions
raised in error cases (and even whether some arguments are considered to be exceptional at all) are not
defined in any useful cross-platform or cross-release way. For example, whethermath.log(0) returns
-Inf or raisesValueError or OverflowError isn’t defined, and in cases wheremath.log(0) raises
OverflowError , math.log(0L) may raiseValueError instead.

See Also:

Modulecmath (section 5.7):
Complex number versions of many of these functions.

5.7 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)
Return the arc cosine ofx. There are two branch cuts: One extends right from 1 along the real axis to∞,
continuous from below. The other extends left from -1 along the real axis to -∞, continuous from above.

acosh (x)
Return the hyperbolic arc cosine ofx. There is one branch cut, extending left from 1 along the real axis to
-∞, continuous from above.

asin (x)
Return the arc sine ofx. This has the same branch cuts asacos() .

asinh (x)
Return the hyperbolic arc sine ofx. There are two branch cuts, extending left from±1j to ±-∞j , both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release.
The correct branch cuts should extend along the imaginary axis, one from1j up to∞j and continuous
from the right, and one from -1j down to -∞j and continuous from the left.

atan (x)
Return the arc tangent ofx. There are two branch cuts: One extends from1j along the imaginary axis to
∞j , continuous from the left. The other extends from -1j along the imaginary axis to -∞j , continuous
from the left. (This should probably be changed so the upper cut becomes continuous from the other side.)

atanh (x)
Return the hyperbolic arc tangent ofx. There are two branch cuts: One extends from 1 along the real axis
to∞, continuous from above. The other extends from -1 along the real axis to -∞, continuous from above.
(This should probably be changed so the right cut becomes continuous from the other side.)

cos (x)
Return the cosine ofx.

5.7. cmath — Mathematical functions for complex numbers 157

cosh (x)
Return the hyperbolic cosine ofx.

exp (x)
Return the exponential valuee** x.

log (x)
Return the natural logarithm ofx. There is one branch cut, from 0 along the negative real axis to -∞,
continuous from above.

log10 (x)
Return the base-10 logarithm ofx. This has the same branch cut aslog() .

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)
Return the square root ofx. This has the same branch cut aslog() .

tan (x)
Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

The module also defines two mathematical constants:

pi
The mathematical constantpi, as a real.

e
The mathematical constante, as a real.

Note that the selection of functions is similar, but not identical, to that in modulemath . The reason for having
two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather havemath.sqrt(-1) raise an exception than return a complex number. Also note that
the functions defined incmath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothings’s sign bit. In Iserles, A.,
and Powell, M. (eds.),The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

5.8 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic functionrandom() , which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe.

158 Chapter 5. Miscellaneous Services

The Mersenne Twister is one of the most extensively tested random number generators in existence. However,
being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic
purposes.

The functions supplied by this module are actually bound methods of a hidden instance of therandom.Random
class. You can instantiate your own instances ofRandom to get generators that don’t share state. This is espe-
cially useful for multi-threaded programs, creating a different instance ofRandomfor each thread, and using the
jumpahead() method to ensure that the generated sequences seen by each thread don’t overlap.

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that
case, override therandom() , seed() , getstate() , setstate() andjumpahead() methods.

As an example of subclassing, therandom module provides theWichmannHill class which implements an
alternative generator in pure Python. The class provides a backward compatible way to reproduce results from
earlier versions of Python which used the Wichmann-Hill algorithm as the core generator. Changed in version
2.3: Substituted MersenneTwister for Wichmann-Hill.

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argumentx can be any hashable object. Ifx is
omitted orNone, current system time is used; current system time is also used to initialize the generator
when the module is first imported. Ifx is notNone or an int or long,hash(x) is used instead. Ifx is an
int or long,x is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate() to restore the state. New in version 2.1.

setstate (state)
stateshould have been obtained from a previous call togetstate() , andsetstate() restores the
internal state of the generator to what it was at the timesetstate() was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the current state.n is a non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs,
in conjuction with multiple instances of theRandomclass:setstate() or seed() can be used to force
all instances into the same internal state, and thenjumpahead() can be used to force the instances’ states
far apart. New in version 2.1. Changed in version 2.3: Instead of jumping to a specific state,n steps
ahead,jumpahead(n) jumps to another state likely to be separated by many steps..

Functions for integers:

randrange ([start,] stop[, step])
Return a randomly selected element fromrange(start, stop, step) . This is equivalent to
choice(range(start, stop, step)) , but doesn’t actually build a range object. New in version 1.5.2.

randint (a, b)
Return a random integerN such thata <= N <= b.

Functions for sequences:

choice (seq)
Return a random element from the non-empty sequenceseq.

shuffle (x[, random])
Shuffle the sequencex in place. The optional argumentrandomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functionrandom() .

Note that for even rather smalllen(x) , the total number of permutations ofx is larger than the period
of most random number generators; this implies that most permutations of a long sequence can never be
generated.

sample (population, k)
Return ak length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3.

5.8. random — Generate pseudo-random numbers 159

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows
raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, usexrange as an argument. This is especially fast and space
efficient for sampling from a large population:sample(xrange(10000000), 60) .

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these
equations can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b)
Return a random real numberN such thata <= N < b.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters arealpha > -1 andbeta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arc)
Circular uniform distribution.meanis the mean angle, andarc is the range of the distribution, centered
around the mean angle. Both values must be expressed in radians, and can range between 0 andpi. Returned
values range betweenmean - arc/2 andmean + arc/2 and are normalized to between 0 andpi.

Deprecated since release 2.3. Instead, use(mean + arc * (random.random() - 0.5))
%math.pi .

expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be called
“lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity.

gammavariate (alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters arealpha > 0 andbeta >
0.

gauss (mu, sigma)
Gaussian distribution.mu is the mean, andsigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with meanmuand standard deviationsigma. mucan have any value, andsigmamust be greater than zero.

normalvariate (mu, sigma)
Normal distribution.mu is the mean, andsigmais the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, andkappais the concentration parameter,
which must be greater than or equal to zero. Ifkappais equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

paretovariate (alpha)
Pareto distribution.alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution.alpha is the scale parameter andbetais the shape parameter.

Alternative Generator

classWichmannHill ([seed])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Randomplus thewhseed method described below. Because this class is implemented in pure Python, it
is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644

160 Chapter 5. Miscellaneous Services

which is small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. Seeseed for
details. whseed does not guarantee that distinct integer arguments yield distinct internal states, and can
yield no more than about 2**24 distinct internal states in all.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator”,ACM Transactions on Modeling and Computer SimulationVol. 8, No. 1, January pp.3-30
1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics31 (1982) 188-190.

5.9 whrandom — Pseudo-random number generator

Deprecated since release 2.1.Userandom instead.

Note: This module was an implementation detail of therandom module in releases of Python prior to 2.1. It is
no longer used. Please do not use this module directly; userandom instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is also namedwhrandom .
Instances of thewhrandom class conform to the Random Number Generator interface described in section??.
They also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, y, z])
Initializes the random number generator from the integersx, y andz. When the module is first imported, the
random number is initialized using values derived from the current time. Ifx, y, andz are either omitted or
0, the seed will be computed from the current system time. If one or two of the parameters are0, but not all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with
the corresponding result on the pseudo-random series produced by the generator.

choice (seq)
Chooses a random element from the non-empty sequenceseqand returns it.

randint (a, b)
Returns a random integerN such thata<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (x, y, z)
Initializes the random number generator from the integersx, y andz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numberN such thata<=N<b.

When imported, thewhrandom module also creates an instance of thewhrandom class, and makes the methods
of that instance available at the module level. Therefore one can write eitherN = whrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.

See Also:

Modulerandom (section 5.8):
Generators for various random distributions and documentation for the Random Number Generator inter-
face.

5.9. whrandom — Pseudo-random number generator 161

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics31 (1982) 188-190.

5.10 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is calledbisect because it uses a basic bisection algorithm to do its work.
The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect left (list, item[, lo[, hi]])
Locate the proper insertion point foritem in list to maintain sorted order. The parameterslo andhi may be
used to specify a subset of the list which should be considered; by default the entire list is used. Ifitem is
already present inlist, the insertion point will be before (to the left of) any existing entries. The return value
is suitable for use as the first parameter tolist.insert() . This assumes thatlist is already sorted. New
in version 2.1.

bisect right (list, item[, lo[, hi]])
Similar tobisect left() , but returns an insertion point which comes after (to the right of) any existing
entries ofitem in list. New in version 2.1.

bisect (...)
Alias for bisect right() .

insort left (list, item[, lo[, hi]])
Insert item in list in sorted order. This is equivalent tolist.insert(bisect.bisect left(list,
item, lo, hi), item) . This assumes thatlist is already sorted. New in version 2.1.

insort right (list, item[, lo[, hi]])
Similar to insort left() , but insertingitem in list after any existing entries ofitem. New in version
2.1.

insort (...)
Alias for insort right() .

5.10.1 Examples

The bisect() function is generally useful for categorizing numeric data. This example usesbisect() to
look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A’,
75..84 is a ‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
... return grades[bisect(breakpoints, total)]
...
>>> grade(66)
’C’
>>> map(grade, [33, 99, 77, 44, 12, 88])
[’E’, ’A’, ’B’, ’D’, ’F’, ’A’]

The bisect module can be used with the Queue module to implement a priority queue (example courtesy of Fredrik
Lundh):

162 Chapter 5. Miscellaneous Services

import Queue, bisect

class PriorityQueue(Queue.Queue):
def _put(self, item):

bisect.insort(self.queue, item)

usage
queue = PriorityQueue(0)
queue.put((2, "second"))
queue.put((1, "first"))
queue.put((3, "third"))
priority, value = queue.get()

5.11 heapq — Heap queue algorithm

New in version 2.3.

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are arrays for whichheap[k] <= heap[2* k+1] andheap[k] <= heap[2* k+2] for all k, counting el-
ements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is thatheap[0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a ”min heap” in textbooks; a ”max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surprises:heap[0] is the smallest
item, andheap.sort() maintains the heap invariant!

To create a heap, use a list initialized to[] , or you can transform a populated list into a heap via function
heapify() .

The following functions are provided:

heappush (heap, item)
Push the valueitemonto theheap, maintaining the heap invariant.

heappop (heap)
Pop and return the smallest item from theheap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heapify (x)
Transform listx into a heap, in-place, in linear time.

heapreplace (heap, item)
Pop and return the smallest item from theheap, and also push the newitem. The heap size doesn’t change.
If the heap is empty,IndexError is raised. This is more efficient thanheappop() followed by
heappush() , and can be more appropriate when using a fixed-size heap. Note that the value returned
may be larger thanitem! That constrains reasonable uses of this routine.

Example of use:

5.11. heapq — Heap queue algorithm 163

>>> from heapq import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:
... heappush(heap, item)
...
>>> sorted = []
>>> while heap:
... sorted.append(heappop(heap))
...
>>> print sorted
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> data.sort()
>>> print data == sorted
True
>>>

5.11.1 Theory

(This explanation is due to Franois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whicha[k] <= a[2* k+1] anda[k] <= a[2* k+2] for all k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is thata[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below arek, nota[k] :

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cellk is topping2* k+1 and2* k+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell ”wins” over the
two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way
to remove it and find the ”next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0
position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not ”better” than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the ”win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer
:-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they

164 Chapter 5. Miscellaneous Services

are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing ”runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a
merging passes for these runs, which merging is often very cleverly organised1. It is very important that the initial
sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value ”wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

5.12 array — Efficient arrays of numeric values

This module defines an object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using atype code, which is a single
character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes
’c’ char character 1
’b’ signed char int 1
’B’ unsigned char int 1
’u’ Py UNICODE Unicode character 2
’h’ signed short int 2
’H’ unsigned short int 2
’i’ signed int int 2
’I’ unsigned int long 2
’l’ signed long int 4
’L’ unsigned long long 4
’f’ float float 4
’d’ double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed through theitemsize attribute. The values stored for’L’ and
’I’ items will be represented as Python long integers when retrieved, because Python’s plain integer type cannot
represent the full range of C’s unsigned (long) integers.

The module defines the following type:

array (typecode[, initializer])
Return a new array whose items are restricted bytypecode, and initialized from the optionalinitializer
value, which must be a list or a string. The list or string is passed to the new array’sfromlist() ,
fromstring() , or fromunicode() method (see below) to add initial items to the array.

ArrayType
Obsolete alias forarray .

1The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at ”progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

5.12. array — Efficient arrays of numeric values 165

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases,TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with valuex to the end of the array.

buffer info ()
Return a tuple(address, length) giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed asar-
ray.buffer info()[1] * array.itemsize . This is occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such as certainioctl() op-
erations. The returned numbers are valid as long as the array exists and no length-changing operations are
applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in thePython/C API Reference Manual.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values,RuntimeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

count (x)
Return the number of occurences ofx in the array.

extend (a)
Append array items froma to the end of the array. The two arrays must haveexactlythe same type code; if
not,TypeError will be raised.

fromfile (f, n)
Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else with aread() method won’t do.

fromlist (list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x) ’ except that if there
is a type error, the array is unchanged.

fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using thefromfile() method).

fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ’u’ array; otherwise
a ValueError is raised. Use ‘array.fromstring(ustr.decode(enc)) ’ to append Unicode data to
an array of some other type.

index (x)
Return the smallesti such thati is the index of the first occurence ofx in the array.

insert (i, x)
Insert a new item with valuex in the array before positioni. Negative values are treated as being relative to
the end of the array.

pop ([i])

166 Chapter 5. Miscellaneous Services

Removes the item with the indexi from the array and returns it. The optional argument defaults to-1 , so
that by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.1.Use thefromfile() method.

Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else with aread() method won’t do.

remove (x)
Remove the first occurence ofx from the array.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file objectf .

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of
bytes that would be written to a file by thetofile() method.)

tounicode ()
Convert the array to a unicode string. The array must be a type ’u’ array; otherwise a ValueError is raised.
Use array.tostring().decode(enc) to obtain a unicode string from an array of some other type.

write (f)
Deprecated since release 1.5.1.Use thetofile() method.

Write all items (as machine values) to the file objectf .

When an array object is printed or converted to a string, it is represented asarray(typecode, initializer) . The
initializer is omitted if the array is empty, otherwise it is a string if thetypecodeis ’c’ , otherwise it is a list
of numbers. The string is guaranteed to be able to be converted back to an array with the same type and value
using reverse quotes (‘‘), so long as thearray() function has been imported usingfrom array import
array . Examples:

array(’l’)
array(’c’, ’hello world’)
array(’u’, u’hello \textbackslash u2641’)
array(’l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Modulexdrlib (section 12.17):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual
(http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm)

The Numeric Python extension (NumPy) defines another array type; seehttp://numpy.sourceforge.net/
for further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf).

5.13 sets — Unordered collections of unique elements

5.13. sets — Unordered collections of unique elements 167

New in version 2.3.

Thesets module provides classes for constructing and manipulating unordered collections of unique elements.
Common uses include membership testing, removing duplicates from a sequence, and computing standard math
operations on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets supportx in set, len(set) , andfor x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

Most set applications use theSet class which provides every set method except forhash () . For advanced
applications requiring a hash method, theImmutableSet class adds a hash () method but omits methods
which alter the contents of the set. BothSet andImmutableSet derive fromBaseSet , an abstract class useful
for determining whether something is a set:isinstance(obj, BaseSet) .

The set classes are implemented using dictionaries. As a result, sets cannot contain mutable elements such as lists
or dictionaries. However, they can contain immutable collections such as tuples or instances ofImmutableSet .
For convenience in implementing sets of sets, inner sets are automatically converted to immutable form, for
example,Set([Set([’dog’])]) is transformed toSet([ImmutableSet([’dog’])]) .

classSet ([iterable])
Constructs a new emptySet object. If the optionaliterable parameter is supplied, updates the set with
elements obtained from iteration. All of the elements initerableshould be immutable or be transformable
to an immutable using the protocol described in section 5.13.3.

classImmutableSet ([iterable])
Constructs a new emptyImmutableSet object. If the optionaliterable parameter is supplied, updates
the set with elements obtained from iteration. All of the elements initerable should be immutable or be
transformable to an immutable using the protocol described in section 5.13.3.

BecauseImmutableSet objects provide a hash () method, they can be used as set elements or as
dictionary keys.ImmutableSet objects do not have methods for adding or removing elements, so all of
the elements must be known when the constructor is called.

5.13.1 Set Objects

Instances ofSet andImmutableSet both provide the following operations:

Operation Equivalent Result
len(s) cardinality of sets
x in s testx for membership ins

x not in s testx for non-membership ins
s.issubset(t) s <= t test whether every element ins is in t

s.issuperset(t) s >= t test whether every element int is in s
s.union(t) s | t new set with elements from boths andt

s.intersection(t) s & t new set with elements common tos andt
s.difference(t) s - t new set with elements ins but not int

s.symmetric difference(t) s ˆ t new set with elements in eithers or t but not both
s.copy() new set with a shallow copy ofs

Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric difference() will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructions likeSet(’abc’) &
’cbs’ in favor of the more readableSet(’abc’).intersection(’cbs’) . Changed in version 2.3.1:
Formerly all arguments were required to be sets.

In addition, bothSet and ImmutableSet support set to set comparisons. Two sets are equal if and only if
every element of each set is contained in the other (each is a subset of the other). A set is less than another set
if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than
another set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

168 Chapter 5. Miscellaneous Services

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, soall of the following returnFalse : a<b, a==b, or
a>b. Accordingly, sets do not implement the cmp method.

Since sets only define partial ordering (subset relationships), the output of thelist.sort() method is unde-
fined for lists of sets.

The following table lists operations available inImmutableSet but not found inSet :

Operation Result
hash(s) returns a hash value fors

The following table lists operations available inSet but not found inImmutableSet :

Operation Equivalent Result
s.union update(t) s |= t return sets with elements added fromt

s.intersection update(t) s &= t return sets keeping only elements also found int
s.difference update(t) s -= t return sets after removing elements found int

s.symmetric difference update(t) s ˆ= t return sets with elements froms or t but not both
s.add(x) add elementx to sets

s.remove(x) removex from sets; raises KeyError if not present
s.discard(x) removesx from sets if present

s.pop() remove and return an arbitrary element froms; raises KeyError if empty
s.clear() remove all elements from sets

Note, the non-operator versions of union update() , intersection update() ,
difference update() , and symmetric difference update() will accept any iterable as an
argument. Changed in version 2.3.1: Formerly all arguments were required to be sets.

5.13.2 Example

>>> from sets import Set
>>> engineers = Set([’John’, ’Jane’, ’Jack’, ’Janice’])
>>> programmers = Set([’Jack’, ’Sam’, ’Susan’, ’Janice’])
>>> managers = Set([’Jane’, ’Jack’, ’Susan’, ’Zack’])
>>> employees = engineers | programmers | managers # union
>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers.add(’Marvin’) # add element
>>> print engineers
Set([’Jane’, ’Marvin’, ’Janice’, ’John’, ’Jack’])
>>> employees.issuperset(engineers) # superset test
False
>>> employees.union_update(engineers) # update from another set
>>> employees.issuperset(engineers)
True
>>> for group in [engineers, programmers, managers, employees]:
... group.discard(’Susan’) # unconditionally remove element
... print group
...
Set([’Jane’, ’Marvin’, ’Janice’, ’John’, ’Jack’])
Set([’Janice’, ’Jack’, ’Sam’])
Set([’Jane’, ’Zack’, ’Jack’])
Set([’Jack’, ’Sam’, ’Jane’, ’Marvin’, ’Janice’, ’John’, ’Zack’])

5.13. sets — Unordered collections of unique elements 169

5.13.3 Protocol for automatic conversion to immutable

Sets can only contain immutable elements. For convenience, mutableSet objects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has
an as immutable () method which returns an immutable equivalent.

SinceSet objects have a as immutable () method returning an instance ofImmutableSet , it is
possible to construct sets of sets.

A similar mechanism is needed by the contains () and remove() methods which need to hash an
element to check for membership in a set. Those methods check an element for hashability and, if not, check for a

as temporarily immutable () method which returns the element wrapped by a class that provides
temporary methods for hash () , eq () , and ne () .

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the as temporarily immutable () method which returns theSet object
wrapped by a new classTemporarilyImmutableSet .

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
TemporarilyImmutableSet . In other words, sets of mutable sets are not thread-safe.

5.14 itertools — Functions creating iterators for efficient looping

New in version 2.3.

This module implements a number of iterator building blocks inspired by constructs from the Haskell and SML
programming languages. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Standardization helps avoid the readability and reliability problems which arise when many different individuals
create their own slightly varying implementations, each with their own quirks and naming conventions.

The tools are designed to combine readily with one another. This makes it easy to construct more specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation tool:tabulate(f) which produces a sequencef(0), f(1),
This toolbox providesimap() andcount() which can be combined to formimap(f, count()) and pro-
duce an equivalent result.

Likewise, the functional tools are designed to work well with the high-speed functions provided by theoperator
module.

The module author welcomes suggestions for other basic building blocks to be added to future versions of the
module.

Whether cast in pure python form or C code, tools that use iterators are more memory efficient (and faster) than
their list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when and
where needed instead of consuming memory with the computer equivalent of “inventory”.

The performance advantage of iterators becomes more acute as the number of elements increases – at some point,
lists grow large enough to severely impact memory cache performance and start running slowly.

See Also:

The Standard ML Basis Library,The Standard ML Basis Library.

Haskell, A Purely Functional Language,Definition of Haskell and the Standard Libraries.

170 Chapter 5. Miscellaneous Services

5.14.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the
next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single
sequence. Equivalent to:

def chain(*iterables):
for it in iterables:

for element in it:
yield element

count ([n])
Make an iterator that returns consecutive integers starting withn. If not specifiedn defaults to zero. Does
not currently support python long integers. Often used as an argument toimap() to generate consecutive
data points. Also, used withizip() to add sequence numbers. Equivalent to:

def count(n=0):
while True:

yield n
n += 1

Note, count() does not check for overflow and will return negative numbers after exceeding
sys.maxint . This behavior may change in the future.

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):
saved = []
for element in iterable:

yield element
saved.append(element)

while saved:
for element in saved:

yield element

Note, this is the only member of the toolkit that may require significant auxiliary storage (depending on the
length of the iterable).

dropwhile (predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element. Note, the iterator does not produceanyoutput until the predicate is true, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:

if not predicate(x):
yield x
break

for x in iterable:
yield x

5.14. itertools — Functions creating iterators for efficient looping 171

ifilter (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate isTrue . If
predicateis None, return the items that are true. Equivalent to:

def ifilter(predicate, iterable):
if predicate is None:

predicate = bool
for x in iterable:

if predicate(x):
yield x

ifilterfalse (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate isFalse .
If predicateis None, return the items that are false. Equivalent to:

def ifilterfalse(predicate, iterable):
if predicate is None:

predicate = bool
for x in iterable:

if not predicate(x):
yield x

imap (function, *iterables)
Make an iterator that computes the function using arguments from each of the iterables. Iffunction is set
to None, thenimap() returns the arguments as a tuple. Likemap() but stops when the shortest iterable
is exhausted instead of filling inNone for shorter iterables. The reason for the difference is that infinite
iterator arguments are typically an error formap() (because the output is fully evaluated) but represent a
common and useful way of supplying arguments toimap() . Equivalent to:

def imap(function, *iterables):
iterables = map(iter, iterables)
while True:

args = [i.next() for i in iterables]
if function is None:

yield tuple(args)
else:

yield function(*args)

islice (iterable,[start,] stop[, step])
Make an iterator that returns selected elements from the iterable. Ifstart is non-zero, then elements from
the iterable are skipped until start is reached. Afterward, elements are returned consecutively unlessstepis
set higher than one which results in items being skipped. Ifstopis None, then iteration continues until the
iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing,islice()
does not support negative values forstart, stop, orstep. Can be used to extract related fields from data where
the internal structure has been flattened (for example, a multi-line report may list a name field on every third
line). Equivalent to:

def islice(iterable, *args):
s = slice(*args)
next, stop, step = s.start or 0, s.stop, s.step or 1
for cnt, element in enumerate(iterable):

if cnt < next:
continue

if stop is not None and cnt >= stop:
break

yield element
next += step

172 Chapter 5. Miscellaneous Services

izip (*iterables)
Make an iterator that aggregates elements from each of the iterables. Likezip() except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(*iterables):
iterables = map(iter, iterables)
while iterables:

result = [i.next() for i in iterables]
yield tuple(result)

Changed in version 2.3.1: When no iterables are specified, returns a zero length iterator instead of raising a
TypeError exception.

repeat (object[, times])
Make an iterator that returnsobjectover and over again. Runs indefinitely unless thetimesargument is
specified. Used as argument toimap() for invariant parameters to the called function. Also used with
izip() to create an invariant part of a tuple record. Equivalent to:

def repeat(object, times=None):
if times is None:

while True:
yield object

else:
for i in xrange(times):

yield object

starmap (function, iterable)
Make an iterator that computes the function using arguments tuples obtained from the iterable. Used instead
of imap() when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference betweenimap() andstarmap() parallels the distinction between
function(a,b) andfunction(*c) . Equivalent to:

def starmap(function, iterable):
iterable = iter(iterable)
while True:

yield function(*iterable.next())

takewhile (predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile(predicate, iterable):
for x in iterable:

if predicate(x):
yield x

else:
break

5.14.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

5.14. itertools — Functions creating iterators for efficient looping 173

>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
... print ’Check %d is for $%.2f’ % (checknum, amount)
...
Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14

>>> import operator
>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):
... print cube
...
1
8
27

>>> reportlines = [’EuroPython’, ’Roster’, ’’, ’alex’, ’’, ’laura’,
’’, ’martin’, ’’, ’walter’, ’’, ’samuele’]

>>> for name in islice(reportlines, 3, None, 2):
... print name.title()
...
Alex
Laura
Martin
Walter
Samuele

This section shows how itertools can be combined to create other more powerful itertools. Note that
enumerate() anditeritems() already have efficient implementations in Python. They are only included
here to illustrate how higher level tools can be created from building blocks.

174 Chapter 5. Miscellaneous Services

def take(n, seq):
return list(islice(seq, n))

def enumerate(iterable):
return izip(count(), iterable)

def tabulate(function):
"Return function(0), function(1), ..."
return imap(function, count())

def iteritems(mapping):
return izip(mapping.iterkeys(), mapping.itervalues())

def nth(iterable, n):
"Returns the nth item"
return list(islice(iterable, n, n+1))

def all(seq, pred=bool):
"Returns True if pred(x) is True for every element in the iterable"
return False not in imap(pred, seq)

def any(seq, pred=bool):
"Returns True if pred(x) is True at least one element in the iterable"
return True in imap(pred, seq)

def no(seq, pred=bool):
"Returns True if pred(x) is False for every element in the iterable"
return True not in imap(pred, seq)

def quantify(seq, pred=bool):
"Count how many times the predicate is True in the sequence"
return sum(imap(pred, seq))

def padnone(seq):
"Returns the sequence elements and then returns None indefinitely"
return chain(seq, repeat(None))

def ncycles(seq, n):
"Returns the sequence elements n times"
return chain(*repeat(seq, n))

def dotproduct(vec1, vec2):
return sum(imap(operator.mul, vec1, vec2))

def window(seq, n=2):
"Returns a sliding window (of width n) over data from the iterable"
" s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:

yield result
for elem in it:

result = result[1:] + (elem,)
yield result

def tee(iterable):
"Return two independent iterators from a single iterable"
def gen(next, data={}, cnt=[0]):

dpop = data.pop
for i in count():

if i == cnt[0]:
item = data[i] = next()
cnt[0] += 1

else:
item = dpop(i)

yield item
next = iter(iterable).next
return (gen(next), gen(next))

5.14. itertools — Functions creating iterators for efficient looping 175

5.15 ConfigParser — Configuration file parser

This module defines the classConfigParser . TheConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows INI files.
You can use this to write Python programs which can be customized by end users easily.

Warning: This library doesnot interpret or write the value-type prefixes used in the Windows Registry
extended version of INI syntax.

The configuration file consists of sections, led by a ‘[section] ’ header and followed by ‘name: value ’
entries, with continuations in the style of RFC 822; ‘name=value ’ is also accepted. Note that leading whitespace
is removed from values. The optional values can contain format strings which refer to other values in the same
section, or values in a specialDEFAULTsection. Additional defaults can be provided on initialization and retrieval.
Lines beginning with ‘#’ or ‘ ; ’ are ignored and may be used to provide comments.

For example:

[My Section]
foodir: %(dir)s/whatever
dir=frob

would resolve the ‘%(dir)s ’ to the value of ‘dir ’ (‘ frob ’ in this case). All reference expansions are done on
demand.

Default values can be specified by passing them into theConfigParser constructor as a dictionary. Additional
defaults may be passed into theget() method which will override all others.

classRawConfigParser ([defaults])
The basic configuration object. Whendefaultsis given, it is initialized into the dictionary of intrinsic
defaults. This class does not support the magical interpolation behavior. New in version 2.3.

classConfigParser ([defaults])
Derived class ofRawConfigParser that implements the magical interpolation feature and adds optional
arguments to theget() anditems() methods. The values indefaultsmust be appropriate for the ‘%()s ’
string interpolation. Note that name is an intrinsic default; its value is the section name, and will
override any value provided indefaults.

classSafeConfigParser ([defaults])
Derived class ofConfigParser that implements a more-sane variant of the magical interpolation feature.
This implementation is more predictable as well. New applications should prefer this version if they don’t
need to be compatible with older versions of Python. New in version 2.3.

exceptionNoSectionError
Exception raised when a specified section is not found.

exceptionDuplicateSectionError
Exception raised when multiple sections with the same name are found, or ifadd section() is called
with the name of a section that is already present.

exceptionNoOptionError
Exception raised when a specified option is not found in the specified section.

exceptionInterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exceptionInterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX INTERPOLATION DEPTH. Subclass ofInterpolationError .

176 Chapter 5. Miscellaneous Services

exceptionInterpolationMissingOptionError
Exception raised when an option referenced from a value does not exist. Subclass of
InterpolationError . New in version 2.3.

exceptionInterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the required
syntax. Subclass ofInterpolationError . New in version 2.3.

exceptionMissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exceptionParsingError
Exception raised when errors occur attempting to parse a file.

MAX INTERPOLATION DEPTH
The maximum depth for recursive interpolation forget() when theraw parameter is false. This is relevant
only for theConfigParser class.

See Also:

Moduleshlex (section 5.20):
Support for a creating UNIX shell-like mini-languages which can be used as an alternate format for appli-
cation configuration files.

5.15.1 RawConfigParser Objects

RawConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections available;DEFAULTis not included in the list.

add section (section)
Add a section namedsection to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has section (section)
Indicates whether the named section is present in the configuration. TheDEFAULTsection is not acknowl-
edged.

options (section)
Returns a list of options available in the specifiedsection.

has option (section, option)
If the given section exists, and contains the given option. return 1; otherwise return 0. New in version 1.6.

read (filenames)
Read and parse a list of filenames. Iffilenamesis a string or Unicode string, it is treated as a single filename.
If a file named infilenamescannot be opened, that file will be ignored. This is designed so that you can
specify a list of potential configuration file locations (for example, the current directory, the user’s home
directory, and some system-wide directory), and all existing configuration files in the list will be read. If
none of the named files exist, theConfigParser instance will contain an empty dataset. An application
which requires initial values to be loaded from a file should load the required file or files usingreadfp()
before callingread() for any optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser()
config.readfp(open(’defaults.cfg’))
config.read([’site.cfg’, os.path.expanduser(’˜/.myapp.cfg’)])

readfp (fp[, filename])

5.15. ConfigParser — Configuration file parser 177

Read and parse configuration data from the file or file-like object infp (only thereadline() method is
used). Iffilenameis omitted andfp has aname attribute, that is used forfilename; the default is ‘<???> ’.

get (section, option)
Get anoptionvalue for the namedsection.

getint (section, option)
A convenience method which coerces theoption in the specifiedsectionto an integer.

getfloat (section, option)
A convenience method which coerces theoption in the specifiedsectionto a floating point number.

getboolean (section, option)
A convenience method which coerces theoption in the specifiedsectionto a Boolean value. Note that the
accepted values for the option are"1" , "yes" , "true" , and"on" , which cause this method to return
True , and"0" , "no" , "false" , and"off" , which cause it to returnFalse . These string values are
checked in a case-insensitive manner. Any other value will cause it to raiseValueError .

items (section)
Return a list of(name, value) pairs for each option in the givensection.

set (section, option, value)
If the given section exists, set the given option to the specified value; otherwise raiseNoSectionError .
New in version 1.6.

write (fileobject)
Write a representation of the configuration to the specified file object. This representation can be parsed by
a futureread() call. New in version 1.6.

remove option (section, option)
Remove the specifiedoption from the specifiedsection. If the section does not exist, raise
NoSectionError . If the option existed to be removed, return 1; otherwise return 0. New in version 1.6.

remove section (section)
Remove the specifiedsectionfrom the configuration. If the section in fact existed, returnTrue . Otherwise
returnFalse .

optionxform (option)
Transforms the option nameoption as found in an input file or as passed in by client code to the form
that should be used in the internal structures. The default implementation returns a lower-case version of
option; subclasses may override this or client code can set an attribute of this name on instances to affect
this behavior. Setting this tostr() , for example, would make option names case sensitive.

5.15.2 ConfigParser Objects

TheConfigParser class extends some methods of theRawConfigParser interface, adding some optional
arguments.

get (section, option[, raw[, vars]])
Get anoptionvalue for the namedsection. All the ‘%’ interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optionsvarsprovided, unless theraw argument is
true.

items (section[, raw[, vars]])
Return a list of(name, value) pairs for each option in the givensection. Optional arguments have the
same meaning as for theget() method. New in version 2.3.

5.16 fileinput — Iterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

178 Chapter 5. Miscellaneous Services

import fileinput
for line in fileinput.input():

process(line)

This iterates over the lines of all files listed insys.argv[1:] , defaulting tosys.stdin if the list is empty.
If a filename is’-’ , it is also replaced bysys.stdin . To specify an alternative list of filenames, pass it as the
first argument toinput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading a file,IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for inter-
active use, or if it has been explicitly reset (e.g. usingsys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable
at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([files[, inplace[, backup]]])
Create an instance of theFileInput class. The instance will be used as global state for the functions
of this module, and is also returned to use during iteration. The parameters to this function will be passed
along to the constructor of theFileInput class.

The following functions use the global state created byinput() ; if there is no active state,RuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, returnsNone.

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read,
returns0. After the last line of the last file has been read, returns the line number of that line.

filelineno ()
Return the line number in the current file. Before the first line has been read, returns0. After the last line
of the last file has been read, returns the line number of that line within the file.

isfirstline ()
Returns true if the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read fromsys.stdin , otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not
read from the file will not count towards the cumulative line count. The filename is not changed until after
the first line of the next file has been read. Before the first line has been read, this function has no effect;
it cannot be used to skip the first file. After the last line of the last file has been read, this function has no
effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

classFileInput ([files[, inplace[, backup]]])
Class FileInput is the implementation; its methodsfilename() , lineno() , fileline() ,
isfirstline() , isstdin() , nextfile() andclose() correspond to the functions of the same
name in the module. In addition it has areadline() method which returns the next input line, and a

getitem () method which implements the sequence behavior. The sequence must be accessed in
strictly sequential order; random access andreadline() cannot be mixed.

5.16. fileinput — Iterate over lines from multiple input streams 179

Optional in-place filtering: if the keyword argumentinplace=1 is passed toinput() or to theFileInput
constructor, the file is moved to a backup file and standard output is directed to the input file (if a file of the
same name as the backup file already exists, it will be replaced silently). This makes it possible to write a filter
that rewrites its input file in place. If the keyword argumentbackup=’.<some extension>’ is also given,
it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
’.bak’ and it is deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.17 xreadlines — Efficient iteration over a file

New in version 2.1.

Deprecated since release 2.3.Usefor line in file instead.

This module defines a new object type which can efficiently iterate over the lines of a file. An xreadlines object is
a sequence type which implements simple in-order indexing beginning at0, as required byfor statement or the
filter() function.

Thus, the code

import xreadlines, sys

for line in xreadlines.xreadlines(sys.stdin):
pass

has approximately the same speed and memory consumption as

while 1:
lines = sys.stdin.readlines(8*1024)
if not lines: break
for line in lines:

pass

except the clarity of thefor statement is retained in the former case.

xreadlines (fileobj)
Return a new xreadlines object which will iterate over the contents offileobj. fileobj must have a
readlines() method that supports thesizehintparameter.Note: Because thereadlines() method
buffers data, this effectively ignores the effects of setting the file object as unbuffered.

An xreadlines objects supports the following sequence operation:

Operation Result
s[i] i’th line of s

If successive values ofi are not sequential starting from0, this code will raiseRuntimeError .

After the last line of the file is read, this code will raise anIndexError .

5.18 calendar — General calendar-related functions

This module allows you to output calendars like the UNIX cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Usesetfirstweekday() to set the first day of the week to Sunday (6) or to
any other weekday. Parameters that specify dates are given as integers.

180 Chapter 5. Miscellaneous Services

Most of these functions rely on thedatetime module which uses an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. This matches the definition of the ”proleptic Gregorian” calendar
in Dershowitz and Reingold’s book ”Calendrical Calculations”, where it’s the base calendar for all computations.

setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The valuesMONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, andSUNDAYare provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

New in version 2.0.

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (year)
Returns1 if year is a leap year, otherwise0.

leapdays (y1, y2)
Returns the number of leap years in the range [y1. . .y2), wherey1 andy2 are years. Changed in version
2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day)
Returns the day of the week (0 is Monday) foryear (1970 –. . .),month(1–12), day(1–31).

weekheader (n)
Return a header containing abbreviated weekday names.n specifies the width in characters for one weekday.

monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specifiedyearandmonth.

monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set bysetfirstweekday() .

prmonth (theyear, themonth[, w[, l]])
Prints a month’s calendar as returned bymonth() .

month (theyear, themonth[, w[, l]])
Returns a month’s calendar in a multi-line string. Ifw is provided, it specifies the width of the date columns,
which are centered. Ifl is given, it specifies the number of lines that each week will use. Depends on the
first weekday as set bysetfirstweekday() . New in version 2.0.

prcal (year[, w[, l[c]]])
Prints the calendar for an entire year as returned bycalendar() .

calendar (year[, w[, l[c]]])
Returns a 3-column calendar for an entire year as a multi-line string. Optional parametersw, l, andc are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as set bysetfirstweekday() . The earliest year for which a calendar can be
generated is platform-dependent. New in version 2.0.

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned by thegmtime() function in the
time module, and returns the corresponding UNIX timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact,time.gmtime() and timegm() are each others’ inverse. New in version
2.0.

See Also:

Moduletime (section 6.10):
Low-level time related functions.

5.18. calendar — General calendar-related functions 181

5.19 cmd — Support for line-oriented command interpreters

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often
useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated
interface.

classCmd([completekey[, stdin[, stdout]]])
A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to
instantiateCmditself; rather, it’s useful as a superclass of an interpreter class you define yourself in order to
inheritCmd’s methods and encapsulate action methods.

The optional argumentcompletekeyis the readline name of a completion key; it defaults toTab. If
completekeyis notNone andreadline is available, command completion is done automatically.

The optional argumentsstdinandstdoutspecify the input and output file objects that the Cmd instance or
subclass instance will use for input and output. If not specified, they will default tosys.stdinandsys.stdout.

Changed in version 2.3: Thestdinandstdoutparameters were added..

5.19.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides the
intro class member).

If the readline module is loaded, input will automatically inheritbash-like history-list editing (e.g.
Control-P scrolls back to the last command,Control-N forward to the next one,Control-F moves
the cursor to the right non-destructively,Control-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string’EOF’ .

An interpreter instance will recognize a command name ‘foo ’ if and only if it has a methoddo foo() .
As a special case, a line beginning with the character ‘?’ is dispatched to the methoddo help() . As
another special case, a line beginning with the character ‘! ’ is dispatched to the methoddo shell() (if
such a method is defined).

This method will return when thepostcmd() method returns a true value. Thestop argument to
postcmd() is the return value from the command’s correspondingdo *() method.

If completion is enabled, completing commands will be done automatically, and completing of commands
args is done by callingcomplete foo() with argumentstext, line, begidx, andendidx. text is the string
prefix we are attempting to match: all returned matches must begin with it.line is the current input line
with leading whitespace removed,begidxandendidxare the beginning and ending indexes of the prefix text,
which could be used to provide different completion depending upon which position the argument is in.

All subclasses ofCmdinherit a predefineddo help() . This method, called with an argument’bar’ ,
invokes the corresponding methodhelp bar() . With no argument,do help() lists all available help
topics (that is, all commands with correspondinghelp *() methods), and also lists any undocumented
commands.

onecmd(str)
Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but
should not normally need to be; see theprecmd() andpostcmd() methods for useful execution hooks.
The return value is a flag indicating whether interpretation of commands by the interpreter should stop. If
there is ado *() method for the commandstr, the return value of that method is returned, otherwise the
return value from thedefault() method is returned.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

182 Chapter 5. Miscellaneous Services

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden,
it prints an error message and returns.

completedefault (text, line, begidx, endidx)
Method called to complete an input line when no command-specificcomplete *() method is available.
By default, it returns an empty list.

precmd (line)
Hook method executed just before the command lineline is interpreted, but after the input prompt is gener-
ated and issued. This method is a stub inCmd; it exists to be overridden by subclasses. The return value is
used as the command which will be executed by theonecmd() method; theprecmd() implementation
may re-write the command or simply returnline unchanged.

postcmd (stop, line)
Hook method executed just after a command dispatch is finished. This method is a stub inCmd; it exists
to be overridden by subclasses.line is the command line which was executed, andstop is a flag which
indicates whether execution will be terminated after the call topostcmd() ; this will be the return value of
theonecmd() method. The return value of this method will be used as the new value for the internal flag
which corresponds tostop; returning false will cause interpretation to continue.

preloop ()
Hook method executed once whencmdloop() is called. This method is a stub inCmd; it exists to be
overridden by subclasses.

postloop ()
Hook method executed once whencmdloop() is about to return. This method is a stub inCmd; it exists
to be overridden by subclasses.

Instances ofCmdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by giving thecmdloop() method an argument.

doc header
The header to issue if the help output has a section for documented commands.

misc header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help *() methods without correspondingdo *() methods).

undoc header
The header to issue if the help output has a section for undocumented commands (that is, there aredo *()
methods without correspondinghelp *() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn.
It defaults to ‘=’.

use rawinput
A flag, defaulting to true. If true,cmdloop() usesraw input() to display a prompt and read the next
command; if false,sys.stdout.write() andsys.stdin.readline() are used. (This means that
by importingreadline , on systems that support it, the interpreter will automatically support Emacs-like
line editing and command-history keystrokes.)

5.19. cmd — Support for line-oriented command interpreters 183

5.20 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the UNIX shell.
This will often be useful for writing minilanguages, (e.g. in run control files for Python applications) or for parsing
quoted strings.

See Also:

ModuleConfigParser (section 5.15):
Parser for configuration files similar to the Windows ‘.ini’ files.

5.20.1 Module Contents

Theshlex module defines the following functions:

split (s[, comments=False])
Split the strings using shell-like syntax. Ifcommentsis False , the parsing of comments in the given
string will be disabled (setting thecommenters member of theshlex instance to the empty string). This
function operates in POSIX mode. New in version 2.3.

Theshlex module defines the following classes:

classshlex ([instream=sys.stdin [, infile=None[, posix=False]]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if
present, specifies where to read characters from. It must be a file-/stream-like object withread() and
readline() methods, or a string (strings are accepted since Python 2.3). If no argument is given, input
will be taken fromsys.stdin . The second optional argument is a filename string, which sets the initial
value of theinfile member. If theinstreamargument is omitted or equal tosys.stdin , this second
argument defaults to “stdin”. Theposixargument was introduced in Python 2.3, and defines the operational
mode. Whenposix is not true (default), theshlex instance will operate in compatibility mode. When
operating in POSIX mode,shlex will try to be as close as possible to the POSIX shell parsing rules.
See 5.20.2.

5.20.2 shlex Objects

A shlex instance has the following methods:

get token ()
Return a token. If tokens have been stacked usingpush token() , pop a token off the stack. Otherwise,
read one from the input stream. If reading encounters an immediate end-of-file,self.eof is returned (the
empty string (’’) in non-POSIX mode, andNone in POSIX mode).

push token (str)
Push the argument onto the token stack.

read token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filename)
Whenshlex detects a source request (seesource below) this method is given the following token as
argument, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or
there was no previous source request in effect, or the previous source was a stream (e.g.sys.stdin),
the result is left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the
file immediately before it on the source inclusion stack is prepended (this behavior is like the way the C
preprocessor handles#include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in

184 Chapter 5. Miscellaneous Services

instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions,
and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call the
close() method of the sourced input stream when it returnsEOF.

For more explicit control of source stacking, use thepush source() andpop source() methods.

push source (stream[, filename])
Push an input source stream onto the input stack. If the filename argument is specified it will later be
available for use in error messages. This is the same method used internally by thesourcehook method.
New in version 2.1.

pop source ()
Pop the last-pushed input source from the input stack. This is the same method used internally when the
lexer reachesEOF on a stacked input stream. New in version 2.1.

error leader ([file[, line]])
This method generates an error message leader in the format of a UNIX C compiler error label; the format
is ’"%s", line %d: ’ , where the ‘%s’ is replaced with the name of the current source file and the
‘%d’ with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encourageshlex users to generate error messages in the standard,
parseable format understood by Emacs and other UNIX tools.

Instances ofshlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment begin-
ner to end of line are ignored. Includes just ‘#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes allASCII

alphanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

escape
Characters that will be considered as escape. This will be only used in POSIX mode, and includes just ‘\’
by default. New in version 2.3.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, includesASCII single and
double quotes.

escapedquotes
Characters inquotes that will interpret escape characters defined inescape . This is only used in POSIX
mode, and includes just ‘" ’ by default. New in version 2.3.

whitespace split
If True , tokens will only be split in whitespaces. This is useful, for example, for parsing command lines
with shlex , getting tokens in a similar way to shell arguments. New in version 2.3.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source
requests. It may be useful to examine this when constructing error messages.

instream
The input stream from which thisshlex instance is reading characters.

source
This member isNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to the ‘source ’ keyword in various shells. That is, the immediately following
token will opened as a filename and input taken from that stream untilEOF, at which point theclose()

5.20. shlex — Simple lexical analysis 185

method of that stream will be called and the input source will again become the original input stream. Source
requests may be stacked any number of levels deep.

debug
If this member is numeric and1 or more, ashlex instance will print verbose progress output on its
behavior. If you need to use this, you can read the module source code to learn the details.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

eof
Token used to determine end of file. This will be set to the empty string (’’), in non-POSIX mode, and to
None in POSIX mode. New in version 2.3.

5.20.3 Parsing Rules

When operating in non-POSIX mode,shlex will try to obey to the following rules.

• Quote characters are not recognized within words (Do"Not"Separate is parsed as the single word
Do"Not"Separate);

• Escape characters are not recognized;

• Enclosing characters in quotes preserve the literal value of all characters within the quotes;

• Closing quotes separate words ("Do"Separate is parsed as"Do" andSeparate);

• If whitespace split is False , any character not declared to be a word character, whitespace, or a
quote will be returned as a single-character token. If it isTrue , shlex will only split words in whitespaces;

• EOF is signaled with an empty string (’’);

• It’s not possible to parse empty strings, even if quoted.

When operating in POSIX mode,shlex will try to obey to the following parsing rules.

• Quotes are stripped out, and do not separate words ("Do"Not"Separate" is parsed as the single word
DoNotSeparate);

• Non-quoted escape characters (e.g. ‘\’) preserve the literal value of the next character that follows;

• Enclosing characters in quotes which are not part ofescapedquotes (e.g. ‘’ ’) preserve the literal value
of all characters within the quotes;

• Enclosing characters in quotes which are part ofescapedquotes (e.g. ‘" ’) preserves the literal value
of all characters within the quotes, with the exception of the characters mentioned inescape . The escape
characters retain its special meaning only when followed by the quote in use, or the escape character itself.
Otherwise the escape character will be considered a normal character.

• EOF is signaled with aNone value;

• Quoted empty strings (’’) are allowed;

186 Chapter 5. Miscellaneous Services

CHAPTER

SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (al-
most) all operating systems, such as files and a clock. The interfaces are generally modeled after the UNIX or C
interfaces, but they are available on most other systems as well. Here’s an overview:

os Miscellaneous operating system interfaces.
os.path Common pathname manipulations.
dircache Return directory listing, with cache mechanism.
stat Utilities for interpreting the results ofos.stat() , os.lstat() andos.fstat() .
statcache Stat files, and remember results.
statvfs Constants for interpreting the result ofos.statvfs() .
filecmp Compare files efficiently.
popen2 Subprocesses with accessible standard I/O streams.
datetime Basic date and time types.
time Time access and conversions.
sched General purpose event scheduler.
mutex Lock and queue for mutual exclusion.
getpass Portable reading of passwords and retrieval of the userid.
curses An interface to the curses library, providing portable terminal handling.
curses.textpad Emacs-like input editing in a curses window.
curses.wrapper Terminal configuration wrapper for curses programs.
curses.ascii Constants and set-membership functions forASCII characters.
curses.panel A panel stack extension that adds depth to curses windows.
getopt Portable parser for command line options; support both short and long option names.
optparse Powerful, flexible, extensible, easy-to-use command-line parsing library.
tempfile Generate temporary files and directories.
errno Standard errno system symbols.
glob UNIX shell style pathname pattern expansion.
fnmatch UNIX shell style filename pattern matching.
shutil High-level file operations, including copying.
locale Internationalization services.
gettext Multilingual internationalization services.
logging Logging module for Python based on PEP 282.

6.1 os — Miscellaneous operating system interfaces

This module provides a more portable way of using operating system dependent functionality than importing a
operating system dependent built-in module likeposix or nt .

This module searches for an operating system dependent built-in module likemac or posix and exports the
same functions and data as found there. The design of all Python’s built-in operating system dependent modules
is such that as long as the same functionality is available, it uses the same interface; for example, the function
os.stat(path) returns stat information aboutpath in the same format (which happens to have originated with
the POSIX interface).

187

Extensions peculiar to a particular operating system are also available through theos module, but using them is
of course a threat to portability!

Note that after the first timeos is imported, there isno performance penalty in using functions fromos instead
of directly from the operating system dependent built-in module, so there should beno reason not to useos !

exceptionerror
This exception is raised when a function returns a system-related error (not for illegal argument types or
other incidental errors). This is also known as the built-in exceptionOSError . The accompanying value is
a pair containing the numeric error code fromerrno and the corresponding string, as would be printed by
the C functionperror() . See the moduleerrno , which contains names for the error codes defined by
the underlying operating system.

When exceptions are classes, this exception carries two attributes,errno and strerror . The first
holds the value of the Cerrno variable, and the latter holds the corresponding error message from
strerror() . For exceptions that involve a file system path (such aschdir() or unlink()), the
exception instance will contain a third attribute,filename , which is the file name passed to the function.

name
The name of the operating system dependent module imported. The following names have currently been
registered:’posix’ , ’nt’ , ’mac’ , ’os2’ , ’ce’ , ’java’ , ’riscos’ .

path
The corresponding operating system dependent standard module for pathname operations, such as
posixpath or macpath . Thus, given the proper imports,os.path.split(file) is equivalent to
but more portable thanposixpath.split(file) . Note that this is also an importable module: it may be
imported directly asos.path .

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For example,environ[’HOME’] is the pathname
of your home directory (on some platforms), and is equivalent togetenv("HOME") in C.

If the platform supports theputenv() function, this mapping may be used to modify the environment as
well as query the environment.putenv() will be called automatically when the mapping is modified.
Note: On some platforms, including FreeBSD and Mac OS X, settingenviron may cause memory leaks.
Refer to the system documentation for putenv.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

chdir (path)
fchdir (fd)
getcwd ()

These functions are described in “Files and Directories” (section 6.1.4).

ctermid ()
Return the filename corresponding to the controlling terminal of the process. Availability: UNIX .

getegid ()
Return the effective group id of the current process. This corresponds to the ‘set id’ bit on the file being
executed in the current process. Availability: UNIX .

geteuid ()
Return the current process’ effective user id. Availability: UNIX .

getgid ()
Return the real group id of the current process. Availability: UNIX .

getgroups ()
Return list of supplemental group ids associated with the current process. Availability: UNIX .

getlogin ()

188 Chapter 6. Generic Operating System Services

Return the name of the user logged in on the controlling terminal of the process. For most pur-
poses, it is more useful to use the environment variable LOGNAME to find out who the user is, or
pwd.getpwuid(os.getuid())[0] to get the login name of the currently effective user ID. Avail-
ability: UNIX .

getpgid (pid)
Return the process group id of the process with process idpid. If pid is 0, the process group id of the current
process is returned. Availability: UNIX . New in version 2.3.

getpgrp ()
Return the id of the current process group. Availability: UNIX .

getpid ()
Return the current process id. Availability: UNIX , Windows.

getppid ()
Return the parent’s process id. Availability: UNIX .

getuid ()
Return the current process’ user id. Availability: UNIX .

getenv (varname[, value])
Return the value of the environment variablevarnameif it exists, orvalue if it doesn’t. valuedefaults to
None. Availability: most flavors of UNIX , Windows.

putenv (varname, value)
Set the environment variable namedvarnameto the stringvalue. Such changes to the environment af-
fect subprocesses started withos.system() , popen() or fork() andexecv() . Availability: most
flavors of UNIX , Windows.

Note: On some platforms, including FreeBSD and Mac OS X, settingenviron may cause memory leaks.
Refer to the system documentation for putenv.

Whenputenv() is supported, assignments to items inos.environ are automatically translated into
corresponding calls toputenv() ; however, calls toputenv() don’t updateos.environ , so it is
actually preferable to assign to items ofos.environ .

setegid (egid)
Set the current process’s effective group id. Availability: UNIX .

seteuid (euid)
Set the current process’s effective user id. Availability: UNIX .

setgid (gid)
Set the current process’ group id. Availability: UNIX .

setgroups (groups)
Set the list of supplemental group ids associated with the current process togroups. groupsmust be a
sequence, and each element must be an integer identifying a group. This operation is typical available only
to the superuser. Availability: UNIX . New in version 2.2.

setpgrp ()
Calls the system callsetpgrp() or setpgrp(0, 0) depending on which version is implemented (if
any). See the UNIX manual for the semantics. Availability: UNIX .

setpgid (pid, pgrp)
Calls the system callsetpgid() to set the process group id of the process with idpid to the process group
with id pgrp. See the UNIX manual for the semantics. Availability: UNIX .

setreuid (ruid, euid)
Set the current process’s real and effective user ids. Availability: UNIX .

setregid (rgid, egid)
Set the current process’s real and effective group ids. Availability: UNIX .

setsid ()
Calls the system callsetsid() . See the UNIX manual for the semantics. Availability: UNIX .

6.1. os — Miscellaneous operating system interfaces 189

setuid (uid)
Set the current process’ user id. Availability: UNIX .

strerror (code)
Return the error message corresponding to the error code incode. Availability: UNIX , Windows.

umask(mask)
Set the current numeric umask and returns the previous umask. Availability: UNIX , Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5
strings:(sysname, nodename, release, version, machine) . Some systems truncate the nodename to
8 characters or to the leading component; a better way to get the hostname issocket.gethostname()
or even socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of

UNIX .

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, mode[, bufsize]])
Return an open file object connected to the file descriptorfd. The modeandbufsizearguments have the
same meaning as the corresponding arguments to the built-inopen() function. Availability: Macintosh,
UNIX , Windows.

Changed in version 2.3: When specified, themodeargument must now start with one of the letters ‘r ’, ‘ w’,
or ‘a’, otherwise aValueError is raised.

popen (command[, mode[, bufsize]])
Open a pipe to or fromcommand. The return value is an open file object connected to the pipe, which can
be read or written depending on whethermodeis ’r’ (default) or’w’ . Thebufsizeargument has the same
meaning as the corresponding argument to the built-inopen() function. The exit status of the command
(encoded in the format specified forwait()) is available as the return value of theclose() method
of the file object, except that when the exit status is zero (termination without errors),None is returned.
Availability: UNIX , Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This
was due to the use of thepopen() function from the libraries provided with Windows. Newer versions
of Python do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update mode (‘w+b’). The file has no directory entries associated with
it and will be automatically deleted once there are no file descriptors for the file. Availability: UNIX ,
Windows.

For each of thesepopen() variants, ifbufsizeis specified, it specifies the buffer size for the I/O pipes.mode,
if provided, should be the string’b’ or ’t’ ; on Windows this is needed to determine whether the file objects
should be opened in binary or text mode. The default value formodeis ’t’ .

These methods do not make it possible to retrieve the return code from the child processes. The only way to
control the input and output streams and also retrieve the return codes is to use thePopen3 andPopen4 classes
from thepopen2 module; these are only available on UNIX .

For a discussion of possible deadlock conditions related to the use of these functions, see “Flow Control Issues”
(section 6.8.2).

popen2 (cmd[, mode[, bufsize]])
Executescmdas a sub-process. Returns the file objects(child stdin, child stdout) . Availability: UNIX ,
Windows. New in version 2.0.

popen3 (cmd[, mode[, bufsize]])
Executescmd as a sub-process. Returns the file objects(child stdin, child stdout, child stderr) .
Availability: UNIX , Windows. New in version 2.0.

popen4 (cmd[, mode[, bufsize]])

190 Chapter 6. Generic Operating System Services

Executescmdas a sub-process. Returns the file objects(child stdin, child stdout and stderr) . Avail-
ability: UNIX , Windows. New in version 2.0.

This functionality is also available in thepopen2 module using functions of the same names, but the return values
of those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptorfd. Availability: Macintosh, UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned by
open() or pipe() . To close a “file object” returned by the built-in functionopen() or bypopen() or
fdopen() , use itsclose() method.

dup (fd)
Return a duplicate of file descriptorfd. Availability: Macintosh, UNIX , Windows.

dup2 (fd, fd2)
Duplicate file descriptorfd to fd2, closing the latter first if necessary. Availability: UNIX , Windows.

fdatasync (fd)
Force write of file with filedescriptorfd to disk. Does not force update of metadata. Availability: UNIX .

fpathconf (fd, name)
Return system configuration information relevant to an open file.namespecifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.1, UNIX 95, UNIX 98, and others). Some platforms define additional names
as well. The names known to the host operating system are given in thepathconf names dictionary.
For configuration variables not included in that mapping, passing an integer fornameis also accepted.
Availability: UNIX .

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inpathconf names, anOSError is raised witherrno.EINVAL
for the error number.

fstat (fd)
Return status for file descriptorfd, like stat() . Availability: UNIX , Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file descriptorfd, like
statvfs() . Availability: UNIX .

fsync (fd)
Force write of file with filedescriptorfd to disk. On UNIX , this calls the nativefsync() function; on
Windows, the MS commit() function.

If you’re starting with a Python file object f , first do f .flush() , and then do
os.fsync(f .fileno()) , to ensure that all internal buffers associated withf are written to disk.
Availability: UNIX , and Windows starting in 2.2.3.

ftruncate (fd, length)
Truncate the file corresponding to file descriptorfd, so that it is at mostlengthbytes in size. Availability:
UNIX .

isatty (fd)
ReturnTrue if the file descriptorfd is open and connected to a tty(-like) device, elseFalse . Availability:
UNIX .

lseek (fd, pos, how)
Set the current position of file descriptorfd to positionpos, modified byhow: 0 to set the position relative
to the beginning of the file;1 to set it relative to the current position;2 to set it relative to the end of the file.
Availability: Macintosh, UNIX , Windows.

6.1. os — Miscellaneous operating system interfaces 191

open (file, flags[, mode])
Open the filefile and set various flags according toflagsand possibly its mode according tomode. The
defaultmodeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for
the newly opened file. Availability: Macintosh, UNIX , Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants (like
O RDONLYandO WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in functionopen() , which
returns a “file object” withread() andwrite() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descriptors(master, slave) for the pty and the tty,
respectively. For a (slightly) more portable approach, use thepty module. Availability: Some flavors of
UNIX .

pipe ()
Create a pipe. Return a pair of file descriptors(r, w) usable for reading and writing, respectively. Avail-
ability: UNIX , Windows.

read (fd, n)
Read at mostn bytes from file descriptorfd. Return a string containing the bytes read. If the end of the file
referred to byfd has been reached, an empty string is returned. Availability: Macintosh, UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned by
open() or pipe() . To read a “file object” returned by the built-in functionopen() or by popen() or
fdopen() , or sys.stdin , use itsread() or readline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal given byfd (an open file descriptor as returned by
open()). Availability: UNIX .

tcsetpgrp (fd, pg)
Set the process group associated with the terminal given byfd (an open file descriptor as returned by
open()) to pg. Availability: UNIX .

ttyname (fd)
Return a string which specifies the terminal device associated with file-descriptorfd. If fd is not associated
with a terminal device, an exception is raised. Availability: UNIX .

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written. Availability: Macin-
tosh, UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned by
open() or pipe() . To write a “file object” returned by the built-in functionopen() or bypopen() or
fdopen() , or sys.stdout or sys.stderr , use itswrite() method.

The following data items are available for use in constructing theflagsparameter to theopen() function.

O RDONLY
O WRONLY
O RDWR
O NDELAY
O NONBLOCK
O APPEND
O DSYNC
O RSYNC
O SYNC
O NOCTTY
O CREAT
O EXCL
O TRUNC

Options for theflag argument to theopen() function. These can be bit-wise OR’d together. Availability:
Macintosh, UNIX , Windows.

192 Chapter 6. Generic Operating System Services

O BINARY
Option for theflag argument to theopen() function. This can be bit-wise OR’d together with those listed
above. Availability: Macintosh, Windows.

O NOINHERIT
O SHORTLIVED
O TEMPORARY
O RANDOM
O SEQUENTIAL
O TEXT

Options for theflag argument to theopen() function. These can be bit-wise OR’d together. Availability:
Windows.

6.1.4 Files and Directories

access (path, mode)
Use the real uid/gid to test for access topath. Note that most operations will use the effective uid/gid,
therefore this routine can be used in a suid/sgid environment to test if the invoking user has the specified
access topath. modeshould beF OKto test the existence ofpath, or it can be the inclusive OR of one or
more ofR OK, W OK, andX OKto test permissions. Return1 if access is allowed,0 if not. See the UNIX

man pageaccess(2) for more information. Availability: UNIX , Windows.

F OK
Value to pass as themodeparameter ofaccess() to test the existence ofpath.

R OK
Value to include in themodeparameter ofaccess() to test the readability ofpath.

W OK
Value to include in themodeparameter ofaccess() to test the writability ofpath.

X OK
Value to include in themodeparameter ofaccess() to determine ifpathcan be executed.

chdir (path)
Change the current working directory topath. Availability: Macintosh, UNIX , Windows.

fchdir (fd)
Change the current working directory to the directory represented by the file descriptorfd. The descriptor
must refer to an opened directory, not an open file. Availability: UNIX . New in version 2.3.

getcwd ()
Return a string representing the current working directory. Availability: Macintosh, UNIX , Windows.

getcwdu ()
Return a Unicode object representing the current working directory. Availability: UNIX , Windows. New
in version 2.3.

chroot (path)
Change the root directory of the current process topath. Availability: UNIX . New in version 2.2.

chmod(path, mode)
Change the mode ofpath to the numericmode. modemay take one of the following values (as defined in
thestat module):

•S ISUID

•S ISGID

•S ENFMT

•S ISVTX

•S IREAD

•S IWRITE

•S IEXEC

6.1. os — Miscellaneous operating system interfaces 193

•S IRWXU

•S IRUSR

•S IWUSR

•S IXUSR

•S IRWXG

•S IRGRP

•S IWGRP

•S IXGRP

•S IRWXO

•S IROTH

•S IWOTH

•S IXOTH

Availability: UNIX , Windows.

chown (path, uid, gid)
Change the owner and group id ofpathto the numericuid andgid. Availability: UNIX .

lchown (path, uid, gid)
Change the owner and group id ofpath to the numericuid and gid. This function will not follow symbolic
links. Availability: UNIX . New in version 2.3.

link (src, dst)
Create a hard link pointing tosrcnameddst. Availability: UNIX .

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not
include the special entries’.’ and’..’ even if they are present in the directory. Availability: Macintosh,
UNIX , Windows.

Changed in version 2.3: On Windows NT/2k/XP and Unix, ifpath is a Unicode object, the result will be a
list of Unicode objects..

lstat (path)
Like stat() , but do not follow symbolic links. Availability: UNIX .

mkfifo (path[, mode])
Create a FIFO (a named pipe) namedpath with numeric modemode. The defaultmodeis 0666 (octal).
The current umask value is first masked out from the mode. Availability: UNIX .

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes:
the server opens the FIFO for reading, and the client opens it for writing. Note thatmkfifo() doesn’t
open the FIFO — it just creates the rendezvous point.

mknod(path[, mode=0600, device])
Create a filesystem node (file, device special file or named pipe) named filename.modespecifies both the
permissions to use and the type of node to be created, being combined (bitwise OR) with one of SIFREG,
S IFCHR, S IFBLK, and S IFIFO (those constants are available instat). For S IFCHR and S IFBLK,
devicedefines the newly created device special file (probably usingos.makedev()), otherwise it is ig-
nored. New in version 2.3.

major (device)
Extracts a device major number from a raw device number. New in version 2.3.

minor (device)
Extracts a device minor number from a raw device number. New in version 2.3.

makedev (major, minor)
Composes a raw device number from the major and minor device numbers. New in version 2.3.

194 Chapter 6. Generic Operating System Services

mkdir (path[, mode])
Create a directory namedpath with numeric modemode. The defaultmodeis 0777 (octal). On some
systems,modeis ignored. Where it is used, the current umask value is first masked out. Availability:
Macintosh, UNIX , Windows.

makedirs (path[, mode])
Recursive directory creation function. Likemkdir() , but makes all intermediate-level directories needed
to contain the leaf directory. Throws anerror exception if the leaf directory already exists or cannot be
created. The defaultmodeis 0777 (octal). This function does not properly handle UNC paths (only relevant
on Windows systems; Universal Naming Convention paths are those that use the ‘\\host\path ’ syntax).
New in version 1.5.2.

pathconf (path, name)
Return system configuration information relevant to a named file.namespecifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.1, UNIX 95, UNIX 98, and others). Some platforms define additional names
as well. The names known to the host operating system are given in thepathconf names dictionary.
For configuration variables not included in that mapping, passing an integer fornameis also accepted.
Availability: UNIX .

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inpathconf names, anOSError is raised witherrno.EINVAL
for the error number.

pathconf names
Dictionary mapping names accepted bypathconf() andfpathconf() to the integer values defined
for those names by the host operating system. This can be used to determine the set of names known to the
system. Availability: UNIX .

readlink (path)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(path), result) . Availability: UNIX .

remove (path)
Remove the filepath. If pathis a directory,OSError is raised; seermdir() below to remove a directory.
This is identical to theunlink() function documented below. On Windows, attempting to remove a file
that is in use causes an exception to be raised; on UNIX , the directory entry is removed but the storage
allocated to the file is not made available until the original file is no longer in use. Availability: Macintosh,
UNIX , Windows.

removedirs (path)
Removes directories recursively. Works likermdir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole
path is consumed or an error is raised (which is ignored, because it generally means that a parent directory
is not empty). Throws anerror exception if the leaf directory could not be successfully removed. New
in version 1.5.2.

rename (src, dst)
Rename the file or directorysrc to dst. If dst is a directory,OSError will be raised. On UNIX , if dstexists
and is a file, it will be removed silently if the user has permission. The operation may fail on some UNIX

flavors if src anddst are on different filesystems. If successful, the renaming will be an atomic operation
(this is a POSIX requirement). On Windows, ifdst already exists,OSError will be raised even if it is a
file; there may be no way to implement an atomic rename whendst names an existing file. Availability:
Macintosh, UNIX , Windows.

renames (old, new)
Recursive directory or file renaming function. Works likerename() , except creation of any intermedi-
ate directories needed to make the new pathname good is attempted first. After the rename, directories
corresponding to rightmost path segments of the old name will be pruned away usingremovedirs() .

Note: this function can fail with the new directory structure made if you lack permissions needed to remove
the leaf directory or file. New in version 1.5.2.

6.1. os — Miscellaneous operating system interfaces 195

rmdir (path)
Remove the directorypath. Availability: Macintosh, UNIX , Windows.

stat (path)
Perform astat() system call on the given path. The return value is an object whose attributes correspond
to the members of thestat structure, namely:st mode (protection bits),st ino (inode number),
st dev (device),st nlink (number of hard links),st uid (user ID of owner),st gid (group ID of
owner),st size (size of file, in bytes),st atime (time of most recent access),st mtime (time of
most recent content modification),st ctime (platform dependent; time of most recent metadata change
on UNIX , or the time of creation on Windows).

Changed in version 2.3: Ifstat float times returns true, the time values are floats, measuring sec-
onds. Fractions of a second may be reported if the system supports that. On Mac OS, the times are always
floats. Seestat float times for further discussion. .

On some Unix systems (such as Linux), the following attributes may also be available:st blocks (num-
ber of blocks allocated for file),st blksize (filesystem blocksize),st rdev (type of device if an inode
device).

On Mac OS systems, the following attributes may also be available:st rsize , st creator ,
st type .

On RISCOS systems, the following attributes are also available:st ftype (file type),st attrs (at-
tributes),st obtype (object type).

For backward compatibility, the return value ofstat() is also accessible as a tuple of at least 10 integers
giving the most important (and portable) members of thestat structure, in the orderst mode, st ino ,
st dev , st nlink , st uid , st gid , st size , st atime , st mtime , st ctime . More items
may be added at the end by some implementations. The standard modulestat defines functions and
constants that are useful for extracting information from astat structure. (On Windows, some items are
filled with dummy values.) Availability: Macintosh, UNIX , Windows.

Changed in version 2.2: Added access to values as attributes of the returned object.

stat float times ([newvalue])
Determine whetherstat result represents time stamps as float objects. If newval is True, future calls
to stat() return floats, if it is False, future calls return ints. If newval is omitted, return the current setting.

For compatibility with older Python versions, accessingstat result as a tuple always returns integers.
For compatibility with Python 2.2, accessing the time stamps by field name also returns integers. Appli-
cations that want to determine the fractions of a second in a time stamp can use this function to have time
stamps represented as floats. Whether they will actually observe non-zero fractions depends on the system.

Future Python releases will change the default of this setting; applications that cannot deal with floating
point time stamps can then use this function to turn the feature off.

It is recommended that this setting is only changed at program startup time in themain module;
libraries should never change this setting. If an application uses a library that works incorrectly if float-
ing point time stamps are processed, this application should turn the feature off until the library has been
corrected.

statvfs (path)
Perform astatvfs() system call on the given path. The return value is an object whose attributes
describe the filesystem on the given path, and correspond to the members of thestatvfs structure,
namely:f frsize , f blocks , f bfree , f bavail , f files , f ffree , f favail , f flag ,
f namemax. Availability: UNIX .

For backward compatibility, the return value is also accessible as a tuple whose values correspond to the
attributes, in the order given above. The standard modulestatvfs defines constants that are useful for
extracting information from astatvfs structure when accessing it as a sequence; this remains useful
when writing code that needs to work with versions of Python that don’t support accessing the fields as
attributes.

Changed in version 2.2: Added access to values as attributes of the returned object.

symlink (src, dst)
Create a symbolic link pointing tosrcnameddst. Availability: UNIX .

196 Chapter 6. Generic Operating System Services

tempnam([dir[, prefix]])
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path
that names a potential directory entry in the directorydir or a common location for temporary files ifdir is
omitted orNone. If given and notNone, prefixis used to provide a short prefix to the filename. Applications
are responsible for properly creating and managing files created using paths returned bytempnam() ;
no automatic cleanup is provided. On UNIX , the environment variable TMPDIR overridesdir, while on
Windows the TMP is used. The specific behavior of this function depends on the C library implementation;
some aspects are underspecified in system documentation.Warning: Use oftempnam() is vulnerable to
symlink attacks; consider usingtmpfile() instead. Availability: UNIX , Windows.

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible
for properly creating and managing files created using paths returned bytmpnam() ; no automatic cleanup
is provided.Warning: Use oftmpnam() is vulnerable to symlink attacks; consider usingtmpfile()
instead. Availability: UNIX , Windows. This function probably shouldn’t be used on Windows, though:
Microsoft’s implementation oftmpnam() always creates a name in the root directory of the current drive,
and that’s generally a poor location for a temp file (depending on privileges, you may not even be able to
open a file using this name).

TMP MAX
The maximum number of unique names thattmpnam() will generate before reusing names.

unlink (path)
Remove the filepath. This is the same function asremove() ; theunlink() name is its traditional UNIX

name. Availability: Macintosh, UNIX , Windows.

utime (path, times)
Set the access and modified times of the file specified bypath. If timesis None, then the file’s access and
modified times are set to the current time. Otherwise,timesmust be a 2-tuple of numbers, of the form
(atime, mtime) which is used to set the access and modified times, respectively. Changed in version 2.0:
Added support forNone for times. Availability: Macintosh, UNIX , Windows.

walk (top[, topdown=True [, onerror=None]])
walk() generates the file names in a directory tree, by walking the tree either top down or bottom up.
For each directory in the tree rooted at directorytop (including top itself), it yields a 3-tuple(dirpath,
dirnames, filenames) .

dirpath is a string, the path to the directory.dirnamesis a list of the names of the subdirectories indirpath
(excluding’.’ and’..’). filenamesis a list of the names of the non-directory files indirpath. Note that
the names in the lists contain no path components. To get a full path (which begins withtop) to a file or
directory indirpath, doos.path.join(dirpath, name) .

If optional argumenttopdownis true or not specified, the triple for a directory is generated before the triples
for any of its subdirectories (directories are generated top down). Iftopdownis false, the triple for a directory
is generated after the triples for all of its subdirectories (directories are generated bottom up).

Whentopdownis true, the caller can modify thedirnameslist in-place (perhaps usingdel or slice assign-
ment), andwalk() will only recurse into the subdirectories whose names remain indirnames; this can be
used to prune the search, impose a specific order of visiting, or even to informwalk() about directories
the caller creates or renames before it resumeswalk() again. Modifyingdirnameswhentopdownis false
is ineffective, because in bottom-up mode the directories indirnamesare generated beforedirnamesitself
is generated.

By default errors from theos.listdir() call are ignored. If optional argumentonerror is specified, it
should be a function; it will be called with one argument, an os.error instance. It can report the error to
continue with the walk, or raise the exception to abort the walk. Note that the filename is available as the
filename attribute of the exception object.

Note: If you pass a relative pathname, don’t change the current working directory between resumptions of
walk() . walk() never changes the current directory, and assumes that its caller doesn’t either.

Note: On systems that support symbolic links, links to subdirectories appear indirnameslists, butwalk()
will not visit them (infinite loops are hard to avoid when following symbolic links). To visit linked directo-
ries, you can identify them withos.path.islink(path) , and invokewalk(path) on each directly.

6.1. os — Miscellaneous operating system interfaces 197

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn’t look under any CVS subdirectory:

import os
from os.path import join, getsize
for root, dirs, files in os.walk(’python/Lib/email’):

print root, "consumes",
print sum([getsize(join(root, name)) for name in files]),
print "bytes in", len(files), "non-directory files"
if ’CVS’ in dirs:

dirs.remove(’CVS’) # don’t visit CVS directories

In the next example, walking the tree bottom up is essential:rmdir() doesn’t allow deleting a directory
before the directory is empty:

import os
from os.path import join
Delete everything reachable from the directory named in ’top’.
CAUTION: This is dangerous! For example, if top == ’/’, it
could delete all your disk files.
for root, dirs, files in os.walk(top, topdown=False):

for name in files:
os.remove(join(root, name))

for name in dirs:
os.rmdir(join(root, name))

New in version 2.3.

6.1.5 Process Management

These functions may be used to create and manage processes.

The variousexec*() functions take a list of arguments for the new program loaded into the process. In each
case, the first of these arguments is passed to the new program as its own name rather than as an argument a user
may have typed on a command line. For the C programmer, this is theargv[0] passed to a program’smain() .
For example, ‘os.execv(’/bin/echo’, [’foo’, ’bar’]) ’ will only print ‘ bar ’ on standard output;
‘ foo ’ will seem to be ignored.

abort ()
Generate aSIGABRT signal to the current process. On UNIX , the default behavior is to produce a core
dump; on Windows, the process immediately returns an exit code of3. Be aware that programs which
usesignal.signal() to register a handler forSIGABRTwill behave differently. Availability: UNIX ,
Windows.

execl (path, arg0, arg1, ...)
execle (path, arg0, arg1, ..., env)
execlp (file, arg0, arg1, ...)
execlpe (file, arg0, arg1, ..., env)
execv (path, args)
execve (path, args, env)
execvp (file, args)
execvpe (file, args, env)

These functions all execute a new program, replacing the current process; they do not return. On UNIX , the
new executable is loaded into the current process, and will have the same process ID as the caller. Errors
will be reported asOSError exceptions.

The ‘l ’ and ‘v ’ variants of theexec*() functions differ in how command-line arguments are passed.
The ‘l ’ variants are perhaps the easiest to work with if the number of parameters is fixed when the code is
written; the individual parameters simply become additional parameters to theexecl*() functions. The
‘v ’ variants are good when the number of parameters is variable, with the arguments being passed in a list

198 Chapter 6. Generic Operating System Services

or tuple as theargsparameter. In either case, the arguments to the child process must start with the name of
the command being run.

The variants which include a ‘p’ near the end (execlp() , execlpe() , execvp() , andexecvpe())
will use the PATH environment variable to locate the programfile. When the environment is being replaced
(using one of theexec*e() variants, discussed in the next paragraph), the new environment is used as the
source of the PATH variable. The other variants,execl() , execle() , execv() , andexecve() , will
not use the PATH variable to locate the executable;path must contain an appropriate absolute or relative
path.

For execle() , execlpe() , execve() , andexecvpe() (note that these all end in ‘e’), the env
parameter must be a mapping which is used to define the environment variables for the new process; the
execl() , execlp() , execv() , andexecvp() all cause the new process to inherit the environment
of the current process. Availability: UNIX , Windows.

exit (n)
Exit to the system with statusn, without calling cleanup handlers, flushing stdio buffers, etc. Availability:
UNIX , Windows.

Note: the standard way to exit issys.exit(n) . exit() should normally only be used in the child
process after afork() .

The following exit codes are a defined, and can be used withexit() , although they are not required. These are
typically used for system programs written in Python, such as a mail server’s external command delivery program.

EX OK
Exit code that means no error occurred. Availability: UNIX . New in version 2.3.

EX USAGE
Exit code that means the command was used incorrectly, such as when the wrong number of arguments are
given. Availability: UNIX . New in version 2.3.

EX DATAERR
Exit code that means the input data was incorrect. Availability: UNIX . New in version 2.3.

EX NOINPUT
Exit code that means an input file did not exist or was not readable. Availability: UNIX . New in version
2.3.

EX NOUSER
Exit code that means a specified user did not exist. Availability: UNIX . New in version 2.3.

EX NOHOST
Exit code that means a specified host did not exist. Availability: UNIX . New in version 2.3.

EX UNAVAILABLE
Exit code that means that a required service is unavailable. Availability: UNIX . New in version 2.3.

EX SOFTWARE
Exit code that means an internal software error was detected. Availability: UNIX . New in version 2.3.

EX OSERR
Exit code that means an operating system error was detected, such as the inability to fork or create a pipe.
Availability: UNIX . New in version 2.3.

EX OSFILE
Exit code that means some system file did not exist, could not be opened, or had some other kind of error.
Availability: UNIX . New in version 2.3.

EX CANTCREAT
Exit code that means a user specified output file could not be created. Availability: UNIX . New in version
2.3.

EX IOERR
Exit code that means that an error occurred while doing I/O on some file. Availability: UNIX . New in
version 2.3.

EX TEMPFAIL

6.1. os — Miscellaneous operating system interfaces 199

Exit code that means a temporary failure occurred. This indicates something that may not really be an error,
such as a network connection that couldn’t be made during a retryable operation. Availability: UNIX . New
in version 2.3.

EX PROTOCOL
Exit code that means that a protocol exchange was illegal, invalid, or not understood. Availability: UNIX .
New in version 2.3.

EX NOPERM
Exit code that means that there were insufficient permissions to perform the operation (but not intended for
file system problems). Availability: UNIX . New in version 2.3.

EX CONFIG
Exit code that means that some kind of configuration error occurred. Availability: UNIX . New in version
2.3.

EX NOTFOUND
Exit code that means something like “an entry was not found”. Availability: UNIX . New in version 2.3.

fork ()
Fork a child process. Return0 in the child, the child’s process id in the parent. Availability: UNIX .

forkpty ()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair of(pid,
fd) , wherepid is 0 in the child, the new child’s process id in the parent, andfd is the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, use thepty module. Availability: Some
flavors of UNIX .

kill (pid, sig)
Kill the processpid with signalsig. Constants for the specific signals available on the host platform are
defined in thesignal module. Availability: UNIX .

killpg (pgid, sig)
Kill the process grouppgid with the signalsig. Availability: UNIX . New in version 2.3.

nice (increment)
Add incrementto the process’s “niceness”. Return the new niceness. Availability: UNIX .

plock (op)
Lock program segments into memory. The value ofop (defined in<sys/lock.h>) determines which
segments are locked. Availability: UNIX .

popen (...)
popen2 (...)
popen3 (...)
popen4 (...)

Run child processes, returning opened pipes for communications. These functions are described in section
6.1.2.

spawnl (mode, path, ...)
spawnle (mode, path, ..., env)
spawnlp (mode, file, ...)
spawnlpe (mode, file, ..., env)
spawnv (mode, path, args)
spawnve (mode, path, args, env)
spawnvp (mode, file, args)
spawnvpe (mode, file, args, env)

Execute the programpath in a new process. Ifmodeis P NOWAIT, this function returns the process ID of
the new process; ifmodeis P WAIT, returns the process’s exit code if it exits normally, or- signal, where
signal is the signal that killed the process. On Windows, the process ID will actually be the process handle,
so can be used with thewaitpid() function.

The ‘l ’ and ‘v ’ variants of thespawn*() functions differ in how command-line arguments are passed.
The ‘l ’ variants are perhaps the easiest to work with if the number of parameters is fixed when the code is
written; the individual parameters simply become additional parameters to thespawnl*() functions. The

200 Chapter 6. Generic Operating System Services

‘v ’ variants are good when the number of parameters is variable, with the arguments being passed in a list
or tuple as theargsparameter. In either case, the arguments to the child process must start with the name of
the command being run.

The variants which include a second ‘p’ near the end (spawnlp() , spawnlpe() , spawnvp() , and
spawnvpe()) will use the PATH environment variable to locate the programfile. When the environ-
ment is being replaced (using one of thespawn*e() variants, discussed in the next paragraph), the new
environment is used as the source of the PATH variable. The other variants,spawnl() , spawnle() ,
spawnv() , andspawnve() , will not use the PATH variable to locate the executable;pathmust contain
an appropriate absolute or relative path.

For spawnle() , spawnlpe() , spawnve() , andspawnvpe() (note that these all end in ‘e’), the
envparameter must be a mapping which is used to define the environment variables for the new process;
the spawnl() , spawnlp() , spawnv() , and spawnvp() all cause the new process to inherit the
environment of the current process.

As an example, the following calls tospawnlp() andspawnvpe() are equivalent:

import os
os.spawnlp(os.P_WAIT, ’cp’, ’cp’, ’index.html’, ’/dev/null’)

L = [’cp’, ’index.html’, ’/dev/null’]
os.spawnvpe(os.P_WAIT, ’cp’, L, os.environ)

Availability: UNIX , Windows. spawnlp() , spawnlpe() , spawnvp() and spawnvpe() are not
available on Windows. New in version 1.6.

P NOWAIT
P NOWAITO

Possible values for themodeparameter to thespawn*() family of functions. If either of these values is
given, thespawn*() functions will return as soon as the new process has been created, with the process
ID as the return value. Availability: UNIX , Windows. New in version 1.6.

P WAIT
Possible value for themodeparameter to thespawn*() family of functions. If this is given asmode,
the spawn*() functions will not return until the new process has run to completion and will return the
exit code of the process the run is successful, or- signal if a signal kills the process. Availability: UNIX ,
Windows. New in version 1.6.

P DETACH
P OVERLAY

Possible values for themodeparameter to thespawn*() family of functions. These are less portable than
those listed above.P DETACHis similar toP NOWAIT, but the new process is detached from the console
of the calling process. IfP OVERLAYis used, the current process will be replaced; thespawn*() function
will not return. Availability: Windows. New in version 1.6.

startfile (path)
Start a file with its associated application. This acts like double-clicking the file in Windows Explorer, or
giving the file name as an argument to thestart command from the interactive command shell: the file is
opened with whatever application (if any) its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. Thepathparameter is relative to the
current directory. If you want to use an absolute path, make sure the first character is not a slash (‘/ ’); the
underlying Win32ShellExecute() function doesn’t work if it is. Use theos.path.normpath()
function to ensure that the path is properly encoded for Win32. Availability: Windows. New in version
2.0.

system (command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system() , and has the same limitations. Changes toposix.environ , sys.stdin , etc. are not re-
flected in the environment of the executed command.

On UNIX , the return value is the exit status of the process encoded in the format specified forwait() .
Note that POSIX does not specify the meaning of the return value of the Csystem() function, so the

6.1. os — Miscellaneous operating system interfaces 201

return value of the Python function is system-dependent.

On Windows, the return value is that returned by the system shell after runningcommand, given by the
Windows environment variable COMSPEC: oncommand.comsystems (Windows 95, 98 and ME) this is
always0; on cmd.exesystems (Windows NT, 2000 and XP) this is the exit status of the command run; on
systems using a non-native shell, consult your shell documentation.

Availability: UNIX , Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (processor or other) times, in seconds.
The items are: user time, system time, children’s user time, children’s system time, and elapsed real time
since a fixed point in the past, in that order. See the UNIX manual pagetimes(2) or the corresponding
Windows Platform API documentation. Availability: UNIX , Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a
16-bit number, whose low byte is the signal number that killed the process, and whose high byte is the
exit status (if the signal number is zero); the high bit of the low byte is set if a core file was produced.
Availability: UNIX .

waitpid (pid, options)
The details of this function differ on UNIX and Windows.

On UNIX : Wait for completion of a child process given by process idpid, and return a tuple containing its
process id and exit status indication (encoded as forwait()). The semantics of the call are affected by the
value of the integeroptions, which should be0 for normal operation.

If pid is greater than0, waitpid() requests status information for that specific process. Ifpid is 0, the
request is for the status of any child in the process group of the current process. Ifpid is -1 , the request
pertains to any child of the current process. Ifpid is less than-1 , status is requested for any process in the
process group- pid (the absolute value ofpid).

On Windows: Wait for completion of a process given by process handlepid, and return a tuple containing
pid, and its exit status shifted left by 8 bits (shifting makes cross-platform use of the function easier). Apid
less than or equal to0 has no special meaning on Windows, and raises an exception. The value of integer
optionshas no effect.pid can refer to any process whose id is known, not necessarily a child process. The
spawn() functions called withP NOWAITreturn suitable process handles.

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availabil-
ity: UNIX .

WCONTINUED
This option causes child processes to be reported if they have been continued from a job control stop since
their status was last reported. Availability: Some UNIX systems. New in version 2.3.

WUNTRACED
This option causes child processes to be reported if they have been stopped but their current state has not
been reported since they were stopped. Availability: UNIX . New in version 2.3.

The following functions take a process status code as returned bysystem() , wait() , or waitpid() as a
parameter. They may be used to determine the disposition of a process.

WCOREDUMP(status)
ReturnsTrue if a core dump was generated for the process, otherwise it returnsFalse . Availability:
UNIX . New in version 2.3.

WIFCONTINUED(status)
ReturnsTrue if the process has been continued from a job control stop, otherwise it returnsFalse .
Availability: UNIX . New in version 2.3.

WIFSTOPPED(status)
ReturnsTrue if the process has been stopped, otherwise it returnsFalse . Availability: UNIX .

WIFSIGNALED(status)
ReturnsTrue if the process exited due to a signal, otherwise it returnsFalse . Availability: UNIX .

202 Chapter 6. Generic Operating System Services

WIFEXITED(status)
ReturnsTrue if the process exited using theexit(2) system call, otherwise it returnsFalse . Availability:
UNIX .

WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to theexit(2) system call. Otherwise, the return
value is meaningless. Availability: UNIX .

WSTOPSIG(status)
Return the signal which caused the process to stop. Availability: UNIX .

WTERMSIG(status)
Return the signal which caused the process to exit. Availability: UNIX .

6.1.6 Miscellaneous System Information

confstr (name)
Return string-valued system configuration values.namespecifies the configuration value to retrieve; it
may be a string which is the name of a defined system value; these names are specified in a number of
standards (POSIX, UNIX 95, UNIX 98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in theconfstr names dictionary. For configuration
variables not included in that mapping, passing an integer fornameis also accepted. Availability: UNIX .

If the configuration value specified bynameisn’t defined, the empty string is returned.

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inconfstr names, anOSError is raised witherrno.EINVAL
for the error number.

confstr names
Dictionary mapping names accepted byconfstr() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system. Availability:
UNIX .

getloadavg ()
Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes or raises
OSError if the load average was unobtainable.

New in version 2.3.

sysconf (name)
Return integer-valued system configuration values. If the configuration value specified bynameisn’t de-
fined, -1 is returned. The comments regarding thenameparameter forconfstr() apply here as well;
the dictionary that provides information on the known names is given bysysconf names. Availability:
UNIX .

sysconf names
Dictionary mapping names accepted bysysconf() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system. Availability:
UNIX .

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined in theos.path module.

curdir
The constant string used by the operating system to refer to the current directory. For example:’.’ for
POSIX or’:’ for the Macintosh. Also available viaos.path .

pardir
The constant string used by the operating system to refer to the parent directory. For example:’..’ for
POSIX or’::’ for the Macintosh. Also available viaos.path .

sep
The character used by the operating system to separate pathname components, for example, ‘/ ’ for POSIX

6.1. os — Miscellaneous operating system interfaces 203

or ‘: ’ for the Macintosh. Note that knowing this is not sufficient to be able to parse or concatenate path-
names — useos.path.split() andos.path.join() — but it is occasionally useful. Also avail-
able viaos.path .

altsep
An alternative character used by the operating system to separate pathname components, orNone if only
one separator character exists. This is set to ‘/ ’ on Windows systems wheresep is a backslash. Also
available viaos.path .

extsep
The character which separates the base filename from the extension; for example, the ‘. ’ in ‘ os.py’. Also
available viaos.path . New in version 2.2.

pathsep
The character conventionally used by the operating system to separate search patch components (as in
PATH), such as ‘: ’ for POSIX or ‘; ’ for Windows. Also available viaos.path .

defpath
The default search path used byexec*p*() andspawn*p*() if the environment doesn’t have a’PATH’
key. Also available viaos.path .

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single
character, such as’\n’ for POSIX or’\r’ for Mac OS, or multiple characters, for example,’\r\n’ for
Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

Warning: On Windows, many of these functions do not properly support UNC pathnames.splitunc() and
ismount() do handle them correctly.

abspath (path)
Return a normalized absolutized version of the pathnamepath. On most platforms, this is equivalent to
normpath(join(os.getcwd(), path)) . New in version 1.5.2.

basename (path)
Return the base name of pathnamepath. This is the second half of the pair returned bysplit(path) .
Note that the result of this function is different from the UNIX basenameprogram; wherebasenamefor
’/foo/bar/’ returns’bar’ , thebasename() function returns an empty string (’’).

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths inlist. If list is
empty, return the empty string (’’). Note that this may return invalid paths because it works a character at
a time.

dirname (path)
Return the directory name of pathnamepath. This is the first half of the pair returned bysplit(path) .

exists (path)
ReturnTrue if pathrefers to an existing path.

expanduser (path)
Return the argument with an initial component of ‘˜ ’ or ‘ ˜ user’ replaced by thatuser’s home directory. An
initial ‘ ˜ ’ is replaced by the environment variable HOME; an initial ‘˜ user’ is looked up in the password
directory through the built-in modulepwd. If the expansion fails, or if the path does not begin with a tilde,
the path is returned unchanged. On the Macintosh, this always returnspathunchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or ‘ ${ name} ’
are replaced by the value of environment variablename. Malformed variable names and references to non-
existing variables are left unchanged. On the Macintosh, this always returnspathunchanged.

204 Chapter 6. Generic Operating System Services

getatime (path)
Return the time of last access ofpath. The return value is a number giving the number of seconds since the
epoch (see thetime module). Raiseos.error if the file does not exist or is inaccessible. New in version
1.5.2. Changed in version 2.3: Ifos.stat float times() returns True, the result is a floating point
number.

getmtime (path)
Return the time of last modification ofpath. The return value is a number giving the number of seconds
since the epoch (see thetime module). Raiseos.error if the file does not exist or is inaccessible. New
in version 1.5.2. Changed in version 2.3: Ifos.stat float times() returns True, the result is a
floating point number.

getctime (path)
Return the system’s ctime which, on some systems (like UNIX) is the time of the last change, and, on others
(like Windows), is the creation time forpath. The return value is a number giving the number of seconds
since the epoch (see thetime module). Raiseos.error if the file does not exist or is inaccessible. New
in version 2.3.

getsize (path)
Return the size, in bytes, ofpath. Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path)
ReturnTrue if path is an absolute pathname (begins with a slash).

isfile (path)
ReturnTrue if path is an existing regular file. This follows symbolic links, so bothislink() and
isfile() can be true for the same path.

isdir (path)
Return True if path is an existing directory. This follows symbolic links, so bothislink() and
isdir() can be true for the same path.

islink (path)
ReturnTrue if pathrefers to a directory entry that is a symbolic link. AlwaysFalse if symbolic links are
not supported.

ismount (path)
ReturnTrue if pathnamepath is amount point: a point in a file system where a different file system has
been mounted. The function checks whetherpath’s parent, ‘path/..’, is on a different device thanpath, or
whether ‘path/..’ and pathpoint to the same i-node on the same device — this should detect mount points
for all UNIX and POSIX variants.

join (path1[, path2[, ...]])
Joins one or more path components intelligently. If any component is an absolute path, all previous compo-
nents are thrown away, and joining continues. The return value is the concatenation ofpath1, and optionally
path2, etc., with exactly one directory separator (os.sep) inserted between components, unlesspath2 is
empty. Note that on Windows, since there is a current directory for each drive,os.path.join("c:",
"foo") represents a path relative to the current directory on drive ‘C:’ (‘ c:foo’), not ‘c:\\foo’.

normcase (path)
Normalize the case of a pathname. On UNIX , this returns the path unchanged; on case-insensitive filesys-
tems, it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level references, e.g.A//B , A/./B and
A/foo/../B all becomeA/B . It does not normalize the case (usenormcase() for that). On Windows,
it converts forward slashes to backward slashes.

realpath (path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path.
Availability: UNIX . New in version 2.2.

samefile (path1, path2)
ReturnTrue if both pathname arguments refer to the same file or directory (as indicated by device number

6.2. os.path — Common pathname manipulations 205

and i-node number). Raise an exception if aos.stat() call on either pathname fails. Availability:
Macintosh, UNIX .

sameopenfile (fp1, fp2)
ReturnTrue if the file objectsfp1andfp2refer to the same file. The two file objects may represent different
file descriptors. Availability: Macintosh, UNIX .

samestat (stat1, stat2)
ReturnTrue if the stat tuplesstat1 and stat2 refer to the same file. These structures may have been
returned byfstat() , lstat() , or stat() . This function implements the underlying comparison used
by samefile() andsameopenfile() . Availability: Macintosh, UNIX .

split (path)
Split the pathnamepath into a pair,(head, tail) wheretail is the last pathname component andheadis
everything leading up to that. Thetail part will never contain a slash; ifpath ends in a slash,tail will be
empty. If there is no slash inpath, headwill be empty. If path is empty, bothheadand tail are empty.
Trailing slashes are stripped fromheadunless it is the root (one or more slashes only). In nearly all cases,
join(head, tail) equalspath(the only exception being when there were multiple slashes separatinghead
from tail).

splitdrive (path)
Split the pathnamepath into a pair(drive, tail) wheredrive is either a drive specification or the empty
string. On systems which do not use drive specifications,drivewill always be the empty string. In all cases,
drive + tail will be the same aspath. New in version 1.3.

splitext (path)
Split the pathnamepathinto a pair(root, ext) such thatroot + ext == path, andext is empty or begins
with a period and contains at most one period.

walk (path, visit, arg)
Calls the functionvisit with arguments(arg, dirname, names) for each directory in the directory tree
rooted atpath (includingpath itself, if it is a directory). The argumentdirnamespecifies the visited direc-
tory, the argumentnameslists the files in the directory (gotten fromos.listdir(dirname)). Thevisit
function may modifynamesto influence the set of directories visited belowdirname, e.g., to avoid visiting
certain parts of the tree. (The object referred to bynamesmust be modified in place, usingdel or slice
assignment.)

Note: Symbolic links to directories are not treated as subdirectories, and thatwalk() therefore will
not visit them. To visit linked directories you must identify them withos.path.islink(file) and
os.path.isdir(file) , and invokewalk() as necessary.

Note: The neweros .walk() generator supplies similar functionality and can be easier to use.

supports unicode filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system),
and ifos.listdir() returns Unicode strings for a Unicode argument. New in version 2.3.

6.3 dircache — Cached directory listings

Thedircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir (path)
Return a directory listing ofpath, as gotten fromos.listdir() . Note that unlesspathchanges, further
call to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to
return a tuple?)

opendir (path)
Same aslistdir() . Defined for backwards compatibility.

206 Chapter 6. Generic Operating System Services

annotate (head, list)
Assumelist is a list of paths relative tohead, and append, in place, a ‘/ ’ to each path which points to a
directory.

>>> import dircache
>>> a=dircache.listdir(’/’)
>>> a=a[:] # Copy the return value so we can change ’a’
>>> a
[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’lib’, ’lost+
found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]
>>> dircache.annotate(’/’, a)
>>> a
[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/
’, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm
linuz’]

6.4 stat — Interpreting stat() results

Thestat module defines constants and functions for interpreting the results ofos.stat() , os.fstat() and
os.lstat() (if they exist). For complete details about thestat() , fstat() and lstat() calls, consult
the documentation for your system.

Thestat module defines the following functions to test for specific file types:

S ISDIR (mode)
Return non-zero if the mode is from a directory.

S ISCHR(mode)
Return non-zero if the mode is from a character special device file.

S ISBLK (mode)
Return non-zero if the mode is from a block special device file.

S ISREG(mode)
Return non-zero if the mode is from a regular file.

S ISFIFO (mode)
Return non-zero if the mode is from a FIFO (named pipe).

S ISLNK (mode)
Return non-zero if the mode is from a symbolic link.

S ISSOCK(mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S IMODE(mode)
Return the portion of the file’s mode that can be set byos.chmod() —that is, the file’s permission bits,
plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by theS IS*() functions above).

Normally, you would use theos.path.is*() functions for testing the type of a file; the functions here are
useful when you are doing multiple tests of the same file and wish to avoid the overhead of thestat() system
call for each test. These are also useful when checking for information about a file that isn’t handled byos.path ,
like the tests for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned byos.stat() , os.fstat()
or os.lstat() .

6.4. stat — Interpreting stat() results 207

ST MODE
Inode protection mode.

ST INO
Inode number.

ST DEV
Device inode resides on.

ST NLINK
Number of links to the inode.

ST UID
User id of the owner.

ST GID
Group id of the owner.

ST SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

ST ATIME
Time of last access.

ST MTIME
Time of last modification.

ST CTIME
The “ctime” as reported by the operating system. On some systems (like UNIX) is the time of the last meta-
data change, and, on others (like Windows), is the creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in
bytes. For FIFOs and sockets under most flavors of UNIX (including Linux in particular), the “size” is the number
of bytes waiting to be read at the time of the call toos.stat() , os.fstat() , or os.lstat() ; this can
sometimes be useful, especially for polling one of these special files after a non-blocking open. The meaning of
the size field for other character and block devices varies more, depending on the implementation of the underlying
system call.

Example:

208 Chapter 6. Generic Operating System Services

import os, sys
from stat import *

def walktree(top, callback):
’’’recursively descend the directory tree rooted at top,

calling the callback function for each regular file’’’

for f in os.listdir(top):
pathname = os.path.join(top, f)
mode = os.stat(pathname)[ST_MODE]
if S_ISDIR(mode):

It’s a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It’s a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print ’Skipping %s’ % pathname

def visitfile(file):
print ’visiting’, file

if __name__ == ’__main__’:
walktree(sys.argv[1], visitfile)

6.5 statcache — An optimization of os.stat()

Deprecated since release 2.2.Use os .stat() directly instead of using the cache; the cache introduces a
very high level of fragility in applications using it and complicates application code with the addition of cache
management support.

Thestatcache module provides a simple optimization toos.stat() : remembering the values of previous
invocations.

Thestatcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical foros.stat() , except for remembering the result for
future invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previousstat() calls.

forget (path)
Forget the result ofstat(path) , if any.

forget prefix (prefix)
Forget all results ofstat(path) for pathstarting withprefix.

forget dir (prefix)
Forget all results ofstat(path) for patha file in the directoryprefix, includingstat(prefix) .

forget except prefix (prefix)
Similar toforget prefix() , but for allpathvaluesnotstarting withprefix.

Example:

6.5. statcache — An optimization of os.stat() 209

>>> import os, statcache
>>> statcache.stat(’.’)
(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.’)
(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

Thestatvfs module defines constants so interpreting the result ifos.statvfs() , which returns a tuple, can
be made without remembering “magic numbers.” Each of the constants defined in this module is theindexof the
entry in the tuple returned byos.statvfs() that contains the specified information.

F BSIZE
Preferred file system block size.

F FRSIZE
Fundamental file system block size.

F BLOCKS
Total number of blocks in the filesystem.

F BFREE
Total number of free blocks.

F BAVAIL
Free blocks available to non-super user.

F FILES
Total number of file nodes.

F FFREE
Total number of free file nodes.

F FAVAIL
Free nodes available to non-super user.

F FLAG
Flags. System dependent: seestatvfs() man page.

F NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

The filecmp module defines functions to compare files and directories, with various optional time/correctness
trade-offs.

Thefilecmp module defines the following functions:

cmp(f1, f2[, shallow[, use statcache]])
Compare the files namedf1 andf2, returningTrue if they seem equal,False otherwise.

Unlessshallow is given and is false, files with identicalos.stat() signatures are taken to be equal.
Changed in version 2.3:use statcacheis obsolete and ignored..

Files that were compared using this function will not be compared again unless theiros.stat() signature
changes.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles (dir1, dir2, common[, shallow[, use statcache]])
Returns three lists of file names:match, mismatch, errors. matchcontains the list of files match in both

210 Chapter 6. Generic Operating System Services

directories,mismatchincludes the names of those that don’t, anderrros lists the names of files which could
not be compared. Files may be listed inerrors because the user may lack permission to read them or many
other reasons, but always that the comparison could not be done for some reason.

The commonparameter is a list of file names found in both directories. Theshallowanduse statcache
parameters have the same meanings and default values as forfilecmp.cmp() .

Example:

>>> import filecmp
>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)
True
>>> filecmp.cmp(’libundoc.tex’, ’lib.tex’)
False

6.7.1 The dircmp class

dircmp instances are built using this constructor:

classdircmp (a, b[, ignore[, hide]])
Construct a new directory comparison object, to compare the directoriesa andb. ignore is a list of names
to ignore, and defaults to[’RCS’, ’CVS’, ’tags’] . hide is a list of names to hide, and defaults to
[os.curdir, os.pardir] .

Thedircmp class provides the following methods:

report ()
Print (tosys.stdout) a comparison betweena andb.

report partial closure ()
Print a comparison betweena andb and common immediate subdirctories.

report full closure ()
Print a comparison betweena andb and common subdirctories (recursively).

Thedircmp offers a number of interesting attributes that may be used to get various bits of information about
the directory trees being compared.

Note that via getattr () hooks, all attributes are computed lazilly, so there is no speed penalty if only
those attributes which are lightweight to compute are used.

left list
Files and subdirectories ina, filtered byhideandignore.

right list
Files and subdirectories inb, filtered byhideandignore.

common
Files and subdirectories in botha andb.

left only
Files and subdirectories only ina.

right only
Files and subdirectories only inb.

common dirs
Subdirectories in botha andb.

common files
Files in botha andb

common funny
Names in botha andb, such that the type differs between the directories, or names for whichos.stat()
reports an error.

6.7. filecmp — File and Directory Comparisons 211

same files
Files which are identical in botha andb.

diff files
Files which are in botha andb, whose contents differ.

funny files
Files which are in botha andb, but could not be compared.

subdirs
A dictionary mapping names incommon dirs to dircmp objects.

6.8 popen2 — Subprocesses with accessible I/O streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain their return
codes under UNIX and Windows.

Note that starting with Python 2.0, this functionality is available using functions from theos module which have
the same names as the factory functions here, but the order of the return values is more intuitive in theos module
variants.

The primary interface offered by this module is a trio of factory functions. For each of these, ifbufsizeis specified,
it specifies the buffer size for the I/O pipes.mode, if provided, should be the string’b’ or ’t’ ; on Windows this
is needed to determine whether the file objects should be opened in binary or text mode. The default value for
modeis ’t’ .

The only way to retrieve the return codes for the child processes is by using thepoll() or wait() methods
on thePopen3 andPopen4 classes; these are only available on UNIX . This information is not available when
using thepopen2() , popen3() , andpopen4() functions, or the equivalent functions in theos module.

popen2 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout, child stdin) .

popen3 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout, child stdin, child stderr) .

popen4 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout and stderr, child stdin) . New
in version 2.0.

On UNIX , a class defining the objects returned by the factory functions is also available. These are not used for
the Windows implementation, and are not available on that platform.

classPopen3 (cmd[, capturestderr[, bufsize]])
This class represents a child process. Normally,Popen3 instances are created using thepopen2() and
popen3() factory functions described above.

If not using one of the helper functions to createPopen3 objects, the parametercmdis the shell command
to execute in a sub-process. Thecapturestderrflag, if true, specifies that the object should capture standard
error output of the child process. The default is false. If thebufsizeparameter is specified, it specifies the
size of the I/O buffers to/from the child process.

classPopen4 (cmd[, bufsize])
Similar toPopen3 , but always captures standard error into the same file object as standard output. These
are typically created usingpopen4() . New in version 2.0.

6.8.1 Popen3 and Popen4 Objects

Instances of thePopen3 andPopen4 classes have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.

212 Chapter 6. Generic Operating System Services

wait ()
Waits for and returns the status code of the child process. The status code encodes both the return code of
the process and information about whether it exited using theexit() system call or died due to a signal.
Functions to help interpret the status code are defined in theos module; see section 6.1.5 for theW* ()
family of functions.

The following attributes are also available:

fromchild
A file object that provides output from the child process. ForPopen4 instances, this will provide both the
standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goes iscapturestderrwas true for the constructor, orNone.
This will always beNone for Popen4 instances.

pid
The process ID of the child process.

6.8.2 Flow Control Issues

Any time you are working with any form of inter-process communication, control flow needs to be carefully
thought out. This remains the case with the file objects provided by this module (or theos module equivalents).

When reading output from a child process that writes a lot of data to standard error while the parent is reading
from the child’s standard output, a deadlock can occur. A similar situation can occur with other combinations of
reads and writes. The essential factors are that more thanPC PIPE BUFbytes are being written by one process
in a blocking fashion, while the other process is reading from the other process, also in a blocking fashion.

There are several ways to deal with this situation.

The simplest application change, in many cases, will be to follow this model in the parent process:

import popen2

r, w, e = popen2.popen3(’python slave.py’)
e.readlines()
r.readlines()
r.close()
e.close()
w.close()

with code like this in the child:

import os
import sys

note that each of these print statements
writes a single long string

print >>sys.stderr, 400 * ’this is a test\n’
os.close(sys.stderr.fileno())
print >>sys.stdout, 400 * ’this is another test\n’

In particular, note thatsys.stderr must be closed after writing all data, orreadlines() won’t return. Also
note thatos.close() must be used, assys.stderr.close() won’t closestderr (otherwise assigning
to sys.stderr will silently close it, so no further errors can be printed).

6.8. popen2 — Subprocesses with accessible I/O streams 213

Applications which need to support a more general approach should integrate I/O over pipes with theirselect()
loops, or use separate threads to read each of the individual files provided by whicheverpopen*() function or
Popen* class was used.

6.9 datetime — Basic date and time types

New in version 2.3.

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for
output formatting and manipulation.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object
has any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment.
Whether a naivedatetime object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it’s up to the program whether a particular number represents
metres, miles, or mass. Naivedatetime objects are easy to understand and to work with, at the cost of ignoring
some aspects of reality.

For applications requiring more,datetime andtime objects have an optional time zone information member,
tzinfo , that can contain an instance of a subclass of the abstracttzinfo class. Thesetzinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect.
Note that no concretetzinfo classes are supplied by thedatetime module. Supporting timezones at whatever
level of detail is required is up to the application. The rules for time adjustment across the world are more political
than rational, and there is no standard suitable for every application.

Thedatetime module exports the following constants:

MINYEAR
The smallest year number allowed in adate or datetime object.MINYEARis 1.

MAXYEAR
The largest year number allowed in adate or datetime object.MAXYEARis 9999 .

See Also:

Modulecalendar (section 5.18):
General calendar related functions.

Moduletime (section 6.10):
Time access and conversions.

6.9.1 Available Types

classdate
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes:year , month , andday .

classtime
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of ”leap seconds” here). Attributes:hour , minute , second , microsecond , and
tzinfo .

classdatetime
A combination of a date and a time. Attributes:year , month , day , hour , minute , second ,
microsecond , andtzinfo .

classtimedelta
A duration expressing the difference between twodate , time , or datetime instances to microsecond
resolution.

classtzinfo
An abstract base class for time zone information objects. These are used by thedatetime and time

214 Chapter 6. Generic Operating System Services

classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

Objects of these types are immutable.

Objects of thedate type are always naive.

An objectd of type time or datetime may be naive or aware.d is aware ifd.tzinfo is not None and
d.tzinfo.utcoffset(d) does not returnNone. If d.tzinfo is None, or if d.tzinfo is notNone but
d.tzinfo.utcoffset(d) returnsNone, d is naive.

The distinction between naive and aware doesn’t apply totimedelta objects.

Subclass relationships:

object
timedelta
tzinfo
time
date

datetime

6.9.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

classtimedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)
All arguments are optional. Arguments may be ints, longs, or floats, and may be positive or negative.

Only days, secondsandmicrosecondsare stored internally. Arguments are converted to those units:

•A millisecond is converted to 1000 microseconds.

•A minute is converted to 60 seconds.

•An hour is converted to 3600 seconds.

•A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

•0 <= microseconds< 1000000

•0 <= seconds< 3600*24 (the number of seconds in one day)

•-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float,
the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range,OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

min
The most negativetimedelta object,timedelta(-999999999) .

6.9. datetime — Basic date and time types 215

max
The most positive timedelta object, timedelta(days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999) .

resolution
The smallest possible difference between non-equaltimedelta objects,
timedelta(microseconds=1) .

Note that, because of normalization,timedelta.max >-timedelta.min . -timedelta.max is not rep-
resentable as atimedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusive

seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive

Supported operations:

Operation Result
t1 = t2 + t3 Sum oft2 andt3. Afterwardst1-t2 == t3 andt1-t3 == t2 are true. (1)
t1 = t2 - t3 Difference oft2 andt3. Afterwardst1 == t2 - t3 andt2 == t1 + t3 are true. (1)

t1 = t2 * i or t1 = i * t2 Delta multiplied by an integer or long. Afterwardst1 // i == t2 is true, providedi != 0 .
In general,t1 * i == t1 * (i-1) + t1 is true. (1)

t1 = t2 // i The floor is computed and the remainder (if any) is thrown away. (3)
+t1 Returns atimedelta object with the same value. (2)
- t1 equivalent totimedelta (-t1.days, -t1.seconds, -t1.microseconds), and tot1* -1. (1)(4)

abs(t) equivalent to +t whent.days >= 0 , and to -t whent.days < 0 . (2)

Notes:

(1) This is exact, but may overflow.

(2) This is exact, and cannot overflow.

(3) Division by 0 raisesZeroDivisionError .

(4) -timedelta.maxis not representable as atimedelta object.

In addition to the operations listed abovetimedelta objects support certain additions and subtractions with
date anddatetime objects (see below).

Comparisons oftimedelta objects are supported with thetimedelta object representing the smaller dura-
tion considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when atimedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is== or != . The latter cases returnFalse or True , respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
a timedelta object is considered to be true if and only if it isn’t equal totimedelta(0) .

6.9.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the ”proleptic Gregorian” calendar in Dershowitz and
Reingold’s bookCalendrical Calculations, where it’s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

216 Chapter 6. Generic Operating System Services

classdate (year, month, day)
All arguments are required. Arguments may be ints or longs, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

If an argument outside those ranges is given,ValueError is raised.

Other constructors, all class methods:

today ()
Return the current local date. This is equivalent todate.fromtimestamp(time.time()) .

fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned bytime.time() .
This may raiseValueError , if the timestamp is out of the range of values supported by the platform
C localtime() function. It’s common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored byfromtimestamp() .

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordi-
nal 1. ValueError is raised unless1 <= ordinal <= date.max.toordinal() . For any dated,
date.fromordinal(d.toordinal()) == d.

Class attributes:

min
The earliest representable date,date(MINYEAR, 1, 1) .

max
The latest representable date,date(MAXYEAR, 12, 31) .

resolution
The smallest possible difference between non-equal date objects,timedelta(days=1) .

Instance attributes (read-only):

year
BetweenMINYEARandMAXYEARinclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = date1 + timedelta date2is timedelta.days days removed fromdate1. (1)
date2 = date1 - timedelta Computesdate2such thatdate2 + timedelta == date1. (2)
timedelta = date1 - date2 (3)

date1<date2 date1is considered less thandate2whendate1precedesdate2in time. (4)

Notes:

(1) date2is moved forward in time iftimedelta.days > 0 , or backward iftimedelta.days < 0 . Afterward
date2 - date1 == timedelta.days . timedelta.seconds andtimedelta.microseconds are ignored.
OverflowError is raised ifdate2.year would be smaller thanMINYEARor larger thanMAXYEAR.

(2) This isn’t quite equivalent to date1 + (-timedelta), because -timedelta in isolation can overflow in cases where
date1 - timedelta does not.timedelta.seconds andtimedelta.microseconds are ignored.

6.9. datetime — Basic date and time types 217

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== date1 after.

(4) In other words,date1 < date2 if and only if date1.toordinal() < date2.toordinal() . In
order to stop comparison from falling back to the default scheme of comparing object addresses, date
comparison normally raisesTypeError if the other comparand isn’t also adate object. However,
NotImplemented is returned instead if the other comparand has atimetuple attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when adate
object is compared to an object of a different type,TypeError is raised unless the comparison is== or
!= . The latter cases returnFalse or True , respectively.

Dates can be used as dictionary keys. In Boolean contexts, alldate objects are considered to be true.

Instance methods:

replace (year, month, day)
Return a date with the same value, except for those members given new values by whichever keyword
arguments are specified. For example, ifd == date(2002, 12, 31) , thend.replace(day=26)
== date(2000, 12, 26) .

timetuple ()
Return atime.struct time such as returned bytime.localtime() . The hours, minutes and sec-
onds are 0, and the DST flag is -1.d.timetuple() is equivalent totime.struct time((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() - date(d.year, 1,
1).toordinal() + 1, -1))

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For anydate
objectd, date.fromordinal(d.toordinal()) == d.

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example,date(2002,
12, 4).weekday() == 2 , a Wednesday. See alsoisoweekday() .

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example,date(2002,
12, 4).isoweekday() == 3 , a Wednesday. See alsoweekday() , isocalendar() .

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See
http://www.phys.uu.nl/ vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so thatdate(2003, 12, 29).isocalendar() == (2004, 1,
1) anddate(2004, 1, 4).isocalendar() == (2004, 1, 7) .

isoformat ()
Return a string representing the date in ISO 8601 format, ’YYYY-MM-DD’. For example,date(2002,
12, 4).isoformat() == ’2002-12-04’ .

str ()
For a dated, str(d) is equivalent tod.isoformat() .

ctime ()
Return a string representing the date, for example date(2002, 12, 4).ctime() == ’Wed Dec 4 00:00:00 2002’.
d.ctime() is equivalent totime.ctime(time.mktime(d.timetuple())) on platforms where
the native Cctime() function (whichtime.ctime() invokes, but whichdate.ctime() does not
invoke) conforms to the C standard.

strftime (format)

218 Chapter 6. Generic Operating System Services

Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. See the section onstrftime() behavior.

6.9.4 datetime Objects

A datetime object is a single object containing all the information from adate object and atime object.
Like a date object,datetime assumes the current Gregorian calendar extended in both directions; like a time
object,datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

classdatetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
The year, month and day arguments are required.tzinfomay beNone, or an instance of atzinfo subclass.
The remaining arguments may be ints or longs, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond< 1000000

If an argument outside those ranges is given,ValueError is raised.

Other constructors, all class methods:

today ()
Return the current local datetime, withtzinfo None . This is equivalent to
datetime.fromtimestamp(time.time()) . See alsonow() , fromtimestamp() .

now(tz=None) ()
Return the current local date and time. If optional argumenttz is None or not specified, this is
like today() , but, if possible, supplies more precision than can be gotten from going through
a time.time() timestamp (for example, this may be possible on platforms supplying the C
gettimeofday() function).

Else tz must be an instance of a classtzinfo subclass, and the current date
and time are converted totz’s time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcnow().replace(tzinfo= tz)) . See alsotoday() , utcnow() .

utcnow ()
Return the current UTC date and time, withtzinfo None . This is likenow() , but returns the current
UTC date and time, as a naivedatetime object. See alsonow() .

fromtimestamp (timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time() . If optional argumenttz is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returneddatetime object is naive.

Else tz must be an instance of a classtzinfo subclass, and the times-
tamp is converted to tz’s time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo= tz)) .

fromtimestamp() may raiseValueError , if the timestamp is out of the range of values supported by
the platform Clocaltime() or gmtime() functions. It’s common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a times-
tamp, leap seconds are ignored byfromtimestamp() , and then it’s possible to have two timestamps
differing by a second that yield identicaldatetime objects. See alsoutcfromtimestamp() .

6.9. datetime — Basic date and time types 219

utcfromtimestamp (timestamp)
Return the UTCdatetime corresponding to the POSIX timestamp, withtzinfo None . This may raise
ValueError , if the timestamp is out of the range of values supported by the platform Cgmtime() func-
tion. It’s common for this to be restricted to years in 1970 through 2038. See alsofromtimestamp() .

fromordinal (ordinal)
Return thedatetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1.ValueError is raised unless1 <= ordinal <= datetime.max.toordinal() . The
hour, minute, second and microsecond of the result are all 0, andtzinfo is None.

combine (date, time)
Return a newdatetime object whose date members are equal to the givendate object’s, and whose
time and tzinfo members are equal to the giventime object’s. For anydatetime object d, d
== datetime.combine(d.date(), d.timetz()) . If date is adatetime object, its time and
tzinfo members are ignored.

Class attributes:

min
The earliest representabledatetime , datetime(MINYEAR, 1, 1, tzinfo=None) .

max
The latest representabledatetime , datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None) .

resolution
The smallest possible difference between non-equaldatetime objects,
timedelta(microseconds=1) .

Instance attributes (read-only):

year
BetweenMINYEARandMAXYEARinclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24) .

minute
In range(60) .

second
In range(60) .

microsecond
In range(1000000) .

tzinfo
The object passed as thetzinfoargument to thedatetime constructor, orNone if none was passed.

Supported operations:

Operation Result
datetime2 = datetime1 + timedelta (1)
datetime2 = datetime1 - timedelta (2)
timedelta = datetime1 - datetime2 (3)

datetime1 < datetime2 Comparesdatetime to datetime . (4)

(1) datetime2 is a duration of timedelta removed from datetime1, moving forward in time iftimedelta.days ¿ 0,
or backward iftimedelta.days ¡ 0. The result has the sametzinfo member as the input datetime, and
datetime2 - datetime1 == timedelta after.OverflowError is raised if datetime2.year would be smaller

220 Chapter 6. Generic Operating System Services

thanMINYEARor larger thanMAXYEAR. Note that no time zone adjustments are done even if the input is
an aware object.

(2) Computes the datetime2 such that datetime2 + timedelta == datetime1. As for addition, the result has the
sametzinfo member as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn’t quite equivalent to datetime1 + (-timedelta), because -timedelta in isolation can overflow
in cases where datetime1 - timedelta does not.

(3) Subtraction of adatetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive,TypeError is raised.

If both are naive, or both are aware and have the sametzinfo member, thetzinfo members are ignored,
and the result is atimedelta objectt such thatdatetime2 + t == datetime1. No time zone adjustments
are done in this case.

If both are aware and have differenttzinfo members,a-b acts as ifa and b were first converted
to naive UTC datetimes first. The result is(a.replace(tzinfo=None) - a.utcoffset())
- (b.replace(tzinfo=None) - b.utcoffset()) except that the implementation never over-
flows.

(4) datetime1is considered less thandatetime2whendatetime1precedesdatetime2in time.

If one comparand is naive and the other is aware,TypeError is raised. If both comparands are aware, and
have the sametzinfo member, the commontzinfo member is ignored and the base datetimes are com-
pared. If both comparands are aware and have differenttzinfo members, the comparands are first adjusted
by subtracting their UTC offsets (obtained fromself.utcoffset()). Note: In order to stop compari-
son from falling back to the default scheme of comparing object addresses, datetime comparison normally
raisesTypeError if the other comparand isn’t also adatetime object. However,NotImplemented
is returned instead if the other comparand has atimetuple attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, when adatetime object is compared
to an object of a different type,TypeError is raised unless the comparison is== or != . The latter cases
returnFalse or True , respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, alldatetime objects are considered to
be true.

Instance methods:

date ()
Returndate object with same year, month and day.

time ()
Returntime object with same hour, minute, second and microsecond.tzinfo is None. See also method
timetz() .

timetz ()
Returntime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time() .

replace (year=, month=, day=, hour=, minute=, second=, microsecond=, tzinfo=)
Return a datetime with the same members, except for those members given new values by whichever key-
word arguments are specified. Note thattzinfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.

astimezone (tz)
Return adatetime object with newtzinfo membertz, adjusting the date and time members so the
result is the same UTC time asself, but in tz’s local time.

tzmust be an instance of atzinfo subclass, and itsutcoffset() anddst() methods must not return
None. self must be aware (self.tzinfo must not beNone, andself.utcoffset() must not return
None).

If self.tzinfo is tz, self.astimezone(tz) is equal toself: no adjustment of date or time members is
performed. Else the result is local time in time zonetz, representing the same UTC time asself: afterastz =
dt.astimezone(tz) , astz - astz.utcoffset() will usually have the same date and time members
asdt - dt.utcoffset() . The discussion of classtzinfo explains the cases at Daylight Saving Time

6.9. datetime — Basic date and time types 221

transition boundaries where this cannot be achieved (an issue only iftz models both standard and daylight
time).

If you merely want to attach a time zone objecttz to a datetimedt without adjustment of date and time
members, usedt.replace(tzinfo= tz) . If you merely want to remove the time zone object from an
aware datetimedt without conversion of date and time members, usedt.replace(tzinfo=None) .

Note that the defaulttzinfo.fromutc() method can be overridden in atzinfo subclass to affect the
result returned byastimezone() . Ignoring error cases,astimezone() acts like:

def astimezone(self, tz):
if self.tzinfo is tz:

return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz’s local time.
return tz.fromutc(utc)

utcoffset ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.utcoffset(self) , and raises an excep-
tion if the latter doesn’t returnNone, or a timedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.dst(self) , and raises an exception if
the latter doesn’t returnNone, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.tzname(self) , raises an exception if the
latter doesn’t returnNone or a string object,

timetuple ()
Return atime.struct time such as returned bytime.localtime() . d.timetuple() is
equivalent to time.struct time((d.year, d.month, d.day, d.hour, d.minute,
d.second, d.weekday(), d.toordinal() - date(d.year, 1, 1).toordinal() +
1, dst)) The tm isdst flag of the result is set according to thedst() method: iftzinfo is None
or dst() returnsNone, tm isdst is set to-1 ; else ifdst() returns a non-zero value,tm isdst is
set to1; elsetm isdst is set to0.

utctimetuple ()
If datetime instanced is naive, this is the same asd.timetuple() except thattm isdst is forced
to 0 regardless of whatd.dst() returns. DST is never in effect for a UTC time.

If d is aware,d is normalized to UTC time, by subtractingd.utcoffset() , and atime.struct time
for the normalized time is returned.tm isdst is forced to 0. Note that the result’stm year member
may beMINYEAR-1 orMAXYEAR+1, if d.year wasMINYEARor MAXYEARand UTC adjustment spills over
a year boundary.

toordinal ()
Return the proleptic Gregorian ordinal of the date. The same asself.date().toordinal() .

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date().weekday() . See alsoisoweekday() .

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date().isoweekday() . See alsoweekday() , isocalendar() .

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date().isocalendar() .

222 Chapter 6. Generic Operating System Services

isoformat (sep=’T’)
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, ifmicrosecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not returnNone, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, ifmicrosecond is 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argumentsep(default ’T’) is a one-character separator, placed between the date and time
portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(’ ’)
’2002-12-25 00:00:00-06:39’

str ()
For adatetime instanced, str(d) is equivalent tod.isoformat(’ ’) .

ctime ()
Return a string representing the date and time, for exampledatetime(2002, 12, 4,
20, 30, 40).ctime() == ’Wed Dec 4 20:30:40 2002’ . d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native Cctime() func-
tion (whichtime.ctime() invokes, but whichdatetime.ctime() does not invoke) conforms to the
C standard.

strftime (format)
Return a string representing the date and time, controlled by an explicit format string. See the section on
strftime() behavior.

6.9.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

classtime (hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
All arguments are optional.tzinfo may beNone, or an instance of atzinfo subclass. The remaining
arguments may be ints or longs, in the following ranges:

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond< 1000000 .

If an argument outside those ranges is given,ValueError is raised.

Class attributes:

min
The earliest representabletime , time(0, 0, 0, 0) .

max
The latest representabletime , time(23, 59, 59, 999999) .

resolution
The smallest possible difference between non-equaltime objects,timedelta(microseconds=1) ,
although note that arithmetic ontime objects is not supported.

Instance attributes (read-only):

6.9. datetime — Basic date and time types 223

hour
In range(24) .

minute
In range(60) .

second
In range(60) .

microsecond
In range(1000000) .

tzinfo
The object passed as the tzinfo argument to thetime constructor, orNone if none was passed.

Supported operations:

• comparison oftime to time , wherea is considered less thanb whena precedesb in time. If one com-
parand is naive and the other is aware,TypeError is raised. If both comparands are aware, and have the
sametzinfo member, the commontzinfo member is ignored and the base times are compared. If both
comparands are aware and have differenttzinfo members, the comparands are first adjusted by subtract-
ing their UTC offsets (obtained fromself.utcoffset()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, when atime object is compared to an object
of a different type,TypeError is raised unless the comparison is== or != . The latter cases returnFalse
or True , respectively.

• hash, use as dict key

• efficient pickling

• in Boolean contexts, atime object is considered to be true if and only if, after converting it to minutes and
subtractingutcoffset() (or 0 if that’s None), the result is non-zero.

Instance methods:

replace (()
hour=, minute=, second=, microsecond=, tzinfo=) Return atime with the same value, except for those
members given new values by whichever keyword arguments are specified. Note thattzinfo=None can
be specified to create a naivetime from an awaretime , without conversion of the time members.

isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not returnNone, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

str ()
For a timet, str(t) is equivalent tot.isoformat() .

strftime (format)
Return a string representing the time, controlled by an explicit format string. See the section on
strftime() behavior.

utcoffset ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.utcoffset(None) , and raises an ex-
ception if the latter doesn’t returnNone or a timedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.dst(None) , and raises an exception if
the latter doesn’t returnNone, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.tzname(None) , or raises an exception if
the latter doesn’t returnNone or a string object.

224 Chapter 6. Generic Operating System Services

6.9.6 tzinfo Objects

tzinfo is an abstract base clase, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the standardtzinfo methods needed by the
datetime methods you use. Thedatetime module does not supply any concrete subclasses oftzinfo .

An instance of (a concrete subclass of)tzinfo can be passed to the constructors fordatetime and time
objects. The latter objects view their members as being in local time, and thetzinfo object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: Atzinfo subclass must have an init method that can be called with
no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be
relaxed in the future.

A concrete subclass oftzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of awaredatetime objects. If in doubt, simply implement all of them.

utcoffset (self, dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for example, if atzinfo object
represents both time zone and DST adjustments,utcoffset() should return their sum. If the UTC offset
isn’t known, returnNone. Else the value returned must be atimedelta object specifying a whole number
of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementations ofutcoffset() will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not returnNone, dst() should not returnNone either.

The default implementation ofutcoffset() raisesNotImplementedError .

dst (self, dt)
Return the daylight saving time (DST) adjustment, in minutes east of UTC, orNone if DST information
isn’t known. Returntimedelta(0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (seeutcoffset() for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned byutcoffset() , so there’s no need to consultdst() unless you’re
interested in obtaining DST info separately. For example,datetime.timetuple() calls itstzinfo
member’sdst() method to determine how thetm isdst flag should be set, andtzinfo.fromutc()
callsdst() to account for DST changes when crossing time zones.

An instancetz of a tzinfo subclass that models both standard and daylight times must be consistent in
this sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for everydatetime dt with dt.tzinfo== tz For sanetzinfo subclasses,
this expression yields the time zone’s ”standard offset”, which should not depend on the date or the time,
but only on geographic location. The implementation ofdatetime.astimezone() relies on this, but
cannot detect violations; it’s the programmer’s responsibility to ensure it. If atzinfo subclass cannot
guarantee this, it may be able to override the default implementation oftzinfo.fromutc() to work
correctly withastimezone() regardless.

Most implementations ofdst() will probably look like one of these two:

6.9. datetime — Basic date and time types 225

return timedelta(0) # a fixed-offset class: doesn’t account for DST

or

Code to set dston and dstoff to the time zone’s DST transition
times based on the input dt.year, and expressed in standard local
time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

The default implementation ofdst() raisesNotImplementedError .

tzname (self, dt)
Return the time zone name corresponding to thedatetime objectdt, as a string. Nothing about string
names is defined by thedatetime module, and there’s no requirement that it mean anything in particular.
For example, ”GMT”, ”UTC”, ”-500”, ”-5:00”, ”EDT”, ”US/Eastern”, ”America/New York” are all valid
replies. ReturnNone if a string name isn’t known. Note that this is a method rather than a fixed string
primarily because sometzinfo subclasses will wish to return different names depending on the specific
value ofdt passed, especially if thetzinfo class is accounting for daylight time.

The default implementation oftzname() raisesNotImplementedError .

These methods are called by adatetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and atime object passesNone as the argument. Atzinfo
subclass’s methods should therefore be prepared to accept adt argument ofNone, or of classdatetime .

WhenNone is passed, it’s up to the class designer to decide the best response. For example, returningNone is
appropriate if the class wishes to say that time objects don’t participate in thetzinfo protocols. It may be more
useful forutcoffset(None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When adatetime object is passed in response to adatetime method,dt.tzinfo is the same object as
self. tzinfo methods can rely on this, unless user code callstzinfo methods directly. The intent is that the
tzinfo methods interpretdt as being in local time, and not need worry about objects in other timezones.

There is one moretzinfo method that a subclass may wish to override:

fromutc (self, dt)
This is called from the defaultdatetime.astimezone() implementation. When called from that,
dt.tzinfo is self, anddt’s date and time members are to be viewed as expressing a UTC time. The
purpose offromutc() is to adjust the date and time members, returning an equivalent datetime inself’s
local time.

Most tzinfo subclasses should be able to inherit the defaultfromutc() implementation without prob-
lems. It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the defaultfromutc() implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political
reasons. The default implementations ofastimezone() and fromutc() may not produce the result
you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the defaultfromutc() implementation acts like:

226 Chapter 6. Generic Operating System Services

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:

dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError if dtdst is None

if dtdst:
return dt + dtdst

else:
return dt

Exampletzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.

class UTC(tzinfo):
"""UTC"""

def utcoffset(self, dt):
return ZERO

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
"""Fixed offset in minutes east from UTC."""

def __init__(self, offset, name):
self.__offset = timedelta(minutes = offset)
self.__name = name

def utcoffset(self, dt):
return self.__offset

def tzname(self, dt):
return self.__name

def dst(self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

6.9. datetime — Basic date and time types 227

STDOFFSET = timedelta(seconds = -_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone(tzinfo):

def utcoffset(self, dt):
if self._isdst(dt):

return DSTOFFSET
else:

return STDOFFSET

def dst(self, dt):
if self._isdst(dt):

return DSTDIFF
else:

return ZERO

def tzname(self, dt):
return _time.tzname[self._isdst(dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,

dt.hour, dt.minute, dt.second,
dt.weekday(), 0, -1)

stamp = _time.mktime(tt)
tt = _time.localtime(stamp)
return tt.tm_isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday()
if days_to_go:

dt += timedelta(days_to_go)
return dt

In the US, DST starts at 2am (standard time) on the first Sunday in April.
DSTSTART = datetime(1, 4, 1, 2)
and ends at 2am (DST time; 1am standard time) on the last Sunday of Oct.
which is the first Sunday on or after Oct 25.
DSTEND = datetime(1, 10, 25, 1)

class USTimeZone(tzinfo):

def __init__(self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta(hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def __repr__(self):
return self.reprname

def tzname(self, dt):

228 Chapter 6. Generic Operating System Services

if self.dst(dt):
return self.dstname

else:
return self.stdname

def utcoffset(self, dt):
return self.stdoffset + self.dst(dt)

def dst(self, dt):
if dt is None or dt.tzinfo is None:

An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find first Sunday in April & the last in October.
start = first_sunday_on_or_after(DSTSTART.replace(year=dt.year))
end = first_sunday_on_or_after(DSTEND.replace(year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:

return HOUR
else:

return ZERO

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in atzinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the first Sunday in April, and ends the minute after 1:59 (EDT) on the last
Sunday in October:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM

end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the ”start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, soastimezone(Eastern) won’t deliver a result withhour==2 on
the day DST begins. In order forastimezone() to make this guarantee, therzinfo.dst() method must
consider times in the ”missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the ”end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous.astimezone() mimics the local clock’s behavior by mapping
two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In order forastimezone() to make this guarantee,
the tzinfo.dst() method must consider times in the ”repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybridtzinfo subclasses; there are no ambi-

6.9. datetime — Basic date and time types 229

guities when using UTC, or any other fixed-offsettzinfo subclass (such as a class representing only EST (fixed
offset -5 hours), or only EDT (fixed offset -4 hours)).

6.9.7 strftime() Behavior

date , datetime , andtime objects all support astrftime(format) method, to create a string representing
the time under the control of an explicit format string. Broadly speaking,d.strftime(fmt) acts like thetime
module’s time.strftime(fmt, d.timetuple()) although not all objects support atimetuple()
method.

For time objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they’re used anyway,1900 is substituted for the year, and0 for the month and day.

Fordate objects, the format codes for hours, minutes, and seconds should not be used, asdate objects have no
such values. If they’re used anyway,0 is substituted for them.

For a naive object, the%zand%Zformat codes are replaced by empty strings.

For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, ifutcoffset() returnstimedelta(hours=-3, minutes=-30) ,
%zis replaced with the string’-0330’ .

%Z If tzname() returnsNone, %Zis replaced by an empty string. Otherwise%Zis replaced by the returned
value, which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common. The documentation for Python’stime module
lists the format codes that the C standard (1989 version) requires, and those work on all platforms with a standard
C implementation. Note that the 1999 version of the C standard added additional format codes.

The exact range of years for whichstrftime() works also varies across platforms. Regardless of platform,
years before 1900 cannot be used.

6.10 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are available on
all platforms. Most of the functions defined in this module call platform C library functions with the same name. It
may sometimes be helpful to consult the platform documentation, because the semantics of these functions varies
among platforms.

An explanation of some terminology and conventions is in order.

• The epochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the
epoch” is zero. For UNIX , the epoch is 1970. To find out what the epoch is, look atgmtime(0) .

• The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; for UNIX , it is typically in 2038.

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t have year
2000 issues, since all dates and times are represented internally as seconds since the epoch. Functions
accepting astruct time (see below) generally require a 4-digit year. For backward compatibility, 2-
digit years are supported if the module variableaccept2dyear is a non-zero integer; this variable is
initialized to1 unless the environment variable PYTHONY2K is set to a non-empty string, in which case
it is initialized to0. Thus, you can set PYTHONY2K to a non-empty string in the environment to require
4-digit years for all year input. When 2-digit years are accepted, they are converted according to the POSIX
or X/Open standard: values 69-99 are mapped to 1969-1999, and values 0–68 are mapped to 2000–2068.

230 Chapter 6. Generic Operating System Services

Values 100–1899 are always illegal. Note that this is new as of Python 1.5.2(a2); earlier versions, up to
Python 1.5.1 and 1.5.2a1, would add 1900 to year values below 1900.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym
UTC is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year.
DST rules are magic (determined by local law) and can change from year to year. The C library has a table
containing the local rules (often it is read from a system file for flexibility) and is the only source of True
Wisdom in this respect.

• The precision of the various real-time functions may be less than suggested by the units in which their value
or argument is expressed. E.g. on most UNIX systems, the clock “ticks” only 50 or 100 times a second, and
on the Mac, times are only accurate to whole seconds.

• On the other hand, the precision oftime() andsleep() is better than their UNIX equivalents: times
are expressed as floating point numbers,time() returns the most accurate time available (using UNIX

gettimeofday() where available), andsleep() will accept a time with a nonzero fraction (UNIX

select() is used to implement this, where available).

• The time value as returned bygmtime() , localtime() , and strptime() , and accepted by
asctime() , mktime() andstrftime() , is a sequence of 9 integers. The return values ofgmtime() ,
localtime() , andstrptime() also offer attribute names for individual fields.

Index Attribute Values
0 tm year (for example, 1993)
1 tm mon range [1,12]
2 tm mday range [1,31]
3 tm hour range [0,23]
4 tm min range [0,59]
5 tm sec range [0,61]; see(1) in strftime() description
6 tm wday range [0,6], Monday is 0
7 tm yday range [1,366]
8 tm isdst 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled
as described under “Year 2000 (Y2K) issues” above. A-1 argument as the daylight savings flag, passed to
mktime() will usually result in the correct daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expecting astruct time , or having ele-
ments of the wrong type, aTypeError is raised.

Changed in version 2.2: The time value sequence was changed from a tuple to astruct time , with the
addition of attribute names for the fields.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be
set to false if the environment variable PYTHONY2K has been set to a non-empty string. It may also be
modified at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the
local DST timezone is east of UTC (as in Western Europe, including the UK). Only use this ifdaylight
is nonzero.

asctime ([t])
Convert a tuple orstruct time representing a time as returned bygmtime() or localtime() to a
24-character string of the following form:’Sun Jun 20 23:21:05 1993’ . If t is not provided, the
current time as returned bylocaltime() is used. Locale information is not used byasctime() . Note:
Unlike the C function of the same name, there is no trailing newline. Changed in version 2.1: Allowedt to
be omitted.

6.10. time — Time access and conversions 231

clock ()
On UNIX , return the current processor time as a floating point number expressed in seconds. The precision,
and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the
same name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a
floating point number, based on the Win32 functionQueryPerformanceCounter() . The resolution
is typically better than one microsecond.

ctime ([secs])
Convert a time expressed in seconds since the epoch to a string representing local time. Ifsecs
is not provided, the current time as returned bytime() is used. ctime(secs) is equivalent to
asctime(localtime(secs)) . Locale information is not used byctime() . Changed in version
2.1: Allowedsecsto be omitted.

daylight
Nonzero if a DST timezone is defined.

gmtime ([secs])
Convert a time expressed in seconds since the epoch to astruct time in UTC in which the dst flag is
always zero. Ifsecsis not provided, the current time as returned bytime() is used. Fractions of a second
are ignored. See above for a description of thestruct time object. Changed in version 2.1: Allowed
secsto be omitted.

localtime ([secs])
Like gmtime() but converts to local time. The dst flag is set to1 when DST applies to the given time.
Changed in version 2.1: Allowedsecsto be omitted.

mktime (t)
This is the inverse function oflocaltime() . Its argument is thestruct time or full 9-tuple (since the
dst flag is needed; use-1 as the dst flag if it is unknown) which expresses the time inlocal time, not UTC.
It returns a floating point number, for compatibility withtime() . If the input value cannot be represented
as a valid time, eitherOverflowError or ValueError will be raised (which depends on whether the
invalid value is caught by Python or the underlying C libraries). The earliest date for which it can generate
a time is platform-dependent.

sleep (secs)
Suspend execution for the given number of seconds. The argument may be a floating point number to
indicate a more precise sleep time. The actual suspension time may be less than that requested because any
caught signal will terminate thesleep() following execution of that signal’s catching routine. Also, the
suspension time may be longer than requested by an arbitrary amount because of the scheduling of other
activity in the system.

strftime (format[, t])
Convert a tuple orstruct time representing a time as returned bygmtime() or localtime()
to a string as specified by theformat argument. Ift is not provided, the current time as returned by
localtime() is used.formatmust be a string. Changed in version 2.1: Allowedt to be omitted.

The following directives can be embedded in theformatstring. They are shown without the optional field
width and precision specification, and are replaced by the indicated characters in thestrftime() result:

232 Chapter 6. Generic Operating System Services

Directive Meaning Notes
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
%U Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

(2)

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Monday are considered to be in week 0.

(2)

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (no characters if no time zone exists).
%% A literal ‘%’ character.

Notes:

(1)The range really is0 to 61 ; this accounts for leap seconds and the (very rare) double leap seconds.

(2)When used with thestrptime() function,%Uand%Ware only used in calculations when the day of
the week and the year are specified.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet email
standard.1

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
’Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial
‘%’ of a directive in the following order; this is also not portable. The field width is normally 2 except for
%j where it is 3.

strptime (string[, format])
Parse a string representing a time according to a format. The return value is astruct time as re-
turned bygmtime() or localtime() . The format parameter uses the same directives as those used
by strftime() ; it defaults to"%a %b %d %H:%M:%S %Y"which matches the formatting returned
by ctime() . If string cannot be parsed according toformat, ValueError is raised. If the string to be
parsed has excess data after parsing,ValueError is raised. The default values used to fill in any missing
data is(1900, 1, 1, 0, 0, 0, 0, 1, -1) .

1The use of%Zis now deprecated, but the%z escape that expands to the preferred hour/minute offset is not supported by all ANSI C
libraries. Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to
4-digit years long before the year 2000. The 4-digit year has been mandated by RFC 2822, which obsoletes RFC 822.

6.10. time — Time access and conversions 233

Support for the%Zdirective is based on the values contained intzname and whetherdaylight is true.
Because of this, it is platform-specific except for recognizing UTC and GMT which are always known (and
are considered to be non-daylight savings timezones).

struct time
The type of the time value sequence returned bygmtime() , localtime() , andstrptime() . New
in version 2.2.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even
though the time is always returned as a floating point number, not all systems provide time with a better
precision than 1 second. While this function normally returns non-decreasing values, it can return a lower
value than a previous call if the system clock has been set back between the two calls.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the
local DST timezone. If no DST timezone is defined, the second string should not be used.

tzset ()
Resets the time conversion rules used by the library routines. The environment variable TZ specifies how
this is done. New in version 2.3.

Availability: UNIX .

Note: Although in many cases, changing the TZ environment variable may affect the output of functions
like localtime without callingtzset , this behavior should not be relied on.

The TZ environment variable should contain no whitespace.

The standard format of the TZ environment variable is: (whitespace added for clarity)

std offset [dst [offset[,start[/time], end[/time]]]]

Where:

std and dstThree or more alphanumerics giving the timezone abbreviations. These will be propogated into
time.tzname

offsetThe offset has the form:± hh[:mm[:ss]]. This indicates the value added the local time to arrive at
UTC. If preceded by a ’-’, the timezone is east of the Prime Meridian; otherwise, it is west. If no offset
follows dst, summmer time is assumed to be one hour ahead of standard time.

start[/time,end[/time]] Indicates when to change to and back from DST. The format of the start and end dates are
one of the following:

JnThe Julian dayn (1 ¡= n ¡= 365). Leap days are not counted, so in all years February 28 is day 59
and March 1 is day 60.

nThe zero-based Julian day (0 ¡=n ¡= 365). Leap days are counted, and it is possible to refer to
February 29.

Mm.n.dThed’th day (0 ¡=d ¡= 6) or weekn of monthm of the year (1 ¡=n ¡= 5, 1 ¡=m ¡= 12, where
week 5 means ”the lastd day in monthm” which may occur in either the fourth or the fifth week).
Week 1 is the first week in which thed’th day occurs. Day zero is Sunday.

time has the same format as offset except that no leading sign (’-’ or ’+’) is allowed. The default, if
time is not given, is 02:00:00.

234 Chapter 6. Generic Operating System Services

>>> os.environ[’TZ’] = ’EST+05EDT,M4.1.0,M10.5.0’
>>> time.tzset()
>>> time.strftime(’%X %x %Z’)
’02:07:36 05/08/03 EDT’
>>> os.environ[’TZ’] = ’AEST-10AEDT-11,M10.5.0,M3.5.0’
>>> time.tzset()
>>> time.strftime(’%X %x %Z’)
’16:08:12 05/08/03 AEST’

On many Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more convenient to use the sys-
tem’s zoneinfo (tzfile(5)) database to specify the timezone rules. To do this, set the TZ environment variable
to the path of the required timezone datafile, relative to the root of the systems ’zoneinfo’ timezone database,
usually located at ‘/usr/share/zoneinfo’. For example,’US/Eastern’ , ’Australia/Melbourne’ ,
’Egypt’ or ’Europe/Amsterdam’ .

>>> os.environ[’TZ’] = ’US/Eastern’
>>> time.tzset()
>>> time.tzname
(’EST’, ’EDT’)
>>> os.environ[’TZ’] = ’Egypt’
>>> time.tzset()
>>> time.tzname
(’EET’, ’EEST’)

See Also:

Module locale (section 6.26):
Internationalization services. The locale settings can affect the return values for some of the functions in
thetime module.

Modulecalendar (section 5.18):
General calendar-related functions.timegm() is the inverse ofgmtime() from this module.

6.11 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

classscheduler (timefunc, delayfunc)
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” —timefuncshould be callable without arguments, and return a number (the
“time”, in any units whatsoever). Thedelayfuncfunction should be callable with one argument, compatible
with the output oftimefunc, and should delay that many time units.delayfuncwill also be called with the
argument0 after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

6.11. sched — Event scheduler 235

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()
...
>>> def print_some_times():
... print time.time()
... s.enter(5, 1, print_time, ())
... s.enter(10, 1, print_time, ())
... s.run()
... print time.time()
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.11.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argument)
Schedule a new event. Thetime argument should be a numeric type compatible with the return value of
the timefuncfunction passed to the constructor. Events scheduled for the sametimewill be executed in the
order of theirpriority.

Executing the event means executingaction(* argument) . argumentmust be a sequence holding the pa-
rameters foraction.

Return value is an event which may be used for later cancellation of the event (seecancel()).

enter (delay, priority, action, argument)
Schedule an event fordelaymore time units. Other then the relative time, the other arguments, the effect
and the return value are the same as those forenterabs() .

cancel (event)
Remove the event from the queue. Ifeventis not an event currently in the queue, this method will raise a
RuntimeError .

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using thedelayfunc function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunccan raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raised byaction, the event will not be attempted in
future calls torun() .

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which
are no longer pertinent.

6.12 mutex — Mutual exclusion support

The mutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not
require (or imply) threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

236 Chapter 6. Generic Operating System Services

classmutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or more(function, argument) pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first
queue entry is removed and itsfunction(argument) pair called, implying it now has the lock.

Of course, no multi-threading is implied – hence the funny interface forlock() , where a function is called
once the lock is acquired.

6.12.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and returnTrue , otherwise, returnFalse .

lock (function, argument)
Executefunction(argument) , unless the mutex is locked. In the case it is locked, place the function and
argument on the queue. Seeunlock for explanation of whenfunction(argument) is executed in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.13 getpass — Portable password input

Thegetpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using the stringprompt, which
defaults to’Password: ’ . Availability: Macintosh, UNIX , Windows.

getuser ()
Return the “login name” of the user. Availability: UNIX , Windows.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order,
and returns the value of the first one which is set to a non-empty string. If none are set, the login name from
the password database is returned on systems which support thepwd module, otherwise, an exception is
raised.

6.14 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for thencurses library and converted to a package.

The curses module provides an interface to the curses library, the de-facto standard for portable advanced
terminal handling.

While curses is most widely used in the UNIX environment, versions are available for DOS, OS/2, and possibly
other systems as well. This extension module is designed to match the API of ncurses, an open-source curses
library hosted on Linux and the BSD variants of UNIX .

See Also:

Modulecurses.ascii (section 6.17):
Utilities for working with ASCII characters, regardless of your locale settings.

Modulecurses.panel (section 6.18):
A panel stack extension that adds depth to curses windows.

6.13. getpass — Portable password input 237

Modulecurses.textpad (section 6.15):
Editable text widget for curses supportingEmacs-like bindings.

Modulecurses.wrapper (section 6.16):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python
(http://www.python.org/doc/howto/curses/curses.html)

Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond, is available on the
Python Web site.

The ‘Demo/curses/’ directory in the Python source distribution contains some example programs using the curses
bindings provided by this module.

6.14.1 Functions

The modulecurses defines the following exception:

exceptionerror
Exception raised when a curses library function returns an error.

Note: Wheneverx or y arguments to a function or a method are optional, they default to the current cursor location.
Wheneverattr is optional, it defaults toA NORMAL.

The modulecurses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a
fixed high value. Included for historical reasons; in former times, it was used to write output loops for time
delays and occasionally to change interfaces depending on the line speed.

beep ()
Emit a short attention sound.

can change color ()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off
and characters are available to be read one by one. However, unlike raw mode, special characters (interrupt,
quit, suspend, and flow control) retain their effects on the tty driver and calling program. Calling firstraw()
thencbreak() leaves the terminal in cbreak mode.

color content (color number)
Returns the intensity of the red, green, and blue (RGB) components in the colorcolor number, which must
be between0 andCOLORS. A 3-tuple is returned, containing the R,G,B values for the given color, which
will be between0 (no component) and1000 (maximum amount of component).

color pair (color number)
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A STANDOUT, A REVERSE, and the otherA * attributes.pair number() is the counterpart to
this function.

curs set (visibility)
Sets the cursor state.visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def prog mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls to
reset prog mode() will restore this mode.

def shell mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using

238 Chapter 6. Generic Operating System Services

curses. (Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent
calls toreset shell mode() will restore this mode.

delay output (ms)
Inserts anmsmillisecond pause in output.

doupdate ()
Update the physical screen. The curses library keeps two data structures, one representing the current
physical screen contents and a virtual screen representing the desired next state. Thedoupdate() ground
updates the physical screen to match the virtual screen.

The virtual screen may be updated by anoutrefresh() call after write operations such asaddstr()
have been performed on a window. The normalrefresh() call is simplynoutrefresh() followed
by doupdate() ; if you have to update multiple windows, you can speed performance and perhaps reduce
screen flicker by issuingnoutrefresh() calls on all windows, followed by a singledoupdate() .

echo ()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Under UNIX operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

filter ()
The filter() routine, if used, must be called beforeinitscr() is called. The effect is that, during
those calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the
home string is set to the value of cr. The effect is that the cursor is confined to the current line, and so are
screen updates. This may be used for enabling cgaracter-at-a-time line editing without touching the rest of
the screen.

flash ()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal produced bybeep() .

flushinp ()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet
been processed by the program.

getmouse ()
After getch() returns KEY MOUSEto signal a mouse event, this method should be call to re-
trieve the queued mouse event, represented as a 5-tuple(id, x, y, z, bstate) . id is an ID value
used to distinguish multiple devices, andx, y, z are the event’s coordinates. (z is currently unused.).
bstate is an integer value whose bits will be set to indicate the type of event, and will be the bit-
wise OR of one or more of the following constants, wheren is the button number from 1 to 4:
BUTTONn PRESSED, BUTTONn RELEASED, BUTTONn CLICKED, BUTTONn DOUBLECLICKED,
BUTTONn TRIPLE CLICKED, BUTTONSHIFT , BUTTONCTRL, BUTTONALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1
is returned.

getwin (file)
Reads window related data stored in the file by an earlierputwin() call. The routine then creates and
initializes a new window using that data, returning the new window object.

has colors ()
Returns true if the terminal can display colors; otherwise, it returns false.

has ic ()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for
historical reasons only, as all modern software terminal emulators have such capabilities.

has il ()

6.14. curses — Terminal handling for character-cell displays 239

Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling
regions. This function is included for historical reasons only, as all modern software terminal emulators
have such capabilities.

has key (ch)
Takes a key valuech, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immedi-
ately available to the program. However, after blocking fortenthstenths of seconds, an exception is raised
if nothing has been typed. The value oftenthsmust be a number between 1 and 255. Usenocbreak() to
leave half-delay mode.

init color (color number, r, g, b)
Changes the definition of a color, taking the number of the color to be changed followed by three RGB
values (for the amounts of red, green, and blue components). The value ofcolor numbermust be between
0 andCOLORS. Each ofr, g, b, must be a value between0 and1000 . Wheninit color() is used, all
occurrences of that color on the screen immediately change to the new definition. This function is a no-op
on most terminals; it is active only ifcan change color() returns1.

init pair (pair number, fg, bg)
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The value ofpair numbermust be between
1 andCOLORPAIRS - 1 (the0 color pair is wired to white on black and cannot be changed). The value
of fg andbg arguments must be between0 andCOLORS. If the color-pair was previously initialized, the
screen is refreshed and all occurrences of that color-pair are changed to the new definition.

initscr ()
Initialize the library. Returns aWindowObject which represents the whole screen.Note: If there is an
error opening the terminal, the underlying curses library may cause the interpreter to exit.

isendwin ()
Returns true ifendwin() has been called (that is, the curses library has been deinitialized).

keyname (k)
Return the name of the key numberedk. The name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed
by the corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string
consisting of the prefix ‘M-’ followed by the name of the corresponding ASCII character.

killchar ()
Returns the user’s current line kill character. Under UNIX operating systems this is a property of the con-
trolling tty of the curses program, and is not set by the curses library itself.

longname ()
Returns a string containing the terminfo long name field describing the current terminal. The maximum
length of a verbose description is 128 characters. It is defined only after the call toinitscr() .

meta (yes)
If yesis 1, allow 8-bit characters to be input. Ifyesis 0, allow only 7-bit chars.

mouseinterval (interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them
to be recognized as a click, and returns the previous interval value. The default value is 200 msec, or one
fifth of a second.

mousemask(mousemask)
Sets the mouse events to be reported, and returns a tuple(availmask, oldmask) . availmaskindicates
which of the specified mouse events can be reported; on complete failure it returns 0.oldmaskis the
previous value of the given window’s mouse event mask. If this function is never called, no mouse events
are ever reported.

napms(ms)
Sleep formsmilliseconds.

240 Chapter 6. Generic Operating System Services

newpad(nlines, ncols)
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad
is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated
with a particular part of the screen. Pads can be used when a large window is needed, and only a part of the
window will be on the screen at one time. Automatic refreshes of pads (such as from scrolling or echoing
of input) do not occur. Therefresh() andnoutrefresh() methods of a pad require 6 arguments to
specify the part of the pad to be displayed and the location on the screen to be used for the display. The
arguments are pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper
left corner of the pad region to be displayed and the s arguments define a clipping box on the screen within
which the pad region is to be displayed.

newwin ([nlines, ncols,] begin y, begin x)
Return a new window, whose left-upper corner is at(begin y, begin x) , and whose height/width is
nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the screen.

nl ()
Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho ()
Leave echo mode. Echoing of input characters is turned off.

nonl ()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation
of newline into newline/return on output (but this does not change the behavior ofaddch(’\n’) , which
always does the equivalent of return and line feed on the virtual screen). With translation off, curses can
sometimes speed up vertical motion a little; also, it will be able to detect the return key on input.

noqiflush ()
When the noqiflush routine is used, normal flush of input and output queues associated with the INTR,
QUIT and SUSP characters will not be done. You may want to callnoqiflush() in a signal handler if
you want output to continue as though the interrupt had not occurred, after the handler exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

pair content (pair number)
Returns a tuple(fg, bg) containing the colors for the requested color pair. The value ofpair number
must be between0 andCOLORPAIRS - 1 .

pair number (attr)
Returns the number of the color-pair set by the attribute valueattr. color pair() is the counterpart to
this function.

putp (string)
Equivalent totputs(str, 1, putchar) ; emits the value of a specified terminfo capability for the
current terminal. Note that the output of putp always goes to standard output.

qiflush ([flag])
If flag is false, the effect is the same as callingnoqiflush() . If flag is true, or no argument is provided,
the queues will be flushed when these control characters are read.

raw ()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow
control keys are turned off; characters are presented to curses input functions one by one.

reset prog mode()
Restores the terminal to “program” mode, as previously saved bydef prog mode() .

reset shell mode()

6.14. curses — Terminal handling for character-cell displays 241

Restores the terminal to “shell” mode, as previously saved bydef shell mode() .

setsyx (y, x)
Sets the virtual screen cursor toy, x. If y andx are both -1, then leaveok is set.

setupterm ([termstr, fd])
Initializes the terminal.termstr is a string giving the terminal name; if omitted, the value of the TERM
environment variable will be used.fd is the file descriptor to which any initialization sequences will be sent;
if not supplied, the file descriptor forsys.stdout will be used.

start color ()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is
called. It is good practice to call this routine right afterinitscr() .

start color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white),
and two global variables in thecurses module,COLORSandCOLORPAIRS, containing the maximum
number of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the
values they had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a
curses program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag (capname)
Returns the value of the Boolean capability corresponding to the terminfo capability namecapname. The
value-1 is returned ifcapnameis not a Boolean capability, or0 if it is canceled or absent from the terminal
description.

tigetnum (capname)
Returns the value of the numeric capability corresponding to the terminfo capability namecapname. The
value -2 is returned ifcapnameis not a numeric capability, or-1 if it is canceled or absent from the
terminal description.

tigetstr (capname)
Returns the value of the string capability corresponding to the terminfo capability namecapname. None is
returned ifcapnameis not a string capability, or is canceled or absent from the terminal description.

tparm (str[,...])
Instantiates the stringstr with the supplied parameters, wherestr should be a parameterized string obtained
from the terminfo database. E.g.tparm(tigetstr("cup"), 5, 3) could result in’\033[6;4H’ ,
the exact result depending on terminal type.

typeahead (fd)
Specifies that the file descriptorfd be used for typeahead checking. Iffd is -1 , then no typeahead checking
is done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating
the screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or
doupdate is called again, allowing faster response to commands typed in advance. This function allows
specifying a different file descriptor for typeahead checking.

unctrl (ch)
Returns a string which is a printable representation of the characterch. Control characters are displayed as
a caret followed by the character, for example asˆC . Printing characters are left as they are.

ungetch (ch)
Pushchso the nextgetch() will return it. Note: Only onechcan be pushed beforegetch() is called.

ungetmouse (id, x, y, z, bstate)
Push aKEY MOUSEevent onto the input queue, associating the given state data with it.

use env (flag)
If used, this function should be called beforeinitscr() or newterm are called. Whenflag is false, the
values of lines and columns specified in the terminfo database will be used, even if environment variables

242 Chapter 6. Generic Operating System Services

LINES and COLUMNS (used by default) are set, or if curses is running in a window (in which case default
behavior would be to use the window size if LINES and COLUMNS are not set).

6.14.2 Window Objects

Window objects, as returned byinitscr() andnewwin() above, have the following methods:

addch ([y, x,] ch[, attr])
Note: A charactermeans a C character (anASCII code), rather then a Python character (a string of length
1). (This note is true whenever the documentation mentions a character.) The builtinord() is handy for
conveying strings to codes.

Paint characterch at (y, x) with attributesattr, overwriting any character previously painter at that loca-
tion. By default, the character position and attributes are the current settings for the window object.

addnstr ([y, x,] str, n[, attr])
Paint at mostn characters of the stringstr at (y, x) with attributesattr, overwriting anything previously
on the display.

addstr ([y, x,] str[, attr])
Paint the stringstr at (y, x) with attributesattr, overwriting anything previously on the display.

attroff (attr)
Remove attributeattr from the “background” set applied to all writes to the current window.

attron (attr)
Add attributeattr from the “background” set applied to all writes to the current window.

attrset (attr)
Set the “background” set of attributes toattr. This set is initially 0 (no attributes).

bkgd (ch[, attr])
Sets the background property of the window to the characterch, with attributesattr. The change is then
applied to every character position in that window:

•The attribute of every character in the window is changed to the new background attribute.

•Wherever the former background character appears, it is changed to the new background character.

bkgdset (ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of
attributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that
are written into the window. Both the character and attribute parts of the background are combined with
the blank characters. The background becomes a property of the character and moves with the character
through any scrolling and insert/delete line/character operations.

border ([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details. The characters can be specified as integers or as
one-character strings.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters cannotbe used. The defaults are listed in this table:

Parameter Description Default value
ls Left side ACS VLINE
rs Right side ACS VLINE
ts Top ACS HLINE
bs Bottom ACS HLINE
tl Upper-left corner ACS ULCORNER
tr Upper-right corner ACS URCORNER
bl Bottom-left corner ACS BLCORNER
br Bottom-right corner ACS BRCORNER

box ([vertch, horch])
Similar to border() , but both ls and rs are vertch and bothts and bs arehorch. The default corner

6.14. curses — Terminal handling for character-cell displays 243

characters are always used by this function.

clear ()
Like erase() , but also causes the whole window to be repainted upon next call torefresh() .

clearok (yes)
If yesis 1, the next call torefresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent
of clrtoeol() is performed.

clrtoeol ()
Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position
of the window.

delch ([y, x])
Delete any character at(y, x) .

deleteln ()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin ([nlines, ncols,] begin y, begin x)
An abbreviation for “derive window”,derwin() is the same as callingsubwin() , except thatbegin y
andbegin x are relative to the origin of the window, rather than relative to the entire screen. Returns a
window object for the derived window.

echochar (ch[, attr])
Add characterchwith attributeattr, and immediately callrefresh() on the window.

enclose (y, x)
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location
of a mouse event.

erase ()
Clear the window.

getbegyx ()
Return a tuple(y, x) of co-ordinates of upper-left corner.

getch ([y, x])
Get a character. Note that the integer returned doesnot have to be inASCII range: function keys, keypad
keys and so on return numbers higher than 256. In no-delay mode, -1 is returned if there is no input.

getkey ([y, x])
Get a character, returning a string instead of an integer, asgetch() does. Function keys, keypad keys and
so on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is
no input.

getmaxyx ()
Return a tuple(y, x) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y
and x. Returns-1,-1 if this window has no parent.

getstr ([y, x])
Read a string from the user, with primitive line editing capacity.

getyx ()
Return a tuple(y, x) of current cursor position relative to the window’s upper-left corner.

hline ([y, x,] ch, n)
Display a horizontal line starting at(y, x) with lengthn consisting of the characterch.

244 Chapter 6. Generic Operating System Services

idcok (flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the terminal;
if flag is true, use of character insertion and deletion is enabled. When curses is first initialized, use of
character insert/delete is enabled by default.

idlok (yes)
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line
insertion/deletion are disabled.

immedok (flag)
If flag is true, any change in the window image automatically causes the window to be refreshed; you
no longer have to callrefresh() yourself. However, it may degrade performance considerably, due to
repeated calls to wrefresh. This option is disabled by default.

inch ([y, x])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and
upper bits are the attributes.

insch ([y, x,] ch[, attr])
Paint characterchat (y, x) with attributesattr, moving the line from positionx right by one character.

insdelln (nlines)
Insertsnlineslines into the specified window above the current line. Thenlinesbottom lines are lost. For
negativenlines, deletenlineslines starting with the one under the cursor, and move the remaining lines up.
The bottomnlineslines are cleared. The current cursor position remains the same.

insertln ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr ([y, x,] str, n[, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up
to n characters. Ifn is zero or negative, the entire string is inserted. All characters to the right of the cursor
are shifted right, with the rightmost characters on the line being lost. The cursor position does not change
(after moving toy, x, if specified).

insstr ([y, x,] str [, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the rightmost characters on the line being lost.
The cursor position does not change (after moving toy, x, if specified).

instr ([y, x] [, n])
Returns a string of characters, extracted from the window starting at the current cursor position, or aty, x if
specified. Attributes are stripped from the characters. Ifn is specified,instr() returns return a string at
mostn characters long (exclusive of the trailing NUL).

is linetouched (line)
Returns true if the specified line was modified since the last call torefresh() ; otherwise returns false.
Raises acurses.error exception ifline is not valid for the given window.

is wintouched ()
Returns true if the specified window was modified since the last call torefresh() ; otherwise returns
false.

keypad (yes)
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpreted bycurses .
If yesis 0, escape sequences will be left as is in the input stream.

leaveok (yes)
If yesis 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

move(new y, new x)
Move cursor to(new y, new x) .

mvderwin (y, x)

6.14. curses — Terminal handling for character-cell displays 245

Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the
screen.

mvwin (new y, new x)
Move the window so its upper-left corner is at(new y, new x) .

nodelay (yes)
If yesis 1, getch() will be non-blocking.

notimeout (yes)
If yesis 1, escape sequences will not be timed out.

If yesis 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh ()
Mark for refresh but wait. This function updates the data structure representing the desired state of the
window, but does not force an update of the physical screen. To accomplish that, calldoupdate() .

overlay (destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overlay the window on top ofdestwin. The windows need not be the same size, only the overlapping
region is copied. This copy is non-destructive, which means that the current background character does not
overwrite the old contents ofdestwin.

To get fine-grained control over the copied region, the second form ofoverlay() can be used.sminrow
andsmincolare the upper-left coordinates of the source window, and the other variables mark a rectangle in
the destination window.

overwrite (destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overwrite the window on top ofdestwin. The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents ofdestwin.

To get fine-grained control over the copied region, the second form ofoverwrite() can be used.sminrow
andsmincolare the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

putwin (file)
Writes all data associated with the window into the provided file object. This information can be later
retrieved using thegetwin() function.

redrawln (beg, num)
Indicates that thenumscreen lines, starting at linebeg, are corrupted and should be completely redrawn on
the nextrefresh() call.

redrawwin ()
Touches the entire window, causing it to be completely redrawn on the nextrefresh() call.

refresh ([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created withnewpad() . The
additional parameters are needed to indicate what part of the pad and screen are involved.pminrowand
pmincolspecify the upper left-hand corner of the rectangle to be displayed in the pad.sminrow, smincol,
smaxrow, andsmaxcolspecify the edges of the rectangle to be displayed on the screen. The lower right-
hand corner of the rectangle to be displayed in the pad is calculated from the screen coordinates, since
the rectangles must be the same size. Both rectangles must be entirely contained within their respective
structures. Negative values ofpminrow, pmincol, sminrow, or smincolare treated as if they were zero.

scroll ([lines = 1])
Scroll the screen or scrolling region upward bylines lines.

scrollok (flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling
region, either as a result of a newline action on the bottom line, or typing the last character of the last line.
If flag is false, the cursor is left on the bottom line. Ifflag is true, the window is scrolled up one line. Note

246 Chapter 6. Generic Operating System Services

that in order to get the physical scrolling effect on the terminal, it is also necessary to callidlok() .

setscrreg (top, bottom)
Set the scrolling region from linetop to linebottom. All scrolling actions will take place in this region.

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

standout ()
Turn on attributeA STANDOUT.

subpad ([nlines, ncols,] begin y, begin x)
Return a sub-window, whose upper-left corner is at(begin y, begin x) , and whose width/height is
ncols/nlines.

subwin ([nlines, ncols,] begin y, begin x)
Return a sub-window, whose upper-left corner is at(begin y, begin x) , and whose width/height is
ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the window.

syncdown ()
Touches each location in the window that has been touched in any of its ancestor windows. This routine is
called byrefresh() , so it should almost never be necessary to call it manually.

syncok (flag)
If called with flag set to true, thensyncup() is called automatically whenever there is a change in the
window.

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the window. Ifdelay is negative, blocking read is used
(which will wait indefinitely for input). If delay is zero, then non-blocking read is used, and -1 will be
returned bygetch() if no input is waiting. If delay is positive, thengetch() will block for delay
milliseconds, and return -1 if there is still no input at the end of that time.

touchline (start, count)
Pretendcountlines have been changed, starting with linestart.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin ()
Marks all lines in the window as unchanged since the last call torefresh() .

vline ([y, x,] ch, n)
Display a vertical line starting at(y, x) with lengthn consisting of the characterch.

6.14.3 Constants

Thecurses module defines the following data members:

ERR
Some curses routines that return an integer, such asgetch() , returnERRupon failure.

OK
Some curses routines that return an integer, such asnapms() , returnOKupon success.

version
A string representing the current version of the module. Also available asversion .

Several constants are available to specify character cell attributes:

6.14. curses — Terminal handling for character-cell displays 247

Attribute Meaning
A ALTCHARSET Alternate character set mode.
A BLINK Blink mode.
A BOLD Bold mode.
A DIM Dim mode.
A NORMAL Normal attribute.
A STANDOUT Standout mode.
A UNDERLINE Underline mode.

Keys are referred to by integer constants with names starting with ‘KEY ’. The exact keycaps available are system
dependent.

Key constant Key
KEY MIN Minimum key value
KEY BREAK Break key (unreliable)
KEY DOWN Down-arrow
KEY UP Up-arrow
KEY LEFT Left-arrow
KEY RIGHT Right-arrow
KEY HOME Home key (upward+left arrow)
KEY BACKSPACE Backspace (unreliable)
KEY F0 Function keys. Up to 64 function keys are supported.
KEY Fn Value of function keyn
KEY DL Delete line
KEY IL Insert line
KEY DC Delete character
KEY IC Insert char or enter insert mode
KEY EIC Exit insert char mode
KEY CLEAR Clear screen
KEY EOS Clear to end of screen
KEY EOL Clear to end of line
KEY SF Scroll 1 line forward
KEY SR Scroll 1 line backward (reverse)
KEY NPAGE Next page
KEY PPAGE Previous page
KEY STAB Set tab
KEY CTAB Clear tab
KEY CATAB Clear all tabs
KEY ENTER Enter or send (unreliable)
KEY SRESET Soft (partial) reset (unreliable)
KEY RESET Reset or hard reset (unreliable)
KEY PRINT Print
KEY LL Home down or bottom (lower left)
KEY A1 Upper left of keypad
KEY A3 Upper right of keypad
KEY B2 Center of keypad
KEY C1 Lower left of keypad
KEY C3 Lower right of keypad
KEY BTAB Back tab
KEY BEG Beg (beginning)
KEY CANCEL Cancel
KEY CLOSE Close
KEY COMMAND Cmd (command)
KEY COPY Copy
KEY CREATE Create
KEY END End
KEY EXIT Exit
KEY FIND Find

248 Chapter 6. Generic Operating System Services

Key constant Key
KEY HELP Help
KEY MARK Mark
KEY MESSAGE Message
KEY MOVE Move
KEY NEXT Next
KEY OPEN Open
KEY OPTIONS Options
KEY PREVIOUS Prev (previous)
KEY REDO Redo
KEY REFERENCE Ref (reference)
KEY REFRESH Refresh
KEY REPLACE Replace
KEY RESTART Restart
KEY RESUME Resume
KEY SAVE Save
KEY SBEG Shifted Beg (beginning)
KEY SCANCEL Shifted Cancel
KEY SCOMMAND Shifted Command
KEY SCOPY Shifted Copy
KEY SCREATE Shifted Create
KEY SDC Shifted Delete char
KEY SDL Shifted Delete line
KEY SELECT Select
KEY SEND Shifted End
KEY SEOL Shifted Clear line
KEY SEXIT Shifted Dxit
KEY SFIND Shifted Find
KEY SHELP Shifted Help
KEY SHOME Shifted Home
KEY SIC Shifted Input
KEY SLEFT Shifted Left arrow
KEY SMESSAGE Shifted Message
KEY SMOVE Shifted Move
KEY SNEXT Shifted Next
KEY SOPTIONS Shifted Options
KEY SPREVIOUS Shifted Prev
KEY SPRINT Shifted Print
KEY SREDO Shifted Redo
KEY SREPLACE Shifted Replace
KEY SRIGHT Shifted Right arrow
KEY SRSUME Shifted Resume
KEY SSAVE Shifted Save
KEY SSUSPEND Shifted Suspend
KEY SUNDO Shifted Undo
KEY SUSPEND Suspend
KEY UNDO Undo
KEY MOUSE Mouse event has occurred
KEY RESIZE Terminal resize event
KEY MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function
keys (KEY F1, KEY F2, KEY F3, KEY F4) available, and the arrow keys mapped toKEY UP, KEY DOWN,
KEY LEFT andKEY RIGHT in the obvious way. If your machine has a PC keybboard, it is safe to expect arrow
keys and twelve function keys (older PC keyboards may have only ten function keys); also, the following keypad
mappings are standard:

6.14. curses — Terminal handling for character-cell displays 249

Keycap Constant
Insert KEY IC
Delete KEY DC
Home KEY HOME
End KEY END
Page Up KEY NPAGE
Page Down KEY PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal,
and will generally be available on software emulations such as X terminals. When there is no graphic available,
curses falls back on a crude printable ASCII approximation.Note: These are available only afterinitscr()
has been called.

ACS code Meaning
ACS BBSS alternate name for upper right corner
ACS BLOCK solid square block
ACS BOARD board of squares
ACS BSBS alternate name for horizontal line
ACS BSSB alternate name for upper left corner
ACS BSSS alternate name for top tee
ACS BTEE bottom tee
ACS BULLET bullet
ACS CKBOARD checker board (stipple)
ACS DARROW arrow pointing down
ACS DEGREE degree symbol
ACS DIAMOND diamond
ACS GEQUAL greater-than-or-equal-to
ACS HLINE horizontal line
ACS LANTERN lantern symbol
ACS LARROW left arrow
ACS LEQUAL less-than-or-equal-to
ACS LLCORNER lower left-hand corner
ACS LRCORNER lower right-hand corner
ACS LTEE left tee
ACS NEQUAL not-equal sign
ACS PI letter pi
ACS PLMINUS plus-or-minus sign
ACS PLUS big plus sign
ACS RARROW right arrow
ACS RTEE right tee
ACS S1 scan line 1
ACS S3 scan line 3
ACS S7 scan line 7
ACS S9 scan line 9
ACS SBBS alternate name for lower right corner
ACS SBSB alternate name for vertical line
ACS SBSS alternate name for right tee
ACS SSBB alternate name for lower left corner
ACS SSBS alternate name for bottom tee
ACS SSSB alternate name for left tee
ACS SSSS alternate name for crossover or big plus
ACS STERLING pound sterling
ACS TTEE top tee
ACS UARROW up arrow
ACS ULCORNER upper left corner
ACS URCORNER upper right corner
ACS VLINE vertical line

250 Chapter 6. Generic Operating System Services

The following table lists the predefined colors:

Constant Color
COLORBLACK Black
COLORBLUE Blue
COLORCYAN Cyan (light greenish blue)
COLORGREEN Green
COLORMAGENTA Magenta (purplish red)
COLORRED Red
COLORWHITE White
COLORYELLOW Yellow

6.15 curses.textpad — Text input widget for curses programs

New in version 1.6.

The curses.textpad module provides aTextbox class that handles elementary text editing in a curses
window, supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit
6.x, FrameMaker, and many other programs). The module also provides a rectangle-drawing function useful for
framing text boxes or for other purposes.

The modulecurses.textpad defines the following function:

rectangle (win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates
relative to that window. The second and third arguments are the y and x coordinates of the upper left hand
corner of the rectangle to be drawn; the fourth and fifth arguments are the y and x coordinates of the lower
right hand corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that
make this possible (including xterm and most other software terminal emulators). Otherwise it will be
drawn with ASCII dashes, vertical bars, and plus signs.

6.15.1 Textbox objects

You can instantiate aTextbox object as follows:

classTextbox (win)
Return a textbox widget object. Thewin argument should be a cursesWindowObject in which the
textbox is to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of
the containing window, with coordinates(0, 0) . The instance’sstripspaces flag is initially on.

Textbox objects have the following methods:

edit ([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination
keystrokes is entered. Ifvalidator is supplied, it must be a function. It will be called for each keystroke
entered with the keystroke as a parameter; command dispatch is done on the result. This method returns the
window contents as a string; whether blanks in the window are included is affected by thestripspaces
member.

do command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

6.15. curses.textpad — Text input widget for curses programs 251

Keystroke Action
Control-A Go to left edge of window.
Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.
Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.
Control-H Delete character backward.
Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.
Control-N Cursor down; move down one line.
Control-O Insert a blank line at cursor location.
Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant Keystroke
KEY LEFT Control-B
KEY RIGHT Control-F
KEY UP Control-P
KEY DOWN Control-N
KEY BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and move right (with line wrap-
ping).

gather ()
This method returns the window contents as a string; whether blanks in the window are included is affected
by thestripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to the
end of that line instead, and trailing blanks are stripped when the window contents are gathered.

6.16 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one function,wrapper() , which runs another function which should be the rest of your
curses-using application. If the application raises an exception,wrapper() will restore the terminal to a sane
state before re-raising the exception and generating a traceback.

wrapper (func, ...)
Wrapper function that initializes curses and calls another function,func, restoring normal keyboard/screen
behavior on error. The callable objectfunc is then passed the main window ’stdscr’ as its first argument,
followed by any other arguments passed towrapper() .

Before calling the hook function,wrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores
cooked mode, turns on echo, and disables the terminal keypad.

6.17 curses.ascii — Utilities for ASCII characters

New in version 1.6.

Thecurses.ascii module supplies name constants forASCII characters and functions to test membership in
variousASCII character classes. The constants supplied are names for control characters as follows:

252 Chapter 6. Generic Operating System Services

Name Meaning
NUL
SOH Start of heading, console interrupt
STX Start of text
ETX End of text
EOT End of transmission
ENQ Enquiry, goes withACKflow control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias for TAB: “Horizontal tab”
LF Line feed
NL Alias for LF: “New line”
VT Vertical tab
FF Form feed
CR Carriage return
SO Shift-out, begin alternate character set
SI Shift-in, resume default character set
DLE Data-link escape
DC1 XON, for flow control
DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control
DC4 Device control 4
NAK Negative acknowledgement
SYN Synchronous idle
ETB End transmission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
FS File separator
GS Group separator
RS Record separator, block-mode terminator
US Unit separator
SP Space
DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter
conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum (c)
Checks for anASCII alphanumeric character; it is equivalent to ‘isalpha(c) or isdigit(c) ’.

isalpha (c)
Checks for anASCII alphabetic character; it is equivalent to ‘isupper(c) or islower(c) ’.

isascii (c)
Checks for a character value that fits in the 7-bitASCII set.

isblank (c)
Checks for anASCII whitespace character.

iscntrl (c)
Checks for anASCII control character (in the range 0x00 to 0x1f).

isdigit (c)
Checks for anASCII decimal digit, ‘0’ through ‘9’. This is equivalent to ‘c in string.digits ’.

isgraph (c)
Checks forASCII any printable character except space.

6.17. curses.ascii — Utilities for ASCII characters 253

islower (c)
Checks for anASCII lower-case character.

isprint (c)
Checks for anyASCII printable character including space.

ispunct (c)
Checks for any printableASCII character which is not a space or an alphanumeric character.

isspace (c)
Checks forASCII white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.

isupper (c)
Checks for anASCII uppercase letter.

isxdigit (c)
Checks for anASCII hexadecimal digit. This is equivalent to ‘c in string.hexdigits ’.

isctrl (c)
Checks for anASCII control character (ordinal values 0 to 31).

ismeta (c)
Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the
built-in functionord() .

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they
do not actually know anything about the host machine’s character encoding. For functions that know about the
character encoding (and handle internationalization properly) see thestring module.

The following two functions take either a single-character string or integer byte value; they return a value of the
same type.

ascii (c)
Return the ASCII value corresponding to the low 7 bits ofc.

ctrl (c)
Return the control character corresponding to the given character (the character bit value is bitwise-anded
with 0x1f).

alt (c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl (c)
Return a string representation of theASCII characterc. If c is printable, this string is the character itself.
If the character is a control character (0x00-0x1f) the string consists of a caret (‘ˆ ’) followed by the corre-
sponding uppercase letter. If the character is anASCII delete (0x7f) the string is’ˆ?’ . If the character has
its meta bit (0x80) set, the meta bit is stripped, the preceding rules applied, and ‘! ’ prepended to the result.

controlnames
A 33-element string array that contains theASCII mnemonics for the thirty-twoASCII control characters
from 0 (NUL) to 0x1f (US), in order, plus the mnemonic ‘SP’ for the space character.

6.18 curses.panel — A panel stack extension for curses.

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the
visible portions of each window will be displayed. Panels can be added, moved up or down in the stack, and
removed.

254 Chapter 6. Generic Operating System Services

6.18.1 Functions

The modulecurses.panel defines the following functions:

bottom panel ()
Returns the bottom panel in the panel stack.

new panel (win)
Returns a panel object, associating it with the given windowwin.

top panel ()
Returns the top panel in the panel stack.

update panels ()
Updates the virtual screen after changes in the panel stack. This does not callcurses.doupdate() , so
you’ll have to do this yourself.

6.18.2 Panel Objects

Panel objects, as returned bynew panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window’s
depth in the panel stack.

Panel objects have the following methods:

above ()
Returns the panel above the current panel.

below ()
Returns the panel below the current panel.

bottom ()
Push the panel to the bottom of the stack.

hidden ()
Returns true if the panel is hidden (not visible), false otherwise.

hide ()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move(y, x)
Move the panel to the screen coordinates(y, x) .

replace (win)
Change the window associated with the panel to the windowwin.

set userptr (obj)
Set the panel’s user pointer toobj. This is used to associate an arbitrary piece of data with the panel, and
can be any Python object.

show()
Display the panel (which might have been hidden).

top ()
Push panel to the top of the stack.

userptr ()
Returns the user pointer for the panel. This might be any Python object.

window ()
Returns the window object associated with the panel.

6.19 getopt — Parser for command line options

6.19. getopt — Parser for command line options 255

This module helps scripts to parse the command line arguments insys.argv . It supports the same conventions
as the UNIX getopt() function (including the special meanings of arguments of the form ‘- ’ and ‘-- ’). Long
options similar to those supported by GNU software may be used as well via an optional third argument. This
module provides a single function and an exception:

getopt (args, options[, long options])
Parses command line options and parameter list.args is the argument list to be parsed, without the leading
reference to the running program. Typically, this means ‘sys.argv[1:] ’. optionsis the string of option
letters that the script wants to recognize, with options that require an argument followed by a colon (‘: ’;
i.e., the same format that UNIX getopt() uses).

Note: Unlike GNU getopt() , after a non-option argument, all further arguments are considered also
non-options. This is similar to the way non-GNU UNIX systems work.

long options, if specified, must be a list of strings with the names of the long options which should be
supported. The leading’--’ characters should not be included in the option name. Long options which
require an argument should be followed by an equal sign (‘=’). To accept only long options,optionsshould
be an empty string. Long options on the command line can be recognized so long as they provide a prefix of
the option name that matches exactly one of the accepted options. For example, itlong optionsis [’foo’,
’frob’] , the option--fo will match as--foo, but --f will not match uniquely, soGetoptError will be
raised.

The return value consists of two elements: the first is a list of(option, value) pairs; the second is the list
of program arguments left after the option list was stripped (this is a trailing slice ofargs). Each option-
and-value pair returned has the option as its first element, prefixed with a hyphen for short options (e.g.,
’-x’) or two hyphens for long options (e.g.,’--long-option’), and the option argument as its second
element, or an empty string if the option has no argument. The options occur in the list in the same order in
which they were found, thus allowing multiple occurrences. Long and short options may be mixed.

gnu getopt (args, options[, long options])
This function works likegetopt() , except that GNU style scanning mode is used by default. This means
that option and non-option arguments may be intermixed. Thegetopt() function stops processing op-
tions as soon as a non-option argument is encountered.

If the first character of the option string is ‘+’, or if the environment variable POSIXLYCORRECT is set,
then option processing stops as soon as a non-option argument is encountered.

exceptionGetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring an
argument is given none. The argument to the exception is a string indicating the cause of the error. For
long options, an argument given to an option which does not require one will also cause this exception to be
raised. The attributesmsg andopt give the error message and related option; if there is no specific option
to which the exception relates,opt is an empty string.

Changed in version 1.6: IntroducedGetoptError as a synonym forerror .

exceptionerror
Alias for GetoptError ; for backward compatibility.

An example using only UNIX style options:

>>> import getopt
>>> args = ’-a -b -cfoo -d bar a1 a2’.split()
>>> args
[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’abc:d:’)
>>> optlist
[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]
>>> args
[’a1’, ’a2’]

Using long option names is equally easy:

256 Chapter 6. Generic Operating System Services

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’
>>> args = s.split()
>>> args
[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’x’, [
... ’condition=’, ’output-file=’, ’testing’])
>>> optlist
[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,

’’)]
>>> args
[’a1’, ’a2’]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], "ho:v", ["help", "output="])
except getopt.GetoptError:

print help information and exit:
usage()
sys.exit(2)

output = None
verbose = False
for o, a in opts:

if o == "-v":
verbose = True

if o in ("-h", "--help"):
usage()
sys.exit()

if o in ("-o", "--output"):
output = a

...

if __name__ == "__main__":
main()

6.20 optparse — Powerful parser for command line options.

New in version 2.3.

Theoptparse module is a powerful, flexible, extensible, easy-to-use command-line parsing library for Python.
Usingoptparse , you can add intelligent, sophisticated handling of command-line options to your scripts with
very little overhead.

Here’s an example of usingoptparse to add some command-line options to a simple script:

6.20. optparse — Powerful parser for command line options. 257

from optparse import OptionParser

parser = OptionParser()
parser.add_option("-f", "--file", dest="filename",

help="write report to FILE", metavar="FILE")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose", default=True,
help="don’t print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing” on the command-line:

$ <yourscript> -f outfile --quiet
$ <yourscript> -qfoutfile
$ <yourscript> --file=outfile -q
$ <yourscript> --quiet --file outfile

(All of these result inoptions.filename == "outfile" andoptions.verbose == False , just as
you might expect.)

Even niftier, users can run one of

$ <yourscript> -h
$ <yourscript> --help

andoptparse will print out a brief summary of your script’s options:

usage: <yourscript> [options]

options:
-h, --help show this help message and exit
-fFILE, --file=FILE write report to FILE
-q, --quiet don’t print status messages to stdout

That’s just a taste of the flexibilityoptparse gives you in parsing your command-line.

6.20.1 Philosophy

The purpose ofoptparse is to make it very easy to provide the most standard, obvious, straightforward, and
user-friendly user interface for UNIX command-line programs. Theoptparse philosophy is heavily influenced
by the UNIX and GNU toolkits, and this section is meant to explain that philosophy.

Terminology

First, we need to establish some terminology.

argument
a chunk of text that a user enters on the command-line, and that the shell passes toexecl() or execv() .
In Python, arguments are elements ofsys.argv[1:] . (sys.argv[0] is the name of the program
being executed; in the context of parsing arguments, it’s not very important.) UNIX shells also use the term
“word”.

It is occasionally desirable to use an argument list other thansys.argv[1:] , so you should read
“argument” as “an element ofsys.argv[1:] , or of some other list provided as a substitute for

258 Chapter 6. Generic Operating System Services

sys.argv[1:] ”.

option
an argument used to supply extra information to guide or customize the execution of a program. There are
many different syntaxes for options; the traditional UNIX syntax is- followed by a single letter, e.g.-x or
-F. Also, traditional UNIX syntax allows multiple options to be merged into a single argument, e.g.-x -F
is equivalent to-xF. The GNU project introduced-- followed by a series of hyphen-separated words, e.g.
--file or --dry-run . These are the only two option syntaxes provided byoptparse .

Some other option syntaxes that the world has seen include:

• a hyphen followed by a few letters, e.g.-pf (this is not the same as multiple options merged into a
single argument.)

• a hyphen followed by a whole word, e.g.-file (this is technically equivalent to the previous syntax, but
they aren’t usually seen in the same program.)

• a plus sign followed by a single letter, or a few letters, or a word, e.g.+f, +rgb.

• a slash followed by a letter, or a few letters, or a word, e.g./f, /file.

optparse does not support these option syntaxes, and it never will. (If you really want to use one of
those option syntaxes, you’ll have to subclassOptionParser and override all the difficult bits. But
please don’t!optparse does things the traditional UNIX /GNU way deliberately; the first three are non-
standard anywhere, and the last one makes sense only if you’re exclusively targeting MS-DOS/Windows
and/or VMS.)

option argument
an argument that follows an option, is closely associated with that option, and is consumed from the argu-
ment list when the option is. Often, option arguments may also be included in the same argument as the
option, e.g. :

["-f", "foo"]

may be equivalent to:

["-ffoo"]

(optparse supports this syntax.)

Some options never take an argument. Some options always take an argument. Lots of people want an
“optional option arguments” feature, meaning that some options will take an argument if they see it, and
won’t if they don’t. This is somewhat controversial, because it makes parsing ambiguous: if-a and-b are
both options, and-a takes an optional argument, how do we interpret-ab? optparse does not support
optional option arguments.

positional argument
something leftover in the argument list after options have been parsed, i.e., after options and their arguments
have been parsed and removed from the argument list.

required option
an option that must be supplied on the command-line. The phrase “required option” is an oxymoron; the
presence of “required options” in a program is usually a sign of careless user interface design.optparse
doesn’t prevent you from implementing required options, but doesn’t give you much help with it either. See
“Extending Examples” (section 6.20.5) for two ways to implement required options withoptparse .

For example, consider this hypothetical command-line:

prog -v --report /tmp/report.txt foo bar

-v and--report are both options. Assuming the--report option takes one argument,/tmp/report.txt is an
option argument.foo andbar are positional arguments.

6.20. optparse — Powerful parser for command line options. 259

What are options for?

Options are used to provide extra information to tune or customize the execution of a program. In case it wasn’t
clear, options should beoptional. A program should be able to run just fine with no options whatsoever. (Pick
a random program from the UNIX or GNU toolsets. Can it run without any options at all and still make sense?
The only exceptions I can think of arefind, tar , anddd—all of which are mutant oddballs that have been rightly
criticized for their non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it. If it’s required, then it’snot
optional! If there is a piece of information that your program absolutely requires in order to run successfully,
that’s what positional arguments are for. (However, if you insist on adding “required options” to your programs,
look in “Extending Examples” (section 6.20.5) for two ways of implementing them withoptparse .)

Consider the humblecp utility, for copying files. It doesn’t make much sense to try to copy files without supplying
a destination and at least one source. Hence,cp fails if you run it with no arguments. However, it has a flexible,
useful syntax that does not rely on options at all:

$ cp SOURCE DEST
$ cp SOURCE ... DEST-DIR

You can get pretty far with just that. Mostcp implementations provide a bunch of options to tweak exactly how the
files are copied: you can preserve mode and modification time, avoid following symlinks, ask before clobbering
existing files, etc. But none of this distracts from the core mission ofcp, which is to copy one file to another, or N
files to another directory.

What are positional arguments for?

In case it wasn’t clear from the above example: positional arguments are for those pieces of information that your
program absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If your program requires 17 distinct
pieces of information in order to run successfully, it doesn’t much matterhowyou get that information from the
user—most people will give up and walk away before they successfully run the program. This applies whether
the user interface is a command-line, a configuration file, a GUI, or whatever: if you make that many demands on
your users, most of them will just give up.

In short, try to minimize the amount of information that users are absolutely required to supply—use sensible
defaults whenever possible. Of course, you also want to make your programs reasonably flexible. That’s what
options are for. Again, it doesn’t matter if they are entries in a config file, checkboxes in the “Preferences” dialog
of a GUI, or command-line options—the more options you implement, the more flexible your program is, and the
more complicated its implementation becomes. It’s quite easy to overwhelm users (and yourself!) with too much
flexibility, so be careful there.

6.20.2 Basic Usage

While optparse is quite flexible and powerful, you don’t have to jump through hoops or read reams of docu-
mentation to get it working in basic cases. This document aims to demonstrate some simple usage patterns that
will get you started usingoptparse in your scripts.

To parse a command line withoptparse , you must create anOptionParser instance and populate it. Obvi-
ously, you’ll have to import theOptionParser classes in any script that usesoptparse :

from optparse import OptionParser

Early on in the main program, create a parser:

260 Chapter 6. Generic Operating System Services

parser = OptionParser()

Then you can start populating the parser with options. Each option is really a set of synonymous option strings;
most commonly, you’ll have one short option string and one long option string — e.g.-f and--file:

parser.add_option("-f", "--file", ...)

The interesting stuff, of course, is what comes after the option strings. For now, we’ll only cover four of the things
you can put there:action, type, dest(destination), andhelp.

The store action

The action tellsoptparse what to do when it sees one of the option strings for this option on the command-line.
For example, the actionstoremeans: take the next argument (or the remainder of the current argument), ensure
that it is of the correct type, and store it to your chosen destination.

For example, let’s fill in the “...” of that last option:

parser.add_option("-f", "--file",
action="store", type="string", dest="filename")

Now let’s make up a fake command-line and askoptparse to parse it:

args = ["-f", "foo.txt"]
(options, args) = parser.parse_args(args)

(Note that if you don’t pass an argument list toparse args() , it automatically usessys.argv[1:] .)

Whenoptparse sees the-f, it consumes the next argument—foo.txt —and stores it in thefilename at-
tribute of a special object. That object is the first return value fromparse args() , so:

print options.filename

will print foo.txt .

Other option types supported byoptparse are int and float . Here’s an option that expects an integer
argument:

parser.add_option("-n", type="int", dest="num")

This example doesn’t provide a long option, which is perfectly acceptable. It also doesn’t specify the action—it
defaults to “store”.

Let’s parse another fake command-line. This time, we’ll jam the option argument right up against the option, since
-n42 (one argument) is equivalent to-n 42 (two arguments).

(options, args) = parser.parse_args(["-n42"])
print options.num

This prints42 .

Trying out the “float” type is left as an exercise for the reader.

If you don’t specify a type,optparse assumes “string”. Combined with the fact that the default action is “store”,

6.20. optparse — Powerful parser for command line options. 261

that means our first example can be a lot shorter:

parser.add_option("-f", "--file", dest="filename")

If you don’t supply a destination,optparse figures out a sensible default from the option strings: if the first long
option string is--foo-bar, then the default destination isfoo bar . If there are no long option strings,optparse
looks at the first short option: the default destination for-f is f .

Adding types is fairly easy; please refer to section 6.20.5, “Adding new types.”

Other store * actions

Flag options—set a variable to true or false when a particular option is seen—are quite common.optparse
supports them with two separate actions, “storetrue” and “store false”. For example, you might have averbose
flag that is turned on with-v and off with-q:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly OK. (It just means you have to
be a bit careful when setting default values—see below.)

Whenoptparse sees-v on the command line, it setsoptions.verbose to True ; when it sees-q, it sets
options.verbose to False .

Setting default values

All of the above examples involve setting some variable (the “destination”) when certain command-line options
are seen. What happens if those options are never seen? Since we didn’t supply any defaults, they are all set to
None. Sometimes, this is just fine (which is why it’s the default), but sometimes, you want more control. To
address that need,optparse lets you supply a default value for each destination, which is assigned before the
command-line is parsed.

First, consider the verbose/quiet example. If we wantoptparse to setverbose to True unless-q is seen,
then we can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)
parser.add_option("-q", action="store_false", dest="verbose")

Oddly enough, this is exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Those are equivalent because you’re supplying a default value for the option’sdestination, and these two options
happen to have the same destination (theverbose variable).

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value forverbose will be True : the last default value supplied for any particular destination

262 Chapter 6. Generic Operating System Services

is the one that counts.

Generating help

The last feature that you will use in every script isoptparse ’s ability to generate help messages. All you have to
do is supply ahelpargument when you add an option. Let’s create a new parser and populate it with user-friendly
(documented) options:

usage = "usage: %prog [options] arg1 arg2"
parser = OptionParser(usage=usage)
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose", default=True,
help="make lots of noise [default]")

parser.add_option("-q", "--quiet",
action="store_false", dest="verbose",
help="be vewwy quiet (I’m hunting wabbits)")

parser.add_option("-f", "--file", dest="filename",
metavar="FILE", help="write output to FILE"),

parser.add_option("-m", "--mode",
default="intermediate",
help="interaction mode: one of ’novice’, "

"’intermediate’ [default], ’expert’")

If optparse encounters either-h or --help on the command-line, or if you just callparser.print help() ,
it prints the following to stdout:

usage: <yourscript> [options] arg1 arg2

options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I’m hunting wabbits)
-fFILE, --file=FILE write output to FILE
-mMODE, --mode=MODE interaction mode: one of ’novice’, ’intermediate’

[default], ’expert’

There’s a lot going on here to helpoptparse generate the best possible help message:

• the script defines its own usage message:

usage = "usage: %prog [options] arg1 arg2"

optparse expands ‘%prog ’ in the usage string to the name of the current script, i.e.
os.path.basename(sys.argv[0]) . The expanded string is then printed before the detailed option
help.

If you don’t supply a usage string,optparse uses a bland but sensible default:"usage: %prog
[options]" , which is fine if your script doesn’t take any positional arguments.

• every option defines a help string, and doesn’t worry about line-wrapping—optparse takes care of wrap-
ping lines and making the help output look good.

• options that take a value indicate this fact in their automatically-generated help message, e.g. for the “mode”
option:

-mMODE, --mode=MODE

6.20. optparse — Powerful parser for command line options. 263

Here, “MODE” is called the meta-variable: it stands for the argument that the user is expected to supply to
-m/--mode. By default,optparse converts the destination variable name to uppercase and uses that for
the meta-variable. Sometimes, that’s not what you want—for example, thefilenameoption explicitly sets
metavar="FILE" , resulting in this automatically-generated option description:

-fFILE, --file=FILE

This is important for more than just saving space, though: the manually written help text uses the meta-
variable “FILE”, to clue the user in that there’s a connection between the formal syntax “-fFILE” and the
informal semantic description “write output to FILE”. This is a simple but effective way to make your help
text a lot clearer and more useful for end users.

When dealing with many options, it is convenient to group these options for better help output. An
OptionParser can contain several option groups, each of which can contain several options.

Continuing with the parser defined above, adding anOptionGroup to a parser is easy:

group = OptionGroup(parser, "Dangerous Options",
"Caution: use these options at your own risk. "
"It is believed that some of them bite.")

group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

This would result in the following help output:

usage: [options] arg1 arg2

options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I’m hunting wabbits)
-fFILE, --file=FILE write output to FILE
-mMODE, --mode=MODE interaction mode: one of ’novice’, ’intermediate’

[default], ’expert’

Dangerous Options:
Caution: use of these options is at your own risk. It is believed that
some of them bite.
-g Group option.

Print a version number

Similar to the brief usage string,optparse can also print a version string for your program. You have to supply
the string, as theversionargument toOptionParser :

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

versioncan contain anything you like;%prog is expanded inversionjust as withusage. When you supply it,
optparse automatically adds a--version option to your parser. If it encounters this option on the command
line, it expands yourversionstring (by replacing%prog), prints it to stdout, and exits.

For example, if your script is called /usr/bin/foo, a user might do:

264 Chapter 6. Generic Operating System Services

$ /usr/bin/foo --version
foo 1.0

Error-handling

The one thing you need to know for basic usage is howoptparse behaves when it encounters an error on the
command-line—e.g.-n 4x where-n is an integer-valued option. In this case,optparse prints your usage mes-
sage to stderr, followed by a useful and human-readable error message. Then it terminates (callssys.exit())
with a non-zero exit status.

If you don’t like this, subclassOptionParser and override theerror() method. See section 6.20.5, “Ex-
tendingoptparse .”

Putting it all together

Here’s whatoptparse -based scripts typically look like:

from optparse import OptionParser
[...]
def main():

usage = "usage: \%prog [-f] [-v] [-q] firstarg secondarg"
parser = OptionParser(usage)
parser.add_option("-f", "--file", type="string", dest="filename",

help="read data from FILENAME")
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose")

(options, args) = parser.parse_args()
if len(args) != 1:

parser.error("incorrect number of arguments")

if options.verbose:
print "reading \%s..." \% options.filename

[... go to work ...]

if __name__ == "__main__":
main()

6.20.3 Advanced Usage

Creating and populating the parser

There are several ways to populate the parser with options. One way is to pass a list ofOptions to the
OptionParser constructor:

6.20. optparse — Powerful parser for command line options. 265

from optparse import OptionParser, make_option
[...]
parser = OptionParser(option_list=[

make_option("-f", "--filename",
action="store", type="string", dest="filename"),

make_option("-q", "--quiet",
action="store_false", dest="verbose")])

(make option() is a factory function for generatingOption objects.)

For long option lists, it may be more convenient/readable to create the list separately:

option_list = [make_option("-f", "--filename",
action="store", type="string", dest="filename"),

[... more options ...]
make_option("-q", "--quiet",

action="store_false", dest="verbose")]
parser = OptionParser(option_list=option_list)

Or, you can use theadd option() method ofOptionParser to add options one-at-a-time:

parser = OptionParser()
parser.add_option("-f", "--filename",

action="store", type="string", dest="filename")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose")

This method makes it easier to track down exceptions raised by theOption constructor, which are common
because of the complicated interdependencies among the various keyword arguments. (If you get it wrong,
optparse raisesOptionError .)

add option() can be called in one of two ways:

• pass it anOption instance (as returned bymake option())

• pass it any combination of positional and keyword arguments that are acceptable tomake option() (i.e.,
to theOption constructor), and it will create theOption instance for you (shown above).

Defining options

EachOption instance represents a set of synonymous command-line options, i.e. options that have the same
meaning and effect, but different spellings. You can specify any number of short or long option strings, but you
must specify at least one option string.

To define an option with only a short option string:

make_option("-f", ...)

And to define an option with only a long option string:

make_option("--foo", ...)

The “...” represents a set of keyword arguments that define attributes of theOption object. The rules governing
which keyword args you must supply for a givenOption are fairly complicated, but you always have to supply

266 Chapter 6. Generic Operating System Services

some. If you get it wrong,optparse raises anOptionError exception explaining your mistake.

The most important attribute of an option is its action, i.e. what to do when we encounter this option on the
command-line. The possible actions are:

Action Meaning
store store this option’s argument (default)
store const store a constant value
store true store a true value
store false store a false value
append append this option’s argument to a list
count increment a counter by one
callback call a specified function
help print a usage message including all options and the documentation for them

(If you don’t supply an action, the default is “store”. For this action, you may also supplytypeanddestkeywords;
see below.)

As you can see, most actions involve storing or updating a value somewhere.optparse always creates
a particular object (an instance of theValues class) specifically for this purpose. Option arguments (and
various other values) are stored as attributes of this object, according to thedest (destination) argument to
make option() /add option() .

For example, when you call:

parser.parse_args()

one of the first thingsoptparse does is create avalues object:

values = Values()

If one of the options in this parser is defined with:

make_option("-f", "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

-ffoo
-f foo
--file=foo
--file foo

thenoptparse , on seeing the-f or --file option, will do the equivalent of this:

values.filename = "foo"

Clearly, thetypeanddestarguments are almost as important asaction. action is the only attribute that is mean-
ingful for all options, though, so it is the most important.

Option actions

The various option actions all have slightly different requirements and effects. Except for the “help” action, you
must supply at least one other keyword argument when creating theOption ; the exact requirements for each
action are listed here.

6.20. optparse — Powerful parser for command line options. 267

store
[relevant:type, dest, nargs, choices]

The option must be followed by an argument, which is converted to a value according totypeand stored in
dest. If nargs > 1 , multiple arguments will be consumed from the command line; all will be converted
according totypeand stored todestas a tuple. See section 6.20.3, “Option types,” below.

If choices(a sequence of strings) is supplied, the type defaults to “choice”.

If typeis not supplied, it defaults to “string”.

If destis not supplied,optparse derives a destination from the first long option strings (e.g.,--foo-bar
becomesfoo bar). If there are no long option strings,optparse derives a destination from the first
short option string (e.g.,-f becomesf).

Example:

make_option("-f")
make_option("-p", type="float", nargs=3, dest="point")

Given the following command line:

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set:

values.f = "bar.txt"
values.point = (1.0, -3.5, 4.0)

(Actually, values.f will be set twice, but only the second time is visible in the end.)

store const
[required:const, dest]

Theconstvalue supplied to theOption constructor is stored indest.

Example:

make_option("-q", "--quiet",
action="store_const", const=0, dest="verbose"),

make_option("-v", "--verbose",
action="store_const", const=1, dest="verbose"),

make_option("--noisy",
action="store_const", const=2, dest="verbose"),

If --noisy is seen,optparse will set:

values.verbose = 2

store true
[required:dest]

A special case of “storeconst” that storesTrue to dest.

store false
[required:dest]

Like “store true”, but storesFalse

Example:

268 Chapter 6. Generic Operating System Services

make_option(None, "--clobber", action="store_true", dest="clobber")
make_option(None, "--no-clobber", action="store_false", dest="clobber")

append
[relevant:type, dest, nargs, choices]

The option must be followed by an argument, which is appended to the list indest. If no default value for
dest is supplied (i.e. the default isNone), an empty list is automatically created whenoptparse first
encounters this option on the command-line. Ifnargs > 1 , multiple arguments are consumed, and a
tuple of lengthnargsis appended todest.

The defaults fortypeanddestare the same as for the “store” action.

Example:

make_option("-t", "--tracks", action="append", type="int")

If -t3 is seen on the command-line,optparse does the equivalent of:

values.tracks = []
values.tracks.append(int("3"))

If, a little later on,--tracks=4 is seen, it does:

values.tracks.append(int("4"))

See “Error handling” (section 6.20.2) for information on howoptparse deals with something like--
tracks=x.

count
[required:dest]

Increment the integer stored atdest. destis set to zero before being incremented the first time (unless you
supply a default value).

Example:

make_option("-v", action="count", dest="verbosity")

The first time-v is seen on the command line,optparse does the equivalent of:

values.verbosity = 0
values.verbosity += 1

Every subsequent occurrence of-v results in:

values.verbosity += 1

callback
[required:callback; relevant:type, nargs, callback args, callback kwargs]

Call the function specified bycallback. The signature of this function should be:

6.20. optparse — Powerful parser for command line options. 269

func(option : Option,
opt : string,
value : any,
parser : OptionParser,
*args, **kwargs)

Callback options are covered in detail in section 6.20.4, “Callback Options.”

help
[required: none]

Prints a complete help message for all the options in the current option parser. The help message is con-
structed from theusagestring passed toOptionParser ’s constructor and thehelpstring passed to every
option.

If no help string is supplied for an option, it will still be listed in the help message. To omit an option
entirely, use the special valueoptparse.SUPPRESS HELP.

Example:

from optparse import Option, OptionParser, SUPPRESS_HELP

usage = "usage: %prog [options]"
parser = OptionParser(usage, option_list=[

make_option("-h", "--help", action="help"),
make_option("-v", action="store_true", dest="verbose",

help="Be moderately verbose")
make_option("--file", dest="filename",

help="Input file to read data from"),
make_option("--secret", help=SUPPRESS_HELP)

])

If optparse sees either-h or --help on the command line, it will print something like the following help
message to stdout:

usage: <yourscript> [options]

options:
-h, --help Show this help message and exit
-v Be moderately verbose
--file=FILENAME Input file to read data from

After printing the help message,optparse terminates your process withsys.exit(0) .

version
[required: none]

Prints the version number supplied to theOptionParser to stdout and exits. The version number is
actually formatted and printed by theprint version() method ofOptionParser . Generally only
relevant if theversionargument is supplied to theOptionParser constructor.

Option types

optparse supports six option types out of the box:string, int, long, choice, floatandcomplex. (Of these, string,
int, float, and choice are the most commonly used —long and complex are there mainly for completeness.) It’s
easy to add new option types by subclassing theOption class; see section 6.20.5, “Extendingoptparse .”

Arguments to string options are not checked or converted in any way: the text on the command line is stored in
the destination (or passed to the callback) as-is.

270 Chapter 6. Generic Operating System Services

Integer arguments are passed toint() to convert them to Python integers. Ifint() fails, so will
optparse , although with a more useful error message. Internally,optparse raisesOptionValueError in
optparse.check builtin() ; at a higher level (inOptionParser), optparse catches this exception
and terminates your program with a useful error message.

Likewise, float arguments are passed tofloat() for conversion, long arguments tolong() , and complex
arguments tocomplex() . Apart from that, they are handled identically to integer arguments.

Choice options are a subtype of string options. A master list or tuple of choices (strings) must be passed to the
option constructor (make option() or OptionParser.add option()) as thechoiceskeyword argu-
ment. Choice option arguments are compared against this master list inoptparse.check choice() , and
OptionValueError is raised if an unknown string is given.

Querying and manipulating your option parser

Sometimes, it’s useful to poke around your option parser and see what’s there.OptionParser provides a
couple of methods to help you out:

has option (opt str)
Given an option string such as-q or --verbose, returns true if theOptionParser has an option with that
option string.

get option (opt str)
Returns theOption instance that implements the option string you supplied, orNone if no options imple-
ment it.

remove option (opt str)
If the OptionParser has an option corresponding toopt str, that option is removed. If that option
provided any other option strings, all of those option strings become invalid.

If opt str does not occur in any option belonging to thisOptionParser , raisesValueError .

Conflicts between options

If you’re not careful, it’s easy to define conflicting options:

parser.add_option("-n", "--dry-run", ...)
...
parser.add_option("-n", "--noisy", ...)

(This is even easier to do if you’ve defined your ownOptionParser subclass with some standard options.)

On the assumption that this is usually a mistake,optparse raises an exception (OptionConflictError)
by default when this happens. Since this is an easily-fixed programming error, you shouldn’t try to catch this
exception—fix your mistake and get on with life.

Sometimes, you want newer options to deliberately replace the option strings used by older options. You can
achieve this by calling:

parser.set_conflict_handler("resolve")

which instructsoptparse to resolve option conflicts intelligently.

Here’s how it works: every time you add an option,optparse checks for conflicts with previously-added op-
tions. If it finds any, it invokes the conflict-handling mechanism you specify either to theOptionParser
constructor:

parser = OptionParser(..., conflict_handler="resolve")

6.20. optparse — Powerful parser for command line options. 271

or via theset conflict handler() method.

The default conflict-handling mechanism iserror .

Here’s an example: first, define anOptionParser set to resolve conflicts intelligently:

parser = OptionParser(conflict_handler="resolve")

Now add all of our options:

parser.add_option("-n", "--dry-run", ..., help="original dry-run option")
...
parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously-added option is already using the-n option string. Since
conflict handler == "resolve" , it resolves the situation by removing-n from the earlier option’s list
of option strings. Now,--dry-run is the only way for the user to activate that option. If the user asks for help, the
help message will reflect that, e.g.:

options:
--dry-run original dry-run option
...
-n, --noisy be noisy

Note that it’s possible to whittle away the option strings for a previously-added option until there are none left,
and the user has no way of invoking that option from the command-line. In that case,optparse removes that
option completely, so it doesn’t show up in help text or anywhere else. E.g. if we carry on with our existing
OptionParser :

parser.add_option("--dry-run", ..., help="new dry-run option")

At this point, the first-n/--dry-run option is no longer accessible, sooptparse removes it. If the user asks for
help, they’ll get something like this:

options:
...
-n, --noisy be noisy
--dry-run new dry-run option

6.20.4 Callback Options

If optparse ’s built-in actions and types just don’t fit the bill for you, but it’s not worth extendingoptparse
to define your own actions or types, you’ll probably need to define a callback option. Defining callback options is
quite easy; the tricky part is writing a good callback (the function that is called whenoptparse encounters the
option on the command line).

Defining a callback option

As always, you can define a callback option either by directly instantiating theOption class, or by using the
add option() method of yourOptionParser object. The only option attribute you must specify iscall-
back, the function to call:

272 Chapter 6. Generic Operating System Services

parser.add_option("-c", callback=my_callback)

Note that you supply a function object here—so you must have already defined a functionmy callback()
when you define the callback option. In this simple case,optparse knows nothing about the arguments the-c
option expects to take. Usually, this means that the option doesn’t take any arguments – the mere presence of-c
on the command-line is all it needs to know. In some circumstances, though, you might want your callback to
consume an arbitrary number of command-line arguments. This is where writing callbacks gets tricky; it’s covered
later in this document.

There are several other option attributes that you can supply when you define an option attribute:

type
has its usual meaning: as with the “store” or “append” actions, it instructsoptparse to consume one
argument that must be convertible totype. Rather than storing the value(s) anywhere, though,optparse
converts it totypeand passes it to your callback function.

nargs
also has its usual meaning: if it is supplied and ‘nargs > 1 ’, optparse will consumenargsarguments,
each of which must be convertible totype. It then passes a tuple of converted values to your callback.

callback args
a tuple of extra positional arguments to pass to the callback.

callback kwargs
a dictionary of extra keyword arguments to pass to the callback.

How callbacks are called

All callbacks are called as follows:

func(option, opt, value, parser, *args, **kwargs)

where

option
is theOption instance that’s calling the callback.

opt
is the option string seen on the command-line that’s triggering the callback. (If an abbreviated long option
was used,opt will be the full, canonical option string—for example, if the user puts--foo on the command-
line as an abbreviation for--foobar, thenopt will be --foobar.)

value
is the argument to this option seen on the command-line.optparse will only expect an argument iftype
is set; the type ofvaluewill be the type implied by the option’s type (see 6.20.3, “Option types”). Iftype
for this option isNone (no argument expected), thenvaluewill be None. If ‘ nargs > 1 ’, valuewill be
a tuple of values of the appropriate type.

parser
is theOptionParser instance driving the whole thing, mainly useful because you can access some other
interesting data through it, as instance attributes:

parser.rargs
the current remaining argument list, i.e. withopt (andvalue, if any) removed, and only the arguments
following them still there. Feel free to modifyparser.rargs , e.g. by consuming more arguments.

6.20. optparse — Powerful parser for command line options. 273

parser.largs
the current set of leftover arguments, i.e. arguments that have been processed but have not been
consumed as options (or arguments to options). Feel free to modifyparser.largs e.g. by adding
more arguments to it.

parser.values
the object where option values are by default stored. This is useful because it lets callbacks use the
same mechanism as the rest ofoptparse for storing option values; you don’t need to mess around
with globals or closures. You can also access the value(s) of any options already encountered on the
command-line.

args
is a tuple of arbitrary positional arguments supplied via thecallback args option attribute.

kwargs
is a dictionary of arbitrary keyword arguments supplied viacallback kwargs.

Sinceargs andkwargsare optional (they are only passed if you supplycallback args and/orcallback kwargs
when you define your callback option), the minimal callback function is:

def my_callback (option, opt, value, parser):
pass

Error handling

The callback function should raiseOptionValueError if there are any problems with the option or its argu-
ment(s). optparse catches this and terminates the program, printing the error message you supply to stderr.
Your message should be clear, concise, accurate, and mention the option at fault. Otherwise, the user will have a
hard time figuring out what he did wrong.

Examples

Here’s an example of a callback option that takes no arguments, and simply records that the option was seen:

def record_foo_seen (option, opt, value, parser):
parser.saw_foo = 1

parser.add_option("--foo", action="callback", callback=record_foo_seen)

Of course, you could do that with the “storetrue” action. Here’s a slightly more interesting example: record the
fact that-a is seen, but blow up if it comes after-b in the command-line.

def check_order (option, opt, value, parser):
if parser.values.b:

raise OptionValueError("can’t use -a after -b")
parser.values.a = 1

...
parser.add_option("-a", action="callback", callback=check_order)
parser.add_option("-b", action="store_true", dest="b")

If you want to reuse this callback for several similar options (set a flag, but blow up if-b has already been seen),
it needs a bit of work: the error message and the flag that it sets must be generalized.

274 Chapter 6. Generic Operating System Services

def check_order (option, opt, value, parser):
if parser.values.b:

raise OptionValueError("can’t use %s after -b" % opt)
setattr(parser.values, option.dest, 1)

...
parser.add_option("-a", action="callback", callback=check_order, dest=’a’)
parser.add_option("-b", action="store_true", dest="b")
parser.add_option("-c", action="callback", callback=check_order, dest=’c’)

Of course, you could put any condition in there—you’re not limited to checking the values of already-defined
options. For example, if you have options that should not be called when the moon is full, all you have to do is
this:

def check_moon (option, opt, value, parser):
if is_full_moon():

raise OptionValueError("%s option invalid when moon full" % opt)
setattr(parser.values, option.dest, 1)

...
parser.add_option("--foo",

action="callback", callback=check_moon, dest="foo")

(The definition ofis full moon() is left as an exercise for the reader.)

Fixed arguments

Things get slightly more interesting when you define callback options that take a fixed number of arguments.
Specifying that a callback option takes arguments is similar to defining a “store” or “append” option: if you define
type, then the option takes one argument that must be convertible to that type; if you further definenargs, then the
option takes that many arguments.

Here’s an example that just emulates the standard “store” action:

def store_value (option, opt, value, parser):
setattr(parser.values, option.dest, value)

...
parser.add_option("--foo",

action="callback", callback=store_value,
type="int", nargs=3, dest="foo")

Note thatoptparse takes care of consuming 3 arguments and converting them to integers for you; all you have
to do is store them. (Or whatever: obviously you don’t need a callback for this example. Use your imagination!)

Variable arguments

Things get hairy when you want an option to take a variable number of arguments. For this case, you have to
write a callback;optparse doesn’t provide any built-in capabilities for it. You have to deal with the full-blown
syntax for conventional UNIX command-line parsing. (Previously,optparse took care of this for you, but I got
it wrong. It was fixed at the cost of making this kind of callback more complex.) In particular, callbacks have to
worry about bare-- and- arguments; the convention is:

• bare--, if not the argument to some option, causes command-line processing to halt and the-- itself is lost.

• bare- similarly causes command-line processing to halt, but the- itself is kept.

• either-- or - can be option arguments.

If you want an option that takes a variable number of arguments, there are several subtle, tricky issues to worry
about. The exact implementation you choose will be based on which trade-offs you’re willing to make for your
application (which is whyoptparse doesn’t support this sort of thing directly).

6.20. optparse — Powerful parser for command line options. 275

Nevertheless, here’s a stab at a callback for an option with variable arguments:

def varargs (option, opt, value, parser):
assert value is None
done = 0
value = []
rargs = parser.rargs
while rargs:

arg = rargs[0]

Stop if we hit an arg like "--foo", "-a", "-fx", "--file=f",
etc. Note that this also stops on "-3" or "-3.0", so if
your option takes numeric values, you will need to handle
this.
if ((arg[:2] == "--" and len(arg) > 2) or

(arg[:1] == "-" and len(arg) > 1 and arg[1] != "-")):
break

else:
value.append(arg)
del rargs[0]

setattr(parser.values, option.dest, value)

...
parser.add_option("-c", "--callback",

action="callback", callback=varargs)

The main weakness with this particular implementation is that negative numbers in the arguments following-c
will be interpreted as further options, rather than as arguments to-c. Fixing this is left as an exercise for the reader.

6.20.5 Extending optparse

Since the two major controlling factors in howoptparse interprets command-line options are the action and
type of each option, the most likely direction of extension is to add new actions and new types.

Also, the examples section includes several demonstrations of extendingoptparse in different ways: e.g. a
case-insensitive option parser, or two kinds of option parsers that implement “required options”.

Adding new types

To add new types, you need to define your own subclass ofoptparse ’s Option class. This class has a couple
of attributes that defineoptparse ’s types:TYPESandTYPE CHECKER.

TYPESis a tuple of type names; in your subclass, simply define a new tupleTYPESthat builds on the standard
one.

TYPE CHECKERis a dictionary mapping type names to type-checking functions. A type-checking function has
the following signature:

def check_foo (option : Option, opt : string, value : string)
-> foo

You can name it whatever you like, and make it return any type you like. The value returned by a type-checking
function will wind up in theOptionValues instance returned byOptionParser.parse args() , or be
passed to callbacks as thevalueparameter.

Your type-checking function should raiseOptionValueError if it encounters any problems.
OptionValueError takes a single string argument, which is passed as-is toOptionParser ’s error()

276 Chapter 6. Generic Operating System Services

method, which in turn prepends the program name and the string “error:” and prints everything to stderr before
terminating the process.

Here’s a silly example that demonstrates adding a “complex” option type to parse Python-style complex numbers
on the command line. (This is even sillier than it used to be, becauseoptparse 1.3 adds built-in support for
complex numbers [purely for completeness], but never mind.)

First, the necessary imports:

from copy import copy
from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (in theTYPE CHECKERclass attribute of
yourOption subclass):

def check_complex (option, opt, value):
try:

return complex(value)
except ValueError:

raise OptionValueError(
"option %s: invalid complex value: %r" % (opt, value))

Finally, theOption subclass:

class MyOption (Option):
TYPES = Option.TYPES + ("complex",)
TYPE_CHECKER = copy(Option.TYPE_CHECKER)
TYPE_CHECKER["complex"] = check_complex

(If we didn’t make acopy() of Option.TYPE CHECKER, we would end up modifying theTYPE CHECKER
attribute ofoptparse ’s Option class. This being Python, nothing stops you from doing that except good manners
and common sense.)

That’s it! Now you can write a script that uses the new option type just like any otheroptparse -based script,
except you have to instruct yourOptionParser to useMyOption instead ofOption :

parser = OptionParser(option_class=MyOption)
parser.add_option("-c", action="store", type="complex", dest="c")

Alternately, you can build your own option list and pass it toOptionParser ; if you don’t useadd option()
in the above way, you don’t need to tellOptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]
parser = OptionParser(option_list=option_list)

Adding new actions

Adding new actions is a bit trickier, because you have to understand thatoptparse has a couple of classifications
for actions:

“store” actions
actions that result inoptparse storing a value to an attribute of the OptionValues instance; these options
require adestattribute to be supplied to the Option constructor

6.20. optparse — Powerful parser for command line options. 277

“typed” actions
actions that take a value from the command line and expect it to be of a certain type; or rather, a string that
can be converted to a certain type. These options require atypeattribute to the Option constructor.

Some default “store” actions arestore, store const, append, andcount. The default “typed” actions arestore,
append, andcallback.

When you add an action, you need to decide if it’s a “store” action, a “typed”, neither, or both. Three class
attributes ofOption (or yourOption subclass) control this:

ACTIONS
All actions must be listed as strings in ACTIONS.

STORE ACTIONS
“store” actions are additionally listed here.

TYPED ACTIONS
“typed” actions are additionally listed here.

In order to actually implement your new action, you must overrideOption ’s take action() method and add
a case that recognizes your action.

For example, let’s add an “extend” action. This is similar to the standard “append” action, but instead of taking
a single value from the command-line and appending it to an existing list, “extend” will take multiple values in a
single comma-delimited string, and extend an existing list with them. That is, if--namesis an “extend” option of
type string, the command line:

--names=foo,bar --names blah --names ding,dong

would result in a list:

["foo", "bar", "blah", "ding", "dong"]

Again we define a subclass ofOption :

class MyOption (Option):

ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)

def take_action (self, action, dest, opt, value, values, parser):
if action == "extend":

lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)

else:
Option.take_action(

self, action, dest, opt, value, values, parser)

Features of note:

• “extend” both expects a value on the command-line and stores that value somewhere, so it goes in both
STORE ACTIONSandTYPED ACTIONS.

• MyOption.take action() implements just this one new action, and passes control back to
Option.take action() for the standardoptparse actions.

• valuesis an instance of theValues class, which provides the very usefulensure value() method.
ensure value() is essentiallygetattr() with a safety valve; it is called as:

278 Chapter 6. Generic Operating System Services

values.ensure_value(attr, value)

If the attr attribute ofvaluesdoesn’t exist or isNone, thenensure value() first sets it tovalue, and then
returnsvalue. This is very handy for actions like “extend”, “append”, and “count”, all of which accumulate data
in a variable and expect that variable to be of a certain type (a list for the first two, an integer for the latter). Using
ensure value() means that scripts using your action don’t have to worry about setting a default value for the
option destinations in question; they can just leave the default asNone andensure value() will take care of
getting it right when it’s needed.

Other reasons to extend optparse

Adding new types and new actions are the big, obvious reasons why you might want to extendoptparse . I can
think of at least two other areas to play with.

First, the simple one:OptionParser tries to be helpful by callingsys.exit() when appropriate, i.e. when
there’s an error on the command-line or when the user requests help. In the former case, the traditional course of
letting the script crash with a traceback is unacceptable; it will make users think there’s a bug in your script when
they make a command-line error. In the latter case, there’s generally not much point in carrying on after printing
a help message.

If this behaviour bothers you, it shouldn’t be too hard to “fix” it. You’ll have to

1. subclass OptionParser and override the error() method

2. subclass Option and override the takeaction() method—you’ll need to provide your own handling of the
“help” action that doesn’t call sys.exit()

The second, much more complex, possibility is to override the command-line syntax implemented byoptparse .
In this case, you’d leave the whole machinery of option actions and types alone, but rewrite the code that pro-
cessessys.argv . You’ll need to subclassOptionParser in any case; depending on how radical a rewrite
you want, you’ll probably need to override one or all ofparse args() , process long opt() , and
process short opts() .

Both of these are left as an exercise for the reader. I have not tried to implement either myself, since I’m quite
happy withoptparse ’s default behaviour (naturally).

Happy hacking, and don’t forget: Use the Source, Luke.

Examples

Here are a few examples of extending theoptparse module.

First, let’s change the option-parsing to be case-insensitive:

from optparse import Option, OptionParser, _match_abbrev

This case-insensitive option parser relies on having a
case-insensitive dictionary type available. Here’s one
for Python 2.2. Note that a *real* case-insensitive
dictionary type would also have to implement __new__(),
update(), and setdefault() -- but that’s not the point
of this exercise.

class caseless_dict (dict):
def __setitem__ (self, key, value):

dict.__setitem__(self, key.lower(), value)

def __getitem__ (self, key):

6.20. optparse — Powerful parser for command line options. 279

return dict.__getitem__(self, key.lower())

def get (self, key, default=None):
return dict.get(self, key.lower())

def has_key (self, key):
return dict.has_key(self, key.lower())

class CaselessOptionParser (OptionParser):

def _create_option_list (self):
self.option_list = []
self._short_opt = caseless_dict()
self._long_opt = caseless_dict()
self._long_opts = []
self.defaults = {}

def _match_long_opt (self, opt):
return _match_abbrev(opt.lower(), self._long_opt.keys())

if __name__ == "__main__":
from optik.errors import OptionConflictError

test 1: no options to start with
parser = CaselessOptionParser()
try:

parser.add_option("-H", dest="blah")
except OptionConflictError:

print "ok: got OptionConflictError for -H"
else:

print "not ok: no conflict between -h and -H"

parser.add_option("-f", "--file", dest="file")
#print ‘parser.get_option("-f")‘
#print ‘parser.get_option("-F")‘
#print ‘parser.get_option("--file")‘
#print ‘parser.get_option("--fIlE")‘
(options, args) = parser.parse_args(["--FiLe", "foo"])
assert options.file == "foo", options.file
print "ok: case insensitive long options work"

(options, args) = parser.parse_args(["-F", "bar"])
assert options.file == "bar", options.file
print "ok: case insensitive short options work"

And two ways of implementing “required options” withoptparse .

Version 1: Add a method toOptionParser which applications must call after parsing arguments:

1.py

Version 2: ExtendOption and add arequired attribute; extendOptionParser to ensure that required
options are present after parsing:

2.py

280 Chapter 6. Generic Operating System Services

6.21 tempfile — Generate temporary files and directories

This module generates temporary files and directories. It works on all supported platforms.

In version 2.3 of Python, this module was overhauled for enhanced security. It now provides three new functions,
NamedTemporaryFile() , mkstemp() , andmkdtemp() , which should eliminate all remaining need to use
the insecuremktemp() function. Temporary file names created by this module no longer contain the process ID;
instead a string of six random characters is used.

Also, all the user-callable functions now take additional arguments which allow direct control over the location and
name of temporary files. It is no longer necessary to use the globaltempdirandtemplatevariables. To maintain
backward compatibility, the argument order is somewhat odd; it is recommended to use keyword arguments for
clarity.

The module defines the following user-callable functions:

TemporaryFile ([mode=’w+b’] [, bufsize=-1] [, suffix] [, prefix] [, dir])
Return a file (or file-like) object that can be used as a temporary storage area. The file is created using
mkstemp . It will be destroyed as soon as it is closed (including an implicit close when the object is
garbage collected). Under UNIX , the directory entry for the file is removed immediately after the file is
created. Other platforms do not support this; your code should not rely on a temporary file created using
this function having or not having a visible name in the file system.

Themodeparameter defaults to’w+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
bufsizedefaults to-1 , meaning that the operating system default is used.

Thedir, prefixandsuffixparameters are passed tomkstemp() .

NamedTemporaryFile ([mode=’w+b’] [, bufsize=-1] [, suffix] [, prefix] [, dir])
This function operates exactly asTemporaryFile() does, except that the file is guaranteed to have a
visible name in the file system (on UNIX , the directory entry is not unlinked). That name can be retrieved
from thename member of the file object. Whether the name can be used to open the file a second time,
while the named temporary file is still open, varies across platforms (it can be so used on UNIX ; it cannot
on Windows NT or later). New in version 2.3.

mkstemp ([suffix] [, prefix] [, dir] [, text=False])
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s
creation, assuming that the platform properly implements theO EXCLflag for os.open() . The file is
readable and writable only by the creating user ID. If the platform uses permission bits to indicate whether
a file is executable, the file is executable by no one. The file descriptor is not inherited by child processes.

Unlike TemporaryFile() , the user ofmkstemp() is responsible for deleting the temporary file when
done with it.

If suffixis specified, the file name will end with that suffix, otherwise there will be no suffix.mkstemp()
does not put a dot between the file name and the suffix; if you need one, put it at the beginning ofsuffix.

If prefix is specified, the file name will begin with that prefix; otherwise, a default prefix is used.

If dir is specified, the file will be created in that directory; otherwise, a default directory is used.

If text is specified, it indicates whether to open the file in binary mode (the default) or text mode. On some
platforms, this makes no difference.

mkstemp() returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open()) and the absolute pathname of that file, in that order. New in version 2.3.

mkdtemp([suffix] [, prefix] [, dir])
Creates a temporary directory in the most secure manner possible. There are no race conditions in the
directory’s creation. The directory is readable, writable, and searchable only by the creating user ID.

The user ofmkdtemp() is responsible for deleting the temporary directory and its contents when done
with it.

Theprefix, suffix, anddir arguments are the same as formkstemp() .

mkdtemp() returns the absolute pathname of the new directory. New in version 2.3.

6.21. tempfile — Generate temporary files and directories 281

mktemp([suffix] [, prefix] [, dir])
Deprecated since release 2.3.Usemkstemp() instead.

Return an absolute pathname of a file that did not exist at the time the call is made. Theprefix, suffix, and
dir arguments are the same as formkstemp() .

Warning: Use of this function may introduce a security hole in your program. By the time you get around
to doing anything with the file name it returns, someone else may have beaten you to the punch.

The module uses two global variables that tell it how to construct a temporary name. They are initialized at the
first call to any of the functions above. The caller may change them, but this is discouraged; use the appropriate
function arguments, instead.

tempdir
When set to a value other thanNone, this variable defines the default value for thedir argument to all the
functions defined in this module.

If tempdir is unset orNone at any call to any of the above functions, Python searches a standard list of
directories and setstempdirto the first one which the calling user can create files in. The list is:

1.The directory named by the TMPDIR environment variable.

2.The directory named by the TEMP environment variable.

3.The directory named by the TMP environment variable.

4.A platform-specific location:

•On Macintosh, the ‘Temporary Items’ folder.

•On RiscOS, the directory named by the Wimp$ScrapDir environment variable.

•On Windows, the directories ‘C:\TEMP’, ‘ C:\TMP’, ‘ \TEMP’, and ‘\TMP’, in that order.

•On all other platforms, the directories ‘/tmp’, ‘ /var/tmp’, and ‘/usr/tmp’, in that order.

5.As a last resort, the current working directory.

gettempdir ()
Return the directory currently selected to create temporary files in. Iftempdir is not None, this simply
returns its contents; otherwise, the search described above is performed, and the result returned.

template
Deprecated since release 2.0.Usegettempprefix() instead.

When set to a value other thanNone, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of six random letters and digits is appended to the prefix to make the
filename unique. On Windows, the default prefix is ‘˜T’; on all other systems it is ‘tmp’.

Older versions of this module used to require thattemplate be set toNone after a call toos.fork() ;
this has not been necessary since version 1.5.2.

gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory component.
Using this function is preferred over reading thetemplatevariable directly. New in version 1.5.2.

6.22 errno — Standard errno system symbols

This module makes available standarderrno system symbols. The value of each symbol is the corresponding
integer value. The names and descriptions are borrowed from ‘linux/include/errno.h’, which should be pretty all-
inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For
instance,errno.errorcode[errno.EPERM] maps to’EPERM’ .

To translate a numeric error code to an error message, useos.strerror() .

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific
list of defined symbols is available aserrno.errorcode.keys() . Symbols available can include:

282 Chapter 6. Generic Operating System Services

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE

6.22. errno — Standard errno system symbols 283

Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

284 Chapter 6. Generic Operating System Services

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO

6.22. errno — Standard errno system symbols 285

Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

286 Chapter 6. Generic Operating System Services

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM

6.22. errno — Standard errno system symbols 287

Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.23 glob — UNIX style pathname pattern expansion

The glob module finds all the pathnames matching a specified pattern according to the rules used by the
UNIX shell. No tilde expansion is done, but* , ?, and character ranges expressed with[] will be correctly
matched. This is done by using theos.listdir() andfnmatch.fnmatch() functions in concert, and not
by actually invoking a subshell. (For tilde and shell variable expansion, useos.path.expanduser() and
os.path.expandvars() .)

glob (pathname)
Returns a possibly-empty list of path names that matchpathname, which must be a string containing a
path specification.pathnamecan be either absolute (like ‘/usr/src/Python-1.5/Makefile’) or relative (like
‘ ../../Tools/*/*.gif’), and can contain shell-style wildcards.

For example, consider a directory containing only the following files: ‘1.gif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

>>> import glob
>>> glob.glob(’./[0-9].*’)
[’./1.gif’, ’./2.txt’]
>>> glob.glob(’*.gif’)
[’1.gif’, ’card.gif’]
>>> glob.glob(’?.gif’)
[’1.gif’]

See Also:

Modulefnmatch (section 6.24):
Shell-style filename (not path) expansion

6.24 fnmatch — UNIX filename pattern matching

This module provides support for UNIX shell-style wildcards, which arenot the same as regular expressions
(which are documented in there module). The special characters used in shell-style wildcards are:

Pattern Meaning
* matches everything
? matches any single character

[seq] matches any character inseq
[! seq] matches any character not inseq

Note that the filename separator (’/’ on UNIX) is not special to this module. See moduleglob for pathname
expansion (glob usesfnmatch() to match pathname segments). Similarly, filenames starting with a period are
not special for this module, and are matched by the* and? patterns.

288 Chapter 6. Generic Operating System Services

fnmatch (filename, pattern)
Test whether thefilenamestring matches thepatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison
is performed. If you require a case-sensitive comparison regardless of whether that’s standard for your
operating system, usefnmatchcase() instead.

fnmatchcase (filename, pattern)
Test whetherfilenamematchespattern, returning true or false; the comparison is case-sensitive.

filter (names, pattern)
Return the subset of the list ofnamesthat matchpattern. It is the same as[n for n in names if
fnmatch(n, pattern)] , but implemented more efficiently. New in version 2.2.

See Also:

Moduleglob (section 6.23):
UNIX shell-style path expansion.

6.25 shutil — High-level file operations

The shutil module offers a number of high-level operations on files and collections of files. In particular,
functions are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that resources
will be lost and file type and creator codes will not be correct.

copyfile (src, dst)
Copy the contents of the file namedsrc to a file nameddst. If dst exists, it will be replaced, otherwise it
will be created. Special files such as character or block devices and pipes cannot not be copied with this
function.srcanddstare path names given as strings.

copyfileobj (fsrc, fdst[, length])
Copy the contents of the file-like objectfsrc to the file-like objectfdst. The integerlength, if given, is the
buffer size. In particular, a negativelengthvalue means to copy the data without looping over the source
data in chunks; by default the data is read in chunks to avoid uncontrolled memory consumption.

copymode (src, dst)
Copy the permission bits fromsrc to dst. The file contents, owner, and group are unaffected.srcanddstare
path names given as strings.

copystat (src, dst)
Copy the permission bits, last access time, and last modification time fromsrc to dst. The file contents,
owner, and group are unaffected.srcanddstare path names given as strings.

copy (src, dst)
Copy the filesrc to the file or directorydst. If dst is a directory, a file with the same basename assrc is
created (or overwritten) in the directory specified. Permission bits are copied.src anddst are path names
given as strings.

copy2 (src, dst)
Similar tocopy() , but last access time and last modification time are copied as well. This is similar to the
UNIX commandcp -p.

copytree (src, dst[, symlinks])
Recursively copy an entire directory tree rooted atsrc. The destination directory, named bydst, must not
already exist; it will be created. Individual files are copied usingcopy2() . If symlinksis true, symbolic
links in the source tree are represented as symbolic links in the new tree; if false or omitted, the contents of
the linked files are copied to the new tree. If exception(s) occur, an Error is raised with a list of reasons.

The source code for this should be considered an example rather than a tool. Changed in version 2.3: Error
is raised if any exceptions occur during copying, rather than printing a message.

rmtree (path[, ignore errors[, onerror]])
Delete an entire directory tree. Ifignore errors is true, errors resulting from failed removals will be ignored;

6.25. shutil — High-level file operations 289

if false or omitted, such errors are handled by calling a handler specified byonerror or, if that is omitted,
they raise an exception.

If onerror is provided, it must be a callable that accepts three parameters:function, path, andexcinfo.
The first parameter,function, is the function which raised the exception; it will beos.listdir() ,
os.remove() or os.rmdir() . The second parameter,path, will be the path name passed tofunction.
The third parameter,excinfo, will be the exception information return bysys.exc info() . Exceptions
raised byonerror will not be caught.

move(src, dst)
Recursively move a file or directory to another location.

If the destination is on our current filesystem, then simply use rename. Otherwise, copy src to the dst and
then remove src.

New in version 2.3.

exceptionError
This exception collects exceptions that raised during a mult-file operation. Forcopytree , the exception
argument is a list of 3-tuples (srcname, dstname, exception).

New in version 2.3.

6.25.1 Example

This example is the implementation of thecopytree() function, described above, with the docstring omitted.
It demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=0):
names = os.listdir(src)
os.mkdir(dst)
for name in names:

srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:

if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)

elif os.path.isdir(srcname):
copytree(srcname, dstname, symlinks)

else:
copy2(srcname, dstname)

except (IOError, os.error), why:
print "Can’t copy %s to %s: %s" % (‘srcname‘, ‘dstname‘, str(why))

6.26 locale — Internationalization services

Thelocale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to
know all the specifics of each country where the software is executed.

The locale module is implemented on top of thelocale module, which in turn uses an ANSI C locale
implementation if available.

The locale module defines the following exception and functions:

exceptionError
Exception raised whensetlocale() fails.

setlocale (category[, locale])
If locale is specified, it may be a string, a tuple of the form(language code, encoding) , or None. If

290 Chapter 6. Generic Operating System Services

it is a tuple, it is converted to a string using the locale aliasing engine. Iflocale is given and notNone,
setlocale() modifies the locale setting for thecategory. The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings.
If the modification of the locale fails, the exceptionError is raised. If successful, the new locale setting is
returned.

If locale is omitted orNone, the current setting forcategoryis returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL, ’’)

This sets the locale for all categories to the user’s default setting (typically specified in the LANG environ-
ment variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Changed in version 2.0: Added support for tuple values of thelocaleparameter.

localeconv ()
Returns the database of the local conventions as a dictionary. This dictionary has the following strings as
keys:

Key Category Meaning
LC NUMERIC ’decimal point’ Decimal point character.

’grouping’ Sequence of numbers specifying which relative posi-
tions the ’thousands sep’ is expected. If the
sequence is terminated withCHAR MAX, no further
grouping is performed. If the sequence terminates with
a0, the last group size is repeatedly used.

’thousands sep’ Character used between groups.
LC MONETARY ’int curr symbol’ International currency symbol.

’currency symbol’ Local currency symbol.
’mon decimal point’ Decimal point used for monetary values.
’mon thousands sep’ Group separator used for monetary values.
’mon grouping’ Equivalent to’grouping’ , used for monetary val-

ues.
’positive sign’ Symbol used to annotate a positive monetary value.
’negative sign’ Symbol used to annotate a nnegative monetary value.
’frac digits’ Number of fractional digits used in local formatting of

monetary values.
’int frac digits’ Number of fractional digits used in international for-

matting of monetary values.

The possible values for’p sign posn’ and’n sign posn’ are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.

LC MAX Nothing is specified in this locale.

nl langinfo (option)
Return some locale-specific information as a string. This function is not available on all systems, and the set
of possible options might also vary across platforms. The possible argument values are numbers, for which
symbolic constants are available in the locale module.

getdefaultlocale ([envvars])
Tries to determine the default locale settings and returns them as a tuple of the form(language code,
encoding) .

According to POSIX, a program which has not calledsetlocale(LC ALL, ’’) runs using the
portable’C’ locale. Callingsetlocale(LC ALL, ’’) lets it use the default locale as defined by

6.26. locale — Internationalization services 291

the LANG variable. Since we do not want to interfere with the current locale setting we thus emulate the
behavior in the way described above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables
given as envvars parameter. The first found to be defined will be used.envvarsdefaults to the search
path used in GNU gettext; it must always contain the variable name ‘LANG’. The GNU gettext search path
contains’LANGUAGE’, ’LC ALL’ , ’LC CTYPE’, and’LANG’ , in that order.

Except for the code’C’ , the language code corresponds to RFC 1766.language codeandencodingmay
beNone if their values cannot be determined. New in version 2.0.

getlocale ([category])
Returns the current setting for the given locale category as sequence containinglanguage code, encoding.
categorymay be one of theLC * values exceptLC ALL. It defaults toLC CTYPE.

Except for the code’C’ , the language code corresponds to RFC 1766.language codeandencodingmay
beNone if their values cannot be determined. New in version 2.0.

getpreferredencoding ([do setlocale])
Return the encoding used for text data, according to user preferences. User preferences are expressed
differently on different systems, and might not be available programmatically on some systems, so this
function only returns a guess.

On some systems, it is necessary to invokesetlocale to obtain the user preferences, so this function is
not thread-safe. If invoking setlocale is not necessary or desired,do setlocaleshould be set toFalse .

New in version 2.3.

normalize (localename)
Returns a normalized locale code for the given locale name. The returned locale code is formatted for use
with setlocale() . If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code just like
setlocale() . New in version 2.0.

resetlocale ([category])
Sets the locale forcategoryto the default setting.

The default setting is determined by callinggetdefaultlocale() . categorydefaults toLC ALL. New
in version 2.0.

strcoll (string1, string2)
Compares two strings according to the currentLC COLLATEsetting. As any other compare function,
returns a negative, or a positive value, or0, depending on whetherstring1collates before or afterstring2or
is equal to it.

strxfrm (string)
Transforms a string to one that can be used for the built-in functioncmp() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a
sequence of strings.

format (format, val[, grouping])
Formats a numberval according to the currentLC NUMERICsetting. The format follows the conventions
of the%operator. For floating point values, the decimal point is modified if appropriate. Ifgroupingis true,
also takes the grouping into account.

str (float)
Formats a floating point number using the same format as the built-in functionstr(float) , but takes the
decimal point into account.

atof (string)
Converts a string to a floating point number, following theLC NUMERICsettings.

atoi (string)
Converts a string to an integer, following theLC NUMERICconventions.

LC CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions
of modulestring dealing with case change their behaviour.

292 Chapter 6. Generic Operating System Services

LC COLLATE
Locale category for sorting strings. The functionsstrcoll() andstrxfrm() of the locale module
are affected.

LC TIME
Locale category for the formatting of time. The functiontime.strftime() follows these conventions.

LC MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware
messages. Messages displayed by the operating system, like those returned byos.strerror() might be
affected by this category.

LC NUMERIC
Locale category for formatting numbers. The functionsformat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for
all categories is attempted. If that fails for any category, no category is changed at all. When the locale is
retrieved using this flag, a string indicating the setting for all categories is returned. This string can be later
used to restore the settings.

CHAR MAX
This is a symbolic constant used for different values returned bylocaleconv() .

Thenl langinfo function accepts one of the following keys. Most descriptions are taken from the correspond-
ing description in the GNU C library.

CODESET
Return a string with the name of the character encoding used in the selected locale.

D T FMT
Return a string that can be used as a format string for strftime(3) to represent time and date in a locale-
specific way.

D FMT
Return a string that can be used as a format string for strftime(3) to represent a date in a locale-specific way.

T FMT
Return a string that can be used as a format string for strftime(3) to represent a time in a locale-specific way.

T FMT AMPM
The return value can be used as a format string for ‘strftime’ to represent time in the am/pm format.

DAY 1 ... DAY 7
Return name of the n-th day of the week.Warning: This follows the US convention ofDAY 1 being
Sunday, not the international convention (ISO 8601) that Monday is the first day of the week.

ABDAY 1 ... ABDAY 7
Return abbreviated name of the n-th day of the week.

MON1 ... MON 12
Return name of the n-th month.

ABMON1 ... ABMON 12
Return abbreviated name of the n-th month.

RADIXCHAR
Return radix character (decimal dot, decimal comma, etc.)

THOUSEP
Return separator character for thousands (groups of three digits).

YESEXPR

6.26. locale — Internationalization services 293

Return a regular expression that can be used with the regex function to recognize a positive response to a
yes/no question.Warning: The expression is in the syntax suitable for theregex() function from the C
library, which might differ from the syntax used inre .

NOEXPR
Return a regular expression that can be used with the regex(3) function to recognize a negative response to
a yes/no question.

CRNCYSTR
Return the currency symbol, preceded by ”-” if the symbol should appear before the value, ”+” if the symbol
should appear after the value, or ”.” if the symbol should replace the radix character.

ERA
The return value represents the era used in the current locale.

Most locales do not define this value. An example of a locale which does define this value is the Japanese
one. In Japan, the traditional representation of dates includes the name of the era corresponding to the
then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying theE modifier in their format
strings causes thestrftime function to use this information. The format of the returned string is not
specified, and therefore you should not assume knowledge of it on different systems.

ERA YEAR
The return value gives the year in the relevant era of the locale.

ERA D T FMT
This return value can be used as a format string forstrftime to represent dates and times in a locale-
specific era-based way.

ERA D FMT
This return value can be used as a format string forstrftime to represent time in a locale-specific era-
based way.

ALT DIGITS
The return value is a representation of up to 100 values used to represent the values 0 to 99.

Example:

>>> import locale
>>> loc = locale.getlocale(locale.LC_ALL) # get current locale
>>> locale.setlocale(locale.LC_ALL, ’de_DE’) # use German locale; name might vary with platform
>>> locale.strcoll(’f\xe4n’, ’foo’) # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, ’’) # use user’s preferred locale
>>> locale.setlocale(locale.LC_ALL, ’C’) # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.26.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top
of that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This
makes the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the ‘C’ locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by callingsetlocale(LC ALL,
’’) .

It is generally a bad idea to callsetlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run
before the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected
by the locale (such asstring.lower() , or certain formats used withtime.strftime()), you will have to

294 Chapter 6. Generic Operating System Services

find a way to do it without using the standard library routine. Even better is convincing yourself that using locale
settings is okay. Only as a last resort should you document that your module is not compatible with non-‘C’ locale
settings.

The case conversion functions in thestring module are affected by the locale settings. When a call
to the setlocale() function changes theLC CTYPE settings, the variablesstring.lowercase ,
string.uppercase and string.letters are recalculated. Note that this code that uses these vari-
able through ‘from ... import ...’, e.g. from string import letters , is not affected by subsequent
setlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() , atoi() , format() , str() .

6.26.2 For extension writers and programs that embed Python

Extension modules should never callsetlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or
not the locale is ‘C’).

When Python is embedded in an application, if the application sets the locale to something specific before ini-
tializing Python, that is generally okay, and Python will use whatever locale is set,exceptthat theLC NUMERIC
locale should always be ‘C’.

Thesetlocale() function in thelocale module gives the Python programmer the impression that you can
manipulate theLC NUMERIClocale setting, but this not the case at the C level: C code will always find that the
LC NUMERIClocale setting is ‘C’. This is because too much would break when the decimal point character is
set to something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding
Python’s global interpreter lock may occasionally find that the numeric locale setting differs; this is because the
only portable way to implement this feature is to set the numeric locale settings to what the user requests, extract
the relevant characteristics, and then restore the ‘C’ numeric locale.

When Python code uses thelocale module to change the locale, this also affects the embedding application. If
the embedding application doesn’t want this to happen, it should remove thelocale extension module (which
does all the work) from the table of built-in modules in the ‘config.c’ file, and make sure that thelocale module
is not accessible as a shared library.

6.26.3 Access to message catalogs

The locale module exposes the C library’s gettext interface on systems that provide this interface. It consists of the
functionsgettext() , dgettext() , dcgettext() , textdomain() , andbindtextdomain() . These
are similar to the same functions in thegettext module, but use the C library’s binary format for message
catalogs, and the C library’s search algorithms for locating message catalogs.

Python applications should normally find no need to invoke these functions, and should usegettext instead.
A known exception to this rule are applications that link use additional C libraries which internally invoke
gettext() or cdgettext() . For these applications, it may be necessary to bind the text domain, so that
the libraries can properly locate their message catalogs.

6.27 gettext — Multilingual internationalization services

The gettext module provides internationalization (I18N) and localization (L10N) services for your Python
modules and applications. It supports both the GNUgettext message catalog API and a higher level, class-
based API that may be more appropriate for Python files. The interface described below allows you to write
your module and application messages in one natural language, and provide a catalog of translated messages for
running under different natural languages.

Some hints on localizing your Python modules and applications are also given.

6.27. gettext — Multilingual internationalization services 295

6.27.1 GNU gettext API

The gettext module defines the following API, which is very similar to the GNUgettext API. If you use
this API you will affect the translation of your entire application globally. Often this is what you want if your
application is monolingual, with the choice of language dependent on the locale of your user. If you are localizing
a Python module, or if your application needs to switch languages on the fly, you probably want to use the class-
based API instead.

bindtextdomain (domain[, localedir])
Bind thedomainto the locale directorylocaledir. More concretely,gettext will look for binary ‘.mo’
files for the given domain using the path (on UNIX): ‘ localedir/language/LC MESSAGES/domain.mo’,
wherelanguagesis searched for in the environment variables LANGUAGE, LCALL, LC MESSAGES,
and LANG respectively.

If localedir is omitted orNone, then the current binding fordomainis returned.2

textdomain ([domain])
Change or query the current global domain. Ifdomainis None, then the current global domain is returned,
otherwise the global domain is set todomain, which is returned.

gettext (message)
Return the localized translation ofmessage, based on the current global domain, language, and locale direc-
tory. This function is usually aliased asin the local namespace (see examples below).

dgettext (domain, message)
Like gettext() , but look the message up in the specifieddomain.

ngettext (singular, plural, n)
Like gettext() , but consider plural forms. If a translation is found, apply the plural formula ton, and
return the resulting message (some languages have more than two plural forms). If no translation is found,
returnsingular if n is 1; returnplural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python expression that has a free variable
n; the expression evaluates to the index of the plural in the catalog. See the GNU gettext documentation for
the precise syntax to be used in .po files, and the formulas for a variety of languages.

New in version 2.3.

dngettext (domain, singular, plural, n)
Like ngettext() , but look the message up in the specifieddomain.

New in version 2.3.

Note that GNUgettextalso defines adcgettext() method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext
gettext.bindtextdomain(’myapplication’, ’/path/to/my/language/directory’)
gettext.textdomain(’myapplication’)
_ = gettext.gettext
...
print _(’This is a translatable string.’)

6.27.2 Class-based API

The class-based API of thegettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modules.gettext defines
a “translations” class which implements the parsing of GNU ‘.mo’ format files, and has methods for returning

2The default locale directory is system dependent; for example, on RedHat Linux it is ‘/usr/share/locale’, but on Solaris it is ‘/usr/lib/locale’.
The gettext module does not try to support these system dependent defaults; instead its default is ‘sys.prefix /share/locale’. For this
reason, it is always best to callbindtextdomain() with an explicit absolute path at the start of your application.

296 Chapter 6. Generic Operating System Services

either standard 8-bit strings or Unicode strings. Translations instances can also install themselves in the built-in
namespace as the function() .

find (domain[, localedir[, languages[, all]]])
This function implements the standard ‘.mo’ file search algorithm. It takes adomain, identical to what
textdomain() takes. Optionallocaledir is as inbindtextdomain() Optionallanguagesis a list of
strings, where each string is a language code.

If localedir is not given, then the default system locale directory is used.3 If languagesis not given, then
the following environment variables are searched: LANGUAGE, LCALL, LC MESSAGES, and LANG.
The first one returning a non-empty value is used for thelanguagesvariable. The environment variables
should contain a colon separated list of languages, which will be split on the colon to produce the expected
list of language code strings.

find() then expands and normalizes the languages, and then iterates through them, searching for an
existing file built of these components:

‘ localedir/language/LC MESSAGES/domain.mo’

The first such file name that exists is returned byfind() . If no such file is found, thenNone is returned.
If all is given, it returns a list of all file names, in the order in which they appear in the languages list or the
environment variables.

translation (domain[, localedir[, languages[, class ,[fallback]]]])
Return aTranslations instance based on thedomain, localedir, andlanguages, which are first passed
to find() to get a list of the associated ‘.mo’ file paths. Instances with identical ‘.mo’ file names are
cached. The actual class instantiated is eitherclass if provided, otherwiseGNUTranslations . The
class’s constructor must take a single file object argument.

If multiple files are found, later files are used as fallbacks for earlier ones. To allow setting the fallback,
copy.copy is used to clone each translation object from the cache; the actual instance data is still shared
with the cache.

If no ‘ .mo’ file is found, this function raisesIOError if fallback is false (which is the default), and returns
aNullTranslations instance iffallback is true.

install (domain[, localedir[, unicode]])
This installs the function in Python’s builtin namespace, based ondomain, andlocaledirwhich are passed
to the functiontranslation() . Theunicodeflag is passed to the resulting translation object’sinstall
method.

As seen below, you usually mark the strings in your application that are candidates for translation, by
wrapping them in a call to the() function, like this:

print _(’This string will be translated.’)

For convenience, you want the() function to be installed in Python’s builtin namespace, so it is easily
accessible in all modules of your application.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to trans-
lated message strings. The base class used by all translation classes isNullTranslations ; this provides
the basic interface you can use to write your own specialized translation classes. Here are the methods of
NullTranslations :

init ([fp])
Takes an optional file objectfp, which is ignored by the base class. Initializes “protected” instance vari-
ables info and charsetwhich are set by derived classes, as well asfallback, which is set through
add fallback . It then callsself. parse(fp) if fp is notNone.

parse (fp)
No-op’d in the base class, this method takes file objectfp, and reads the data from the file, initializing its

3See the footnote forbindtextdomain() above.

6.27. gettext — Multilingual internationalization services 297

message catalog. If you have an unsupported message catalog file format, you should override this method
to parse your format.

add fallback (fallback)
Add fallbackas the fallback object for the current translation object. A translation object should consult the
fallback if it cannot provide a translation for a given message.

gettext (message)
If a fallback has been set, forwardgettext to the fallback. Otherwise, return the translated message.
Overridden in derived classes.

ugettext (message)
If a fallback has been set, forwardugettext to the fallback. Otherwise, return the translated message as
a Unicode string. Overridden in derived classes.

ngettext (singular, plural, n)
If a fallback has been set, forwardngettext to the fallback. Otherwise, return the translated message.
Overridden in derived classes.

New in version 2.3.

ungettext (singular, plural, n)
If a fallback has been set, forwardungettext to the fallback. Otherwise, return the translated message as
a Unicode string. Overridden in derived classes.

New in version 2.3.

info ()
Return the “protected” info variable.

charset ()
Return the “protected” charset variable.

install ([unicode])
If the unicodeflag is false, this method installsself.gettext() into the built-in namespace, binding it
to ‘ ’. If unicodeis true, it bindsself.ugettext() instead. By default,unicodeis false.

Note that this is only one way, albeit the most convenient way, to make thefunction available to your
application. Because it affects the entire application globally, and specifically the built-in namespace, lo-
calized modules should never install. Instead, they should use this code to makeavailable to their
module:

import gettext
t = gettext.translation(’mymodule’, ...)
_ = t.gettext

This puts only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

The gettext module provides one additional class derived fromNullTranslations :
GNUTranslations . This class overrides parse() to enable reading GNUgettext format ‘.mo’ files
in both big-endian and little-endian format. It also coerces both message ids and message strings to Unicode.

GNUTranslations parses optional meta-data out of the translation catalog. It is convention with GNUget-
text to include meta-data as the translation for the empty string. This meta-data is in RFC 822-stylekey:
value pairs, and should contain theProject-Id-Version key. If the keyContent-Type is found, then
thecharset property is used to initialize the “protected”charset instance variable, defaulting toNone if
not found. If the charset encoding is specified, then all message ids and message strings read from the catalog
are converted to Unicode using this encoding. Theugettext() method always returns a Unicode, while the
gettext() returns an encoded 8-bit string. For the message id arguments of both methods, either Unicode
strings or 8-bit strings containing only US-ASCII characters are acceptable. Note that the Unicode version of the
methods (i.e.ugettext() andungettext()) are the recommended interface to use for internationalized
Python programs.

298 Chapter 6. Generic Operating System Services

The entire set of key/value pairs are placed into a dictionary and set as the “protected”info instance variable.

If the ‘.mo’ file’s magic number is invalid, or if other problems occur while reading the file, instantiating a
GNUTranslations class can raiseIOError .

The following methods are overridden from the base class implementation:

gettext (message)
Look up themessageid in the catalog and return the corresponding message string, as an 8-bit string
encoded with the catalog’s charset encoding, if known. If there is no entry in the catalog for themessageid,
and a fallback has been set, the look up is forwarded to the fallback’sgettext() method. Otherwise, the
messageid is returned.

ugettext (message)
Look up themessageid in the catalog and return the corresponding message string, as a Unicode string. If
there is no entry in the catalog for themessageid, and a fallback has been set, the look up is forwarded to
the fallback’sugettext() method. Otherwise, themessageid is returned.

ngettext (singular, plural, n)
Do a plural-forms lookup of a message id.singular is used as the message id for purposes of lookup in the
catalog, whilen is used to determine which plural form to use. The returned message string is an 8-bit string
encoded with the catalog’s charset encoding, if known.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the
fallback’sngettext() method. Otherwise, whenn is 1 singular is returned, andplural is returned in all
other cases.

New in version 2.3.

ungettext (singular, plural, n)
Do a plural-forms lookup of a message id.singular is used as the message id for purposes of lookup in the
catalog, whilen is used to determine which plural form to use. The returned message string is a Unicode
string.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the
fallback’sungettext() method. Otherwise, whenn is 1 singular is returned, andplural is returned in
all other cases.

Here is an example:

n = len(os.listdir(’.’))
cat = GNUTranslations(somefile)
message = cat.ungettext(

’There is %(num)d file in this directory’,
’There are %(num)d files in this directory’,
n) % {’n’: n}

New in version 2.3.

Solaris message catalog support

The Solaris operating system defines its own binary ‘.mo’ file format, but since no documentation can be found
on this format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of thegettext module by James Henstridge, but this version has a slightly different
API. Its documented usage was:

6.27. gettext — Multilingual internationalization services 299

import gettext
cat = gettext.Catalog(domain, localedir)
_ = cat.gettext
print _(’hello world’)

For compatibility with this older module, the functionCatalog() is an alias for thetranslation() function
described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping
API, but this appears to be unused and so is not currently supported.

6.27.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages.
Localization (L10N) refers to the adaptation of your program, once internationalized, to the local language and
cultural habits. In order to provide multilingual messages for your Python programs, you need to take the following
steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use thegettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that needs to be
translated should be marked by wrapping it in(’...’) — that is, a call to the function() . For example:

filename = ’mylog.txt’
message = _(’writing a log message’)
fp = open(filename, ’w’)
fp.write(message)
fp.close()

In this example, the string’writing a log message’ is marked as a candidate for translation, while the
strings’mylog.txt’ and’w’ are not.

The Python distribution comes with two tools which help you generate the message catalogs once you’ve prepared
your source code. These may or may not be available from a binary distribution, but they can be found in a source
distribution, in the ‘Tools/i18n’ directory.

The pygettext4 program scans all your Python source code looking for the strings you previously marked as
translatable. It is similar to the GNUgettext program except that it understands all the intricacies of Python
source code, but knows nothing about C or C++source code. You don’t need GNUgettext unless you’re also
going to be translating C code (such as C extension modules).

pygettext generates textual Uniforum-style human readable message catalog ‘.pot’ files, essentially structured
human readable files which contain every marked string in the source code, along with a placeholder for the
translation strings.pygettext is a command line script that supports a similar command line interface asxgettext;
for details on its use, run:

pygettext.py --help

4François Pinard has written a program calledxpot which does a similar job. It is available as part of hispo-utils package at
http://www.iro.umontreal.ca/contrib/po-utils/HTML/.

300 Chapter 6. Generic Operating System Services

Copies of these ‘.pot’ files are then handed over to the individual human translators who write language-specific
versions for every supported natural language. They send you back the filled in language-specific versions as
a ‘.po’ file. Using themsgfmt.py5 program (in the ‘Tools/i18n’ directory), you take the ‘.po’ files from your
translators and generate the machine-readable ‘.mo’ binary catalog files. The ‘.mo’ files are what thegettext
module uses for the actual translation processing during run-time.

How you use thegettext module in your code depends on whether you are internationalizing your entire
application or a single module.

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace.
You should not use the GNUgettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation ‘.mo’ files reside in
‘ /usr/share/locale’ in GNU gettext format. Here’s what you would put at the top of your module:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.gettext

If your translators were providing you with Unicode strings in their ‘.po’ files, you’d instead do:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.ugettext

Localizing your application

If you are localizing your application, you can install the() function globally into the built-in namespace, usu-
ally in the main driver file of your application. This will let all your application-specific files just use(’...’)
without having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

import gettext
gettext.install(’myapplication’)

If you need to set the locale directory or theunicodeflag, you can pass these into theinstall() function:

import gettext
gettext.install(’myapplication’, ’/usr/share/locale’, unicode=1)

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple translation
instances and then switch between them explicitly, like so:

5msgfmt.py is binary compatible with GNUmsgfmt except that it provides a simpler, all-Python implementation. With this andpyget-
text.py, you generally won’t need to install the GNUgettextpackage to internationalize your Python applications.

6.27. gettext — Multilingual internationalization services 301

import gettext

lang1 = gettext.translation(languages=[’en’])
lang2 = gettext.translation(languages=[’fr’])
lang3 = gettext.translation(languages=[’de’])

start by using language1
lang1.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

Deferred translations

In most coding situations, strings are translated where they are coded. Occasionally however, you need to mark
strings for translation, but defer actual translation until later. A classic example is:

animals = [’mollusk’,
’albatross’,

’rat’,
’penguin’,
’python’,
]

...
for a in animals:

print a

Here, you want to mark the strings in theanimals list as being translatable, but you don’t actually want to
translate them until they are printed.

Here is one way you can handle this situation:

def _(message): return message

animals = [_(’mollusk’),
_(’albatross’),

_(’rat’),
_(’penguin’),
_(’python’),
]

del _

...
for a in animals:

print _(a)

This works because the dummy definition of() simply returns the string unchanged. And this dummy definition
will temporarily override any definition of () in the built-in namespace (until thedel command). Take care,
though if you have a previous definition ofin the local namespace.

Note that the second use of() will not identify “a” as being translatable to thepygettext program, since it is
not a string.

302 Chapter 6. Generic Operating System Services

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_(’mollusk’),
N_(’albatross’),

N_(’rat’),
N_(’penguin’),
N_(’python’),
]

...
for a in animals:

print _(a)

In this case, you are marking translatable strings with the functionN () ,6 which won’t conflict with any definition
of () . However, you will need to teach your message extraction program to look for translatable strings marked
with N () . pygettextandxpot both support this through the use of command line switches.

6.27.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable
experience to the creation of this module:

• Peter Funk

• James Henstridge

• Juan David Ib́añez Palomar

• Marc-Andŕe Lemburg

• Martin von Löwis

• François Pinard

• Barry Warsaw

6.28 logging — Logging facility for Python

New in version 2.3. This module defines functions and classes which implement a flexible error logging system
for applications.

Logging is performed by calling methods on instances of theLogger class (hereafter calledloggers). Each
instance has a name, and they are conceptually arranged in a name space hierarchy using dots (periods) as separa-
tors. For example, a logger named ”scan” is the parent of loggers ”scan.text”, ”scan.html” and ”scan.pdf”. Logger
names can be anything you want, and indicate the area of an application in which a logged message originates.

Logged messages also have levels of importance associated with them. The default levels provided areDEBUG,
INFO, WARNING, ERRORandCRITICAL . As a convenience, you indicate the importance of a logged message
by calling an appropriate method ofLogger . The methods aredebug() , info() , warning() , error()
andcritical() , which mirror the default levels. You are not constrained to use these levels: you can specify
your own and use a more generalLogger method,log() , which takes an explicit level argument.

Levels can also be associated with loggers, being set either by the developer or through loading a saved logging
configuration. When a logging method is called on a logger, the logger compares its own level with the level

6The choice ofN () here is totally arbitrary; it could have just as easily beenMarkThisStringForTranslation() .

6.28. logging — Logging facility for Python 303

associated with the method call. If the logger’s level is higher than the method call’s, no logging message is
actually generated. This is the basic mechanism controlling the verbosity of logging output.

Logging messages are encoded as instances of theLogRecord class. When a logger decides to actually log an
event, anLogRecord instance is created from the logging message.

Logging messages are subjected to a dispatch mechanism through the use ofhandlers, which are instances of
subclasses of theHandler class. Handlers are responsible for ensuring that a logged message (in the form of
a LogRecord) ends up in a particular location (or set of locations) which is useful for the target audience for
that message (such as end users, support desk staff, system administrators, developers). Handlers are passed
LogRecord instances intended for particular destinations. Each logger can have zero, one or more handlers
associated with it (via theaddHandler method ofLogger). In addition to any handlers directly associated
with a logger,all handlers associated with all ancestors of the loggerare called to dispatch the message.

Just as for loggers, handlers can have levels associated with them. A handler’s level acts as a filter in the same way
as a logger’s level does. If a handler decides to actually dispatch an event, theemit() method is used to send the
message to its destination. Most user-defined subclasses ofHandler will need to override thisemit() .

In addition to the baseHandler class, many useful subclasses are provided:

1. StreamHandler instances send error messages to streams (file-like objects).

2. FileHandler instances send error messages to disk files.

3. RotatingFileHandler instances send error messages to disk files, with support for maximum log file
sizes and log file rotation.

4. SocketHandler instances send error messages to TCP/IP sockets.

5. DatagramHandler instances send error messages to UDP sockets.

6. SMTPHandler instances send error messages to a designated email address.

7. SysLogHandler instances send error messages to a UNIX syslog daemon, possibly on a remote machine.

8. NTEventLogHandler instances send error messages to a Windows NT/2000/XP event log.

9. MemoryHandler instances send error messages to a buffer in memory, which is flushed whenever specific
criteria are met.

10. HTTPHandler instances send error messages to an HTTP server using either ‘GET’ or ‘ POST’ semantics.

TheStreamHandler andFileHandler classes are defined in the core logging package. The other handlers
are defined in a sub- module,logging.handlers . (There is also another sub-module,logging.config ,
for configuration functionality.)

Logged messages are formatted for presentation through instances of theFormatter class. They are initialized
with a format string suitable for use with the % operator and a dictionary.

For formatting multiple messages in a batch, instances ofBufferingFormatter can be used. In addition to
the format string (which is applied to each message in the batch), there is provision for header and trailer format
strings.

When filtering based on logger level and/or handler level is not enough, instances ofFilter can be added to
both Logger andHandler instances (through theiraddFilter() method). Before deciding to process a
message further, both loggers and handlers consult all their filters for permission. If any filter returns a false value,
the message is not processed further.

The basicFilter functionality allows filtering by specific logger name. If this feature is used, messages sent to
the named logger and its children are allowed through the filter, and all others dropped.

In addition to the classes described above, there are a number of module- level functions.

getLogger ([name])
Return a logger with the specified name or, if no name is specified, return a logger which is the root logger
of the hierarchy.

304 Chapter 6. Generic Operating System Services

All calls to this function with a given name return the same logger instance. This means that logger instances
never need to be passed between different parts of an application.

debug (msg[, *args[, **kwargs]])
Logs a message with levelDEBUGon the root logger. Themsg is the message format string, and the
args are the arguments which are merged intomsg. The only keyword argument inkwargs which is
inspected isexc info which, if it does not evaluate as false, causes exception information (via a call to
sys.exc info()) to be added to the logging message.

info (msg[, *args[, **kwargs]])
Logs a message with levelINFO on the root logger. The arguments are interpreted as fordebug() .

warning (msg[, *args[, **kwargs]])
Logs a message with levelWARNINGon the root logger. The arguments are interpreted as fordebug() .

error (msg[, *args[, **kwargs]])
Logs a message with levelERRORon the root logger. The arguments are interpreted as fordebug() .

critical (msg[, *args[, **kwargs]])
Logs a message with levelCRITICAL on the root logger. The arguments are interpreted as fordebug() .

exception (msg[, *args])
Logs a message with levelERRORon the root logger. The arguments are interpreted as fordebug() .
Exception info is added to the logging message. This function should only be called from an exception
handler.

disable (lvl)
Provides an overriding levellvl for all loggers which takes precedence over the logger’s own level. When
the need arises to temporarily throttle logging output down across the whole application, this function can
be useful.

addLevelName (lvl, levelName)
Associates levellvl with text levelNamein an internal dictionary, which is used to map numeric levels to
a textual representation, for example when aFormatter formats a message. This function can also be
used to define your own levels. The only constraints are that all levels used must be registered using this
function, levels should be positive integers and they should increase in increasing order of severity.

getLevelName (lvl)
Returns the textual representation of logging levellvl. If the level is one of the predefined levelsCRITICAL ,
ERROR, WARNING, INFO or DEBUGthen you get the corresponding string. If you have associated levels
with names usingaddLevelName() then the name you have associated withlvl is returned. Otherwise,
the string ”Level %s” % lvl is returned.

makeLogRecord (attrdict)
Creates and returns a newLogRecord instance whose attributes are defined byattrdict. This function is
useful for taking a pickledLogRecord attribute dictionary, sent over a socket, and reconstituting it as a
LogRecord instance at the receiving end.

basicConfig ()
Does basic configuration for the logging system by creating aStreamHandler with a default
Formatter and adding it to the root logger. The functionsdebug() , info() , warning() , error()
andcritical() will call basicConfig() automatically if no handlers are defined for the root logger.

shutdown ()
Informs the logging system to perform an orderly shutdown by flushing and closing all handlers.

setLoggerClass (klass)
Tells the logging system to use the classklass when instantiating a logger. The class should de-
fine init () such that only a name argument is required, and theinit () should call
Logger. init () . This function is typically called before any loggers are instantiated by appli-
cations which need to use custom logger behavior.

See Also:

PEP 282, “A Logging System”
The proposal which described this feature for inclusion in the Python standard library.

6.28. logging — Logging facility for Python 305

Original Pythonlogging package
This is the original source for thelogging package. The version of the package available from this site
is suitable for use with Python 2.1.x and 2.2.x, which do not include thelogging package in the standard
library.

6.28.1 Logger Objects

Loggers have the following attributes and methods. Note that Loggers are never instantiated directly, but always
through the module-level functionlogging.getLogger(name) .

propagate
If this evaluates to false, logging messages are not passed by this logger or by child loggers to higher level
(ancestor) loggers. The constructor sets this attribute to 1.

setLevel (lvl)
Sets the threshold for this logger tolvl. Logging messages which are less severe thanlvl will be ignored.
When a logger is created, the level is set toNOTSET(which causes all messages to be processed in the root
logger, or delegation to the parent in non-root loggers).

isEnabledFor (lvl)
Indicates if a message of severitylvl would be processed by this logger. This method checks first the
module-level level set bylogging.disable(lvl) and then the logger’s effective level as determined
by getEffectiveLevel() .

getEffectiveLevel ()
Indicates the effective level for this logger. If a value other thanNOTSEThas been set usingsetLevel() ,
it is returned. Otherwise, the hierarchy is traversed towards the root until a value other thanNOTSETis
found, and that value is returned.

debug (msg[, *args[, **kwargs]])
Logs a message with levelDEBUGon this logger. Themsgis the message format string, and theargsare the
arguments which are merged intomsg. The only keyword argument inkwargswhich is inspected isexc info
which, if it does not evaluate as false, causes exception information (via a call tosys.exc info()) to
be added to the logging message.

info (msg[, *args[, **kwargs]])
Logs a message with levelINFO on this logger. The arguments are interpreted as fordebug() .

warning (msg[, *args[, **kwargs]])
Logs a message with levelWARNINGon this logger. The arguments are interpreted as fordebug() .

error (msg[, *args[, **kwargs]])
Logs a message with levelERRORon this logger. The arguments are interpreted as fordebug() .

critical (msg[, *args[, **kwargs]])
Logs a message with levelCRITICAL on this logger. The arguments are interpreted as fordebug() .

log (lvl, msg[, *args[, **kwargs]])
Logs a message with levellvl on this logger. The other arguments are interpreted as fordebug() .

exception (msg[, *args])
Logs a message with levelERRORon this logger. The arguments are interpreted as fordebug() . Exception
info is added to the logging message. This method should only be called from an exception handler.

addFilter (filt)
Adds the specified filterfilt to this logger.

removeFilter (filt)
Removes the specified filterfilt from this logger.

filter (record)
Applies this logger’s filters to the record and returns a true value if the record is to be processed.

addHandler (hdlr)
Adds the specified handlerhdlr to this logger.

306 Chapter 6. Generic Operating System Services

removeHandler (hdlr)
Removes the specified handlerhdlr from this logger.

findCaller ()
Finds the caller’s source filename and line number. Returns the filename and line number as a 2-element
tuple.

handle (record)
Handles a record by passing it to all handlers associated with this logger and its ancestors (until a false value
of propagateis found). This method is used for unpickled records received from a socket, as well as those
created locally. Logger-level filtering is applied usingfilter() .

makeRecord (name, lvl, fn, lno, msg, args, excinfo)
This is a factory method which can be overridden in subclasses to create specializedLogRecord instances.

6.28.2 Handler Objects

Handlers have the following attributes and methods. Note thatHandler is never instantiated directly; this
class acts as a base for more useful subclasses. However, theinit () method in subclasses needs to
call Handler. init () .

init (level=NOTSET)
Initializes theHandler instance by setting its level, setting the list of filters to the empty list and creating
a lock (usingcreateLock()) for serializing access to an I/O mechanism.

createLock ()
Initializes a thread lock which can be used to serialize access to underlying I/O functionality which may not
be threadsafe.

acquire ()
Acquires the thread lock created withcreateLock() .

release ()
Releases the thread lock acquired withacquire() .

setLevel (lvl)
Sets the threshold for this handler tolvl. Logging messages which are less severe thanlvl will be ignored.
When a handler is created, the level is set toNOTSET(which causes all messages to be processed).

setFormatter (form)
Sets theFormatter for this handler toform.

addFilter (filt)
Adds the specified filterfilt to this handler.

removeFilter (filt)
Removes the specified filterfilt from this handler.

filter (record)
Applies this handler’s filters to the record and returns a true value if the record is to be processed.

flush ()
Ensure all logging output has been flushed. This version does nothing and is intended to be implemented
by subclasses.

close ()
Tidy up any resources used by the handler. This version does nothing and is intended to be implemented by
subclasses.

handle (record)
Conditionally emits the specified logging record, depending on filters which may have been added to the
handler. Wraps the actual emission of the record with acquisition/release of the I/O thread lock.

handleError ()
This method should be called from handlers when an exception is encountered during an emit() call. By
default it does nothing, which means that exceptions get silently ignored. This is what is mostly wanted for

6.28. logging — Logging facility for Python 307

a logging system - most users will not care about errors in the logging system, they are more interested in
application errors. You could, however, replace this with a custom handler if you wish.

format (record)
Do formatting for a record - if a formatter is set, use it. Otherwise, use the default formatter for the module.

emit (record)
Do whatever it takes to actually log the specified logging record. This version is intended to be implemented
by subclasses and so raises aNotImplementedError .

StreamHandler

TheStreamHandler class sends logging output to streams such assys.stdout, sys.stderror any file-like object
(or, more precisely, any object which supportswrite() andflush() methods).

classStreamHandler ([strm])
Returns a new instance of theStreamHandler class. Ifstrm is specified, the instance will use it for
logging output; otherwise,sys.stderrwill be used.

emit (record)
If a formatter is specified, it is used to format the record. The record is then written to
the stream with a trailing newline. If exception information is present, it is formatted using
traceback.print exception() and appended to the stream.

flush ()
Flushes the stream by calling itsflush() method. Note that theclose() method is inherited from
Handler and so does nothing, so an explicitflush() call may be needed at times.

FileHandler

The FileHandler class sends logging output to a disk file. It inherits the output functionality from
StreamHandler .

classFileHandler (filename[, mode])
Returns a new instance of theFileHandler class. The specified file is opened and used as the stream for
logging. If modeis not specified,’a’ is used. By default, the file grows indefinitely.

close ()
Closes the file.

emit (record)
Outputs the record to the file.

RotatingFileHandler

TheRotatingFileHandler class supports rotation of disk log files.

classRotatingFileHandler (filename[, mode[, maxBytes[, backupCount]]])
Returns a new instance of theRotatingFileHandler class. The specified file is opened and used as
the stream for logging. Ifmodeis not specified,’a’ is used. By default, the file grows indefinitely.

You can use themaxBytesandbackupCountvalues to allow the file torollover at a predetermined size.
When the size is about to be exceeded, the file is closed and a new file is silently opened for output. Rollover
occurs whenever the current log file is nearlymaxBytesin length; ifmaxBytesis zero, rollover never occurs.
If backupCountis non-zero, the system will save old log files by appending the extensions ”.1”, ”.2” etc.,
to the filename. For example, with abackupCountof 5 and a base file name of ‘app.log’, you would get
‘app.log’, ‘ app.log.1’, ‘ app.log.2’, up to ‘app.log.5’. The file being written to is always ‘app.log’. When this
file is filled, it is closed and renamed to ‘app.log.1’, and if files ‘app.log.1’, ‘ app.log.2’, etc. exist, then they
are renamed to ‘app.log.2’, ‘ app.log.3’ etc. respectively.

doRollover ()
Does a rollover, as described above.

308 Chapter 6. Generic Operating System Services

emit (record)
Outputs the record to the file, catering for rollover as described insetRollover() .

SocketHandler

TheSocketHandler class sends logging output to a network socket. The base class uses a TCP socket.

classSocketHandler (host, port)
Returns a new instance of theSocketHandler class intended to communicate with a remote machine
whose address is given byhostandport.

close ()
Closes the socket.

handleError ()

emit ()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is an error with
the socket, silently drops the packet. If the connection was previously lost, re-establishes the connection.
To unpickle the record at the receiving end into a LogRecord, use themakeLogRecord function.

handleError ()
Handles an error which has occurred duringemit() . The most likely cause is a lost connection. Closes
the socket so that we can retry on the next event.

makeSocket ()
This is a factory method which allows subclasses to define the precise type of socket they want. The default
implementation creates a TCP socket (socket.SOCK STREAM).

makePickle (record)
Pickles the record’s attribute dictionary in binary format with a length prefix, and returns it ready for trans-
mission across the socket.

send (packet)
Send a pickled stringpacketto the socket. This function allows for partial sends which can happen when
the network is busy.

DatagramHandler

TheDatagramHandler class inherits fromSocketHandler to support sending logging messages over UDP
sockets.

classDatagramHandler (host, port)
Returns a new instance of theDatagramHandler class intended to communicate with a remote machine
whose address is given byhostandport.

emit ()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is an error with
the socket, silently drops the packet. To unpickle the record at the receiving end into a LogRecord, use the
makeLogRecord function.

makeSocket ()
The factory method of SocketHandler is here overridden to create a UDP socket
(socket.SOCK DGRAM).

send (s)
Send a pickled string to a socket.

SysLogHandler

TheSysLogHandler class supports sending logging messages to a remote or local UNIX syslog.

6.28. logging — Logging facility for Python 309

classSysLogHandler ([address[, facility]])
Returns a new instance of theSysLogHandler class intended to communicate with a remote UNIX

machine whose address is given byaddressin the form of a(host, port) tuple. If addressis not specified,
(’localhost’, 514) is used. The address is used to open a UDP socket. Iffacility is not specified,
LOG USERis used.

close ()
Closes the socket to the remote host.

emit (record)
The record is formatted, and then sent to the syslog server. If exception information is present, it isnotsent
to the server.

encodePriority (facility, priority)
Encodes the facility and priority into an integer. You can pass in strings or integers - if strings are passed,
internal mapping dictionaries are used to convert them to integers.

NTEventLogHandler

TheNTEventLogHandler class supports sending logging messages to a local Windows NT, Windows 2000 or
Windows XP event log. Before you can use it, you need Mark Hammond’s Win32 extensions for Python installed.

classNTEventLogHandler (appname[, dllname[, logtype]])
Returns a new instance of theNTEventLogHandler class. Theappnameis used to define the application
name as it appears in the event log. An appropriate registry entry is created using this name. Thedllname
should give the fully qualified pathname of a .dll or .exe which contains message definitions to hold in
the log (if not specified,’win32service.pyd’ is used - this is installed with the Win32 extensions
and contains some basic placeholder message definitions. Note that use of these placeholders will make
your event logs big, as the entire message source is held in the log. If you want slimmer logs, you have
to pass in the name of your own .dll or .exe which contains the message definitions you want to use in
the event log). Thelogtypeis one of’Application’ , ’System’ or ’Security’ , and defaults to
’Application’ .

close ()
At this point, you can remove the application name from the registry as a source of event log entries.
However, if you do this, you will not be able to see the events as you intended in the Event Log Viewer - it
needs to be able to access the registry to get the .dll name. The current version does not do this (in fact it
doesn’t do anything).

emit (record)
Determines the message ID, event category and event type, and then logs the message in the NT event log.

getEventCategory (record)
Returns the event category for the record. Override this if you want to specify your own categories. This
version returns 0.

getEventType (record)
Returns the event type for the record. Override this if you want to specify your own types. This version does
a mapping using the handler’s typemap attribute, which is set up ininit () to a dictionary which
contains mappings forDEBUG, INFO, WARNING, ERRORandCRITICAL . If you are using your own levels,
you will either need to override this method or place a suitable dictionary in the handler’stypemapattribute.

getMessageID (record)
Returns the message ID for the record. If you are using your own messages, you could do this by having the
msgpassed to the logger being an ID rather than a format string. Then, in here, you could use a dictionary
lookup to get the message ID. This version returns 1, which is the base message ID in ‘win32service.pyd’.

SMTPHandler

TheSMTPHandler class supports sending logging messages to an email address via SMTP.

classSMTPHandler (mailhost, fromaddr, toaddrs, subject)

310 Chapter 6. Generic Operating System Services

Returns a new instance of theSMTPHandler class. The instance is initialized with the from and to ad-
dresses and subject line of the email. Thetoaddrsshould be a list of strings without domain names (That’s
what themailhostis for). To specify a non-standard SMTP port, use the (host, port) tuple format for the
mailhostargument. If you use a string, the standard SMTP port is used.

emit (record)
Formats the record and sends it to the specified addressees.

getSubject (record)
If you want to specify a subject line which is record-dependent, override this method.

MemoryHandler

TheMemoryHandler supports buffering of logging records in memory, periodically flushing them to atarget
handler. Flushing occurs whenever the buffer is full, or when an event of a certain severity or greater is seen.

MemoryHandler is a subclass of the more generalBufferingHandler , which is an abstract class. This
buffers logging records in memory. Whenever each record is added to the buffer, a check is made by calling
shouldFlush() to see if the buffer should be flushed. If it should, thenflush() is expected to do the
needful.

classBufferingHandler (capacity)
Initializes the handler with a buffer of the specified capacity.

emit (record)
Appends the record to the buffer. IfshouldFlush() returns true, callsflush() to process the buffer.

flush ()
You can override this to implement custom flushing behavior. This version just zaps the buffer to empty.

shouldFlush (record)
Returns true if the buffer is up to capacity. This method can be overridden to implement custom flushing
strategies.

classMemoryHandler (capacity[, flushLevel[, target]])
Returns a new instance of theMemoryHandler class. The instance is initialized with a buffer size of
capacity. If flushLevelis not specified,ERRORis used. If notarget is specified, the target will need to be
set usingsetTarget() before this handler does anything useful.

close ()
Callsflush() , sets the target toNone and clears the buffer.

flush ()
For aMemoryHandler , flushing means just sending the buffered records to the target, if there is one.
Override if you want different behavior.

setTarget (target)
Sets the target handler for this handler.

shouldFlush (record)
Checks for buffer full or a record at theflushLevelor higher.

HTTPHandler

The HTTPHandler class supports sending logging messages to a Web server, using either ‘GET’ or ‘ POST’
semantics.

classHTTPHandler (host, url[, method])
Returns a new instance of theHTTPHandler class. The instance is initialized with a host address, url and
HTTP method. If nomethodis specified, ‘GET’ is used.

emit (record)
Sends the record to the Web server as an URL-encoded dictionary.

6.28. logging — Logging facility for Python 311

6.28.3 Formatter Objects

Formatter s have the following attributes and methods. They are responsible for converting aLogRecord to
(usually) a string which can be interpreted by either a human or an external system. The baseFormatter allows
a formatting string to be specified. If none is supplied, the default value of’%(message)s’ is used.

A Formatter can be initialized with a format string which makes use of knowledge of theLogRecord attributes
- such as the default value mentioned above making use of the fact that the user’s message and arguments are pre-
formatted into a LogRecord’smessageattribute. This format string contains standard python %-style mapping
keys. See section 2.3.6, “String Formatting Operations,” for more information on string formatting.

Currently, the useful mapping keys in a LogRecord are:

Format Description
%(name)s Name of the logger (logging channel).
%(levelno)s Numeric logging level for the message (DEBUG, INFO, WARNING, ERROR, CRITICAL).
%(levelname)s Text logging level for the message (’DEBUG’ , ’INFO’ , ’WARNING’ , ’ERROR’ , ’CRITICAL’).
%(pathname)s Full pathname of the source file where the logging call was issued (if available).
%(filename)s Filename portion of pathname.
%(module)s Module (name portion of filename).
%(lineno)d Source line number where the logging call was issued (if available).
%(created)f Time when the LogRecord was created (as returned bytime.time()).
%(asctime)s Human-readable time when the LogRecord was created. By default this is of the form “2003-07-08 16:49:45,896” (the numbers after the comma are millisecond portion of the time).
%(msecs)d Millisecond portion of the time when theLogRecord was created.
%(thread)d Thread ID (if available).
%(process)d Process ID (if available).
%(message)s The logged message, computed asmsg %args.

classFormatter ([fmt[, datefmt]])
Returns a new instance of theFormatter class. The instance is initialized with a format string for the
message as a whole, as well as a format string for the date/time portion of a message. If nofmt is specified,
’%(message)s’ is used. If nodatefmtis specified, the ISO8601 date format is used.

format (record)
The record’s attribute dictionary is used as the operand to a string formatting operation. Returns the result-
ing string. Before formatting the dictionary, a couple of preparatory steps are carried out. Themessage
attribute of the record is computed usingmsg% args. If the formatting string contains’(asctime)’ ,
formatTime() is called to format the event time. If there is exception information, it is formatted using
formatException() and appended to the message.

formatTime (record[, datefmt])
This method should be called fromformat() by a formatter which wants to make use of a formatted time.
This method can be overridden in formatters to provide for any specific requirement, but the basic behavior
is as follows: ifdatefmt(a string) is specified, it is used withtime.strftime() to format the creation
time of the record. Otherwise, the ISO8601 format is used. The resulting string is returned.

formatException (exc info)
Formats the specified exception information (a standard exception tuple as re-
turned by sys.exc info()) as a string. This default implementation just uses
traceback.print exception() . The resulting string is returned.

6.28.4 Filter Objects

Filter s can be used byHandler s andLogger s for more sophisticated filtering than is provided by levels.
The base filter class only allows events which are below a certain point in the logger hierarchy. For example, a
filter initialized with ”A.B” will allow events logged by loggers ”A.B”, ”A.B.C”, ”A.B.C.D”, ”A.B.D” etc. but
not ”A.BB”, ”B.A.B” etc. If initialized with the empty string, all events are passed.

classFilter ([name])
Returns an instance of theFilter class. Ifnameis specified, it names a logger which, together with its

312 Chapter 6. Generic Operating System Services

children, will have its events allowed through the filter. If no name is specified, allows every event.

filter (record)
Is the specified record to be logged? Returns zero for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place by this method.

6.28.5 LogRecord Objects

LogRecord instances are created every time something is logged. They contain all the information pertinent to the
event being logged. The main information passed in is in msg and args, which are combined using msg % args to
create the message field of the record. The record also includes information such as when the record was created,
the source line where the logging call was made, and any exception information to be logged.

LogRecord has no methods; it’s just a repository for information about the logging event. The only reason it’s a
class rather than a dictionary is to facilitate extension.

classLogRecord (name, lvl, pathname, lineno, msg, args, excinfo)
Returns an instance ofLogRecord initialized with interesting information. Thenameis the logger name;
lvl is the numeric level;pathnameis the absolute pathname of the source file in which the logging call was
made;linenois the line number in that file where the logging call is found;msgis the user-supplied message
(a format string);args is the tuple which, together withmsg, makes up the user message; andexc info is
the exception tuple obtained by callingsys.exc info() (or None, if no exception information is
available).

6.28.6 Thread Safety

The logging module is intended to be thread-safe without any special work needing to be done by its clients. It
achieves this though using threading locks; there is one lock to serialize access to the module’s shared data, and
each handler also creates a lock to serialize access to its underlying I/O.

6.28.7 Configuration

Configuration functions

The following functions allow the logging module to be configured. Before they can be used, you must import
logging.config . Their use is optional — you can configure the logging module entirely by making calls
to the main API (defined inlogging itself) and defining handlers which are declared either inlogging or
logging.handlers .

fileConfig (fname[, defaults])
Reads the logging configuration from a ConfigParser-format file namedfname. This function can be called
several times from an application, allowing an end user the ability to select from various pre-canned config-
urations (if the developer provides a mechanism to present the choices and load the chosen configuration).
Defaults to be passed to ConfigParser can be specified in thedefaultsargument.

listen ([port])
Starts up a socket server on the specified port, and listens for new configurations. If no port is speci-
fied, the module’s defaultDEFAULT LOGGING CONFIG PORTis used. Logging configurations will be
sent as a file suitable for processing byfileConfig() . Returns aThread instance on which you can
call start() to start the server, and which you canjoin() when appropriate. To stop the server, call
stopListening() .

stopListening ()
Stops the listening server which was created with a call tolisten() . This is typically called before
calling join() on the return value fromlisten() .

6.28. logging — Logging facility for Python 313

Configuration file format

The configuration file format understood byfileConfig is based on ConfigParser functionality. The file must
contain sections called[loggers] , [handlers] and[formatters] which identify by name the entities
of each type which are defined in the file. For each such entity, there is a separate section which identified how that
entity is configured. Thus, for a logger namedlog01 in the [loggers] section, the relevant configuration de-
tails are held in a section[logger log01] . Similarly, a handler calledhand01 in the[handlers] section
will have its configuration held in a section called[handler hand01] , while a formatter calledform01 in
the [formatters] section will have its configuration specified in a section called[formatter form01] .
The root logger configuration must be specified in a section called[logger root] .

Examples of these sections in the file are given below.

[loggers]
keys=root,log02,log03,log04,log05,log06,log07

[handlers]
keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07,hand08,hand09

[formatters]
keys=form01,form02,form03,form04,form05,form06,form07,form08,form09

The root logger must specify a level and a list of handlers. An example of a root logger section is given below.

[logger_root]
level=NOTSET
handlers=hand01

The level entry can be one ofDEBUG, INFO, WARNING, ERROR, CRITICALor NOTSET. For the root
logger only,NOTSETmeans that all messages will be logged. Level values areeval() uated in the context of
the logging package’s namespace.

Thehandlers entry is a comma-separated list of handler names, which must appear in the[handlers] sec-
tion. These names must appear in the[handlers] section and have corresponding sections in the configuration
file.

For loggers other than the root logger, some additional information is required. This is illustrated by the following
example.

[logger_parser]
level=DEBUG
handlers=hand01
propagate=1
qualname=compiler.parser

The level andhandlers entries are interpreted as for the root logger, except that if a non-root logger’s level
is specified asNOTSET, the system consults loggers higher up the hierarchy to determine the effective level of the
logger. Thepropagate entry is set to 1 to indicate that messages must propagate to handlers higher up the logger
hierarchy from this logger, or 0 to indicate that messages arenot propagated to handlers up the hierarchy. The
qualname entry is the hierarchical channel name of the logger, for example, the name used by the application to
get the logger.

Sections which specify handler configuration are exemplified by the following.

314 Chapter 6. Generic Operating System Services

[handler_hand01]
class=StreamHandler
level=NOTSET
formatter=form01
args=(sys.stdout,)

Theclass entry indicates the handler’s class (as determined byeval() in thelogging package’s namespace).
The level is interpreted as for loggers, andNOTSETis taken to mean ”log everything”.

The formatter entry indicates the key name of the formatter for this handler. If blank, a default formatter
(logging. defaultFormatter) is used. If a name is specified, it must appear in the[formatters]
section and have a corresponding section in the configuration file.

Theargs entry, wheneval() uated in the context of thelogging package’s namespace, is the list of arguments
to the constructor for the handler class. Refer to the constructors for the relevant handlers, or to the examples
below, to see how typical entries are constructed.

6.28. logging — Logging facility for Python 315

[handler_hand02]
class=FileHandler
level=DEBUG
formatter=form02
args=(’python.log’, ’w’)

[handler_hand03]
class=handlers.SocketHandler
level=INFO
formatter=form03
args=(’localhost’, handlers.DEFAULT_TCP_LOGGING_PORT)

[handler_hand04]
class=handlers.DatagramHandler
level=WARN
formatter=form04
args=(’localhost’, handlers.DEFAULT_UDP_LOGGING_PORT)

[handler_hand05]
class=handlers.SysLogHandler
level=ERROR
formatter=form05
args=((’localhost’, handlers.SYSLOG_UDP_PORT), handlers.SysLogHandler.LOG_USER)

[handler_hand06]
class=NTEventLogHandler
level=CRITICAL
formatter=form06
args=(’Python Application’, ’’, ’Application’)

[handler_hand07]
class=SMTPHandler
level=WARN
formatter=form07
args=(’localhost’, ’from@abc’, [’user1@abc’, ’user2@xyz’], ’Logger Subject’)

[handler_hand08]
class=MemoryHandler
level=NOTSET
formatter=form08
target=
args=(10, ERROR)

[handler_hand09]
class=HTTPHandler
level=NOTSET
formatter=form09
args=(’localhost:9022’, ’/log’, ’GET’)

Sections which specify formatter configuration are typified by the following.

[formatter_form01]
format=F1 %(asctime)s %(levelname)s %(message)s
datefmt=

Theformat entry is the overall format string, and thedatefmt entry is thestrftime() -compatible date/time
format string. If empty, the package substitutes ISO8601 format date/times, which is almost equivalent to spec-
ifying the date format string ”The ISO8601 format also specifies milliseconds, which are appended to the result
of using the above format string, with a comma separator. An example time in ISO8601 format is2003-01-23

316 Chapter 6. Generic Operating System Services

00:29:50,411 .

6.28.8 Using the logging package

Basic example - log to a file

Here’s a simple logging example that just logs to a file. In order, it creates aLogger instance, then
a FileHandler and a Formatter . It attaches theFormatter to the FileHandler , then the
FileHandler to theLogger . Finally, it sets a debug level for the logger.

import logging
logger = logging.getLogger(’myapp’)
hdlr = logging.FileHandler(’/var/tmp/myapp.log’)
formatter = logging.Formatter(’%(asctime)s %(levelname)s %(message)s’)
hdlr.setFormatter(formatter)
logger.addHandler(hdlr)
logger.setLevel(logging.WARNING)

We can use this logger object now to write entries to the log file:

logger.error(’We have a problem’)
logger.info(’While this is just chatty’)

If we look in the file that was created, we’ll see something like this:

2003-07-08 16:49:45,896 ERROR We have a problem

The info message was not written to the file - we called thesetLevel method to say we only wantedWARNING
or worse, so the info message is discarded.

The timestamp is of the form “year-month-day hour:minutes:seconds,milliseconds.” Note that despite the three
digits of precision in the milliseconds field, not all systems provide time with this much precision.

6.28. logging — Logging facility for Python 317

318

CHAPTER

SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modeled after the UNIX or C interfaces but they are available
on some other systems as well (e.g. Windows or NT). Here’s an overview:

signal Set handlers for asynchronous events.
socket Low-level networking interface.
select Wait for I/O completion on multiple streams.
thread Create multiple threads of control within one interpreter.
threading Higher-level threading interface.
dummy thread Drop-in replacement for thethread module.
dummy threading Drop-in replacement for thethreading module.
Queue A synchronized queue class.
mmap Interface to memory-mapped files for UNIX and Windows.
anydbm Generic interface to DBM-style database modules.
dbhash DBM-style interface to the BSD database library.
whichdb Guess which DBM-style module created a given database.
bsddb Interface to Berkeley DB database library
dumbdbm Portable implementation of the simple DBM interface.
zlib Low-level interface to compression and decompression routines compatible withgzip.
gzip Interfaces forgzip compression and decompression using file objects.
bz2 Interface to compression and decompression routines compatible withbzip2.
zipfile Read and write ZIP-format archive files.
tarfile Read and write tar-format archive files.
readline GNU readline support for Python.
rlcompleter Python identifier completion for the GNU readline library.

7.1 signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals
and their handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported by all UNIX

flavors).

• Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can
only occur between the “atomic” instructions of the Python interpreter. This means that signals arriving
during long calculations implemented purely in C (such as regular expression matches on large bodies of
text) may be delayed for an arbitrary amount of time.

319

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an exception
after the signal handler returns. This is dependent on the underlying UNIX system’s semantics regarding
interrupted system calls.

• Because the C signal handler always returns, it makes little sense to catch synchronous errors likeSIGFPE
or SIGSEGV.

• Python installs a small number of signal handlers by default:SIGPIPE is ignored (so write errors
on pipes and sockets can be reported as ordinary Python exceptions) andSIGINT is translated into a
KeyboardInterrupt exception. All of these can be overridden.

• Some care must be taken if both signals and threads are used in the same program. The fundamental thing
to remember in using signals and threads simultaneously is: always performsignal() operations in the
main thread of execution. Any thread can perform analarm() , getsignal() , or pause() ; only
the main thread can set a new signal handler, and the main thread will be the only one to receive signals
(this is enforced by the Pythonsignal module, even if the underlying thread implementation supports
sending signals to individual threads). This means that signals can’t be used as a means of inter-thread
communication. Use locks instead.

The variables defined in thesignal module are:

SIG DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action forSIGQUIT is to dump core and exit, while the default
action forSIGCLD is to simply ignore it.

SIG IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP ; the variable names are identical to the names used in C programs, as found in
<signal.h> . The UNIX man page for ‘signal() ’ lists the existing signals (on some systems this
is signal(2), on others the list is insignal(7)). Note that not all systems define the same set of signal names;
only those names defined by the system are defined by this module.

NSIG
One more than the number of the highest signal number.

Thesignal module defines the following functions:

alarm (time)
If timeis non-zero, this function requests that aSIGALRMsignal be sent to the process intimeseconds. Any
previously scheduled alarm is canceled (only one alarm can be scheduled at any time). The returned value
is then the number of seconds before any previously set alarm was to have been delivered. Iftime is zero,
no alarm id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds
remaining before a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled.
(See the UNIX man pagealarm(2).) Availability: UNIX .

getsignal (signalnum)
Return the current signal handler for the signalsignalnum. The returned value may be a callable
Python object, or one of the special valuessignal.SIG IGN, signal.SIG DFL or None. Here,
signal.SIG IGN means that the signal was previously ignored,signal.SIG DFL means that the
default way of handling the signal was previously in use, andNone means that the previous signal handler
was not installed from Python.

pause ()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns
nothing. Not on Windows. (See the UNIX man pagesignal(2).)

signal (signalnum, handler)
Set the handler for signalsignalnumto the functionhandler. handlercan be a callable Python object taking
two arguments (see below), or one of the special valuessignal.SIG IGN or signal.SIG DFL. The

320 Chapter 7. Optional Operating System Services

previous signal handler will be returned (see the description ofgetsignal() above). (See the UNIX man
pagesignal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to call it from
other threads will cause aValueError exception to be raised.

Thehandleris called with two arguments: the signal number and the current stack frame (None or a frame
object; for a description of frame objects, see the reference manual section on the standard type hierarchy
or see the attribute descriptions in theinspect module).

7.1.1 Example

Here is a minimal example program. It uses thealarm() function to limit the time spent waiting to open a
file; this is useful if the file is for a serial device that may not be turned on, which would normally cause the
os.open() to hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation
takes too long, the alarm signal will be sent, and the handler raises an exception.

import signal, os

def handler(signum, frame):
print ’Signal handler called with signal’, signum
raise IOError, "Couldn’t open device!"

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open(’/dev/ttyS0’, os.O_RDWR)

signal.alarm(0) # Disable the alarm

7.2 socket — Low-level networking interface

This module provides access to the BSDsocketinterface. It is available on all modern UNIX systems, Windows,
MacOS, BeOS, OS/2, and probably additional platforms.

For an introduction to socket programming (in C), see the following papers:An Introductory 4.3BSD Interprocess
Communication Tutorial, by Stuart Sechrest andAn Advanced 4.3BSD Interprocess Communication Tutorial, by
Samuel J. Leffler et al, both in the UNIX Programmer’s Manual, Supplementary Documents 1(sections PS1:7 and
PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable
source of information on the details of socket semantics. For UNIX , refer to the manual pages; for Windows, see
the WinSock (or Winsock 2) specification. For IPv6-ready APIs, readers may want to refer to RFC 2553 titled
Basic Socket Interface Extensions for IPv6.

The Python interface is a straightforward transliteration of the UNIX system call and library interface for sockets
to Python’s object-oriented style: thesocket() function returns asocket objectwhose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interface: as withread()
andwrite() operations on Python files, buffer allocation on receive operations is automatic, and buffer length
is implicit on send operations.

Socket addresses are represented as follows: A single string is used for theAF UNIX address family. A pair
(host, port) is used for theAF INET address family, wherehost is a string representing either a hostname
in Internet domain notation like’daring.cwi.nl’ or an IPv4 address like’100.50.200.5’ , andport
is an integral port number. ForAF INET6 address family, a four-tuple(host, port, flowinfo, scopeid) is
used, whereflowinfo and scopeidrepresentssin6 flowinfo and sin6 scope id member instruct
sockaddr in6 in C. For socket module methods,flowinfo andscopeidcan be omitted just for backward

7.2. socket — Low-level networking interface 321

compatibility. Note, however, omission ofscopeidcan cause problems in manipulating scoped IPv6 addresses.
Other address families are currently not supported. The address format required by a particular socket object is
automatically selected based on the address family specified when the socket object was created.

For IPv4 addresses, two special forms are accepted instead of a host address: the empty string represents
INADDR ANY, and the string’<broadcast>’ representsINADDR BROADCAST. The behavior is not avail-
able for IPv6 for backward compatibility, therefore, you may want to avoid these if you intend to support IPv6
with your Python programs.

If you use a hostname in thehostportion of IPv4/v6 socket address, the program may show a nondeterministic
behavior, as Python uses the first address returned from the DNS resolution. The socket address will be resolved
differently into an actual IPv4/v6 address, depending on the results from DNS resolution and/or the host configu-
ration. For deterministic behavior use a numeric address inhostportion.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can
be raised; errors related to socket or address semantics raise the errorsocket.error .

Non-blocking mode is supported throughsetblocking() . A generalization of this based on timeouts is sup-
ported throughsettimeout() .

The modulesocket exports the following constants and functions:

exceptionerror
This exception is raised for socket-related errors. The accompanying value is either a string telling what
went wrong or a pair(errno, string) representing an error returned by a system call, similar to the value
accompanyingos.error . See the moduleerrno , which contains names for the error codes defined by
the underlying operating system.

exceptionherror
This exception is raised for address-related errors, i.e. for functions that useh errno in the C API, including
gethostbyname ex() andgethostbyaddr() .

The accompanying value is a pair(h errno, string) representing an error returned by a library call.string
represents the description ofh errno, as returned by thehstrerror() C function.

exceptiongaierror
This exception is raised for address-related errors, forgetaddrinfo() andgetnameinfo() . The
accompanying value is a pair(error, string) representing an error returned by a library call.string rep-
resents the description oferror, as returned by thegai strerror() C function. Theerror value will
match one of theEAI * constants defined in this module.

exceptiontimeout
This exception is raised when a timeout occurs on a socket which has had timeouts enabled via a prior call to
settimeout() . The accompanying value is a string whose value is currently always “timed out”. New
in version 2.3.

AF UNIX
AF INET
AF INET6

These constants represent the address (and protocol) families, used for the first argument tosocket() . If
theAF UNIX constant is not defined then this protocol is unsupported.

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK RDM
SOCK SEQPACKET

These constants represent the socket types, used for the second argument tosocket() . (Only
SOCK STREAMandSOCK DGRAMappear to be generally useful.)

SO *
SOMAXCONN
MSG*
SOL *
IPPROTO *

322 Chapter 7. Optional Operating System Services

IPPORT *
INADDR *
IP *
IPV6 *
EAI *
AI *
NI *
TCP *

Many constants of these forms, documented in the UNIX documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to thesetsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the
UNIX header files are defined; for a few symbols, default values are provided.

has ipv6
This constant contains a boolean value which indicates if IPv6 is supported on this platform. New in
version 2.3.

getaddrinfo (host, port[, family[, socktype[, proto[, flags]]]])
Resolves thehost/port argument, into a sequence of 5-tuples that contain all the necessary argument for the
sockets manipulation.hostis a domain name, a string representation of IPv4/v6 address orNone. port is a
string service name (like’http’), a numeric port number orNone.

The rest of the arguments are optional and must be numeric if specified. Forhostandport, by passing either
an empty string orNone, you can passNULL to the C API. Thegetaddrinfo() function returns a list
of 5-tuples with the following structure:

(family, socktype, proto, canonname, sockaddr)

family, socktype, proto are all integer and are meant to be passed to thesocket() function. canon-
nameis a string representing the canonical name of thehost. It can be a numeric IPv4/v6 address when
AI CANONNAMEis specified for a numerichost. sockaddris a tuple describing a socket address, as de-
scribed above. See the source for thehttplib and other library modules for a typical usage of the function.
New in version 2.2.

getfqdn ([name])
Return a fully qualified domain name forname. If nameis omitted or empty, it is interpreted as the local
host. To find the fully qualified name, the hostname returned bygethostbyaddr() is checked, then
aliases for the host, if available. The first name which includes a period is selected. In case no fully
qualified domain name is available, the hostname is returned. New in version 2.0.

gethostbyname (hostname)
Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as
’100.50.200.5’ . If the host name is an IPv4 address itself it is returned unchanged. See
gethostbyname ex() for a more complete interface.gethostbyname() does not support IPv6
name resolution, andgetaddrinfo() should be used instead for IPv4/v6 dual stack support.

gethostbyname ex (hostname)
Translate a host name to IPv4 address format, extended interface. Return a triple(hostname, aliaslist,
ipaddrlist) wherehostnameis the primary host name responding to the givenip address, aliaslist is a
(possibly empty) list of alternative host names for the same address, andipaddrlist is a list of IPv4 addresses
for the same interface on the same host (often but not always a single address).gethostbyname ex()
does not support IPv6 name resolution, andgetaddrinfo() should be used instead for IPv4/v6 dual
stack support.

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is cur-
rently executing. If you want to know the current machine’s IP address, you may want to use
gethostbyname(gethostname()) . This operation assumes that there is a valid address-to-host map-
ping for the host, and the assumption does not always hold. Note:gethostname() doesn’t always return
the fully qualified domain name; usegethostbyaddr(gethostname()) (see below).

gethostbyaddr (ip address)
Return a triple(hostname, aliaslist, ipaddrlist) wherehostnameis the primary host name responding to
the givenip address, aliaslist is a (possibly empty) list of alternative host names for the same address, and

7.2. socket — Low-level networking interface 323

ipaddrlist is a list of IPv4/v6 addresses for the same interface on the same host (most likely containing only a
single address). To find the fully qualified domain name, use the functiongetfqdn() . gethostbyaddr
supports both IPv4 and IPv6.

getnameinfo (sockaddr, flags)
Translate a socket addresssockaddrinto a 2-tuple(host, port) . Depending on the settings offlags, the
result can contain a fully-qualified domain name or numeric address representation inhost. Similarly, port
can contain a string port name or a numeric port number. New in version 2.2.

getprotobyname (protocolname)
Translate an Internet protocol name (for example,’icmp’) to a constant suitable for passing as the (op-
tional) third argument to thesocket() function. This is usually only needed for sockets opened in “raw”
mode (SOCK RAW); for the normal socket modes, the correct protocol is chosen automatically if the proto-
col is omitted or zero.

getservbyname (servicename, protocolname)
Translate an Internet service name and protocol name to a port number for that service. The protocol name
should be’tcp’ or ’udp’ .

socket (family, type[, proto])
Create a new socket using the given address family, socket type and protocol number. The address family
should beAF INET , AF INET6 orAF UNIX. The socket type should beSOCK STREAM, SOCK DGRAM
or perhaps one of the other ‘SOCK ’ constants. The protocol number is usually zero and may be omitted in
that case.

ssl (sock[, keyfile, certfile])
Initiate a SSL connection over the socketsock. keyfileis the name of a PEM formatted file that contains your
private key.certfile is a PEM formatted certificate chain file. On success, a newSSLObject is returned.

Warning: This does not do any certificate verification!

fromfd (fd, family, type[, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file object’sfileno()
method). Address family, socket type and protocol number are as for thesocket() function above. The
file descriptor should refer to a socket, but this is not checked — subsequent operations on the object may
fail if the file descriptor is invalid. This function is rarely needed, but can be used to get or set socket
options on a socket passed to a program as standard input or output (such as a server started by the UNIX

inet daemon). The socket is assumed to be in blocking mode. Availability: UNIX .

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same
as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same
as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same
as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same
as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

inet aton (ip string)
Convert an IPv4 address from dotted-quad string format (for example, ’123.45.67.89’) to 32-bit packed
binary format, as a string four characters in length. This is useful when conversing with a program that uses
the standard C library and needs objects of typestruct in addr , which is the C type for the 32-bit
packed binary this function returns.

If the IPv4 address string passed to this function is invalid,socket.error will be raised. Note that
exactly what is valid depends on the underlying C implementation ofinet aton() .

inet aton() does not support IPv6, andgetnameinfo() should be used instead for IPv4/v6 dual
stack support.

324 Chapter 7. Optional Operating System Services

inet ntoa (packed ip)
Convert a 32-bit packed IPv4 address (a string four characters in length) to its standard dotted-quad string
representation (for example, ’123.45.67.89’). This is useful when conversing with a program that uses the
standard C library and needs objects of typestruct in addr , which is the C type for the 32-bit packed
binary data this function takes as an argument.

If the string passed to this function is not exactly 4 bytes in length,socket.error will be raised.
inet ntoa() does not support IPv6, andgetnameinfo() should be used instead for IPv4/v6 dual
stack support.

inet pton (address family, ip string)
Convert an IP address from its family-specific string format to a packed, binary format.inet pton()
is useful when a library or network protocol calls for an object of typestruct in addr (similar to
inet aton()) or struct in6 addr .

Supported values foraddress family are currentlyAF INET and AF INET6 . If the IP address string
ip string is invalid, socket.error will be raised. Note that exactly what is valid depends on both the
value ofaddress familyand the underlying implementation ofinet pton() .

Availability: UNIX (maybe not all platforms). New in version 2.3.

inet ntop (address family, packedip)
Convert a packed IP address (a string of some number of characters) to its standard, family-specific string
representation (for example,’7.10.0.5’ or ’5aef:2b::8’) inet ntop() is useful when a library
or network protocol returns an object of typestruct in addr (similar toinet ntoa()) or struct
in6 addr .

Supported values foraddress family are currentlyAF INET andAF INET6 . If the stringpacked ip is
not the correct length for the specified address family,ValueError will be raised. Asocket.error is
raised for errors from the call toinet ntop() .

Availability: UNIX (maybe not all platforms). New in version 2.3.

getdefaulttimeout ()
Return the default timeout in floating seconds for new socket objects. A value ofNone indicates that new
socket objects have no timeout. When the socket module is first imported, the default isNone. New in
version 2.3.

setdefaulttimeout (timeout)
Set the default timeout in floating seconds for new socket objects. A value ofNone indicates that new
socket objects have no timeout. When the socket module is first imported, the default isNone. New in
version 2.3.

SocketType
This is a Python type object that represents the socket object type. It is the same astype(socket(...)) .

See Also:

ModuleSocketServer (section 11.15):
Classes that simplify writing network servers.

7.2.1 Socket Objects

Socket objects have the following methods. Except formakefile() these correspond to UNIX system calls
applicable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return
value is a pair(conn, address) whereconnis anewsocket object usable to send and receive data on the
connection, andaddressis the address bound to the socket on the other end of the connection.

bind (address)
Bind the socket toaddress. The socket must not already be bound. (The format ofaddressdepends on
the address family — see above.)Note: This method has historically accepted a pair of parameters for
AF INET addresses instead of only a tuple. This was never intentional and is no longer available in Python
2.0 and later.

7.2. socket — Low-level networking interface 325

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more
data (after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect (address)
Connect to a remote socket ataddress. (The format ofaddressdepends on the address family — see above.)
Note: This method has historically accepted a pair of parameters forAF INET addresses instead of only a
tuple. This was never intentional and is no longer available in Python 2.0 and later.

connect ex (address)
Like connect(address) , but return an error indicator instead of raising an exception for errors returned
by the C-levelconnect() call (other problems, such as “host not found,” can still raise exceptions). The
error indicator is0 if the operation succeeded, otherwise the value of theerrno variable. This is useful
to support, for example, asynchronous connects.Note: This method has historically accepted a pair of
parameters forAF INET addresses instead of only a tuple. This was never intentional and is no longer
available in Python 2.0 and later.

fileno ()
Return the socket’s file descriptor (a small integer). This is useful withselect.select() .

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address family —
see above.) On some systems this function is not supported.

getsockname ()
Return the socket’s own address. This is useful to find out the port number of an IPv4/v6 socket, for instance.
(The format of the address returned depends on the address family — see above.)

getsockopt (level, optname[, buflen])
Return the value of the given socket option (see the UNIX man pagegetsockopt(2)). The needed symbolic
constants (SO * etc.) are defined in this module. Ifbuflenis absent, an integer option is assumed and its
integer value is returned by the function. Ifbuflenis present, it specifies the maximum length of the buffer
used to receive the option in, and this buffer is returned as a string. It is up to the caller to decode the
contents of the buffer (see the optional built-in modulestruct for a way to decode C structures encoded
as strings).

listen (backlog)
Listen for connections made to the socket. Thebacklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile ([mode[, bufsize]])
Return afile objectassociated with the socket. (File objects are described in 2.3.8, “File Objects.”) The
file object references adup() ped version of the socket file descriptor, so the file object and socket object
may be closed or garbage-collected independently. The socket should be in blocking mode. The optional
modeandbufsizearguments are interpreted the same way as by the built-infile() function; see “Built-in
Functions” (section 2.1) for more information.

recv (bufsize[, flags])
Receive data from the socket. The return value is a string representing the data received. The maximum
amount of data to be received at once is specified bybufsize. See the UNIX manual pagerecv(2) for the
meaning of the optional argumentflags; it defaults to zero.

recvfrom (bufsize[, flags])
Receive data from the socket. The return value is a pair(string, address) wherestring is a string rep-
resenting the data received andaddressis the address of the socket sending the data. The optionalflags
argument has the same meaning as forrecv() above. (The format ofaddressdepends on the address
family — see above.)

send (string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optionalflagsargument has
the same meaning as forrecv() above. Returns the number of bytes sent. Applications are responsible
for checking that all data has been sent; if only some of the data was transmitted, the application needs to
attempt delivery of the remaining data.

326 Chapter 7. Optional Operating System Services

sendall (string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optionalflagsargument has
the same meaning as forrecv() above. Unlikesend() , this method continues to send data fromstring
until either all data has been sent or an error occurs.None is returned on success. On error, an exception is
raised, and there is no way to determine how much data, if any, was successfully sent.

sendto (string[, flags], address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified byaddress. The optionalflagsargument has the same meaning as forrecv() above. Return
the number of bytes sent. (The format ofaddressdepends on the address family — see above.)

setblocking (flag)
Set blocking or non-blocking mode of the socket: ifflag is 0, the socket is set to non-blocking, else to
blocking mode. Initially all sockets are in blocking mode. In non-blocking mode, if arecv() call
doesn’t find any data, or if asend() call can’t immediately dispose of the data, aerror exception is
raised; in blocking mode, the calls block until they can proceed.s.setblocking(0) is equivalent to
s.settimeout(0) ; s.setblocking(1) is equivalent tos.settimeout(None) .

settimeout (value)
Set a timeout on blocking socket operations. Thevalueargument can be a nonnegative float expressing
seconds, orNone. If a float is given, subsequent socket operations will raise antimeout exception
if the timeout periodvaluehas elapsed before the operation has completed. Setting a timeout ofNone
disables timeouts on socket operations.s.settimeout(0.0) is equivalent tos.setblocking(0) ;
s.settimeout(None) is equivalent tos.setblocking(1) . New in version 2.3.

gettimeout ()
Returns the timeout in floating seconds associated with socket operations, orNone if no timeout is set. This
reflects the last call tosetblocking() or settimeout() . New in version 2.3.

Some notes on socket blocking and timeouts: A socket object can be in one of three modes: blocking, non-
blocking, or timeout. Sockets are always created in blocking mode. In blocking mode, operations block until
complete. In non-blocking mode, operations fail (with an error that is unfortunately system-dependent) if they
cannot be completed immediately. In timeout mode, operations fail if they cannot be completed within the timeout
specified for the socket. Thesetblocking() method is simply a shorthand for certainsettimeout() calls.

Timeout mode internally sets the socket in non-blocking mode. The blocking and timeout modes are shared
between file descriptors and socket objects that refer to the same network endpoint. A consequence of this is that
file objects returned by themakefile() method should only be used when the socket is in blocking mode; in
timeout or non-blocking mode file operations that cannot be completed immediately will fail.

setsockopt (level, optname, value)
Set the value of the given socket option (see the UNIX manual pagesetsockopt(2)). The needed symbolic
constants are defined in thesocket module (SO * etc.). The value can be an integer or a string represent-
ing a buffer. In the latter case it is up to the caller to ensure that the string contains the proper bits (see the
optional built-in modulestruct for a way to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connection. Ifhow is 0, further receives are disallowed. Ifhow is 1,
further sends are disallowed. Ifhow is 2, further sends and receives are disallowed.

Note that there are no methodsread() or write() ; userecv() andsend() withoutflagsargument instead.

7.2.2 SSL Objects

SSL objects have the following methods.

write (s)
Writes the strings to the on the object’s SSL connection. The return value is the number of bytes written.

read ([n])
If n is provided, readn bytes from the SSL connection, otherwise read until EOF. The return value is a string
of the bytes read.

7.2. socket — Low-level networking interface 327

7.2.3 Example

Here are four minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives
back (servicing only one client), and a client using it. Note that a server must perform the sequencesocket() ,
bind() , listen() , accept() (possibly repeating theaccept() to service more than one client), while a
client only needs the sequencesocket() , connect() . Also note that the server does notsend() /recv()
on the socket it is listening on but on the new socket returned byaccept() .

The first two examples support IPv4 only.

Echo server program
import socket

HOST = ’’ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print ’Connected by’, addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, ‘data‘

The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will listen
to the first address family available (it should listen to both instead). On most of IPv6-ready systems, IPv6 will
take precedence and the server may not accept IPv4 traffic. The client side will try to connect to the all addresses
returned as a result of the name resolution, and sends traffic to the first one connected successfully.

328 Chapter 7. Optional Operating System Services

Echo server program
import socket
import sys

HOST = ’’ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged port
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM, 0, socket.AI_PASSIVE):

af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except socket.error, msg:

s = None
continue

try:
s.bind(sa)
s.listen(1)

except socket.error, msg:
s.close()
s = None
continue

break
if s is None:

print ’could not open socket’
sys.exit(1)

conn, addr = s.accept()
print ’Connected by’, addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket
import sys

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):

af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except socket.error, msg:

s = None
continue

try:
s.connect(sa)

except socket.error, msg:
s.close()
s = None
continue

break
if s is None:

print ’could not open socket’
sys.exit(1)

s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, ‘data‘

7.2. socket — Low-level networking interface 329

7.3 select — Waiting for I/O completion

This module provides access to theselect() andpoll() functions available in most operating systems. Note
that on Windows, it only works for sockets; on other operating systems, it also works for other file types (in
particular, on UNIX , it works on pipes). It cannot be used on regular files to determine whether a file has grown
since it was last read.

The module defines the following:

exceptionerror
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error
code fromerrno and the corresponding string, as would be printed by the C functionperror() .

poll ()
(Not supported by all operating systems.) Returns a polling object, which supports registering and un-
registering file descriptors, and then polling them for I/O events; see section 7.3.1 below for the methods
supported by polling objects.

select (iwtd, owtd, ewtd[, timeout])
This is a straightforward interface to the UNIX select() system call. The first three arguments are lists
of ‘waitable objects’: either integers representing file descriptors or objects with a parameterless method
namedfileno() returning such an integer. The three lists of waitable objects are for input, output
and ‘exceptional conditions’, respectively. Empty lists are allowed, but acceptance of three empty lists
is platform-dependent. (It is known to work on UNIX but not on Windows.) The optionaltimeoutargu-
ment specifies a time-out as a floating point number in seconds. When thetimeoutargument is omitted the
function blocks until at least one file descriptor is ready. A time-out value of zero specifies a poll and never
blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Among the acceptable object types in the lists are Python file objects (e.g.sys.stdin , or objects returned
by open() or os.popen()), socket objects returned bysocket.socket() . You may also define
a wrapper class yourself, as long as it has an appropriatefileno() method (that really returns a file
descriptor, not just a random integer).Note: File objects on Windows are not acceptable, but sockets are.
On Windows, the underlyingselect() function is provided by the WinSock library, and does not handle
file desciptors that don’t originate from WinSock.

7.3.1 Polling Objects

Thepoll() system call, supported on most UNIX systems, provides better scalability for network servers that
service many, many clients at the same time.poll() scales better because the system call only requires listing
the file descriptors of interest, whileselect() builds a bitmap, turns on bits for the fds of interest, and then
afterward the whole bitmap has to be linearly scanned again.select() is O(highest file descriptor), while
poll() is O(number of file descriptors).

register (fd[, eventmask])
Register a file descriptor with the polling object. Future calls to thepoll() method will then check
whether the file descriptor has any pending I/O events.fd can be either an integer, or an object with a
fileno() method that returns an integer. File objects implementfileno() , so they can also be used as
the argument.

eventmaskis an optional bitmask describing the type of events you want to check for, and can be a combi-
nation of the constantsPOLLIN, POLLPRI, andPOLLOUT, described in the table below. If not specified,
the default value used will check for all 3 types of events.

330 Chapter 7. Optional Operating System Services

Constant Meaning
POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as registering
the descriptor exactly once.

unregister (fd)
Remove a file descriptor being tracked by a polling object. Just like theregister() method,fd can be
an integer or an object with afileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes aKeyError exception to be raised.

poll ([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list containing(fd, event) 2-tuples
for the descriptors that have events or errors to report.fd is the file descriptor, andeventis a bitmask with
bits set for the reported events for that descriptor —POLLIN for waiting input,POLLOUTto indicate that
the descriptor can be written to, and so forth. An empty list indicates that the call timed out and no file
descriptors had any events to report. Iftimeoutis given, it specifies the length of time in milliseconds which
the system will wait for events before returning. Iftimeoutis omitted, negative, orNone, the call will block
until there is an event for this poll object.

7.4 thread — Multiple threads of control

This module provides low-level primitives for working with multiple threads (a.k.a.light-weight processesor
tasks) — multiple threads of control sharing their global data space. For synchronization, simple locks (a.k.a.
mutexesor binary semaphores) are provided.

The module is optional. It is supported on Windows, Linux, SGI IRIX, Solaris 2.x, as well as on systems
that have a POSIX thread (a.k.a. “pthread”) implementation. For systems lacking thethread module, the
dummy thread module is available. It duplicates this module’s interface and can be used as a drop-in replace-
ment.

It defines the following constant and functions:

exceptionerror
Raised on thread-specific errors.

LockType
This is the type of lock objects.

start new thread (function, args[, kwargs])
Start a new thread and return its identifier. The thread executes the functionfunctionwith the argument
list args (which must be a tuple). The optionalkwargsargument specifies a dictionary of keyword argu-
ments. When the function returns, the thread silently exits. When the function terminates with an unhandled
exception, a stack trace is printed and then the thread exits (but other threads continue to run).

interrupt main ()
Raise a KeyboardInterrupt in the main thread. A subthread can use this function to interrupt the main thread.
New in version 2.3.

exit ()
Raise theSystemExit exception. When not caught, this will cause the thread to exit silently.

allocate lock ()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get ident ()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread

7.4. thread — Multiple threads of control 331

identifiers may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence),
and returnsNone. If the integerwaitflagargument is present, the action depends on its value: if it is zero,
the lock is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock
is acquired unconditionally as before. If an argument is present, the return value isTrue if the lock is
acquired successfully,False if not.

release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

locked ()
Return the status of the lock:True if it has been acquired by some thread,False if not.

Caveats:

• Threads interact strangely with interrupts: theKeyboardInterrupt exception will be received by an
arbitrary thread. (When thesignal module is available, interrupts always go to the main thread.)

• Callingsys.exit() or raising theSystemExit exception is equivalent to callingexit() .

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep() , file.read() , select.select()) work as expected.)

• It is not possible to interrupt theacquire() method on a lock — theKeyboardInterrupt exception
will happen after the lock has been acquired.

• When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without executingtry
... finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except thattry ... finally clauses
are honored), and the standard I/O files are not flushed.

7.5 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lower levelthread module.

Thedummy threading module is provided for situations wherethreading cannot be used becausethread
is missing.

This module defines the following functions and objects:

activeCount ()
Return the number of currently activeThread objects. The returned count is equal to the length of the list
returned byenumerate() . A function that returns the number of currently active threads.

Condition ()
A factory function that returns a new condition variable object. A condition variable allows one or more
threads to wait until they are notified by another thread.

currentThread ()
Return the currentThread object, corresponding to the caller’s thread of control. If the caller’s thread of
control was not created through thethreading module, a dummy thread object with limited functionality
is returned.

enumerate ()
Return a list of all currently activeThread objects. The list includes daemonic threads, dummy thread
objects created bycurrentThread() , and the main thread. It excludes terminated threads and threads
that have not yet been started.

332 Chapter 7. Optional Operating System Services

Event ()
A factory function that returns a new event object. An event manages a flag that can be set to true with the
set() method and reset to false with theclear() method. Thewait() method blocks until the flag is
true.

Lock ()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent
attempts to acquire it block, until it is released; any thread may release it.

RLock ()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread
that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without
blocking; the thread must release it once for each time it has acquired it.

Semaphore ([value])
A factory function that returns a new semaphore object. A semaphore manages a counter representing
the number ofrelease() calls minus the number ofacquire() calls, plus an initial value. The
acquire() method blocks if necessary until it can return without making the counter negative. If not
given,valuedefaults to 1.

BoundedSemaphore ([value])
A factory function that returns a new bounded semaphore object. A bounded semaphore checks to make
sure its current value doesn’t exceed its initial value. If it does,ValueError is raised. In most situations
semaphores are used to guard resources with limited capacity. If the semaphore is released too many times
it’s a sign of a bug. If not given,valuedefaults to 1.

classThread
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

classTimer
A thread that executes a function after a specified interval has passed.

settrace (func)
Set a trace function for all threads started from thethreading module. Thefunc will be passed to
sys.settrace() for each thread, before itsrun() method is called. New in version 2.3.

setprofile (func)
Set a profile function for all threads started from thethreading module. Thefunc will be passed to
sys.setprofile() for each thread, before itsrun() method is called. New in version 2.3.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and
condition variables basic behavior of every object, they are separate objects in Python. Python’sThread class
supports a subset of the behavior of Java’s Thread class; currently, there are no priorities, no thread groups, and
threads cannot be destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread
class, when implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.

7.5.1 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python, it
is currently the lowest level synchronization primitive available, implemented directly by thethread extension
module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methods,acquire() andrelease() . When the state is unlocked,acquire() changes the state to locked
and returns immediately. When the state is locked,acquire() blocks until a call torelease() in another
thread changes it to unlocked, then theacquire() call resets it to locked and returns. Therelease() method
should only be called in the locked state; it changes the state to unlocked and returns immediately. When more
than one thread is blocked inacquire() waiting for the state to turn to unlocked, only one thread proceeds
when arelease() call resets the state to unlocked; which one of the waiting threads proceeds is not defined,
and may vary across implementations.

7.5. threading — Higher-level threading interface 333

All methods are executed atomically.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return. There
is no return value in this case.

When invoked with theblockingargument set to true, do the same thing as when called without arguments,
and return true.

When invoked with theblockingargument set to false, do not block. If a call without an argument would
block, return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

release ()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the
lock to become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.

There is no return value.

7.5.2 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally,
it uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by
primitive locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

To lock the lock, a thread calls itsacquire() method; this returns once the thread owns the lock. To unlock
the lock, a thread calls itsrelease() method.acquire() /release() call pairs may be nested; only the
final release() (therelease() of the outermost pair) resets the lock to unlocked and allows another thread
blocked inacquire() to proceed.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion level by
one, and return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked.
Once the lock is unlocked (not owned by any thread), then grab ownership, set the recursion level to one,
and return. If more than one thread is blocked waiting until the lock is unlocked, only one at a time will be
able to grab ownership of the lock. There is no return value in this case.

When invoked with theblockingargument set to true, do the same thing as when called without arguments,
and return true.

When invoked with theblockingargument set to false, do not block. If a call without an argument would
block, return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

release ()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked,
allow exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock
remains locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. Do not call this method when the lock is
unlocked.

There is no return value.

7.5.3 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. (Passing one in is useful when several condition variables must share the same lock.)

334 Chapter 7. Optional Operating System Services

A condition variable hasacquire() and release() methods that call the corresponding methods of the
associated lock. It also has await() method, andnotify() andnotifyAll() methods. These three must
only be called when the calling thread has acquired the lock.

Thewait() method releases the lock, and then blocks until it is awakened by anotify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is
also possible to specify a timeout.

Thenotify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The
notifyAll() method wakes up all threads waiting for the condition variable.

Note: thenotify() andnotifyAll() methods don’t release the lock; this means that the thread or threads
awakened will not return from theirwait() call immediately, but only when the thread that callednotify()
or notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some shared
state; threads that are interested in a particular change of state callwait() repeatedly until they see the desired
state, while threads that modify the state callnotify() or notifyAll() when they change the state in such
a way that it could possibly be a desired state for one of the waiters. For example, the following code is a generic
producer-consumer situation with unlimited buffer capacity:

Consume one item
cv.acquire()
while not an_item_is_available():

cv.wait()
get_an_available_item()
cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()

To choose betweennotify() andnotifyAll() , consider whether one state change can be interesting for
only one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer
only needs to wake up one consumer thread.

classCondition ([lock])
If the lock argument is given and notNone, it must be aLock or RLock object, and it is used as the
underlying lock. Otherwise, a newRLock object is created and used as the underlying lock.

acquire (*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return
value is whatever that method returns.

release ()
Release the underlying lock. This method calls the corresponding method on the underlying lock; there is
no return value.

wait ([timeout])
Wait until notified or until a timeout occurs. This must only be called when the calling thread has acquired
the lock.

This method releases the underlying lock, and then blocks until it is awakened by anotify() or
notifyAll() call for the same condition variable in another thread, or until the optional timeout oc-
curs. Once awakened or timed out, it re-acquires the lock and returns.

When thetimeoutargument is present and notNone, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof).

When the underlying lock is anRLock , it is not released using itsrelease() method, since this may not
actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of
theRLock class is used, which really unlocks it even when it has been recursively acquired several times.

7.5. threading — Higher-level threading interface 335

Another internal interface is then used to restore the recursion level when the lock is reacquired.

notify ()
Wake up a thread waiting on this condition, if any. This must only be called when the calling thread has
acquired the lock.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it is a no-op
if no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it’s not safe to rely
on this behavior. A future, optimized implementation may occasionally wake up more than one thread.

Note: the awakened thread does not actually return from itswait() call until it can reacquire the lock.
Sincenotify() does not release the lock, its caller should.

notifyAll ()
Wake up all threads waiting on this condition. This method acts likenotify() , but wakes up all waiting
threads instead of one.

7.5.4 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he usedP() andV() instead ofacquire() andrelease()).

A semaphore manages an internal counter which is decremented by eachacquire() call and incremented by
eachrelease() call. The counter can never go below zero; whenacquire() finds that it is zero, it blocks,
waiting until some other thread callsrelease() .

classSemaphore ([value])
The optional argument gives the initial value for the internal counter; it defaults to1.

acquire ([blocking])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by one
and return immediately. If it is zero on entry, block, waiting until some other thread has calledrelease()
to make it larger than zero. This is done with proper interlocking so that if multipleacquire() calls are
blocked,release() will wake exactly one of them up. The implementation may pick one at random, so
the order in which blocked threads are awakened should not be relied on. There is no return value in this
case.

When invoked withblockingset to true, do the same thing as when called without arguments, and return
true.

When invoked withblockingset to false, do not block. If a call without an argument would block, return
false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another
thread is waiting for it to become larger than zero again, wake up that thread.

Semaphore Example

Semaphores are often used to guard resources with limited capacity, for example, a database server. In any
situation where the size of the resource size is fixed, you should use a bounded semaphore. Before spawning any
worker threads, your main thread would initialize the semaphore:

maxconnections = 5
...
pool_sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore’s acquire and release methods when they need to connect to the
server:

336 Chapter 7. Optional Operating System Services

pool_sema.acquire()
conn = connectdb()
... use connection ...
conn.close()
pool_sema.release()

The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to be
released more than it’s acquired will go undetected.

7.5.5 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and other
threads wait for it.

An event object manages an internal flag that can be set to true with theset() method and reset to false with the
clear() method. Thewait() method blocks until the flag is true.

classEvent ()
The internal flag is initially false.

isSet ()
Return true if and only if the internal flag is true.

set ()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that call
wait() once the flag is true will not block at all.

clear ()
Reset the internal flag to false. Subsequently, threads callingwait() will block until set() is called to
set the internal flag to true again.

wait ([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise, block
until another thread callsset() to set the flag to true, or until the optional timeout occurs.

When the timeout argument is present and notNone, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof).

7.5.6 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify the
activity: by passing a callable object to the constructor, or by overriding therun() method in a subclass. No
other methods (except for the constructor) should be overridden in a subclass. In other words,only override the

init () andrun() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’sstart() method. This invokes
therun() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ’alive’ and ’active’ (these concepts are almost, but
not quite exactly, the same; their definition is intentionally somewhat vague). It stops being alive and active when
its run() method terminates – either normally, or by raising an unhandled exception. TheisAlive() method
tests whether the thread is alive.

Other threads can call a thread’sjoin() method. This blocks the calling thread until the thread whosejoin()
method is called is terminated.

A thread has a name. The name can be passed to the constructor, set with thesetName() method, and retrieved
with thegetName() method.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set with
thesetDaemon() method and retrieved with theisDaemon() method.

7.5. threading — Higher-level threading interface 337

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to “alien
threads”. These are threads of control started outside the threading module, such as directly from C code. Dummy
thread objects have limited functionality; they are always considered alive, active, and daemonic, and cannot be
join() ed. They are never deleted, since it is impossible to detect the termination of alien threads.

classThread (group=None, target=None, name=None, args=(), kwargs={})
This constructor should always be called with keyword arguments. Arguments are:

groupshould beNone; reserved for future extension when aThreadGroup class is implemented.

target is the callable object to be invoked by therun() method. Defaults toNone, meaning nothing is
called.

nameis the thread name. By default, a unique name is constructed of the form “Thread-N” whereN is a
small decimal number.

args is the argument tuple for the target invocation. Defaults to() .

kwargsis a dictionary of keyword arguments for the target invocation. Defaults to{} .

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread. init ()) before doing anything else to the thread.

start ()
Start the thread’s activity.

This must be called at most once per thread object. It arranges for the object’srun() method to be invoked
in a separate thread of control.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standardrun() method invokes the callable object passed
to the object’s constructor as thetargetargument, if any, with sequential and keyword arguments taken from
theargsandkwargsarguments, respectively.

join ([timeout])
Wait until the thread terminates. This blocks the calling thread until the thread whosejoin() method is
called terminates – either normally or through an unhandled exception – or until the optional timeout occurs.

When thetimeoutargument is present and notNone, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof).

A thread can bejoin() ed many times.

A thread cannot join itself because this would cause a deadlock.

It is an error to attempt tojoin() a thread before it has been started.

getName ()
Return the thread’s name.

setName (name)
Set the thread’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple threads may be
given the same name. The initial name is set by the constructor.

isAlive ()
Return whether the thread is alive.

Roughly, a thread is alive from the moment thestart() method returns until itsrun() method termi-
nates.

isDaemon ()
Return the thread’s daemon flag.

setDaemon (daemonic)
Set the thread’s daemon flag to the Boolean valuedaemonic. This must be called beforestart() is called.

The initial value is inherited from the creating thread.

338 Chapter 7. Optional Operating System Services

The entire Python program exits when no active non-daemon threads are left.

7.5.7 Timer Objects

This class represents an action that should be run only after a certain amount of time has passed — a timer.Timer
is a subclass ofThread and as such also functions as an example of creating custom threads.

Timers are started, as with threads, by calling theirstart() method. The timer can be stopped (before its action
has begun) by calling thecancel() method. The interval the timer will wait before executing its action may not
be exactly the same as the interval specified by the user.

For example:

def hello():
print "hello, world"

t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed

classTimer (interval, function, args=[], kwargs={})
Create a timer that will runfunctionwith argumentsargs and keyword argumentskwargs, after interval
seconds have passed.

cancel ()
Stop the timer, and cancel the execution of the timer’s action. This will only work if the timer is still in its
waiting stage.

7.6 dummy thread — Drop-in replacement for the thread module

This module provides a duplicate interface to thethread module. It is meant to be imported when thethread
module is not provided on a platform.

Suggested usage is:

try:
import thread as _thread

except ImportError:
import dummy_thread as _thread

Be careful to not use this module where deadlock might occur from a thread being created that blocks waiting for
another thread to be created. This often occurs with blocking I/O.

7.7 dummy threading — Drop-in replacement for the threading
module

This module provides a duplicate interface to thethreading module. It is meant to be imported when the
thread module is not provided on a platform.

Suggested usage is:

7.6. dummy thread — Drop-in replacement for the thread module 339

try:
import threading as _threading

except ImportError:
import dummy_threading as _threading

Be careful to not use this module where deadlock might occur from a thread being created that blocks waiting for
another thread to be created. This often occurs with blocking I/O.

7.8 Queue — A synchronized queue class

TheQueue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple threads. TheQueue class in this
module implements all the required locking semantics. It depends on the availability of thread support in Python.

See Also:

Modulebisect (section 5.10):
PriorityQueue example using the Queue class

TheQueue module defines the following class and exception:

classQueue(maxsize)
Constructor for the class.maxsizeis an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. Ifmaxsizeis less than or equal to zero, the queue size is infinite.

exceptionEmpty
Exception raised when non-blockingget() (or get nowait()) is called on aQueue object which is
empty or locked.

exceptionFull
Exception raised when non-blockingput() (or put nowait()) is called on aQueue object which is
full or locked.

7.8.1 Queue Objects

ClassQueue implements queue objects and has the methods described below. This class can be derived from in
order to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See
the source code for details. The public methods are:

qsize ()
Return the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
ReturnTrue if the queue is empty,False otherwise. Becauseof multithreading semantics, this is not
reliable.

full ()
ReturnTrue if the queue is full,False otherwise. Because of multithreading semantics, this is not
reliable.

put (item[, block[, timeout]])
Put item into the queue. If optional argsblock is true andtimeoutis None (the default), block if necessary
until a free slot is available. Iftimeoutis a positive number, it blocks at mosttimeoutseconds and raises the
Full exception if no free slot was available within that time. Otherwise (block is false), put an item on the
queue if a free slot is immediately available, else raise theFull exception (timeoutis ignored in that case).

New in version 2.3: the timeout parameter.

put nowait (item)
Equivalent toput(item, False) .

340 Chapter 7. Optional Operating System Services

get ([block[, timeout]])
Remove and return an item from the queue. If optional argsblock is true andtimeoutis None (the default),
block if necessary until an item is available. Iftimeout is a positive number, it blocks at mosttimeout
seconds and raises theEmpty exception if no item was available within that time. Otherwise (block is
false), return an item if one is immediately available, else raise theEmpty exception (timeoutis ignored in
that case).

New in version 2.3: the timeout parameter.

get nowait ()
Equivalent toget(False) .

7.9 mmap— Memory-mapped file support

Memory-mapped file objects behave like both strings and like file objects. Unlike normal string objects, however,
these are mutable. You can use mmap objects in most places where strings are expected; for example, you can use
there module to search through a memory-mapped file. Since they’re mutable, you can change a single character
by doingobj[index] = ’a’ , or change a substring by assigning to a slice:obj[i1: i2] = ’...’ . You can
also read and write data starting at the current file position, andseek() through the file to different positions.

A memory-mapped file is created by themmap() function, which is different on UNIX and on Windows. In either
case you must provide a file descriptor for a file opened for update. If you wish to map an existing Python file
object, use itsfileno() method to obtain the correct value for thefilenoparameter. Otherwise, you can open
the file using theos.open() function, which returns a file descriptor directly (the file still needs to be closed
when done).

For both the UNIX and Windows versions of the function,accessmay be specified as an optional keyword pa-
rameter.accessaccepts one of three values:ACCESSREAD, ACCESSWRITE, or ACCESSCOPYto specify
readonly, write-through or copy-on-write memory respectively.accesscan be used on both UNIX and Windows.
If accessis not specified, Windows mmap returns a write-through mapping. The initial memory values for all
three access types are taken from the specified file. Assignment to anACCESSREADmemory map raises a
TypeError exception. Assignment to anACCESSWRITEmemory map affects both memory and the under-
lying file. Assignment to anACCESSCOPYmemory map affects memory but does not update the underlying
file.

mmap(fileno, length[, tagname[, access]])
(Windows version)Mapslengthbytes from the file specified by the file handlefileno, and returns a mmap
object. If length is larger than the current size of the file, the file is extended to containlengthbytes. If
length is 0, the maximum length of the map is the current size of the file, except that if the file is empty
Windows raises an exception (you cannot create an empty mapping on Windows).

tagname, if specified and notNone, is a string giving a tag name for the mapping. Windows allows you
to have many different mappings against the same file. If you specify the name of an existing tag, that tag
is opened, otherwise a new tag of this name is created. If this parameter is omitted orNone, the mapping
is created without a name. Avoiding the use of the tag parameter will assist in keeping your code portable
between UNIX and Windows.

mmap(fileno, length[, flags[, prot[, access]]])
(UNIX version) Mapslengthbytes from the file specified by the file descriptorfileno, and returns a mmap
object.

flags specifies the nature of the mapping.MAP PRIVATE creates a private copy-on-write mapping, so
changes to the contents of the mmap object will be private to this process, andMAP SHAREDcreates a
mapping that’s shared with all other processes mapping the same areas of the file. The default value is
MAP SHARED.

prot, if specified, gives the desired memory protection; the two most useful values arePROT READ
and PROT WRITE, to specify that the pages may be read or written.prot defaults toPROT READ |
PROT WRITE.

accessmay be specified in lieu offlagsandprot as an optional keyword parameter. It is an error to specify
bothflags, prot andaccess. See the description ofaccessabove for information on how to use this parameter.

7.9. mmap— Memory-mapped file support 341

Memory-mapped file objects support the following methods:

close ()
Close the file. Subsequent calls to other methods of the object will result in an exception being raised.

find (string[, start])
Returns the lowest index in the object where the substringstring is found. Returns-1 on failure. start is
the index at which the search begins, and defaults to zero.

flush ([offset, size])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there is no
guarantee that changes are written back before the object is destroyed. Ifoffsetandsizeare specified, only
changes to the given range of bytes will be flushed to disk; otherwise, the whole extent of the mapping is
flushed.

move(dest, src, count)
Copy thecount bytes starting at offsetsrc to the destination indexdest. If the mmap was created with
ACCESSREAD, then calls to move will throw aTypeError exception.

read (num)
Return a string containing up tonumbytes starting from the current file position; the file position is updated
to point after the bytes that were returned.

read byte ()
Returns a string of length 1 containing the character at the current file position, and advances the file position
by 1.

readline ()
Returns a single line, starting at the current file position and up to the next newline.

resize (newsize)
If the mmap was created withACCESSREAD or ACCESSCOPY, resizing the map will throw a
TypeError exception.

seek (pos[, whence])
Set the file’s current position.whenceargument is optional and defaults to0 (absolute file positioning);
other values are1 (seek relative to the current position) and2 (seek relative to the file’s end).

size ()
Return the length of the file, which can be larger than the size of the memory-mapped area.

tell ()
Returns the current position of the file pointer.

write (string)
Write the bytes instring into memory at the current position of the file pointer; the file position is updated
to point after the bytes that were written. If the mmap was created withACCESSREAD, then writing to it
will throw a TypeError exception.

write byte (byte)
Write the single-character stringbyteinto memory at the current position of the file pointer; the file position
is advanced by1.If the mmap was created withACCESSREAD, then writing to it will throw aTypeError
exception.

7.10 anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM database —dbhash (requiresbsddb), gdbm, or dbm. If
none of these modules is installed, the slow-but-simple implementation in moduledumbdbmwill be used.

open (filename[, flag[, mode]])
Open the database filefilenameand return a corresponding object.

If the database file already exists, thewhichdb module is used to determine its type and the appropriate
module is used; if it does not exist, the first module listed above that can be imported is used.

342 Chapter 7. Optional Operating System Services

The optionalflag argument can be’r’ to open an existing database for reading only,’w’ to open an
existing database for reading and writing,’c’ to create the database if it doesn’t exist, or’n’ , which will
always create a new empty database. If not specified, the default value is’r’ .

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created.
It defaults to octal0666 (and will be modified by the prevailing umask).

exceptionerror
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique
exceptionanydbm.error as the first item — the latter is used whenanydbm.error is raised.

The object returned byopen() supports most of the same functionality as dictionaries; keys and their corre-
sponding values can be stored, retrieved, and deleted, and thehas key() andkeys() methods are available.
Keys and values must always be strings.

See Also:

Moduledbhash (section 7.11):
BSDdb database interface.

Moduledbm (section 8.6):
Standard UNIX database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thedbm interface.

Modulegdbm (section 8.7):
GNU database interface, based on thedbm interface.

Moduleshelve (section 3.17):
General object persistence built on top of the Pythondbm interface.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.11 dbhash — DBM-style interface to the BSD database library

Thedbhash module provides a function to open databases using the BSDdb library. This module mirrors the
interface of the other Python database modules that provide access to DBM-style databases. Thebsddb module
is required to usedbhash .

This module provides an exception and a function:

exceptionerror
Exception raised on database errors other thanKeyError . It is a synonym forbsddb.error .

open (path[, flag[, mode]])
Open adb database and return the database object. Thepathargument is the name of the database file.

Theflag argument can be’r’ (the default),’w’ , ’c’ (which creates the database if it doesn’t exist), or
’n’ (which always creates a new empty database). For platforms on which the BSDdb library supports
locking, an ‘l ’ can be appended to indicate that locking should be used.

The optionalmodeparameter is used to indicate the UNIX permission bits that should be set if a new
database must be created; this will be masked by the current umask value for the process.

See Also:

Moduleanydbm (section 7.10):
Generic interface todbm-style databases.

Modulebsddb (section 7.13):
Lower-level interface to the BSDdb library.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.11. dbhash — DBM-style interface to the BSD database library 343

7.11.1 Database Objects

The database objects returned byopen() provide the methods common to all the DBM-style databases and
mapping objects. The following methods are available in addition to the standard methods.

first ()
It’s possible to loop over every key/value pair in the database using this method and thenext() method.
The traversal is ordered by the databases internal hash values, and won’t be sorted by the key values. This
method returns the starting key.

last ()
Return the last key/value pair in a database traversal. This may be used to begin a reverse-order traversal;
seeprevious() .

next ()
Returns the key next key/value pair in a database traversal. The following code prints every key in the
databasedb , without having to create a list in memory that contains them all:

print db.first()
for i in xrange(1, len(db)):

print db.next()

previous ()
Returns the previous key/value pair in a forward-traversal of the database. In conjunction withlast() ,
this may be used to implement a reverse-order traversal.

sync ()
This method forces any unwritten data to be written to the disk.

7.12 whichdb — Guess which DBM module created a database

The single function in this module attempts to guess which of the several simple database modules available–dbm,
gdbm, or dbhash –should be used to open a given file.

whichdb (filename)
Returns one of the following values:None if the file can’t be opened because it’s unreadable or doesn’t
exist; the empty string (’’) if the file’s format can’t be guessed; or a string containing the required module
name, such as’dbm’ or ’gdbm’ .

7.13 bsddb — Interface to Berkeley DB library

Thebsddb module provides an interface to the Berkeley DB library. Users can create hash, btree or record based
library files using the appropriate open call. Bsddb objects behave generally like dictionaries. Keys and values
must be strings, however, so to use other objects as keys or to store other kinds of objects the user must serialize
them somehow, typically using marshal.dumps or pickle.dumps.

Starting with Python 2.3 thebsddb module requires the Berkeley DB library version 3.1 or later (it is known to
work with 3.1 thru 4.1 at the time of this writing).

See Also:

http://pybsddb.sourceforge.net/
Website with documentation for the new python Berkeley DB interface that closely mirrors the sleepycat
object oriented interface provided in Berkeley DB 3 and 4.

http://www.sleepycat.com/
Sleepycat Software produces the modern Berkeley DB library.

The following is a description of the legacybsddb interface compatible with the old python bsddb module. For
details about the more modern Db and DbEnv object oriented interface see the above mentioned pybsddb URL.

344 Chapter 7. Optional Operating System Services

Warning: This legacy interface is not thread safe in python 2.3.x or earlier. Data corruption, core dumps
or deadlocks may occur if you attempt multi-threaded access. You must use the modern pybsddb interface
linked to above if you need multi-threaded or multi-process database access.

Thebsddb module defines the following functions that create objects that access the appropriate type of Berkeley
DB file. The first two arguments of each function are the same. For ease of portability, only the first two arguments
should be used in most instances.

hashopen (filename[, flag[, mode[, bsize[, ffactor[, nelem[, cachesize[, hash[, lorder]]]]]]]])
Open the hash format file namedfilename. Files never intended to be preserved on disk may be created by
passingNone as thefilename. The optionalflag identifies the mode used to open the file. It may be ‘r ’
(read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary; the default) or ‘n’ (read-write - truncate to
zero length). The other arguments are rarely used and are just passed to the low-leveldbopen() function.
Consult the Berkeley DB documentation for their use and interpretation.

btopen (filename[, flag[, mode[, btflags[, cachesize[, maxkeypage[, minkeypage[, psize[, lorder]]]]]]]])
Open the btree format file namedfilename. Files never intended to be preserved on disk may be created by
passingNone as thefilename. The optionalflag identifies the mode used to open the file. It may be ‘r ’
(read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary; the default) or ‘n’ (read-write - truncate
to zero length). The other arguments are rarely used and are just passed to the low-level dbopen function.
Consult the Berkeley DB documentation for their use and interpretation.

rnopen (filename[, flag[, mode[, rnflags[, cachesize[, psize[, lorder[, reclen[, bval[, bfname]]]]]]]]])
Open a DB record format file namedfilename. Files never intended to be preserved on disk may be created
by passingNone as thefilename. The optionalflag identifies the mode used to open the file. It may be ‘r ’
(read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary; the default) or ‘n’ (read-write - truncate
to zero length). The other arguments are rarely used and are just passed to the low-level dbopen function.
Consult the Berkeley DB documentation for their use and interpretation.

See Also:

Moduledbhash (section 7.11):
DBM-style interface to thebsddb

Note: Beginning in 2.3 some Unix versions of Python may have absddb185 module. This is presentonly to
allow backwards compatibility with systems which ship with the old Berkeley DB 1.85 database library. The
bsddb185 module should never be used directly in new code.

7.13.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the same methods as dictionaries. In addition, they
support the methods listed below. Changed in version 2.3.1: Added mapping methods.

close ()
Close the underlying file. The object can no longer be accessed. Since there is no openopen method for
these objects, to open the file again a newbsddb module open function must be called.

keys ()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not be relied
on. In particular, the order of the list returned is different for different file formats.

has key (key)
Return1 if the DB file contains the argument as a key.

set location (key)
Set the cursor to the item indicated bykeyand return a tuple containing the key and its value. For binary tree
databases (opened usingbtopen()), if keydoes not actually exist in the database, the cursor will point to
the next item in sorted order and return that key and value. For other databases,KeyError will be raised
if keyis not found in the database.

first ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except

7.13. bsddb — Interface to Berkeley DB library 345

in the case of B-Tree databases.

next ()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is unspecified, except
in the case of B-Tree databases.

previous ()
Set the cursor to the previous item in the DB file and return it. The order of keys in the file is unspecified,
except in the case of B-Tree databases. This is not supported on hashtable databases (those opened with
hashopen()).

last ()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is unspecified. This
is not supported on hashtable databases (those opened withhashopen()).

sync ()
Synchronize the database on disk.

Example:

>>> import bsddb
>>> db = bsddb.btopen(’/tmp/spam.db’, ’c’)
>>> for i in range(10): db[’%d’%i] = ’%d’% (i*i)
...
>>> db[’3’]
’9’
>>> db.keys()
[’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
>>> db.first()
(’0’, ’0’)
>>> db.next()
(’1’, ’1’)
>>> db.last()
(’9’, ’81’)
>>> db.set_location(’2’)
(’2’, ’4’)
>>> db.previous()
(’1’, ’1’)
>>> for k, v in db.iteritems():
... print k, v
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
>>> ’8’ in db
True
>>> db.sync()
0

7.14 dumbdbm— Portable DBM implementation

Note: Thedumbdbmmodule is intended as a last resort fallback for theanydbm module when no more robust
module is available. Thedumbdbmmodule is not written for speed and is not nearly as heavily used as the other
database modules.

346 Chapter 7. Optional Operating System Services

Thedumbdbmmodule provides a persistent dictionary-like interface which is written entirely in Python. Unlike
other modules such asgdbm andbsddb , no external library is required. As with other persistent mappings, the
keys and values must always be strings.

The module defines the following:

exceptionerror
Raised on dumbdbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors
like specifying an incorrect key.

open (filename[, flag[, mode]])
Open a dumbdbm database and return a dumbdbm object. Thefilenameargument is the basename of the
database file (without any specific extensions). When a dumbdbm database is created, files with ‘.dat’ and
‘ .dir’ extensions are created.

The optionalflag argument is currently ignored; the database is always opened for update, and will be
created if it does not exist.

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 (and will be modified by the prevailing umask). Changed in version 2.2: Themode
argument was ignored in earlier versions.

See Also:

Moduleanydbm (section 7.10):
Generic interface todbm-style databases.

Moduledbm (section 8.6):
Similar interface to the DBM/NDBM library.

Modulegdbm (section 8.7):
Similar interface to the GNU GDBM library.

Moduleshelve (section 3.17):
Persistence module which stores non-string data.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.14.1 Dumbdbm Objects

In addition to the methods provided by theUserDict.DictMixin class,dumbdbmobjects provide the fol-
lowing methods.

sync ()
Synchronize the on-disk directory and data files. This method is called by thesync method ofShelve
objects.

7.15 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home page athttp://www.gzip.org/zlib/. Version 1.2.1 is the most
recent version as of October 2004; use a later version if one is available. There are known incompatibilities
between the Python module and earlier versions of the zlib library.

The available exception and functions in this module are:

exceptionerror
Exception raised on compression and decompression errors.

adler32 (string[, value])
Computes a Adler-32 checksum ofstring. (An Adler-32 checksum is almost as reliable as a CRC32 but
can be computed much more quickly.) Ifvalueis present, it is used as the starting value of the checksum;
otherwise, a fixed default value is used. This allows computing a running checksum over the concatenation

7.15. zlib — Compression compatible with gzip 347

of several input strings. The algorithm is not cryptographically strong, and should not be used for authen-
tication or digital signatures. Since the algorithm is designed for use as a checksum algorithm, it is not
suitable for use as a general hash algorithm.

compress (string[, level])
Compresses the data instring, returning a string contained compressed data.level is an integer from1 to
9 controlling the level of compression;1 is fastest and produces the least compression,9 is slowest and
produces the most. The default value is6. Raises theerror exception if any error occurs.

compressobj ([level])
Returns a compression object, to be used for compressing data streams that won’t fit into memory at once.
level is an integer from1 to 9 controlling the level of compression;1 is fastest and produces the least
compression,9 is slowest and produces the most. The default value is6.

crc32 (string[, value])
Computes a CRC (Cyclic Redundancy Check) checksum ofstring. If value is present, it is used as the
starting value of the checksum; otherwise, a fixed default value is used. This allows computing a running
checksum over the concatenation of several input strings. The algorithm is not cryptographically strong,
and should not be used for authentication or digital signatures. Since the algorithm is designed for use as a
checksum algorithm, it is not suitable for use as a general hash algorithm.

decompress (string[, wbits[, bufsize]])
Decompresses the data instring, returning a string containing the uncompressed data. Thewbitsparameter
controls the size of the window buffer. Ifbufsizeis given, it is used as the initial size of the output buffer.
Raises theerror exception if any error occurs.

The absolute value ofwbits is the base two logarithm of the size of the history buffer (the “window size”)
used when compressing data. Its absolute value should be between 8 and 15 for the most recent versions of
the zlib library, larger values resulting in better compression at the expense of greater memory usage. The
default value is 15. Whenwbitsis negative, the standardgzip header is suppressed; this is an undocumented
feature of the zlib library, used for compatibility withunzip’s compression file format.

bufsizeis the initial size of the buffer used to hold decompressed data. If more space is required, the buffer
size will be increased as needed, so you don’t have to get this value exactly right; tuning it will only save a
few calls tomalloc() . The default size is 16384.

decompressobj ([wbits])
Returns a decompression object, to be used for decompressing data streams that won’t fit into memory at
once. Thewbitsparameter controls the size of the window buffer.

Compression objects support the following methods:

compress (string)
Compressstring, returning a string containing compressed data for at least part of the data instring. This
data should be concatenated to the output produced by any preceding calls to thecompress() method.
Some input may be kept in internal buffers for later processing.

flush ([mode])
All pending input is processed, and a string containing the remaining compressed output is returned.mode
can be selected from the constantsZ SYNC FLUSH, Z FULL FLUSH, or Z FINISH , defaulting to
Z FINISH . Z SYNC FLUSHand Z FULL FLUSHallow compressing further strings of data and are
used to allow partial error recovery on decompression, whileZ FINISH finishes the compressed stream
and prevents compressing any more data. After callingflush() with modeset to Z FINISH , the
compress() method cannot be called again; the only realistic action is to delete the object.

Decompression objects support the following methods, and two attributes:

unused data
A string which contains any bytes past the end of the compressed data. That is, this remains"" until the
last byte that contains compression data is available. If the whole string turned out to contain compressed
data, this is"" , the empty string.

The only way to determine where a string of compressed data ends is by actually decompressing it. This
means that when compressed data is contained part of a larger file, you can only find the end of it by reading
data and feeding it followed by some non-empty string into a decompression object’sdecompress method
until theunused data attribute is no longer the empty string.

348 Chapter 7. Optional Operating System Services

unconsumed tail
A string that contains any data that was not consumed by the lastdecompress call because it exceeded
the limit for the uncompressed data buffer. This data has not yet been seen by the zlib machinery, so you
must feed it (possibly with further data concatenated to it) back to a subsequentdecompress method call
in order to get correct output.

decompress (string)
[max length] Decompressstring, returning a string containing the uncompressed data corresponding to at
least part of the data instring. This data should be concatenated to the output produced by any preceding
calls to thedecompress() method. Some of the input data may be preserved in internal buffers for later
processing.

If the optional parametermax lengthis supplied then the return value will be no longer thanmax length.
This may mean that not all of the compressed input can be processed; and unconsumed data will be stored
in the attributeunconsumed tail . This string must be passed to a subsequent call todecompress()
if decompression is to continue. Ifmax lengthis not supplied then the whole input is decompressed, and
unconsumed tail is an empty string.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned.
After calling flush() , thedecompress() method cannot be called again; the only realistic action is to
delete the object.

See Also:

Modulegzip (section 7.16):
Reading and writinggzip-format files.

http://www.gzip.org/zlib/
The zlib library home page.

7.16 gzip — Support for gzip files

The data compression provided by thezlib module is compatible with that used by the GNU compression
programgzip. Accordingly, thegzip module provides theGzipFile class to read and writegzip-format files,
automatically compressing or decompressing the data so it looks like an ordinary file object. Note that additional
file formats which can be decompressed by thegzip andgunzip programs, such as those produced bycompress
andpack, are not supported by this module.

The module defines the following items:

classGzipFile ([filename[, mode[, compresslevel[, fileobj]]]])
Constructor for theGzipFile class, which simulates most of the methods of a file object, with the excep-
tion of thereadinto() andtruncate() methods. At least one offileobjandfilenamemust be given a
non-trivial value.

The new class instance is based onfileobj, which can be a regular file, aStringIO object, or any other
object which simulates a file. It defaults toNone, in which casefilenameis opened to provide a file object.

Whenfileobj is notNone, thefilenameargument is only used to be included in thegzip file header, which
may includes the original filename of the uncompressed file. It defaults to the filename offileobj, if dis-
cernible; otherwise, it defaults to the empty string, and in this case the original filename is not included in
the header.

Themodeargument can be any of’r’ , ’rb’ , ’a’ , ’ab’ , ’w’ , or ’wb’ , depending on whether the file
will be read or written. The default is the mode offileobj if discernible; otherwise, the default is’rb’ . If not
given, the ’b’ flag will be added to the mode to ensure the file is opened in binary mode for cross-platform
portability.

Thecompresslevelargument is an integer from1 to 9 controlling the level of compression;1 is fastest and
produces the least compression, and9 is slowest and produces the most compression. The default is9.

Calling aGzipFile object’sclose() method does not closefileobj, since you might wish to append
more material after the compressed data. This also allows you to pass aStringIO object opened for

7.16. gzip — Support for gzip files 349

writing asfileobj, and retrieve the resulting memory buffer using theStringIO object’sgetvalue()
method.

open (filename[, mode[, compresslevel]])
This is a shorthand forGzipFile(filename, mode, compresslevel) . Thefilenameargument is required;
modedefaults to’rb’ andcompressleveldefaults to9.

See Also:

Modulezlib (section 7.15):
The basic data compression module needed to support thegzip file format.

7.17 bz2 — Compression compatible with bzip2

New in version 2.3.

This module provides a comprehensive interface for the bz2 compression library. It implements a complete file
interface, one-shot (de)compression functions, and types for sequential (de)compression.

Here is a resume of the features offered by the bz2 module:

• BZ2File class implements a complete file interface, includingreadline() , readlines() ,
writelines() , seek() , etc;

• BZ2File class implements emulatedseek() support;

• BZ2File class implements universal newline support;

• BZ2File class offers an optimized line iteration using the readahead algorithm borrowed from file objects;

• Sequential (de)compression supported byBZ2Compressor andBZ2Decompressor classes;

• One-shot (de)compression supported bycompress() anddecompress() functions;

• Thread safety uses individual locking mechanism;

• Complete inline documentation;

7.17.1 (De)compression of files

Handling of compressed files is offered by theBZ2File class.

classBZ2File (filename[, mode[, buffering[, compresslevel]]])
Open a bz2 file. Mode can be either’r’ or ’w’ , for reading (default) or writing. When opened for writing,
the file will be created if it doesn’t exist, and truncated otherwise. Ifbufferingis given,0 means unbuffered,
and larger numbers specify the buffer size; the default is0. If compresslevelis given, it must be a number
between1 and9; the default is9. Add a ‘U’ to mode to open the file for input with universal newline
support. Any line ending in the input file will be seen as a ‘\n ’ in Python. Also, a file so opened gains
the attributenewlines ; the value for this attribute is one ofNone (no newline read yet),’\r’ , ’\n’ ,
’\r\n’ or a tuple containing all the newline types seen. Universal newlines are available only when
reading. Instances support iteration in the same way as normalfile instances.

close ()
Close the file. Sets data attributeclosed to true. A closed file cannot be used for further I/O operations.
close() may be called more than once without error.

read ([size])
Read at mostsizeuncompressed bytes, returned as a string. If thesizeargument is negative or omitted, read
until EOF is reached.

readline ([size])
Return the next line from the file, as a string, retaining newline. A non-negativesizeargument limits the
maximum number of bytes to return (an incomplete line may be returned then). Return an empty string at
EOF.

350 Chapter 7. Optional Operating System Services

readlines ([size])
Return a list of lines read. The optionalsizeargument, if given, is an approximate bound on the total number
of bytes in the lines returned.

xreadlines ()
For backward compatibility.BZ2File objects now include the performance optimizations previously im-
plemented in thexreadlines module.Deprecated since release 2.3.This exists only for compatibility
with the method by this name onfile objects, which is deprecated. Usefor line in file instead.

seek (offset[, whence])
Move to new file position. Argumentoffsetis a byte count. Optional argumentwhencedefaults to0 (offset
from start of file, offset should be>= 0); other values are1 (move relative to current position, positive
or negative), and2 (move relative to end of file, usually negative, although many platforms allow seeking
beyond the end of a file).

Note that seeking of bz2 files is emulated, and depending on the parameters the operation may be extremely
slow.

tell ()
Return the current file position, an integer (may be a long integer).

write (data)
Write stringdatato file. Note that due to buffering,close() may be needed before the file on disk reflects
the data written.

writelines (sequenceof strings)
Write the sequence of strings to the file. Note that newlines are not added. The sequence can be any iterable
object producing strings. This is equivalent to calling write() for each string.

7.17.2 Sequential (de)compression

Sequential compression and decompression is done using the classesBZ2Compressor and
BZ2Decompressor .

classBZ2Compressor ([compresslevel])
Create a new compressor object. This object may be used to compress data sequentially. If you want to
compress data in one shot, use thecompress() function instead. Thecompresslevelparameter, if given,
must be a number between1 and9; the default is9.

compress (data)
Provide more data to the compressor object. It will return chunks of compressed data whenever possible.
When you’ve finished providing data to compress, call theflush() method to finish the compression
process, and return what is left in internal buffers.

flush ()
Finish the compression process and return what is left in internal buffers. You must not use the compressor
object after calling this method.

classBZ2Decompressor ()
Create a new decompressor object. This object may be used to decompress data sequentially. If you want
to decompress data in one shot, use thedecompress() function instead.

decompress (data)
Provide more data to the decompressor object. It will return chunks of decompressed data whenever possi-
ble. If you try to decompress data after the end of stream is found,EOFError will be raised. If any data
was found after the end of stream, it’ll be ignored and saved inunused data attribute.

7.17.3 One-shot (de)compression

One-shot compression and decompression is provided through thecompress() anddecompress() func-
tions.

compress (data[, compresslevel])

7.17. bz2 — Compression compatible with bzip2 351

Compressdatain one shot. If you want to compress data sequentially, use an instance ofBZ2Compressor
instead. Thecompresslevelparameter, if given, must be a number between1 and9; the default is9.

decompress (data)
Decompressdata in one shot. If you want to decompress data sequentially, use an instance of
BZ2Decompressor instead.

7.18 zipfile — Work with ZIP archives

New in version 1.6.

The ZIP file format is a common archive and compression standard. This module provides tools to create, read,
write, append, and list a ZIP file. Any advanced use of this module will require an understanding of the format, as
defined inPKZIP Application Note.

This module does not currently handle ZIP files which have appended comments, or multi-disk ZIP files.

The available attributes of this module are:

exceptionerror
The error raised for bad ZIP files.

classZipFile
The class for reading and writing ZIP files. See “ZipFile Objects” (section 7.18.1) for constructor details.

classPyZipFile
Class for creating ZIP archives containing Python libraries.

classZipInfo ([filename[, date time]])
Class used the represent infomation about a member of an archive. Instances of this class are returned by
thegetinfo() andinfolist() methods ofZipFile objects. Most users of thezipfile module
will not need to create these, but only use those created by this module.filenameshould be the full name
of the archive member, anddate timeshould be a tuple containing six fields which describe the time of the
last modification to the file; the fields are described in section 7.18.3, “ZipInfo Objects.”

is zipfile (filename)
ReturnsTrue if filenameis a valid ZIP file based on its magic number, otherwise returnsFalse . This
module does not currently handle ZIP files which have appended comments.

ZIP STORED
The numeric constant for an uncompressed archive member.

ZIP DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module. No other
compression methods are currently supported.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)

Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

Info-ZIP Home Page
(http://www.info-zip.org/pub/infozip/)

Information about the Info-ZIP project’s ZIP archive programs and development libraries.

7.18.1 ZipFile Objects

classZipFile (file[, mode[, compression]])
Open a ZIP file, wherefile can be either a path to a file (a string) or a file-like object. Themodeparameter
should be’r’ to read an existing file,’w’ to truncate and write a new file, or’a’ to append to an existing
file. Formodeis ’a’ andfile refers to an existing ZIP file, then additional files are added to it. Iffile does
not refer to a ZIP file, then a new ZIP archive is appended to the file. This is meant for adding a ZIP archive

352 Chapter 7. Optional Operating System Services

to another file, such as ‘python.exe’. Using

cat myzip.zip >> python.exe

also works, and at leastWinZip can read such files.compressionis the ZIP compression method to use
when writing the archive, and should beZIP STOREDor ZIP DEFLATED; unrecognized values will
causeRuntimeError to be raised. IfZIP DEFLATEDis specified but thezlib module is not available,
RuntimeError is also raised. The default isZIP STORED.

close ()
Close the archive file. You must callclose() before exiting your program or essential records will not be
written.

getinfo (name)
Return aZipInfo object with information about the archive membername.

infolist ()
Return a list containing aZipInfo object for each member of the archive. The objects are in the same
order as their entries in the actual ZIP file on disk if an existing archive was opened.

namelist ()
Return a list of archive members by name.

printdir ()
Print a table of contents for the archive tosys.stdout .

read (name)
Return the bytes of the file in the archive. The archive must be open for read or append.

testzip ()
Read all the files in the archive and check their CRC’s. Return the name of the first bad file, or else return
None.

write (filename[, arcname[, compresstype]])
Write the file namedfilenameto the archive, giving it the archive namearcname(by default, this will be the
same asfilename). If given, compresstypeoverrides the value given for thecompressionparameter to the
constructor for the new entry. The archive must be open with mode’w’ or ’a’ .

writestr (zinfo or arcname, bytes)
Write the stringbytesto the archive;zinfo or arcnameis either the file name it will be given in the archive,
or aZipInfo instance. If it’s an instance, at least the filename, date, and time must be given. If it’s a name,
the date and time is set to the current date and time. The archive must be opened with mode’w’ or ’a’ .

The following data attribute is also available:

debug
The level of debug output to use. This may be set from0 (the default, no output) to3 (the most output).
Debugging information is written tosys.stdout .

7.18.2 PyZipFile Objects

ThePyZipFile constructor takes the same parameters as theZipFile constructor. Instances have one method
in addition to those ofZipFile objects.

writepy (pathname[, basename])
Search for files ‘*.py’ and add the corresponding file to the archive. The corresponding file is a ‘*.pyo’ file
if available, else a ‘*.pyc’ file, compiling if necessary. If the pathname is a file, the filename must end with
‘ .py’, and just the (corresponding ‘*.py[co]’) file is added at the top level (no path information). If it is a
directory, and the directory is not a package directory, then all the files ‘*.py[co]’ are added at the top level.
If the directory is a package directory, then all ‘*.py[oc]’ are added under the package name as a file path,
and if any subdirectories are package directories, all of these are added recursively.basenameis intended
for internal use only. Thewritepy() method makes archives with file names like this:

7.18. zipfile — Work with ZIP archives 353

string.pyc # Top level name
test/__init__.pyc # Package directory
test/testall.pyc # Module test.testall
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

7.18.3 ZipInfo Objects

Instances of theZipInfo class are returned by thegetinfo() and infolist() methods ofZipFile
objects. Each object stores information about a single member of the ZIP archive.

Instances have the following attributes:

filename
Name of the file in the archive.

date time
The time and date of the last modification to the archive member. This is a tuple of six values:

Index Value
0 Year
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

compress type
Type of compression for the archive member.

comment
Comment for the individual archive member.

extra
Expansion field data. ThePKZIP Application Notecontains some comments on the internal structure of the
data contained in this string.

create system
System which created ZIP archive.

create version
PKZIP version which created ZIP archive.

extract version
PKZIP version needed to extract archive.

reserved
Must be zero.

flag bits
ZIP flag bits.

volume
Volume number of file header.

internal attr
Internal attributes.

external attr
External file attributes.

header offset
Byte offset to the file header.

file offset

354 Chapter 7. Optional Operating System Services

Byte offset to the start of the file data.

CRC
CRC-32 of the uncompressed file.

compress size
Size of the compressed data.

file size
Size of the uncompressed file.

7.19 tarfile — Read and write tar archive files

New in version 2.3.

Thetarfile module makes it possible to read and create tar archives. Some facts and figures:

• reads and writesgzip andbzip2 compressed archives.

• creates POSIX 1003.1-1990 compliant or GNU tar compatible archives.

• reads GNU tar extensionslongname, longlinkandsparse.

• stores pathnames of unlimited length using GNU tar extensions.

• handles directories, regular files, hardlinks, symbolic links, fifos, character devices and block devices and is
able to acquire and restore file information like timestamp, access permissions and owner.

• can handle tape devices.

open ([name[, mode[, fileobj[, bufsize]]]])
Return aTarFile object for the pathnamename. For detailed information onTarFile objects, see
TarFile Objects(section 7.19.1).

modehas to be a string of the form’filemode[:compression]’ , it defaults to’r’ . Here is a full
list of mode combinations:

mode action
’r’ Open for reading with transparent compression (recommended).

’r:’ Open for reading exclusively without compression.
’r:gz’ Open for reading with gzip compression.

’r:bz2’ Open for reading with bzip2 compression.
’a’ or ’a:’ Open for appending with no compression.
’w’ or ’w:’ Open for uncompressed writing.

’w:gz’ Open for gzip compressed writing.
’w:bz2’ Open for bzip2 compressed writing.

Note that’a:gz’ or ’a:bz2’ is not possible. Ifmodeis not suitable to open a certain (compressed) file
for reading,ReadError is raised. Usemode’r’ to avoid this. If a compression method is not supported,
CompressionError is raised.

If fileobj is specified, it is used as an alternative to a file object opened forname.

For special purposes, there is a second format formode: ’filemode|[compression]’ . open will
return aTarFile object that processes its data as a stream of blocks. No random seeking will be done on
the file. If given,fileobj may be any object that has aread() resp.write() method.bufsizespecifies
the blocksize and defaults to20 * 512 bytes. Use this variant in combination with e.g.sys.stdin , a
socket file object or a tape device. However, such aTarFile object is limited in that it does not allow to
be accessed randomly, seeExamples(section 7.19.3). The currently possible modes:

mode action
’r|’ Open astreamof uncompressed tar blocks for reading.

’r|gz’ Open a gzip compressedstreamfor reading.
’r|bz2’ Open a bzip2 compressedstreamfor reading.

’w|’ Open an uncompressedstreamfor writing.
’w|gz’ Open an gzip compressedstreamfor writing.

’w|bz2’ Open an bzip2 compressedstreamfor writing.

7.19. tarfile — Read and write tar archive files 355

classTarFile
Class for reading and writing tar archives. Do not use this class directly, better useopen() instead. See
TarFile Objects(section 7.19.1).

is tarfile (name)
ReturnTrue if nameis a tar archive file, that thetarfile module can read.

classTarFileCompat (filename[, mode[, compression]])
Class for limited access to tar archives with azipfile -like interface. Please consult the documentation of
zipfile for more details.compression must be one of the following constants:
TAR PLAIN

Constant for an uncompressed tar archive.

TAR GZIPPED
Constant for agzip compressed tar archive.

exceptionTarError
Base class for alltarfile exceptions.

exceptionReadError
Is raised when a tar archive is opened, that either cannot be handled by thetarfile module or is somehow
invalid.

exceptionCompressionError
Is raised when a compression method is not supported or when the data cannot be decoded properly.

exceptionStreamError
Is raised for the limitations that are typical for stream-likeTarFile objects.

exceptionExtractError
Is raised fornon-fatalerrors when usingextract() , but only if TarFile.errorlevel == 2 .

See Also:

Modulezipfile (section 7.18):
Documentation of thezipfile standard module.

GNU tar manual, Standard Section
(http://www.gnu.org/manual/tar/html chapter/tar 8.html#SEC118)

Documentation for tar archive files, including GNU tar extensions.

7.19.1 TarFile Objects

The TarFile object provides an interface to a tar archive. A tar archive is a sequence of blocks. An archive
member (a stored file) is made up of a header block followed by data blocks. It is possible, to store a file in a tar
archive several times. Each archive member is represented by aTarInfo object, seeTarInfo Objects(section
7.19.2) for details.

classTarFile ([name[, mode[, fileobj]]])
Open an(uncompressed)tar archivename. modeis either’r’ to read from an existing archive,’a’ to
append data to an existing file or’w’ to create a new file overwriting an existing one.modedefaults to
’r’ .

If fileobj is given, it is used for reading or writing data. If it can be determined,modeis overridden by
fileobj’s mode.

Note: fileobj is not closed, whenTarFile is closed.

open (...)
Alternative constructor. Theopen() function on module level is actually a shortcut to this classmethod.
See section 7.19 for details.

getmember (name)
Return aTarInfo object for membername. If namecan not be found in the archive,KeyError is
raised.

Note: If a member occurs more than once in the archive, its last occurence is assumed to be the most

356 Chapter 7. Optional Operating System Services

up-to-date version.

getmembers ()
Return the members of the archive as a list ofTarInfo objects. The list has the same order as the members
in the archive.

getnames ()
Return the members as a list of their names. It has the same order as the list returned bygetmembers() .

list (verbose=True)
Print a table of contents tosys.stdout . If verboseis False , only the names of the members are printed.
If it is True , an"ls -l" -like output is produced.

next ()
Return the next member of the archive as aTarInfo object, whenTarFile is opened for reading. Return
None if there is no more available.

extract (member[, path])
Extract a member from the archive to the current working directory, using its full name. Its file information
is extracted as accurately as possible.membermay be a filename or aTarInfo object. You can specify a
different directory usingpath.

extractfile (member)
Extract a member from the archive as a file object.membermay be a filename or aTarInfo object. If
memberis a regular file, a file-like object is returned. Ifmemberis a link, a file-like object is constructed
from the link’s target. Ifmemberis none of the above,None is returned.

Note: The file-like object is read-only and provides the following methods:read() , readline() ,
readlines() , seek() , tell() .

add (name[, arcname[, recursive=True]])
Add the filenameto the archive.namemay be any type of file (directory, fifo, symbolic link, etc.). If
given,arcnamespecifies an alternative name for the file in the archive. Directories are added recursively by
default. This can be avoided by settingrecursiveto False .

addfile (tarinfo[, fileobj])
Add theTarInfo objecttarinfo to the archive. Iffileobj is given,tarinfo.size bytes are read from it
and added to the archive. You can createTarInfo objects usinggettarinfo() .

Note: On Windows platforms,fileobj should always be opened with mode’rb’ to avoid irritation about
the file size.

gettarinfo ([name[, arcname[, fileobj]]])
Create aTarInfo object for either the filenameor the file objectfileobj (usingos.fstat() on its file
descriptor). You can modify some of theTarInfo ’s attributes before you add it usingaddfile() . If
given,arcnamespecifies an alternative name for the file in the archive.

close ()
Close theTarFile . In write-mode, two finishing zero blocks are appended to the archive.

posix=True
If True , create a POSIX 1003.1-1990 compliant archive. GNU extensions are not used, because they
are not part of the POSIX standard. This limits the length of filenames to at most 256 and linknames to
100 characters. AValueError is raised, if a pathname exceeds this limit. IfFalse , create a GNU tar
compatible archive. It will not be POSIX compliant, but can store pathnames of unlimited length.

dereference=False
If False , add symbolic and hard links to archive. IfTrue , add the content of the target files to the archive.
This has no effect on systems that do not support links.

ignore zeros=False
If False , treat an empty block as the end of the archive. IfTrue , skip empty (and invalid) blocks and try
to get as many members as possible. This is only useful for concatenated or damaged archives.

debug=0
To be set from0(no debug messages) up to3(all debug messages). The messages are written to
sys.stdout .

7.19. tarfile — Read and write tar archive files 357

errorlevel=0
If 0, all errors are ignored when usingextract() . Nevertheless, they appear as error messages in the
debug output, when debugging is enabled. If1, all fatal errors are raised asOSError or IOError
exceptions. If2, all non-fatalerrors are raised asTarError exceptions as well.

7.19.2 TarInfo Objects

A TarInfo object represents one member in aTarFile . Aside from storing all required attributes of a file (like
file type, size, time, permissions, owner etc.), it provides some useful methods to determine its type. It doesnot
contain the file’s data itself.

TarInfo objects are returned byTarFile ’s methods getmember() , getmembers() and
gettarinfo() .

classTarInfo ([name])
Create aTarInfo object.

frombuf ()
Create and return aTarInfo object from a string buffer.

tobuf ()
Create a string buffer from aTarInfo object.

A TarInfo object has the following public data attributes:
name

Name of the archive member.

size
Size in bytes.

mtime
Time of last modification.

mode
Permission bits.

type
File type. type is usually one of these constants:REGTYPE, AREGTYPE, LNKTYPE, SYMTYPE,
DIRTYPE, FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE, GNUTYPESPARSE. To determine
the type of aTarInfo object more conveniently, use theis *() methods below.

linkname
Name of the target file name, which is only present inTarInfo objects of type LNKTYPE and SYMTYPE.

uid, gid
User and group ID of who originally stored this member.

uname, gname
User and group name.

A TarInfo object also provides some convenient query methods:
isfile ()

ReturnTrue if the Tarinfo object is a regular file.

isreg ()
Same asisfile() .

isdir ()
ReturnTrue if it is a directory.

issym ()
ReturnTrue if it is a symbolic link.

islnk ()
ReturnTrue if it is a hard link.

ischr ()

358 Chapter 7. Optional Operating System Services

ReturnTrue if it is a character device.

isblk ()
ReturnTrue if it is a block device.

isfifo ()
ReturnTrue if it is a FIFO.

isdev ()
ReturnTrue if it is one of character device, block device or FIFO.

7.19.3 Examples

How to create an uncompressed tar archive from a list of filenames:

import tarfile
tar = tarfile.open("sample.tar", "w")
for name in ["foo", "bar", "quux"]:

tar.add(name)
tar.close()

How to read a gzip compressed tar archive and display some member information:

import tarfile
tar = tarfile.open("sample.tar.gz", "r:gz")
for tarinfo in tar:

print tarinfo.name, "is", tarinfo.size, "bytes in size and is",
if tarinfo.isreg():

print "a regular file."
elif tarinfo.isdir():

print "a directory."
else:

print "something else."
tar.close()

How to create a tar archive with faked information:

import tarfile
tar = tarfile.open("sample.tar.gz", "w:gz")
for name in namelist:

tarinfo = tar.gettarinfo(name, "fakeproj-1.0/" + name)
tarinfo.uid = 123
tarinfo.gid = 456
tarinfo.uname = "johndoe"
tarinfo.gname = "fake"
tar.addfile(tarinfo, file(name))

tar.close()

Theonlyway to extract an uncompressed tar stream fromsys.stdin :

import sys
import tarfile
tar = tarfile.open(mode="r|", fileobj=sys.stdin)
for tarinfo in tar:

tar.extract(tarinfo)
tar.close()

7.19. tarfile — Read and write tar archive files 359

7.20 readline — GNU readline interface

The readline module defines a number of functions used either directly or from therlcompleter module
to facilitate completion and history file read and write from the Python interpreter.

Thereadline module defines the following functions:

parse and bind (string)
Parse and execute single line of a readline init file.

get line buffer ()
Return the current contents of the line buffer.

insert text (string)
Insert text into the command line.

read init file ([filename])
Parse a readline initialization file. The default filename is the last filename used.

read history file ([filename])
Load a readline history file. The default filename is ‘˜/.history’.

write history file ([filename])
Save a readline history file. The default filename is ‘˜/.history’.

get history length ()
Return the desired length of the history file. Negative values imply unlimited history file size.

set history length (length)
Set the number of lines to save in the history file.write history file() uses this value to truncate
the history file when saving. Negative values imply unlimited history file size.

get current history length ()
Return the number of lines currently in the history. (This is different fromget history length() ,
which returns the maximum number of lines that will be written to a history file.) New in version 2.3.

get history item (index)
Return the current contents of history item atindex. New in version 2.3.

redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer. New in version 2.3.

set startup hook ([function])
Set or remove the startuphook function. Iffunction is specified, it will be used as the new startuphook
function; if omitted orNone, any hook function already installed is removed. The startuphook function is
called with no arguments just before readline prints the first prompt.

set pre input hook ([function])
Set or remove the preinput hook function. If function is specified, it will be used as the new
pre input hook function; if omitted orNone, any hook function already installed is removed. The
pre input hook function is called with no arguments after the first prompt has been printed and just be-
fore readline starts reading input characters.

set completer ([function])
Set or remove the completer function. Iffunctionis specified, it will be used as the new completer function;
if omitted orNone, any completer function already installed is removed. The completer function is called
asfunction(text, state) , for statein 0, 1, 2, ..., until it returns a non-string value. It should return the next
possible completion starting withtext.

get completer ()
Get the completer function, orNone if no completer function has been set. New in version 2.3.

get begidx ()
Get the beginning index of the readline tab-completion scope.

get endidx ()
Get the ending index of the readline tab-completion scope.

360 Chapter 7. Optional Operating System Services

set completer delims (string)
Set the readline word delimiters for tab-completion.

get completer delims ()
Get the readline word delimiters for tab-completion.

add history (line)
Append a line to the history buffer, as if it was the last line typed.

See Also:

Modulerlcompleter (section 7.21):
Completion of Python identifiers at the interactive prompt.

7.20.1 Example

The following example demonstrates how to use thereadline module’s history reading and writing functions
to automatically load and save a history file named ‘.pyhist’ from the user’s home directory. The code below would
normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import os
histfile = os.path.join(os.environ["HOME"], ".pyhist")
try:

readline.read_history_file(histfile)
except IOError:

pass
import atexit
atexit.register(readline.write_history_file, histfile)
del os, histfile

7.21 rlcompleter — Completion function for GNU readline

The rlcompleter module defines a completion function for thereadline module by completing valid
Python identifiers and keywords.

This module is UNIX -specific due to its dependence on thereadline module.

Therlcompleter module defines theCompleter class.

Example:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> readline. <TAB PRESSED>
readline.__doc__ readline.get_line_buffer readline.read_init_file
readline.__file__ readline.insert_text readline.set_completer
readline.__name__ readline.parse_and_bind
>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. A user can add the following
lines to his or her initialization file (identified by the PYTHONSTARTUP environment variable) to get automatic
Tab completion:

7.21. rlcompleter — Completion function for GNU readline 361

try:
import readline

except ImportError:
print "Module readline not available."

else:
import rlcompleter
readline.parse_and_bind("tab: complete")

7.21.1 Completer Objects

Completer objects have the following method:

complete (text, state)
Return thestateth completion fortext.

If called for text that doesn’t include a period character (‘. ’), it will complete from names currently defined
in main , builtin and keywords (as defined by thekeyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not
be evaluated, but it can generate calls togetattr ()) up to the last part, and find matches for the
rest via thedir() function.

362 Chapter 7. Optional Operating System Services

CHAPTER

EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique to the UNIX operating system,
or in some cases to some or many variants of it. Here’s an overview:

posix The most common POSIX system calls (normally used via moduleos).
pwd The password database (getpwnam() and friends).
grp The group database (getgrnam() and friends).
crypt Thecrypt() function used to check UNIX passwords.
dl Call C functions in shared objects.
dbm The standard “database” interface, based on ndbm.
gdbm GNU’s reinterpretation of dbm.
termios POSIX style tty control.
TERMIOS Symbolic constants required to use thetermios module.
tty Utility functions that perform common terminal control operations.
pty Pseudo-Terminal Handling for SGI and Linux.
fcntl Thefcntl() andioctl() system calls.
pipes A Python interface to UNIX shell pipelines.
posixfile A file-like object with support for locking.
resource An interface to provide resource usage information on the current process.
nis Interface to Sun’s NIS (Yellow Pages) library.
syslog An interface to the UNIX syslog library routines.
commands Utility functions for running external commands.

8.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard and the
POSIX standard (a thinly disguised UNIX interface).

Do not import this module directly. Instead, import the moduleos , which provides aportable version of
this interface. On UNIX , theos module provides a superset of theposix interface. On non-UNIX operating
systems theposix module is not available, but a subset is always available through theos interface. Onceos is
imported, there isnoperformance penalty in using it instead ofposix . In addition,os provides some additional
functionality, such as automatically callingputenv() when an entry inos.environ is changed.

The descriptions below are very terse; refer to the corresponding UNIX manual (or POSIX documentation) entry
for more information. Arguments calledpathrefer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the
system calls raiseerror (a synonym for the standard exceptionOSError), described below.

8.1.1 Large File Support

Several operating systems (including AIX, HPUX, Irix and Solaris) provide support for files that are larger than
2 Gb from a C programming model whereint and long are 32-bit values. This is typically accomplished by
defining the relevant size and offset types as 64-bit values. Such files are sometimes referred to aslarge files.

363

Large file support is enabled in Python when the size of anoff t is larger than along and thelong long
type is available and is at least as large as anoff t . Python longs are then used to represent file sizes, offsets
and other values that can exceed the range of a Python int. It may be necessary to configure and compile Python
with certain compiler flags to enable this mode. For example, it is enabled by default with recent versions of Irix,
but with Solaris 2.6 and 2.7 you need to do something like:

CFLAGS="‘getconf LFS_CFLAGS‘" OPT="-g -O2 $CFLAGS" \
./configure

On large-file-capable Linux systems, this might work:

CFLAGS=’-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64’ OPT="-g -O2 $CFLAGS" \
./configure

8.1.2 Module Contents

Moduleposix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For example,
environ[’HOME’] is the pathname of your home directory, equivalent togetenv("HOME") in C.

Modifying this dictionary does not affect the string environment passed on byexecv() , popen() or
system() ; if you need to change the environment, passenviron to execve() or add variable assign-
ments and export statements to the command string forsystem() or popen() .

Note: Theos module provides an alternate implementation ofenviron which updates the environment
on modification. Note also that updatingos.environ will render this dictionary obsolete. Use of theos
module version of this is recommended over direct access to theposix module.

Additional contents of this module should only be accessed via theos module; refer to the documentation for that
module for further information.

8.2 pwd — The password database

This module provides access to the UNIX user account and password database. It is available on all UNIX versions.

Password database entries are reported as a tuple-like object, whose attributes correspond to the members of the
passwd structure (Attribute field below, see<pwd.h>):

Index Attribute Meaning
0 pw name Login name
1 pw passwd Optional encrypted password
2 pw uid Numerical user ID
3 pw gid Numerical group ID
4 pw gecos User name or comment field
5 pw dir User home directory
6 pw shell User command interpreter

The uid and gid items are integers, all others are strings.KeyError is raised if the entry asked for cannot be
found.

Note: In traditional UNIX the field pw passwd usually contains a password encrypted with a DES derived
algorithm (see modulecrypt). However most modern unices use a so-calledshadow passwordsystem. On those
unices the fieldpw passwd only contains a asterisk (’*’) or the letter ‘x ’ where the encrypted password is
stored in a file ‘/etc/shadow’ which is not world readable.

It defines the following items:

364 Chapter 8. Unix Specific Services

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam (name)
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

See Also:

Modulegrp (section 8.3):
An interface to the group database, similar to this.

8.3 grp — The group database

This module provides access to the UNIX group database. It is available on all UNIX versions.

Group database entries are reported as a tuple-like object, whose attributes correspond to the members of the
group structure (Attribute field below, see<pwd.h>):

Index Attribute Meaning
0 gr name the name of the group
1 gr passwd the (encrypted) group password; often empty
2 gr gid the numerical group ID
3 gr mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that most
users are not explicitly listed as members of the group they are in according to the password database. Check both
databases to get complete membership information.)

It defines the following items:

getgrgid (gid)
Return the group database entry for the given numeric group ID.KeyError is raised if the entry asked for
cannot be found.

getgrnam (name)
Return the group database entry for the given group name.KeyError is raised if the entry asked for cannot
be found.

getgrall ()
Return a list of all available group entries, in arbitrary order.

See Also:

Modulepwd (section 8.2):
An interface to the user database, similar to this.

8.4 crypt — Function to check UNIX passwords

This module implements an interface to thecrypt(3) routine, which is a one-way hash function based upon a
modified DES algorithm; see the UNIX man page for further details. Possible uses include allowing Python
scripts to accept typed passwords from the user, or attempting to crack UNIX passwords with a dictionary.

Notice that the behavior of this module depends on the actual implementation of thecrypt(3) routine in the running
system. Therefore, any extensions available on the current implementation will also be available on this module.
crypt (word, salt)

word will usually be a user’s password as typed at a prompt or in a graphical interface.salt is usually a
random two-character string which will be used to perturb the DES algorithm in one of 4096 ways. The
characters insalt must be in the setd[./a-zA-Z0-9] c. Returns the hashed password as a string, which

8.3. grp — The group database 365

will be composed of characters from the same alphabet as the salt (the first two characters represent the salt
itself).

Since a fewcrypt(3) extensions allow different values, with different sizes in thesalt, it is recommended to
use the full crypted password as salt when checking for a password.

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():
username = raw_input(’Python login:’)
cryptedpasswd = pwd.getpwnam(username)[1]
if cryptedpasswd:

if cryptedpasswd == ’x’ or cryptedpasswd == ’*’:
raise "Sorry, currently no support for shadow passwords"

cleartext = getpass.getpass()
return crypt.crypt(cleartext, cryptedpasswd) == cryptedpasswd

else:
return 1

8.5 dl — Call C functions in shared objects

The dl module defines an interface to thedlopen() function, which is the most common interface on UNIX

platforms for handling dynamically linked libraries. It allows the program to call arbitrary functions in such a
library.

Note: This module will not work unlesssizeof(int) == sizeof(long) == sizeof(char *) If
this is not the case,SystemError will be raised on import.

Thedl module defines the following function:

open (name[, mode = RTLD LAZY])
Open a shared object file, and return a handle. Mode signifies late binding (RTLD LAZY) or immediate
binding (RTLD NOW). Default isRTLD LAZY. Note that some systems do not supportRTLD NOW.

Return value is a dlobject.

Thedl module defines the following constants:

RTLD LAZY
Useful as an argument toopen() .

RTLD NOW
Useful as an argument toopen() . Note that on systems which do not support immediate binding, this
constant will not appear in the module. For maximum portability, usehasattr() to determine if the
system supports immediate binding.

Thedl module defines the following exception:

exceptionerror
Exception raised when an error has occurred inside the dynamic loading and linking routines.

Example:

>>> import dl, time
>>> a=dl.open(’/lib/libc.so.6’)
>>> a.call(’time’), time.time()
(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using this module

366 Chapter 8. Unix Specific Services

is usually a bad alternative.

8.5.1 Dl Objects

Dl objects, as returned byopen() above, have the following methods:

close ()
Free all resources, except the memory.

sym(name)
Return the pointer for the function namedname, as a number, if it exists in the referenced shared object,
otherwiseNone. This is useful in code like:

>>> if a.sym(’time’):
... a.call(’time’)
... else:
... time.time()

(Note that this function will return a non-zero number, as zero is theNULLpointer)

call (name[, arg1[, arg2. . .]])
Call the function namednamein the referenced shared object. The arguments must be either Python inte-
gers, which will be passed as is, Python strings, to which a pointer will be passed, orNone, which will be
passed asNULL. Note that strings should only be passed to functions asconst char* , as Python will not
like its string mutated.

There must be at most 10 arguments, and arguments not given will be treated asNone. The function’s
return value must be a Clong , which is a Python integer.

8.6 dbm— Simple “database” interface

Thedbm module provides an interface to the UNIX (n)dbm library. Dbm objects behave like mappings (dictio-
naries), except that keys and values are always strings. Printing a dbm object doesn’t print the keys and values,
and theitems() andvalues() methods are not supported.

This module can be used with the “classic” ndbm interface, the BSD DB compatibility interface, or the GNU
GDBM compatibility interface. On UNIX , theconfigure script will attempt to locate the appropriate header file
to simplify building this module.

The module defines the following:

exceptionerror
Raised on dbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like
specifying an incorrect key.

library
Name of thendbm implementation library used.

open (filename[, flag[, mode]])
Open a dbm database and return a dbm object. Thefilenameargument is the name of the database file
(without the ‘.dir’ or ‘ .pag’ extensions; note that the BSD DB implementation of the interface will append
the extension ‘.db’ and only create one file).

The optionalflagargument must be one of these values:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created.
It defaults to octal0666 .

8.6. dbm— Simple “database” interface 367

See Also:

Moduleanydbm (section 7.10):
Generic interface todbm-style databases.

Modulegdbm (section 8.7):
Similar interface to the GNU GDBM library.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

8.7 gdbm — GNU’s reinterpretation of dbm

This module is quite similar to thedbmmodule, but usesgdbm instead to provide some additional functionality.
Please note that the file formats created bygdbm anddbmare incompatible.

Thegdbm module provides an interface to the GNU DBM library.gdbm objects behave like mappings (dictio-
naries), except that keys and values are always strings. Printing agdbm object doesn’t print the keys and values,
and theitems() andvalues() methods are not supported.

The module defines the following constant and functions:

exceptionerror
Raised ongdbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like
specifying an incorrect key.

open (filename,[flag,[mode]])
Open agdbm database and return agdbm object. Thefilenameargument is the name of the database file.

The optionalflag argument can be’r’ (to open an existing database for reading only — default),’w’ (to
open an existing database for reading and writing),’c’ (which creates the database if it doesn’t exist), or
’n’ (which always creates a new empty database).

The following additional characters may be appended to the flag to control how the database is opened:

•’f’ — Open the database in fast mode. Writes to the database will not be syncronized.

•’s’ — Synchronized mode. This will cause changes to the database will be immediately written to
the file.

•’u’ — Do not lock database.

Not all flags are valid for all versions ofgdbm. The module constantopen flags is a string of supported
flag characters. The exceptionerror is raised if an invalid flag is specified.

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created.
It defaults to octal0666 .

In addition to the dictionary-like methods,gdbm objects have the following methods:

firstkey ()
It’s possible to loop over every key in the database using this method and thenextkey() method. The
traversal is ordered bygdbm’s internal hash values, and won’t be sorted by the key values. This method
returns the starting key.

nextkey (key)
Returns the key that followskey in the traversal. The following code prints every key in the databasedb ,
without having to create a list in memory that contains them all:

k = db.firstkey()
while k != None:

print k
k = db.nextkey(k)

reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used by thegdbm file, this

368 Chapter 8. Unix Specific Services

routine will reorganize the database.gdbmwill not shorten the length of a database file except by using this
reorganization; otherwise, deleted file space will be kept and reused as new (key, value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

See Also:

Moduleanydbm (section 7.10):
Generic interface todbm-style databases.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

8.8 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls,
see the POSIX or UNIX manual pages. It is only available for those UNIX versions that support POSIXtermios
style tty I/O control (and then only if configured at installation time).

All functions in this module take a file descriptorfd as their first argument. This can be an integer file descriptor,
such as returned bysys.stdin.fileno() , or a file object, such assys.stdin itself.

This module also defines all the constants needed to work with the functions provided here; these have the same
name as their counterparts in C. Please refer to your system documentation for more information on using these
terminal control interfaces.

The module defines the following functions:

tcgetattr (fd)
Return a list containing the tty attributes for file descriptorfd, as follows:[iflag, oflag, cflag, lflag, ispeed,
ospeed, cc] wherecc is a list of the tty special characters (each a string of length 1, except the items with
indicesVMIN andVTIME, which are integers when these fields are defined). The interpretation of the flags
and the speeds as well as the indexing in thecc array must be done using the symbolic constants defined in
thetermios module.

tcsetattr (fd, when, attributes)
Set the tty attributes for file descriptorfd from the attributes, which is a list like the one returned by
tcgetattr() . The whenargument determines when the attributes are changed:TCSANOWto change
immediately,TCSADRAINto change after transmitting all queued output, orTCSAFLUSHto change after
transmitting all queued output and discarding all queued input.

tcsendbreak (fd, duration)
Send a break on file descriptorfd. A zerodurationsends a break for 0.25–0.5 seconds; a nonzeroduration
has a system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptorfd has been transmitted.

tcflush (fd, queue)
Discard queued data on file descriptorfd. Thequeueselector specifies which queue:TCIFLUSH for the
input queue,TCOFLUSHfor the output queue, orTCIOFLUSHfor both queues.

tcflow (fd, action)
Suspend or resume input or output on file descriptorfd. Theactionargument can beTCOOFFto suspend
output,TCOONto restart output,TCIOFF to suspend input, orTCION to restart input.

See Also:

Moduletty (section 8.10):
Convenience functions for common terminal control operations.

8.8. termios — POSIX style tty control 369

8.8.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separate
tcgetattr() call and atry ... finally statement to ensure that the old tty attributes are restored exactly no
matter what happens:

def getpass(prompt = "Password: "):
import termios, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & ˜termios.ECHO # lflags
try:

termios.tcsetattr(fd, termios.TCSADRAIN, new)
passwd = raw_input(prompt)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old)

return passwd

8.9 TERMIOS— Constants used with the termios module

Deprecated since release 2.1.Import needed constants fromtermios instead.

This module defines the symbolic constants required to use thetermios module (see the previous section). See
the POSIX or UNIX manual pages for a list of those constants.

8.10 tty — Terminal control functions

Thetty module defines functions for putting the tty into cbreak and raw modes.

Because it requires thetermios module, it will work only on UNIX .

Thetty module defines the following functions:

setraw (fd[, when])
Change the mode of the file descriptorfd to raw. If whenis omitted, it defaults totermios.TCSAFLUSH ,
and is passed totermios.tcsetattr() .

setcbreak (fd[, when])
Change the mode of file descriptorfd to cbreak. Ifwhenis omitted, it defaults totermios.TCSAFLUSH ,
and is passed totermios.tcsetattr() .

See Also:

Moduletermios (section 8.8):
Low-level terminal control interface.

ModuleTERMIOS(section 8.9):
Constants useful for terminal control operations.

8.11 pty — Pseudo-terminal utilities

Thepty module defines operations for handling the pseudo-terminal concept: starting another process and being
able to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependant, there is code to do it only for SGI and Linux.
(The Linux code is supposed to work on other platforms, but hasn’t been tested yet.)

370 Chapter 8. Unix Specific Services

Thepty module defines the following functions:

fork ()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is(pid, fd) . Note that
the child getspid 0, and thefd is invalid. The parent’s return value is thepid of the child, andfd is a file
descriptor connected to the child’s controlling terminal (and also to the child’s standard input and output).

openpty ()
Open a new pseudo-terminal pair, usingos.openpty() if possible, or emulation code for SGI and generic
UNIX systems. Return a pair of file descriptors(master, slave) , for the master and the slave end, respec-
tively.

spawn (argv[, master read[, stdin read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often
used to baffle programs which insist on reading from the controlling terminal.

The functionsmaster read and stdin read should be functions which read from a file-descriptor. The
defaults try to read 1024 bytes each time they are called.

8.12 fcntl — The fcntl() and ioctl() system calls

This module performs file control and I/O control on file descriptors. It is an interface to thefcntl() and
ioctl() UNIX routines.

All functions in this module take a file descriptorfd as their first argument. This can be an integer file descriptor,
such as returned bysys.stdin.fileno() , or a file object, such assys.stdin itself, which provides a
fileno() which returns a genuine file descriptor.

The module defines the following functions:

fcntl (fd, op[, arg])
Perform the requested operation on file descriptorfd (file objects providing afileno() method are ac-
cepted as well). The operation is defined byop and is operating system dependent. These codes are also
found in thefcntl module. The argumentarg is optional, and defaults to the integer value0. When
present, it can either be an integer value, or a string. With the argument missing or an integer value, the re-
turn value of this function is the integer return value of the Cfcntl() call. When the argument is a string
it represents a binary structure, e.g. created bystruct.pack() . The binary data is copied to a buffer
whose address is passed to the Cfcntl() call. The return value after a successful call is the contents of
the buffer, converted to a string object. The length of the returned string will be the same as the length of
thearg argument. This is limited to 1024 bytes. If the information returned in the buffer by the operating
system is larger than 1024 bytes, this is most likely to result in a segmentation violation or a more subtle
data corruption.

If the fcntl() fails, anIOError is raised.

ioctl (fd, op[, arg[, mutate flag]])
This function is identical to thefcntl() function, except that the operations are typically defined in the
library moduletermios and the argument handling is even more complicated.

The parameterarg can be one of an integer, absent (treated identically to the integer0), an object supporting
the read-only buffer interface (most likely a plain Python string) or an object supporting the read-write buffer
interface.

In all but the last case, behaviour is as for thefcntl() function.

If a mutable buffer is passed, then the behaviour is determined by the value of themutate flagparameter.

If it is false, the buffer’s mutability is ignored and behaviour is as for a read-only buffer, except that the 1024
byte limit mentioned above is avoided – so long as the buffer you pass is longer than what the operating
system wants to put there, things should work.

If mutate flag is true, then the buffer is (in effect) passed to the underlyingioctl() system call, the
latter’s return code is passed back to the calling Python, and the buffer’s new contents reflect the action of
the ioctl . This is a slight simplification, because if the supplied buffer is less than 1024 bytes long it is

8.12. fcntl — The fcntl() and ioctl() system calls 371

first copied into a static buffer 1024 bytes long which is then passed toioctl and copied back into the
supplied buffer.

If mutate flag is not supplied, then in 2.3 it defaults to false. This is planned to change over the next
few Python versions: in 2.4 failing to supplymutate flag will get a warning but the same behavior and in
versions later than 2.5 it will default to true.

An example:

>>> import array, fcntl, struct, termios, os
>>> os.getpgrp()
13341
>>> struct.unpack(’h’, fcntl.ioctl(0, termios.TIOCGPGRP, " "))[0]
13341
>>> buf = array.array(’h’, [0])
>>> fcntl.ioctl(0, termios.TIOCGPGRP, buf, 1)
0
>>> buf
array(’h’, [13341])

flock (fd, op)
Perform the lock operationopon file descriptorfd (file objects providing afileno() method are accepted
as well). See the UNIX manualflock(3) for details. (On some systems, this function is emulated using
fcntl() .)

lockf (fd, operation,[len,[start,[whence]]])
This is essentially a wrapper around thefcntl() locking calls.fd is the file descriptor of the file to lock
or unlock, andoperationis one of the following values:

•LOCK UN– unlock

•LOCK SH– acquire a shared lock

•LOCK EX– acquire an exclusive lock

Whenoperationis LOCK SHor LOCK EX, it can also be bit-wise OR’d withLOCK NBto avoid blocking
on lock acquisition. IfLOCK NB is used and the lock cannot be acquired, anIOError will be raised and
the exception will have anerrno attribute set toEACCESor EAGAIN(depending on the operating system;
for portability, check for both values). On at least some systems,LOCK EX can only be used if the file
descriptor refers to a file opened for writing.

lengthis the number of bytes to lock,start is the byte offset at which the lock starts, relative towhence, and
whenceis as withfileobj.seek() , specifically:

•0 – relative to the start of the file (SEEK SET)

•1 – relative to the current buffer position (SEEK CUR)

•2 – relative to the end of the file (SEEK END)

The default forstart is 0, which means to start at the beginning of the file. The default forlengthis 0 which
means to lock to the end of the file. The default forwhenceis also 0.

Examples (all on a SVR4 compliant system):

import struct, fcntl

file = open(...)
rv = fcntl(file, fcntl.F_SETFL, os.O_NDELAY)

lockdata = struct.pack(’hhllhh’, fcntl.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl.fcntl(file, fcntl.F_SETLKW, lockdata)

372 Chapter 8. Unix Specific Services

Note that in the first example the return value variablerv will hold an integer value; in the second example it will
hold a string value. The structure lay-out for thelockdatavariable is system dependent — therefore using the
flock() call may be better.

See Also:

Moduleos (section 6.1):
The os.open function supports locking flags and is available on a wider variety of platforms than the
fcntl.lockf andfcntl.flock functions, providing a more platform-independent file locking facil-
ity.

8.13 pipes — Interface to shell pipelines

Thepipes module defines a class to abstract the concept of apipeline— a sequence of convertors from one file
to another.

Because the module uses/bin/sh command lines, a POSIX or compatible shell foros.system() and
os.popen() is required.

Thepipes module defines the following class:

classTemplate ()
An abstraction of a pipeline.

Example:

>>> import pipes
>>> t=pipes.Template()
>>> t.append(’tr a-z A-Z’, ’--’)
>>> f=t.open(’/tmp/1’, ’w’)
>>> f.write(’hello world’)
>>> f.close()
>>> open(’/tmp/1’).read()
’HELLO WORLD’

8.13.1 Template Objects

Template objects following methods:

reset ()
Restore a pipeline template to its initial state.

clone ()
Return a new, equivalent, pipeline template.

debug (flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands to be
executed are printed, and the shell is givenset -x command to be more verbose.

append (cmd, kind)
Append a new action at the end. Thecmdvariable must be a valid bourne shell command. Thekindvariable
consists of two letters.

The first letter can be either of’-’ (which means the command reads its standard input),’f’ (which means
the commands reads a given file on the command line) or’.’ (which means the commands reads no input,
and hence must be first.)

Similarly, the second letter can be either of’-’ (which means the command writes to standard output),
’f’ (which means the command writes a file on the command line) or’.’ (which means the command
does not write anything, and hence must be last.)

8.13. pipes — Interface to shell pipelines 373

prepend (cmd, kind)
Add a new action at the beginning. Seeappend() for explanations of the arguments.

open (file, mode)
Return a file-like object, open tofile, but read from or written to by the pipeline. Note that only one of’r’ ,
’w’ may be given.

copy (infile, outfile)
Copy infile to outfilethrough the pipe.

8.14 posixfile — File-like objects with locking support

Deprecated since release 1.5.The locking operation that this module provides is done better and more portably
by thefcntl .lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it implements
file locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new
file object, the posixfile object. It has all the standard file object methods and adds the methods described below.
This module only works for certain flavors of UNIX , since it usesfcntl.fcntl() for file locking.

To instantiate a posixfile object, use theopen() function in theposixfile module. The resulting object looks
and feels roughly the same as a standard file object.

Theposixfile module defines the following constants:

SEEK SET
Offset is calculated from the start of the file.

SEEK CUR
Offset is calculated from the current position in the file.

SEEK END
Offset is calculated from the end of the file.

Theposixfile module defines the following functions:

open (filename[, mode[, bufsize]])
Create a new posixfile object with the given filename and mode. Thefilename, modeandbufsizearguments
are interpreted the same way as by the built-inopen() function.

fileopen (fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same filename
and mode as the original file object.

The posixfile object defines the following additional methods:

lock (fmt,[len[, start[, whence]]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a
table. Thelen argument specifies the length of the section that should be locked. The default is0. start
specifies the starting offset of the section, where the default is0. Thewhenceargument specifies where the
offset is relative to. It accepts one of the constantsSEEK SET, SEEK CURor SEEK END. The default is
SEEK SET. For more information about the arguments refer to thefcntl(2) manual page on your system.

flags ([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Without theflagsargument a
string indicating the current flags is returned (this is the same as the ‘?’ modifier). For more information
about the flags refer to thefcntl(2) manual page on your system.

dup ()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as
if it were newly opened.

dup2 (fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the

374 Chapter 8. Unix Specific Services

given file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file ()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods raiseIOError when the request fails.

Format characters for thelock() method have the following meaning:

Format Meaning
‘u’ unlock the specified region
‘ r ’ request a read lock for the specified section
‘w’ request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘ | ’ wait until the lock has been granted
‘?’ return the first lock conflicting with the requested lock, orNone if there is no conflict. (1)

Note:

(1) The lock returned is in the format(mode, len, start, whence, pid) wheremodeis a character repre-
senting the type of lock (’r’ or ’w’). This modifier prevents a request from being granted; it is for query
purposes only.

Format characters for theflags() method have the following meanings:

Format Meaning
‘a’ append only flag
‘c ’ close on exec flag
‘n’ no delay flag (also called non-blocking flag)
‘s ’ synchronization flag

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘ ! ’ turn the specified flags ’off’, instead of the default ’on’ (1)
‘=’ replace the flags, instead of the default ’OR’ operation (1)
‘?’ return a string in which the characters represent the flags that are set.(2)

Notes:

(1) The ‘! ’ and ‘=’ modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:

import posixfile

file = posixfile.open(’/tmp/test’, ’w’)
file.lock(’w|’)
...
file.lock(’u’)
file.close()

8.14. posixfile — File-like objects with locking support 375

8.15 resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either
the current process or its children.

A single exception is defined for errors:

exceptionerror
The functions described below may raise this error if the underlying system call failures unexpectedly.

8.15.1 Resource Limits

Resources usage can be limited using thesetrlimit() function described below. Each resource is controlled
by a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised
by a process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value
greater than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard
limit.)

The specific resources that can be limited are system dependent. They are described in thegetrlimit(2) man page.
The resources listed below are supported when the underlying operating system supports them; resources which
cannot be checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit (resource)
Returns a tuple(soft, hard) with the current soft and hard limits ofresource. RaisesValueError if an
invalid resource is specified, orerror if the underyling system call fails unexpectedly.

setrlimit (resource, limits)
Sets new limits of consumption ofresource. The limits argument must be a tuple(soft, hard) of two
integers describing the new limits. A value of-1 can be used to specify the maximum possible upper limit.

RaisesValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit (unless the process has an effective UID of super-user). Can also raise
error if the underyling system call fails.

These symbols define resources whose consumption can be controlled using thesetrlimit() and
getrlimit() functions described below. The values of these symbols are exactly the constants used by C
programs.

The UNIX man page forgetrlimit(2) lists the available resources. Note that not all systems use the same symbol or
same value to denote the same resource. This module does not attempt to mask platform differences — symbols
not defined for a platform will not be available from this module on that platform.

RLIMIT CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation
of a partial core file if a larger core would be required to contain the entire process image.

RLIMIT CPU
The maximum amount of processor time (in seconds) that a process can use. If this limit is exceeded, a
SIGXCPUsignal is sent to the process. (See thesignal module documentation for information about
how to catch this signal and do something useful, e.g. flush open files to disk.)

RLIMIT FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in
a multi-threaded process.

RLIMIT DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT RSS
The maximum resident set size that should be made available to the process.

376 Chapter 8. Unix Specific Services

RLIMIT NPROC
The maximum number of processes the current process may create.

RLIMIT NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT OFILE
The BSD name forRLIMIT NOFILE.

RLIMIT MEMLOCK
The maximum address space which may be locked in memory.

RLIMIT VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT AS
The maximum area (in bytes) of address space which may be taken by the process.

8.15.2 Resource Usage

These functions are used to retrieve resource usage information:

getrusage (who)
This function returns an object that describes the resources consumed by either the current process or its
children, as specified by thewho parameter. Thewho parameter should be specified using one of the
RUSAGE* constants described below.

The fields of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some
values are dependent on the clock tick internal, e.g. the amount of memory the process is using.

For backward compatibility, the return value is also accessible as a tuple of 16 elements.

The fieldsru utime andru stime of the return value are floating point values representing the amount
of time spent executing in user mode and the amount of time spent executing in system mode, respectively.
The remaining values are integers. Consult thegetrusage(2) man page for detailed information about these
values. A brief summary is presented here:

Index Field Resource
0 ru utime time in user mode (float)
1 ru stime time in system mode (float)
2 ru maxrss maximum resident set size
3 ru ixrss shared memory size
4 ru idrss unshared memory size
5 ru isrss unshared stack size
6 ru minflt page faults not requiring I/O
7 ru majflt page faults requiring I/O
8 ru nswap number of swap outs
9 ru inblock block input operations

10 ru oublock block output operations
11 ru msgsnd messages sent
12 ru msgrcv messages received
13 ru nsignals signals received
14 ru nvcsw voluntary context switches
15 ru nivcsw involuntary context switches

This function will raise aValueError if an invalid whoparameter is specified. It may also raiseerror
exception in unusual circumstances.

Changed in version 2.3: Added access to values as attributes of the returned object.

getpagesize ()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of

8.15. resource — Resource usage information 377

the tuple returned bygetrusage() describes memory usage in pages; multiplying by page size produces
number of bytes.

The followingRUSAGE* symbols are passed to thegetrusage() function to specify which processes infor-
mation should be provided for.

RUSAGESELF
RUSAGESELF should be used to request information pertaining only to the process itself.

RUSAGECHILDREN
Pass togetrusage() to request resource information for child processes of the calling process.

RUSAGEBOTH
Pass togetrusage() to request resources consumed by both the current process and child processes.
May not be available on all systems.

8.16 nis — Interface to Sun’s NIS (Yellow Pages)

Thenis module gives a thin wrapper around the NIS library, useful for central administration of several hosts.

Because NIS exists only on UNIX systems, this module is only available for UNIX .

Thenis module defines the following functions:

match (key, mapname)
Return the match forkeyin mapmapname, or raise an error (nis.error) if there is none. Both should be
strings,keyis 8-bit clean. Return value is an arbitrary array of bytes (may containNULLand other joys).

Note thatmapnameis first checked if it is an alias to another name.

cat (mapname)
Return a dictionary mappingkeyto valuesuch thatmatch(key, mapname)== value. Note that both keys
and values of the dictionary are arbitrary arrays of bytes.

Note thatmapnameis first checked if it is an alias to another name.

maps()
Return a list of all valid maps.

Thenis module defines the following exception:

exceptionerror
An error raised when a NIS function returns an error code.

8.17 syslog — UNIX syslog library routines

This module provides an interface to the UNIX syslog library routines. Refer to the UNIX manual pages for a
detailed description of thesyslog facility.

The module defines the following functions:

syslog ([priority,] message)
Send the stringmessageto the system logger. A trailing newline is added if necessary. Each message is
tagged with a priority composed of afacility and alevel. The optionalpriority argument, which defaults
to LOG INFO, determines the message priority. If the facility is not encoded inpriority using logical-or
(LOG INFO | LOG USER), the value given in theopenlog() call is used.

openlog (ident[, logopt[, facility]])
Logging options other than the defaults can be set by explicitly opening the log file withopenlog() prior
to callingsyslog() . The defaults are (usually)ident = ’syslog’ , logopt = 0, facility = LOG USER.
The identargument is a string which is prepended to every message. The optionallogoptargument is a bit
field - see below for possible values to combine. The optionalfacility argument sets the default facility for
messages which do not have a facility explicitly encoded.

378 Chapter 8. Unix Specific Services

closelog ()
Close the log file.

setlogmask (maskpri)
Set the priority mask tomaskpriand return the previous mask value. Calls tosyslog() with a priority
level not set inmaskpriare ignored. The default is to log all priorities. The functionLOG MASK(pri)
calculates the mask for the individual prioritypri. The functionLOG UPTO(pri) calculates the mask for
all priorities up to and includingpri.

The module defines the following constants:

Priority levels (high to low): LOG EMERG, LOG ALERT, LOG CRIT, LOG ERR, LOG WARNING,
LOG NOTICE, LOG INFO, LOG DEBUG.

Facilities: LOG KERN, LOG USER, LOG MAIL, LOG DAEMON, LOG AUTH, LOG LPR, LOG NEWS,
LOG UUCP, LOG CRONandLOG LOCAL0to LOG LOCAL7.

Log options: LOG PID , LOG CONS, LOG NDELAY, LOG NOWAIT and LOG PERRORif defined in
<syslog.h> .

8.18 commands — Utilities for running commands

Thecommands module contains wrapper functions foros.popen() which take a system command as a string
and return any output generated by the command and, optionally, the exit status.

Thecommands module defines the following functions:

getstatusoutput (cmd)
Execute the stringcmdin a shell withos.popen() and return a 2-tuple(status, output) . cmdis actually
run as{ cmd ; }2>&1 , so that the returned output will contain output or error messages. A trailing newline
is stripped from the output. The exit status for the command can be interpreted according to the rules for
the C functionwait() .

getoutput (cmd)
Like getstatusoutput() , except the exit status is ignored and the return value is a string containing
the command’s output.

getstatus (file)
Return the output of ‘ls -ld file’ as a string. This function uses thegetoutput() function, and
properly escapes backslashes and dollar signs in the argument.

Example:

>>> import commands
>>> commands.getstatusoutput(’ls /bin/ls’)
(0, ’/bin/ls’)
>>> commands.getstatusoutput(’cat /bin/junk’)
(256, ’cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput(’/bin/junk’)
(256, ’sh: /bin/junk: not found’)
>>> commands.getoutput(’ls /bin/ls’)
’/bin/ls’
>>> commands.getstatus(’/bin/ls’)
’-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

8.18. commands — Utilities for running commands 379

380

CHAPTER

NINE

The Python Debugger

The modulepdb defines an interactive source code debugger for Python programs. It supports setting (condi-
tional) breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and
evaluation of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and
can be called under program control.

The debugger is extensible — it is actually defined as the classPdb. This is currently undocumented but easily
understood by reading the source. The extension interface uses the modulesbdb (undocumented) andcmd.

The debugger’s prompt is ‘(Pdb) ’. Typical usage to run a program under control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run(’mymodule.test()’)
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: ’spam’
> <string>(1)?()
(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /usr/local/lib/python1.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test

test2()
File "./mymodule.py", line 3, in test2

print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

381

run (statement[, globals[, locals]])
Execute thestatement(given as a string) under debugger control. The debugger prompt appears before any
code is executed; you can set breakpoints and type ‘continue ’, or you can step through the statement
using ‘step ’ or ‘ next ’ (all these commands are explained below). The optionalglobalsand locals ar-
guments specify the environment in which the code is executed; by default the dictionary of the module

main is used. (See the explanation of theexec statement or theeval() built-in function.)

runeval (expression[, globals[, locals]])
Evaluate theexpression(given as a string) under debugger control. Whenruneval() returns, it returns
the value of the expression. Otherwise this function is similar torun() .

runcall (function[, argument, ...])
Call thefunction(a function or method object, not a string) with the given arguments. Whenruncall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function
is entered.

set trace ()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post mortem (traceback)
Enter post-mortem debugging of the giventracebackobject.

pm()
Enter post-mortem debugging of the traceback found insys.last traceback .

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
‘h(elp) ’ means that either ‘h’ or ‘ help ’ can be used to enter the help command (but not ‘he ’ or ‘ hel ’, nor
‘H’ or ‘ Help ’ or ‘ HELP’). Arguments to commands must be separated by whitespace (spaces or tabs). Optional
arguments are enclosed in square brackets (‘[] ’) in the command syntax; the square brackets must not be typed.
Alternatives in the command syntax are separated by a vertical bar (‘| ’).

Entering a blank line repeats the last command entered. Exception: if the last command was a ‘list ’ command,
the next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the
context of the program being debugged. Python statements can also be prefixed with an exclamation point (‘! ’).
This is a powerful way to inspect the program being debugged; it is even possible to change a variable or call a
function. When an exception occurs in such a statement, the exception name is printed but the debugger’s state is
not changed.

Multiple commands may be entered on a single line, separated by ‘;; ’. (A single ‘; ’ is not used as it is the
separator for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to
separating the commands; the input is split at the first ‘;; ’ pair, even if it is in the middle of a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability to the
context under examination.

If a file ‘ .pdbrc’ exists in the user’s home directory or in the current directory, it is read in and executed as if it had
been typed at the debugger prompt. This is particularly useful for aliases. If both files exist, the one in the home
directory is read first and aliases defined there can be overridden by the local file.

h(elp) [command] Without argument, print the list of available commands. With acommandas argument, print
help about that command. ‘help pdb ’ displays the full documentation file; if the environment variable
PAGER is defined, the file is piped through that command instead. Since thecommandargument must be
an identifier, ‘help exec ’ must be entered to get help on the ‘! ’ command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an newer frame).

382 Chapter 9. The Python Debugger

u(p) Move the current frame one level up in the stack trace (to a older frame).

b(reak) [[filename:] lineno| function[, condition]] With a lineno argument, set a break there in the current
file. With a functionargument, set a break at the first executable statement within that function. The line
number may be prefixed with a filename and a colon, to specify a breakpoint in another file (probably one
that hasn’t been loaded yet). The file is searched onsys.path . Note that each breakpoint is assigned a
number to which all the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint is
honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint has
been hit, the current ignore count, and the associated condition if any.

tbreak [[filename:] lineno| function[, condition]] Temporary breakpoint, which is removed automatically
when it is first hit. The arguments are the same as break.

cl(ear) [bpnumber[bpnumber ...]] With a space separated list of breakpoint numbers, clear those breakpoints.
Without argument, clear all breaks (but first ask confirmation).

disable[bpnumber[bpnumber ...]] Disables the breakpoints given as a space separated list of breakpoint num-
bers. Disabling a breakpoint means it cannot cause the program to stop execution, but unlike clearing a
breakpoint, it remains in the list of breakpoints and can be (re-)enabled.

enable[bpnumber[bpnumber ...]] Enables the breakpoints specified.

ignore bpnumber[count] Sets the ignore count for the given breakpoint number. If count is omitted, the ignore
count is set to 0. A breakpoint becomes active when the ignore count is zero. When non-zero, the count
is decremented each time the breakpoint is reached and the breakpoint is not disabled and any associated
condition evaluates to true.

condition bpnumber[condition] Condition is an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or on the next
line in the current function).

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference
between ‘next ’ and ‘step ’ is that ‘step ’ stops inside a called function, while ‘next ’ executes called
functions at (nearly) full speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

j(ump) lineno Set the next line that will be executed. Only available in the bottom-most frame. This lets you
jump back and execute code again, or jump forward to skip code that you don’t want to run.

It should be noted that not all jumps are allowed — for instance it is not possible to jump into the middle of
a for loop or out of afinally clause.

l(ist) [first[, last]] List source code for the current file. Without arguments, list 11 lines around the current line
or continue the previous listing. With one argument, list 11 lines around at that line. With two arguments,
list the given range; if the second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expressionEvaluate theexpressionin the current context and print its value.Note: ‘print ’ can also be used,
but is not a debugger command — this executes the Pythonprint statement.

pp expressionLike the ‘p’ command, except the value of the expression is pretty-printed using thepprint
module.

9.1. Debugger Commands 383

alias [name[command]] Creates an alias callednamethat executescommand. The command mustnot be
enclosed in quotes. Replaceable parameters can be indicated by ‘%1’, ‘ %2’, and so on, while ‘%*’ is replaced
by all the parameters. If no command is given, the current alias fornameis shown. If no arguments are
given, all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that
internal pdb commandscan be overridden by aliases. Such a command is then hidden until the alias is
removed. Aliasing is recursively applied to the first word of the command line; all other words in the line
are left alone.

As an example, here are two useful aliases (especially when placed in the ‘.pdbrc’ file):

#Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]
#Print instance variables in self
alias ps pi self

unaliasname Deletes the specified alias.

[!]statementExecute the (one-line)statementin the context of the current stack frame. The exclamation point
can be omitted unless the first word of the statement resembles a debugger command. To set a global
variable, you can prefix the assignment command with a ‘global ’ command on the same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]
(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

• sys.settrace(func) sets the global trace function

• there can also a local trace function (see later)

Trace functions have three arguments:frame, event, andarg. frame is the current stack frame.eventis a string:
’call’ , ’line’ , ’return’ or ’exception’ . arg depends on the event type.

The global trace function is invoked (witheventset to’call’) whenever a new local scope is entered; it should
return a reference to the local trace function to be used that scope, orNone if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that scope),
or None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called;arg is
None; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one line exist).
The local trace function is called;arg is None; the return value specifies the new local trace function.

’return’ A function (or other code block) is about to return. The local trace function is called;arg is the value
that will be returned. The trace function’s return value is ignored.

384 Chapter 9. The Python Debugger

’exception’ An exception has occurred. The local trace function is called;arg is a triple(exception, value,
traceback) ; the return value specifies the new local trace function.

Note that as an exception is propagated down the chain of callers, an’exception’ event is generated at each
level.

For more information on code and frame objects, refer to thePython Reference Manual.

9.2. How It Works 385

386

CHAPTER

TEN

The Python Profiler

Copyright c© 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind.1

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any
purpose (subject to the restriction in the following sentence) without fee is hereby granted, provided that the
above copyright notice appears in all copies, and that both that copyright notice and this permission notice appear
in supporting documentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. This permission is explicitly restricted to
the copying and modification of the software to remain in Python, compiled Python, or other languages (such as
C) wherein the modified or derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAM-
AGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably clumsy code,
but I don’t know for sure yet ’cause I’m a beginner :-). I did work hard to make the code run fast, so that profiling
would be a reasonable thing to do. I tried not to repeat code fragments, but I’m sure I did some stuff in really
awkward ways at times. Please send suggestions for improvements to:jar@netscape.com. I won’t promiseany
support. ...but I’d appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modulesprofile andpstats . This profiler
providesdeterministic profilingof any Python programs. It also provides a series of report generation tools to
allow users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU time. It’s not
a trade-off, it’s a trade-up.

To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct functions.

1Updated and converted to LATEX by Guido van Rossum. The references to the old profiler are left in the text, although it no longer exists.

387

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for platform is sup-
ported, file reads are not donebyprofilerduringprofiling (and charged to user’s code!).

Speed increased:Overhead CPU cost was reduced by more than a factor of two (perhaps a factor of five),
lightweight profiler module is all that must be loaded, and the report generating module (pstats) is not
needed during profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; recursive entries
are counted.

Large growth in report generating UI: Distinct profiles runs can be added together forming a comprehensive
report; functions that import statistics take arbitrary lists of files; sorting criteria is now based on keywords
(instead of 4 integer options); reports shows what functions were profiled as well as what profile file was
referenced; output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and
allows a user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of ‘foo() ’, you would add the following to your module:

import profile
profile.run(’foo()’)

The above action would cause ‘foo() ’ to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profile
into a file for later examination, you can supply a file name as the second argument to therun() function:

import profile
profile.run(’foo()’, ’fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /usr/local/lib/python1.5/profile.py myscript.py

When you wish to review the profile, you should use the methods in thepstats module. Typically you would
load the statistics data as follows:

import pstats
p = pstats.Stats(’fooprof’)

The classStats (the above code just created an instance of this class) has a variety of methods for manipulating
and printing the data that was just read into ‘p’. When you ranprofile.run() above, what was printed was
the result of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries
according to the standard module/line/name string that is printed (this is to comply with the semantics of the old
profiler). The third method printed out all the statistics. You might try the following sort calls:

388 Chapter 10. The Python Profiler

p.sort_stats(’name’)
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The
following are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you
want to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

This will sort all the statistics by file name, and then print out statistics for only the class init methods (’cause they
are spelled with ‘ init ’ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out
some of the statistics. To be specific, the list is first culled down to 50% (re: ‘.5 ’) of its original size, then only
lines containinginit are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (‘p’ is still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:

p.print_callees()
p.add(’fooprof’)

Invoked as a script, thepstats module is a statistics browser for reading and examining profile dumps. It has a
simple line-oriented interface (implemented usingcmd) and interactive help.

10.4 What Is Deterministic Profiling?

Deterministic profilingis meant to reflect the fact that allfunction call, function return, andexceptionevents are
monitored, and precise timings are made for the intervals between these events (during which time the user’s

10.4. What Is Deterministic Profiling? 389

code is executing). In contrast,statistical profiling(which is not done by this module) randomly samples the
effective instruction pointer, and deduces where time is being spent. The latter technique traditionally involves
less overhead (as the code does not need to be instrumented), but provides only relative indications of where time
is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required
to do deterministic profiling. Python automatically provides ahook(optional callback) for each event. In addition,
the interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to
only add small processing overhead in typical applications. The result is that deterministic profiling is not that
expensive, yet provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-
expansion points (high call counts). Internal time statistics can be used to identify “hot loops” that should be
carefully optimized. Cumulative time statistics should be used to identify high level errors in the selection of
algorithms. Note that the unusual handling of cumulative times in this profiler allows statistics for recursive
implementations of algorithms to be directly compared to iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global functionprofile.run() . It is typically used to create
any profile information. The reports are formatted and printed using methods of the classpstats.Stats . The
following is a description of all of these standard entry points and functions. For a more in-depth view of some
of the code, consider reading the later section on Profiler Extensions, which includes discussion of how to derive
“better” profilers from the classes presented, or reading the source code for these modules.

run (string[, filename[, ...]])
This function takes a single argument that has can be passed to theexec statement, and an optional file
name. In all cases this routine attempts toexec its first argument, and gather profiling statistics from
the execution. If no file name is present, then this function automatically prints a simple profiling report,
sorted by the standard name string (file/line/function-name) that is presented in each line. The following is
a typical output from such a call:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

The first line indicates that this profile was generated by the call:
profile.run(’main()’) , and hence the exec’ed string is’main()’ . The second line indicates that
2706 calls were monitored. Of those calls, 2004 wereprimitive. We defineprimitive to mean that the call
was not induced via recursion. The next line:Ordered by: standard name , indicates that the text
string in the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),

percall is the quotient oftottime divided byncalls

cumtime is the total time spent in this and all subfunctions (from invocation till exit). This figure is accurate
evenfor recursive functions.

percall is the quotient ofcumtime divided by primitive calls

filename:lineno(function)provides the respective data of each function

390 Chapter 10. The Python Profiler

When there are two numbers in the first column (for example, ‘43/3 ’), then the latter is the number of
primitive calls, and the former is the actual number of calls. Note that when the function does not recurse,
these two values are the same, and only the single figure is printed.

Analysis of the profiler data is done using this class from thepstats module:

classStats (filename[, ...])
This class constructor creates an instance of a “statistics object” from afilename(or set of filenames).
Stats objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding version of
profile . To be specific, there isno file compatibility guaranteed with future versions of this profiler,
and there is no compatibility with files produced by other profilers (such as the old system profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an overall view
of several processes can be considered in a single report. If additional files need to be combined with data
in an existingStats object, theadd() method can be used.

10.5.1 The Stats Class

Stats objects have the following methods:

strip dirs ()
This method for theStats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries
in a “random” order, as it was just after object initialization and loading. Ifstrip dirs() causes two
function names to be indistinguishable (they are on the same line of the same filename, and have the same
function name), then the statistics for these two entries are accumulated into a single entry.

add (filename[, ...])
This method of theStats class accumulates additional profiling information into the current profiling
object. Its arguments should refer to filenames created by the corresponding version ofprofile.run() .
Statistics for identically named (re: file, line, name) functions are automatically accumulated into single
function statistics.

dump stats (filename)
Save the data loaded into theStats object to a file namedfilename. The file is created if it does not
exist, and is overwritten if it already exists. This is equivalent to the method of the same name on the
profile.Profile class. New in version 2.3.

sort stats (key[, ...])
This method modifies theStats object by sorting it according to the supplied criteria. The argument is
typically a string identifying the basis of a sort (example:’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when there is
equality in all keys selected before them. For example, ‘sort stats(’name’, ’file’) ’ will sort
all the entries according to their function name, and resolve all ties (identical function names) by sorting by
file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following
are the keys currently defined:

Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

10.5. Reference Manual 391

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as
name, file, and line number searches are in ascending order (alphabetical). The subtle distinction between
’nfl’ and’stdname’ is that the standard name is a sort of the name as printed, which means that the
embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file
names were the same) appear in the string order 20, 3 and 40. In contrast,’nfl’ does a numeric compare
of the line numbers. In fact,sort stats(’nfl’) is the same assort stats(’name’, ’file’,
’line’) .

For compatibility with the old profiler, the numeric arguments-1 , 0, 1, and2 are permitted. They are
interpreted as’stdname’ , ’calls’ , ’time’ , and ’cumulative’ respectively. If this old style
format (numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will
be silently ignored.

reverse order ()
This method for theStats class reverses the ordering of the basic list within the object. This method is
provided primarily for compatibility with the old profiler. Its utility is questionable now that ascending vs
descending order is properly selected based on the sort key of choice.

print stats ([restriction, ...])
This method for theStats class prints out a report as described in theprofile.run() definition.

The order of the printing is based on the lastsort stats() operation done on the object (subject to
caveats inadd() andstrip dirs()).

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list
is taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count
of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular
expression (to pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style
regular expression syntax defined by there module). If several restrictions are provided, then they are
applied sequentially. For example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename
‘ .*foo: ’. In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names ‘.*foo: ’, and then proceed to only print the first
10% of them.

print callers ([restriction, ...])
This method for theStats class prints a list of all functions that called each function in the profiled
database. The ordering is identical to that provided byprint stats() , and the definition of the restrict-
ing argument is also identical. For convenience, a number is shown in parentheses after each caller to show
how many times this specific call was made. A second non-parenthesized number is the cumulative time
spent in the function at the right.

print callees ([restriction, ...])
This method for theStats class prints a list of all function that were called by the indicated function.
Aside from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are
identical to theprint callers() method.

ignore ()
Deprecated since release 1.5.1.This is not needed in modern versions of Python.2

2This was once necessary, when Python would print any unused expression result that was notNone. The method is still defined for
backward compatibility.

392 Chapter 10. The Python Profiler

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to
dispatchcall, return, andexceptionevents. Compiled C code does not get interpreted, and hence is “invisible”
to the profiler. All time spent in C code (including built-in functions) will be charged to the Python function that
invoked the C code. If the C code calls out to some native Python code, then those calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem with deter-
ministic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at
a rate (typically) of about .001 seconds. Hence no measurements will be more accurate than the underlying clock.
If enough measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first
error induces a second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the
time actuallygetsthe state of the clock. Similarly, there is a certain lag when exiting the profiler event handler
from the time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again
executing. As a result, functions that are called many times, or call many functions, will typically accumulate
this error. The error that accumulates in this fashion is typically less than the accuracy of the clock (less than
one clock tick), but itcanaccumulate and become very significant. This profiler provides a means of calibrating
itself for a given platform so that this error can be probabilistically (on the average) removed. After the profiler
is calibrated, it will be more accurate (in a least square sense), but it will sometimes produce negative numbers
(when call counts are exceptionally low, and the gods of probability work against you :-).) Donot be alarmed by
negative numbers in the profile. They shouldonly appear if you have calibrated your profiler, and the results are
actually better than without calibration.

10.7 Calibration

The profiler subtracts a constant from each event handling time to compensate for the overhead of calling the time
function, and socking away the results. By default, the constant is 0. The following procedure can be used to
obtain a better constant for a given platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
for i in range(5):

print pr.calibrate(10000)

The method executes the number of Python calls given by the argument, directly and again under the profiler,
measuring the time for both. It then computes the hidden overhead per profiler event, and returns that as a float.
For example, on an 800 MHz Pentium running Windows 2000, and using Python’s time.clock() as the timer, the
magical number is about 12.5e-6.

The object of this exercise is to get a fairly consistent result. If your computer isvery fast, or your timer function
has poor resolution, you might have to pass 100000, or even 1000000, to get consistent results.

When you have a consistent answer, there are three ways you can use it:3

3Prior to Python 2.2, it was necessary to edit the profiler source code to embed the bias as a literal number. You still can, but that method
is no longer described, because no longer needed.

10.6. Limitations 393

import profile

1. Apply computed bias to all Profile instances created hereafter.
profile.Profile.bias = your_computed_bias

2. Apply computed bias to a specific Profile instance.
pr = profile.Profile()
pr.bias = your_computed_bias

3. Specify computed bias in instance constructor.
pr = profile.Profile(bias=your_computed_bias)

If you have a choice, you are better off choosing a smaller constant, and then your results will “less often” show
up as negative in profile statistics.

10.8 Extensions — Deriving Better Profilers

TheProfile class of moduleprofile was written so that derived classes could be developed to extend the
profiler. The details are not described here, as doing this successfully requires an expert understanding of how the
Profile class works internally. Study the source code of moduleprofile carefully if you want to pursue this.

If all you want to do is change how current time is determined (for example, to force use of wall-clock time or
elapsed process time), pass the timing function you want to theProfile class constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will then callyour time func() . The function should return a single number, or a list
of numbers whose sum is the current time (like whatos.times() returns). If the function returns a single time
number, or the list of returned numbers has length 2, then you will get an especially fast version of the dispatch
routine.

Be warned that you should calibrate the profiler class for the timer function that you choose. For most machines,
a timer that returns a lone integer value will provide the best results in terms of low overhead during profiling.
(os.times() is prettybad, as it returns a tuple of floating point values). If you want to substitute a better timer
in the cleanest fashion, derive a class and hardwire a replacement dispatch method that best handles your timer
call, along with the appropriate calibration constant.

10.9 hotshot — High performance logging profiler

New in version 2.2.

This module provides a nicer interface to thehotshot C module. Hotshot is a replacement for the existing
profile module. As it’s written mostly in C, it should result in a much smaller performance impact than the
existingprofile module.

classProfile (logfile[, lineevents=0[, linetimings=1]])
The profiler object. The argumentlogfile is the name of a log file to use for logged profile data. The
argumentlineeventsspecifies whether to generate events for every source line, or just on function call/return.
It defaults to0 (only log function call/return). The argumentlinetimingsspecifies whether to record timing
information. It defaults to1 (store timing information).

10.9.1 Profile Objects

Profile objects have the following methods:

394 Chapter 10. The Python Profiler

addinfo (key, value)
Add an arbitrary labelled value to the profile output.

close ()
Close the logfile and terminate the profiler.

fileno ()
Return the file descriptor of the profiler’s log file.

run (cmd)
Profile anexec -compatible string in the script environment. The globals from themain module are
used as both the globals and locals for the script.

runcall (func, *args, **keywords)
Profile a single call of a callable. Additional positional and keyword arguments may be passed along; the
result of the call is returned, and exceptions are allowed to propogate cleanly, while ensuring that profiling
is disabled on the way out.

runctx (cmd, globals, locals)
Evaluate anexec -compatible string in a specific environment. The string is compiled before profiling
begins.

start ()
Start the profiler.

stop ()
Stop the profiler.

10.9.2 Using hotshot data

New in version 2.2.

This module loads hotshot profiling data into the standardpstats Stats objects.

load (filename)
Load hotshot data fromfilename. Returns an instance of thepstats.Stats class.

See Also:

Moduleprofile (section 10.5):
Theprofile module’sStats class

10.9.3 Example Usage

Note that this example runs the python “benchmark” pystones. It can take some time to run, and will produce
large output files.

10.9. hotshot — High performance logging profiler 395

>>> import hotshot, hotshot.stats, test.pystone
>>> prof = hotshot.Profile("stones.prof")
>>> benchtime, stones = prof.runcall(test.pystone.pystones)
>>> prof.close()
>>> stats = hotshot.stats.load("stones.prof")
>>> stats.strip_dirs()
>>> stats.sort_stats(’time’, ’calls’)
>>> stats.print_stats(20)

850004 function calls in 10.090 CPU seconds

Ordered by: internal time, call count

ncalls tottime percall cumtime percall filename:lineno(function)
1 3.295 3.295 10.090 10.090 pystone.py:79(Proc0)

150000 1.315 0.000 1.315 0.000 pystone.py:203(Proc7)
50000 1.313 0.000 1.463 0.000 pystone.py:229(Func2)

.

.

.

10.10 timeit — Measure execution time of small code snippets

New in version 2.3.

This module provides a simple way to time small bits of Python code. It has both command line as well as callable
interfaces. It avoids a number of common traps for measuring execution times. See also Tim Peters’ introduction
to the “Algorithms” chapter in thePython Cookbook, published by O’Reilly.

The module defines the following public class:

classTimer ([stmt=’pass’ [, setup=’pass’ [, timer=¡timer function¿]]])
Class for timing execution speed of small code snippets.

The constructor takes a statement to be timed, an additional statement used for setup, and a timer function.
Both statements default to’pass’ ; the timer function is platform-dependent (see the module doc string).
The statements may contain newlines, as long as they don’t contain multi-line string literals.

To measure the execution time of the first statement, use thetimeit() method. Therepeat() method
is a convenience to calltimeit() multiple times and return a list of results.

print exc ([file=None])
Helper to print a traceback from the timed code.

Typical use:

t = Timer(...) # outside the try/except
try:

t.timeit(...) # or t.repeat(...)
except:

t.print_exc()

The advantage over the standard traceback is that source lines in the compiled template will be displayed.
The optionalfile argument directs where the traceback is sent; it defaults tosys.stderr .

repeat ([repeat=3 [, number=1000000]])
Call timeit() a few times.

This is a convenience function that calls thetimeit() repeatedly, returning a list of results. The first ar-
gument specifies how many times to calltimeit() . The second argument specifies thenumberargument
for timeit() .

396 Chapter 10. The Python Profiler

Note: It’s tempting to calculate mean and standard deviation from the result vector and report these. How-
ever, this is not very useful. In a typical case, the lowest value gives a lower bound for how fast your machine
can run the given code snippet; higher values in the result vector are typically not caused by variability in
Python’s speed, but by other processes interfering with your timing accuracy. So themin() of the result is
probably the only number you should be interested in. After that, you should look at the entire vector and
apply common sense rather than statistics.

timeit ([number=1000000])
Timenumberexecutions of the main statement. This executes the setup statement once, and then returns the
time it takes to execute the main statement a number of times, measured in seconds as a float. The argument
is the number of times through the loop, defaulting to one million. The main statement, the setup statement
and the timer function to be used are passed to the constructor.

10.10.1 Command Line Interface

When called as a program from the command line, the following form is used:

python timeit.py [-n N] [-r N] [-s S] [-t] [-c] [-h] [statement ...]

where the following options are understood:

-n N/--number=N how many times to execute ’statement’

-r N/--repeat=N how many times to repeat the timer (default 3)

-s S/--setup=Sstatement to be executed once initially (default’pass’)

-t/--time usetime.time() (default on all platforms but Windows)

-c/--clock usetime.clock() (default on Windows)

-v/--verbose print raw timing results; repeat for more digits precision

-h/--help print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate statement argument; indented lines are
possible by enclosing an argument in quotes and using leading spaces. Multiple-soptions are treated similarly.

If -n is not given, a suitable number of loops is calculated by trying successive powers of 10 until the total time is
at least 0.2 seconds.

The default timer function is platform dependent. On Windows,time.clock() has microsecond granularity
but time.time() ’s granularity is 1/60th of a second; on UNIX , time.clock() has 1/100th of a second
granularity andtime.time() is much more precise. On either platform, the default timer functions measure
wall clock time, not the CPU time. This means that other processes running on the same computer may interfere
with the timing. The best thing to do when accurate timing is necessary is to repeat the timing a few times and
use the best time. The-r option is good for this; the default of 3 repetitions is probably enough in most cases. On
UNIX , you can usetime.clock() to measure CPU time.

Note: There is a certain baseline overhead associated with executing a pass statement. The code here doesn’t try
to hide it, but you should be aware of it. The baseline overhead can be measured by invoking the program without
arguments.

The baseline overhead differs between Python versions! Also, to fairly compare older Python versions to Python
2.3, you may want to use Python’s-O option for the older versions to avoid timingSET LINENO instructions.

10.10.2 Examples

Here are two example sessions (one using the command line, one using the module interface) that compare the
cost of usinghasattr() vs. try /except to test for missing and present object attributes.

10.10. timeit — Measure execution time of small code snippets 397

% timeit.py ’try:’ ’ str.__nonzero__’ ’except AttributeError:’ ’ pass’
100000 loops, best of 3: 15.7 usec per loop
% timeit.py ’if hasattr(str, "__nonzero__"): pass’
100000 loops, best of 3: 4.26 usec per loop
% timeit.py ’try:’ ’ int.__nonzero__’ ’except AttributeError:’ ’ pass’
1000000 loops, best of 3: 1.43 usec per loop
% timeit.py ’if hasattr(int, "__nonzero__"): pass’
100000 loops, best of 3: 2.23 usec per loop

>>> import timeit
>>> s = """\
... try:
... str.__nonzero__
... except AttributeError:
... pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
17.09 usec/pass
>>> s = """\
... if hasattr(str, ’__nonzero__’): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
4.85 usec/pass
>>> s = """\
... try:
... int.__nonzero__
... except AttributeError:
... pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
1.97 usec/pass
>>> s = """\
... if hasattr(int, ’__nonzero__’): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
3.15 usec/pass

To give thetimeit module access to functions you define, you can pass asetup parameter which contains an
import statement:

def test():
"Stupid test function"
L = []
for i in range(100):

L.append(i)

if __name__==’__main__’:
from timeit import Timer
t = Timer("test()", "from __main__ import test")
print t.timeit()

398 Chapter 10. The Python Profiler

CHAPTER

ELEVEN

Internet Protocols and Support

The modules described in this chapter implement Internet protocols and support for related technology. They are
all implemented in Python. Most of these modules require the presence of the system-dependent modulesocket ,
which is currently supported on most popular platforms. Here is an overview:

webbrowser Easy-to-use controller for Web browsers.
cgi Common Gateway Interface support, used to interpret forms in server-side scripts.
cgitb Configurable traceback handler for CGI scripts.
urllib Open an arbitrary network resource by URL (requires sockets).
urllib2 An extensible library for opening URLs using a variety of protocols
httplib HTTP and HTTPS protocol client (requires sockets).
ftplib FTP protocol client (requires sockets).
gopherlib Gopher protocol client (requires sockets).
poplib POP3 protocol client (requires sockets).
imaplib IMAP4 protocol client (requires sockets).
nntplib NNTP protocol client (requires sockets).
smtplib SMTP protocol client (requires sockets).
telnetlib Telnet client class.
urlparse Parse URLs into components.
SocketServer A framework for network servers.
BaseHTTPServer Basic HTTP server (base class forSimpleHTTPServer andCGIHTTPServer).
SimpleHTTPServer This module provides a basic request handler for HTTP servers.
CGIHTTPServer This module provides a request handler for HTTP servers which can run CGI scripts.
Cookie Support for HTTP state management (cookies).
xmlrpclib XML-RPC client access.
SimpleXMLRPCServer Basic XML-RPC server implementation.
DocXMLRPCServer Self-documenting XML-RPC server implementation.
asyncore A base class for developing asynchronous socket handling services.
asynchat Support for asynchronous command/response protocols.

11.1 webbrowser — Convenient Web-browser controller

The webbrowser module provides a very high-level interface to allow displaying Web-based documents to
users. The controller objects are easy to use and are platform-independent. Under most circumstances, simply
calling theopen() function from this module will do the right thing.

Under UNIX , graphical browsers are preferred under X11, but text-mode browsers will be used if graphical
browsers are not available or an X11 display isn’t available. If text-mode browsers are used, the calling process
will block until the user exits the browser.

Under UNIX , if the environment variable BROWSER exists, it is interpreted to override the platform default list
of browsers, as a colon-separated list of browsers to try in order. When the value of a list part contains the string
%s, then it is interpreted as a literal browser command line to be used with the argument URL substituted for the
%s; if the part does not contain%s, it is simply interpreted as the name of the browser to launch.

399

For non-UNIX platforms, or when X11 browsers are available on UNIX , the controlling process will not wait for
the user to finish with the browser, but allow the browser to maintain its own window on the display.

The following exception is defined:

exceptionError
Exception raised when a browser control error occurs.

The following functions are defined:

open (url[, new=0][, autoraise=1])
Display url using the default browser. Ifnew is true, a new browser window is opened if possible. If
autoraiseis true, the window is raised if possible (note that under many window managers this will occur
regardless of the setting of this variable).

open new(url)
Openurl in a new window of the default browser, if possible, otherwise, openurl in the only browser
window.

get ([name])
Return a controller object for the browser typename. If nameis empty, return a controller for a default
browser appropriate to the caller’s environment.

register (name, constructor[, instance])
Register the browser typename. Once a browser type is registered, theget() function can return a con-
troller for that browser type. Ifinstanceis not provided, or isNone, constructorwill be called without
parameters to create an instance when needed. Ifinstanceis provided,constructorwill never be called, and
may beNone.

This entry point is only useful if you plan to either set the BROWSER variable or callget with a nonempty
argument matching the name of a handler you declare.

A number of browser types are predefined. This table gives the type names that may be passed to theget()
function and the corresponding instantiations for the controller classes, all defined in this module.

Type Name Class Name Notes
’mozilla’ Netscape(’mozilla’)
’netscape’ Netscape(’netscape’)
’mosaic’ GenericBrowser(’mosaic %s &’)
’kfm’ Konqueror() (1)
’grail’ Grail()
’links’ GenericBrowser(’links %s’)
’lynx’ GenericBrowser(’lynx %s’)
’w3m’ GenericBrowser(’w3m %s’)
’windows-default’ WindowsDefault (2)
’internet-config’ InternetConfig (3)

Notes:

(1) “Konqueror” is the file manager for the KDE desktop environment for UNIX, and only makes sense to use
if KDE is running. Some way of reliably detecting KDE would be nice; the KDEDIR variable is not
sufficient. Note also that the name “kfm” is used even when using thekonqueror command with KDE 2
— the implementation selects the best strategy for running Konqueror.

(2) Only on Windows platforms; requires the common extension moduleswin32api andwin32con .

(3) Only on MacOS platforms; requires the standard MacPythonic module, described in theMacintosh Library
Modulesmanual.

11.1.1 Browser Controller Objects

Browser controllers provide two methods which parallel two of the module-level convenience functions:

400 Chapter 11. Internet Protocols and Support

open (url[, new])
Displayurl using the browser handled by this controller. Ifnewis true, a new browser window is opened if
possible.

open new(url)
Openurl in a new window of the browser handled by this controller, if possible, otherwise, openurl in the
only browser window.

11.2 cgi — Common Gateway Interface support.

Support module for Common Gateway Interface (CGI) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

11.2.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML<FORM>
or <ISINDEX> element.

Most often, CGI scripts live in the server’s special ‘cgi-bin’ directory. The HTTP server places all sorts of infor-
mation about the request (such as the client’s hostname, the requested URL, the query string, and lots of other
goodies) in the script’s shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the
form data is passed via the “query string” part of the URL. This module is intended to take care of the different
cases and provide a simpler interface to the Python script. It also provides a number of utilities that help in
debugging scripts, and the latest addition is support for file uploads from a form (if your browser supports it —
Grail 0.3 and Netscape 2.0 do).

The output of a CGI script should consist of two sections, separated by a blank line. The first section contains a
number of headers, telling the client what kind of data is following. Python code to generate a minimal header
section looks like this:

print "Content-Type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

11.2.2 Using the cgi module

Begin by writing ‘import cgi ’. Do not use ‘from cgi import * ’ — the module defines all sorts of names
for its own use or for backward compatibility that you don’t want in your namespace.

When you write a new script, consider adding the line:

import cgitb; cgitb.enable()

This activates a special exception handler that will display detailed reports in the Web browser if any errors occur.
If you’d rather not show the guts of your program to users of your script, you can have the reports saved to files

11.2. cgi — Common Gateway Interface support. 401

instead, with a line like this:

import cgitb; cgitb.enable(display=0, logdir="/tmp")

It’s very helpful to use this feature during script development. The reports produced bycgitb provide informa-
tion that can save you a lot of time in tracking down bugs. You can always remove thecgitb line later when you
have tested your script and are confident that it works correctly.

To get at submitted form data, it’s best to use theFieldStorage class. The other classes defined in this module
are provided mostly for backward compatibility. Instantiate it exactly once, without arguments. This reads the
form contents from standard input or the environment (depending on the value of various environment variables
set according to the CGI standard). Since it may consume standard input, it should be instantiated only once.

The FieldStorage instance can be indexed like a Python dictionary, and also supports the standard dictio-
nary methodshas key() andkeys() . The built-in len() is also supported. Form fields containing empty
strings are ignored and do not appear in the dictionary; to keep such values, provide a true value for the optional
keep blank valueskeyword parameter when creating theFieldStorage instance.

For instance, the following code (which assumes that theContent-Type: header and blank line have already been
printed) checks that the fieldsname andaddr are both set to a non-empty string:

form = cgi.FieldStorage()
if not (form.has_key("name") and form.has_key("addr")):

print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return

print "<p>name:", form["name"].value
print "<p>addr:", form["addr"].value
...further form processing here...

Here the fields, accessed through ‘form[key] ’, are themselves instances ofFieldStorage (or
MiniFieldStorage , depending on the form encoding). Thevalue attribute of the instance yields the string
value of the field. Thegetvalue() method returns this string value directly; it also accepts an optional second
argument as a default to return if the requested key is not present.

If the submitted form data contains more than one field with the same name, the object retrieved by ‘form[key] ’ is
not aFieldStorage or MiniFieldStorage instance but a list of such instances. Similarly, in this situation,
‘ form.getvalue(key) ’ would return a list of strings. If you expect this possibility (when your HTML form
contains multiple fields with the same name), use thegetlist() function, which always returns a list of values
(so that you do not need to special-case the single item case). For example, this code concatenates any number of
username fields, separated by commas:

value = form.getlist("username")
usernames = ",".join(value)

If a field represents an uploaded file, accessing the value via thevalue attribute or thegetvalue() method
reads the entire file in memory as a string. This may not be what you want. You can test for an uploaded file by
testing either thefilename attribute or thefile attribute. You can then read the data at leisure from thefile
attribute:

402 Chapter 11. Internet Protocols and Support

fileitem = form["userfile"]
if fileitem.file:

It’s an uploaded file; count lines
linecount = 0
while 1:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-likeFieldStorage item. This can be
determined by testing itstype attribute, which should bemultipart/form-data (or perhaps another MIME type
matchingmultipart/*). In this case, it can be iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of typeapplication/x-
www-form-urlencoded), the items will actually be instances of the classMiniFieldStorage . In this case, the
list , file , andfilename attributes are alwaysNone.

11.2.3 Higher Level Interface

New in version 2.2.

The previous section explains how to read CGI form data using theFieldStorage class. This section describes
a higher level interface which was added to this class to allow one to do it in a more readable and intuitive way. The
interface doesn’t make the techniques described in previous sections obsolete — they are still useful to process
file uploads efficiently, for example.

The interface consists of two simple methods. Using the methods you can process form data in a generic way,
without the need to worry whether only one or more values were posted under one name.

In the previous section, you learned to write following code anytime you expected a user to post more than one
value under one name:

item = form.getvalue("item")
if isinstance(item, list):

The user is requesting more than one item.
else:

The user is requesting only one item.

This situation is common for example when a form contains a group of multiple checkboxes with the same name:

<input type="checkbox" name="item" value="1" />
<input type="checkbox" name="item" value="2" />

In most situations, however, there’s only one form control with a particular name in a form and then you expect
and need only one value associated with this name. So you write a script containing for example this code:

user = form.getvalue("user").upper()

The problem with the code is that you should never expect that a client will provide valid input to your scripts.
For example, if a curious user appends another ‘user=foo ’ pair to the query string, then the script would crash,
because in this situation thegetvalue("user") method call returns a list instead of a string. Calling the
toupper() method on a list is not valid (since lists do not have a method of this name) and results in an
AttributeError exception.

11.2. cgi — Common Gateway Interface support. 403

Therefore, the appropriate way to read form data values was to always use the code which checks whether the
obtained value is a single value or a list of values. That’s annoying and leads to less readable scripts.

A more convenient approach is to use the methodsgetfirst() andgetlist() provided by this higher level
interface.

getfirst (name[, default])
Thin method always returns only one value associated with form fieldname. The method returns only the
first value in case that more values were posted under such name. Please note that the order in which the
values are received may vary from browser to browser and should not be counted on.1 If no such form field
or value exists then the method returns the value specified by the optional parameterdefault. This parameter
defaults toNone if not specified.

getlist (name)
This method always returns a list of values associated with form fieldname. The method returns an empty
list if no such form field or value exists forname. It returns a list consisting of one item if only one such
value exists.

Using these methods you can write nice compact code:

import cgi
form = cgi.FieldStorage()
user = form.getfirst("user", "").upper() # This way it’s safe.
for item in form.getlist("item"):

do_something(item)

11.2.4 Old classes

These classes, present in earlier versions of thecgi module, are still supported for backward compatibility. New
applications should use theFieldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in the
form only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values).
Useful if your form contains multiple fields with the same name.

Other classes (FormContent , InterpFormContentDict) are present for backwards compatibility with
really old applications only. If you still use these and would be inconvenienced when they disappeared from a next
version of this module, drop me a note.

11.2.5 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

parse (fp[, keep blank values[, strict parsing]])
Parse a query in the environment or from a file (the file defaults tosys.stdin). Thekeep blank values
andstrict parsingparameters are passed toparse qs() unchanged.

parse qs (qs[, keep blank values[, strict parsing]])
Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
values for each name.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings.
The default false value indicates that blank values are to be ignored and treated as if they were not included.

1Note that some recent versions of the HTML specification do state what order the field values should be supplied in, but knowing whether
a request was received from a conforming browser, or even from a browser at all, is tedious and error-prone.

404 Chapter 11. Internet Protocols and Support

The optional argumentstrict parsingis a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

Use theurllib .urlencode() function to convert such dictionaries into query strings.

parse qsl (qs[, keep blank values[, strict parsing]])
Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings.
The default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argumentstrict parsingis a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

Use theurllib .urlencode() function to convert such lists of pairs into query strings.

parse multipart (fp, pdict)
Parse input of typemultipart/form-data (for file uploads). Arguments arefp for the input file andpdict for a
dictionary containing other parameters in theContent-Type: header.

Returns a dictionary just likeparse qs() keys are the field names, each value is a list of values for that
field. This is easy to use but not much good if you are expecting megabytes to be uploaded — in that case,
use theFieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — useFieldStorage for that.

parse header (string)
Parse a MIME header (such asContent-Type:) into a main value and a dictionary of parameters.

test ()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the script in HTML form.

print environ ()
Format the shell environment in HTML.

print form (form)
Format a form in HTML.

print directory ()
Format the current directory in HTML.

print environ usage ()
Print a list of useful (used by CGI) environment variables in HTML.

escape (s[, quote])
Convert the characters ‘&’, ‘ <’ and ‘>’ in string s to HTML-safe sequences. Use this if you need to display
text that might contain such characters in HTML. If the optional flagquoteis true, the double-quote character
(‘ " ’) is also translated; this helps for inclusion in an HTML attribute value, as in .
If the value to be quoted might include single- or double-quote characters, or both, consider using the
quoteattr() function in thexml.sax.saxutils module instead.

11.2.6 Caring about security

There’s one important rule: if you invoke an external program (via theos.system() or os.popen() func-
tions. or others with similar functionality), make very sure you don’t pass arbitrary strings received from the client
to the shell. This is a well-known security hole whereby clever hackers anywhere on the Web can exploit a gullible
CGI script to invoke arbitrary shell commands. Even parts of the URL or field names cannot be trusted, since the
request doesn’t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only alphanumeric characters, dashes, underscores, and periods.

11.2. cgi — Common Gateway Interface support. 405

11.2.7 Installing your CGI script on a UNIX system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGI scripts should be installed; usually this is in a directory ‘cgi-bin’ in the server tree.

Make sure that your script is readable and executable by “others”; the UNIX file mode should be0755 octal (use
‘chmod 0755 filename’). Make sure that the first line of the script contains#! starting in column 1 followed
by the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others” —
their mode should be0644 for readable and0666 for writable. This is because, for security reasons, the HTTP
server executes your script as user “nobody”, without any special privileges. It can only read (write, execute) files
that everybody can read (write, execute). The current directory at execution time is also different (it is usually the
server’s cgi-bin directory) and the set of environment variables is also different from what you get when you log
in. In particular, don’t count on the shell’s search path for executables (PATH) or the Python module search path
(PYTHONPATH) to be set to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can change
the path in your script, before importing other modules. For example:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-UNIX systems will vary; check your HTTP server’s documentation (it will usually have a
section on CGI scripts).

11.2.8 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There’s one reason why you
should still test your script from the command line: if it contains a syntax error, the Python interpreter won’t
execute it at all, and the HTTP server will most likely send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section.

11.2.9 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script carefully
can save you a lot of time. If you wonder whether you have understood the installation procedure correctly, try
installing a copy of this module file (‘cgi.py’) as a CGI script. When invoked as a script, the file will dump its
environment and the contents of the form in HTML form. Give it the right mode etc, and send it a request. If it’s
installed in the standard ‘cgi-bin’ directory, it should be possible to send it a request by entering a URL into your
browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a different
directory. If it gives another error, there’s an installation problem that you should fix before trying to go any

406 Chapter 11. Internet Protocols and Support

further. If you get a nicely formatted listing of the environment and form content (in this example, the fields
should be listed as “addr” with value “At Home” and “name” with value “Joe Blow”), the ‘cgi.py’ script has been
installed correctly. If you follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call thecgi module’stest() function from your script: replace its main code with
the single statement

cgi.test()

This should produce the same results as those gotten from installing the ‘cgi.py’ file itself.

When an ordinary Python script raises an unhandled exception (for whatever reason: of a typo in a module name, a
file that can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter
will still do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP
server’s log files, or be discarded altogether.

Fortunately, once you have managed to get your script to executesomecode, you can easily send tracebacks to the
Web browser using thecgitb module. If you haven’t done so already, just add the line:

import cgitb; cgitb.enable()

to the top of your script. Then try running it again; when a problem occurs, you should see a detailed report that
will likely make apparent the cause of the crash.

If you suspect that there may be a problem in importing thecgitb module, you can use an even more robust
approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print "Content-Type: text/plain"
print
...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text,
which disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it
raises an exception, most likely after the first two lines have been printed, a traceback will be displayed. Because
no HTML interpretation is going on, the traceback will be readable.

11.2.10 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is
not possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (‘tail -f logfile ’ in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like ‘python script.py ’.

• If your script does not have any syntax errors, try adding ‘import cgitb; cgitb.enable() ’ to the
top of the script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute path
names — PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by the userid under which
your CGI script will be running: this is typically the userid under which the web server is running, or some
explicitly specified userid for a web server’s ‘suexec ’ feature.

11.2. cgi — Common Gateway Interface support. 407

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security liability
as well.

11.3 cgitb — Traceback manager for CGI scripts

New in version 2.2.

Thecgitb module provides a special exception handler for Python scripts. (It’s name is a bit misleading. It was
originally designed to display extensive traceback information in HTML for CGI scripts. It was later generalized
to also display this information in plain text.) After this module is activated, if an uncaught exception occurs, a
detailed, formatted report will be displayed. The report includes a traceback showing excerpts of the source code
for each level, as well as the values of the arguments and local variables to currently running functions, to help
you debug the problem. Optionally, you can save this information to a file instead of sending it to the browser.

To enable this feature, simply add one line to the top of your CGI script:

import cgitb; cgitb.enable()

The options to theenable() function control whether the report is displayed in the browser and whether the
report is logged to a file for later analysis.

enable ([display[, logdir[, context[, format]]]])
This function causes thecgitb module to take over the interpreter’s default handling for exceptions by
setting the value ofsys .excepthook .

The optional argumentdisplaydefaults to1 and can be set to0 to suppress sending the traceback to the
browser. If the argumentlogdir is present, the traceback reports are written to files. The value oflogdir
should be a directory where these files will be placed. The optional argumentcontextis the number of
lines of context to display around the current line of source code in the traceback; this defaults to5. If the
optional argumentformat is "html" , the output is formatted as HTML. Any other value forces plain text
output. The default value is"html" .

handler ([info])
This function handles an exception using the default settings (that is, show a report in the browser, but don’t
log to a file). This can be used when you’ve caught an exception and want to report it usingcgitb . The
optional info argument should be a 3-tuple containing an exception type, exception value, and traceback
object, exactly like the tuple returned bysys .exc info() . If the info argument is not supplied, the
current exception is obtained fromsys .exc info() .

11.4 urllib — Open arbitrary resources by URL

This module provides a high-level interface for fetching data across the World Wide Web. In particular, the
urlopen() function is similar to the built-in functionopen() , but accepts Universal Resource Locators (URLs)
instead of filenames. Some restrictions apply — it can only open URLs for reading, and no seek operations are
available.

It defines the following public functions:

urlopen (url[, data[, proxies]])
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier, or if it
has ‘file:’ as its scheme identifier, this opens a local file (without universal newlines); otherwise it opens a
socket to a server somewhere on the network. If the connection cannot be made, or if the server returns an
error code, theIOError exception is raised. If all went well, a file-like object is returned. This supports
the following methods:read() , readline() , readlines() , fileno() , close() , info() and
geturl() . It also has proper support for the iterator protocol. One caveat: theread() method, if the
size argument is omitted or negative, may not read until the end of the data stream; there is no good way to
determine that the entire stream from a socket has been read in the general case.

408 Chapter 11. Internet Protocols and Support

Except for theinfo() andgeturl() methods, these methods have the same interface as for file objects
— see section 2.3.8 in this manual. (It is not a built-in file object, however, so it can’t be used at those few
places where a true built-in file object is required.)

Theinfo() method returns an instance of the classmimetools.Message containing meta-information
associated with the URL. When the method is HTTP, these headers are those returned by the server at the
head of the retrieved HTML page (including Content-Length and Content-Type). When the method is FTP,
a Content-Length header will be present if (as is now usual) the server passed back a file length in response
to the FTP retrieval request. A Content-Type header will be present if the MIME type can be guessed.
When the method is local-file, returned headers will include a Date representing the file’s last-modified
time, a Content-Length giving file size, and a Content-Type containing a guess at the file’s type. See also
the description of themimetools module.

Thegeturl() method returns the real URL of the page. In some cases, the HTTP server redirects a client
to another URL. Theurlopen() function handles this transparently, but in some cases the caller needs to
know which URL the client was redirected to. Thegeturl() method can be used to get at this redirected
URL.

If the url uses the ‘http:’ scheme identifier, the optionaldata argument may be given to specify aPOST
request (normally the request type isGET). Thedataargument must be in standardapplication/x-www-form-
urlencoded format; see theurlencode() function below.

Theurlopen() function works transparently with proxies which do not require authentication. In a UNIX

or Windows environment, set the httpproxy, ftp proxy or gopherproxy environment variables to a URL
that identifies the proxy server before starting the Python interpreter. For example (the ‘%’ is the command
prompt):

% http_proxy="http://www.someproxy.com:3128"
% export http_proxy
% python
...

In a Windows environment, if no proxy environment variables are set, proxy settings are obtained from the
registry’s Internet Settings section.

In a Macintosh environment,urlopen() will retrieve proxy information from Internet Config.

Alternatively, the optionalproxiesargument may be used to explicitly specify proxies. It must be a dictio-
nary mapping scheme names to proxy URLs, where an empty dictionary causes no proxies to be used, and
None (the default value) causes environmental proxy settings to be used as discussed above. For example:

Use http://www.someproxy.com:3128 for http proxying
proxies = proxies={’http’: ’http://www.someproxy.com:3128’}
filehandle = urllib.urlopen(some_url, proxies=proxies)
Don’t use any proxies
filehandle = urllib.urlopen(some_url, proxies={})
Use proxies from environment - both versions are equivalent
filehandle = urllib.urlopen(some_url, proxies=None)
filehandle = urllib.urlopen(some_url)

Theurlopen() function does not support explicit proxy specification. If you need to override environ-
mental proxy settings, useURLopener , or a subclass such asFancyURLopener .

Proxies which require authentication for use are not currently supported; this is considered an implementa-
tion limitation.

Changed in version 2.3: Added theproxiessupport.

urlretrieve (url[, filename[, reporthook[, data]]])
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file, or a
valid cached copy of the object exists, the object is not copied. Return a tuple(filename, headers) where
filenameis the local file name under which the object can be found, andheadersis whatever theinfo()
method of the object returned byurlopen() returned (for a remote object, possibly cached). Exceptions
are the same as forurlopen() .

11.4. urllib — Open arbitrary resources by URL 409

The second argument, if present, specifies the file location to copy to (if absent, the location will be a
tempfile with a generated name). The third argument, if present, is a hook function that will be called once
on establishment of the network connection and once after each block read thereafter. The hook will be
passed three arguments; a count of blocks transferred so far, a block size in bytes, and the total size of the
file. The third argument may be-1 on older FTP servers which do not return a file size in response to a
retrieval request.

If the url uses the ‘http:’ scheme identifier, the optionaldata argument may be given to specify aPOST
request (normally the request type isGET). Thedata argument must in standardapplication/x-www-form-
urlencoded format; see theurlencode() function below.

urlopener
The public functionsurlopen() andurlretrieve() create an instance of theFancyURLopener
class and use it to perform their requested actions. To override this functionality, programmers can
create a subclass ofURLopener or FancyURLopener , then assign an instance of that class to the
urllib. urlopener variable before calling the desired function. For example, applications may want
to specify a differentUser-Agent: header thanURLopener defines. This can be accomplished with the
following code:

import urllib

class AppURLopener(urllib.FancyURLopener):
def __init__(self, *args):

self.version = "App/1.7"
urllib.FancyURLopener.__init__(self, *args)

urllib._urlopener = AppURLopener()

urlcleanup ()
Clear the cache that may have been built up by previous calls tourlretrieve() .

quote (string[, safe])
Replace special characters instring using the ‘%xx’ escape. Letters, digits, and the characters ‘.- ’ are
never quoted. The optionalsafeparameter specifies additional characters that should not be quoted — its
default value is’/’ .

Example:quote(’/˜connolly/’) yields ’/%7econnolly/’ .

quote plus (string[, safe])
Like quote() , but also replaces spaces by plus signs, as required for quoting HTML form values. Plus
signs in the original string are escaped unless they are included insafe. It also does not havesafedefault to
’/’ .

unquote (string)
Replace ‘%xx’ escapes by their single-character equivalent.

Example:unquote(’/%7Econnolly/’) yields ’/˜connolly/’ .

unquote plus (string)
Like unquote() , but also replaces plus signs by spaces, as required for unquoting HTML form values.

urlencode (query[, doseq])
Convert a mapping object or a sequence of two-element tuples to a “url-encoded” string, suitable to pass
to urlopen() above as the optionaldata argument. This is useful to pass a dictionary of form fields
to a POSTrequest. The resulting string is a series ofkey=valuepairs separated by ‘&’ characters, where
both keyandvalueare quoted usingquote plus() above. If the optional parameterdoseqis present
and evaluates to true, individualkey=valuepairs are generated for each element of the sequence. When a
sequence of two-element tuples is used as thequeryargument, the first element of each tuple is a key and
the second is a value. The order of parameters in the encoded string will match the order of parameter tuples
in the sequence. Thecgi module provides the functionsparse qs() andparse qsl() which are
used to parse query strings into Python data structures.

pathname2url (path)
Convert the pathnamepath from the local syntax for a path to the form used in the path component of a

410 Chapter 11. Internet Protocols and Support

URL. This does not produce a complete URL. The return value will already be quoted using thequote()
function.

url2pathname (path)
Convert the path componentpathfrom an encoded URL to the local syntax for a path. This does not accept
a complete URL. This function usesunquote() to decodepath.

classURLopener ([proxies[, **x509]])
Base class for opening and reading URLs. Unless you need to support opening objects using schemes other
than ‘http:’, ‘ ftp:’, ‘ gopher:’ or ‘ file:’, you probably want to useFancyURLopener .

By default, theURLopener class sends aUser-Agent: header of ‘urllib/ VVV’, where VVV is
the urllib version number. Applications can define their ownUser-Agent: header by subclassing
URLopener or FancyURLopener and setting the instance attributeversion to an appropriate string
value before theopen() method is called.

The optionalproxiesparameter should be a dictionary mapping scheme names to proxy URLs, where an
empty dictionary turns proxies off completely. Its default value isNone, in which case environmental proxy
settings will be used if present, as discussed in the definition ofurlopen() , above.

Additional keyword parameters, collected inx509, are used for authentication with the ‘https:’ scheme. The
keywordskey file andcert file are supported; both are needed to actually retrieve a resource at an ‘https:’
URL.

classFancyURLopener (...)
FancyURLopener subclassesURLopener providing default handling for the following HTTP response
codes: 301, 302, 303, 307 and 401. For the 30x response codes listed above, theLocation: header is used
to fetch the actual URL. For 401 response codes (authentication required), basic HTTP authentication is
performed. For the 30x response codes, recursion is bounded by the value of themaxtriesattribute, which
defaults to 10.

Note: According to the letter of RFC 2616, 301 and 302 responses to POST requests must not be automat-
ically redirected without confirmation by the user. In reality, browsers do allow automatic redirection of
these responses, changing the POST to a GET, andurllib reproduces this behaviour.

The parameters to the constructor are the same as those forURLopener .

Note: When performing basic authentication, aFancyURLopener instance calls its
prompt user passwd() method. The default implementation asks the users for the required
information on the controlling terminal. A subclass may override this method to support more appropriate
behavior if needed.

Restrictions:

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but not
Gopher-+), FTP, and local files.

• The caching feature ofurlretrieve() has been disabled until I find the time to hack proper processing
of Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL
is re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• The urlopen() andurlretrieve() functions can cause arbitrarily long delays while waiting for a
network connection to be set up. This means that it is difficult to build an interactive Web client using these
functions without using threads.

• The data returned byurlopen() or urlretrieve() is the raw data returned by the server. This
may be binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol provides type
information in the reply header, which can be inspected by looking at theContent-Type: header. For the
Gopher protocol, type information is encoded in the URL; there is currently no easy way to extract it. If the
returned data is HTML, you can use the modulehtmllib to parse it.

• This module does not support the use of proxies which require authentication. This may be implemented in
the future.

11.4. urllib — Open arbitrary resources by URL 411

• Although theurllib module contains (undocumented) routines to parse and unparse URL strings, the
recommended interface for URL manipulation is in moduleurlparse .

11.4.1 URLopener Objects

URLopener andFancyURLopener objects have the following attributes.

open (fullurl[, data])
Openfullurl using the appropriate protocol. This method sets up cache and proxy information, then calls the
appropriate open method with its input arguments. If the scheme is not recognized,open unknown() is
called. Thedataargument has the same meaning as thedataargument ofurlopen() .

open unknown (fullurl[, data])
Overridable interface to open unknown URL types.

retrieve (url[, filename[, reporthook[, data]]])
Retrieves the contents ofurl and places it infilename. The return value is a tuple consisting of a local
filename and either amimetools.Message object containing the response headers (for remote URLs)
or None (for local URLs). The caller must then open and read the contents offilename. If filenameis
not given and the URL refers to a local file, the input filename is returned. If the URL is non-local and
filenameis not given, the filename is the output oftempfile.mktemp() with a suffix that matches the
suffix of the last path component of the input URL. Ifreporthookis given, it must be a function accepting
three numeric parameters. It will be called after each chunk of data is read from the network.reporthookis
ignored for local URLs.

If the url uses the ‘http:’ scheme identifier, the optionaldata argument may be given to specify aPOST
request (normally the request type isGET). Thedata argument must in standardapplication/x-www-form-
urlencoded format; see theurlencode() function below.

version
Variable that specifies the user agent of the opener object. To geturllib to tell servers that it is a particular
user agent, set this in a subclass as a class variable or in the constructor before calling the base constructor.

TheFancyURLopener class offers one additional method that should be overloaded to provide the appropriate
behavior:

prompt user passwd (host, realm)
Return information needed to authenticate the user at the given host in the specified security realm. The
return value should be a tuple,(user, password) , which can be used for basic authentication.

The implementation prompts for this information on the terminal; an application should override this method
to use an appropriate interaction model in the local environment.

11.4.2 Examples

Here is an example session that uses the ‘GET’ method to retrieve a URL containing parameters:

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print f.read()

The following example uses the ‘POST’ method instead:

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print f.read()

412 Chapter 11. Internet Protocols and Support

The following example uses an explicitly specified HTTP proxy, overriding environment settings:

>>> import urllib
>>> proxies = {’http’: ’http://proxy.example.com:8080/’}
>>> opener = urllib.FancyURLopener(proxies)
>>> f = opener.open("http://www.python.org")
>>> f.read()

The following example uses no proxies at all, overriding environment settings:

>>> import urllib
>>> opener = urllib.FancyURLopener({})
>>> f = opener.open("http://www.python.org/")
>>> f.read()

11.5 urllib2 — extensible library for opening URLs

Theurllib2 module defines functions and classes which help in opening URLs (mostly HTTP) in a complex
world — basic and digest authentication, redirections and more.

Theurllib2 module defines the following functions:

urlopen (url[, data])
Open the URLurl, which can be either a string or aRequest object (currently the code checks that it
really is aRequest instance, or an instance of a subclass ofRequest).

datashould be a string, which specifies additional data to send to the server. In HTTP requests, which are
the only ones that supportdata, it should be a buffer in the format ofapplication/x-www-form-urlencoded,
for example one returned fromurllib.urlencode() .

This function returns a file-like object with two additional methods:

•geturl() — return the URL of the resource retrieved

•info() — return the meta-information of the page, as a dictionary-like object

RaisesURLError on errors.

install opener (opener)
Install an OpenerDirector instance as the default opener. The code does not check for a real
OpenerDirector , and any class with the appropriate interface will work.

build opener ([handler, ...])
Return anOpenerDirector instance, which chains the handlers in the order given.handlers can be
either instances ofBaseHandler , or subclasses ofBaseHandler (in which case it must be possible
to call the constructor without any parameters). Instances of the following classes will be in front of the
handlers, unless thehandlers contain them, instances of them or subclasses of them:ProxyHandler ,
UnknownHandler , HTTPHandler , HTTPDefaultErrorHandler , HTTPRedirectHandler ,
FTPHandler , FileHandler

If the Python installation has SSL support (socket.ssl() exists),HTTPSHandler will also be added.

Beginning in Python 2.3, aBaseHandler subclass may also change itshandler order member vari-
able to modify its position in the handlers list. BesidesProxyHandler , which hashandler order of
100 , all handlers currently have it set to500 .

The following exceptions are raised as appropriate:

exceptionURLError
The handlers raise this exception (or derived exceptions) when they run into a problem. It is a subclass of
IOError .

11.5. urllib2 — extensible library for opening URLs 413

exceptionHTTPError
A subclass ofURLError , it can also function as a non-exceptional file-like return value (the same thing that
urlopen() returns). This is useful when handling exotic HTTP errors, such as requests for authentication.

exceptionGopherError
A subclass ofURLError , this is the error raised by the Gopher handler.

The following classes are provided:

classRequest (url[, data[, headers]])
This class is an abstraction of a URL request.

url should be a string which is a valid URL. For a description ofdatasee theadd data() description.
headersshould be a dictionary, and will be treated as ifadd header() was called with each key and
value as arguments.

classOpenerDirector ()
TheOpenerDirector class opens URLs viaBaseHandler s chained together. It manages the chaining
of handlers, and recovery from errors.

classBaseHandler ()
This is the base class for all registered handlers — and handles only the simple mechanics of registration.

classHTTPDefaultErrorHandler ()
A class which defines a default handler for HTTP error responses; all responses are turned intoHTTPError
exceptions.

classHTTPRedirectHandler ()
A class to handle redirections.

classProxyHandler ([proxies])
Cause requests to go through a proxy. Ifproxiesis given, it must be a dictionary mapping protocol names to
URLs of proxies. The default is to read the list of proxies from the environment variablesprotocol proxy.

classHTTPPasswordMgr ()
Keep a database of(realm, uri) -> (user, password) mappings.

classHTTPPasswordMgrWithDefaultRealm ()
Keep a database of(realm, uri) -> (user, password) mappings. A realm ofNone is considered a
catch-all realm, which is searched if no other realm fits.

classAbstractBasicAuthHandler ([password mgr])
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy.pass-
word mgr, if given, should be something that is compatible withHTTPPasswordMgr ; refer to sec-
tion 11.5.6 for information on the interface that must be supported.

classHTTPBasicAuthHandler ([password mgr])
Handle authentication with the remote host.password mgr, if given, should be something that is compatible
with HTTPPasswordMgr ; refer to section 11.5.6 for information on the interface that must be supported.

classProxyBasicAuthHandler ([password mgr])
Handle authentication with the proxy.password mgr, if given, should be something that is compatible with
HTTPPasswordMgr ; refer to section 11.5.6 for information on the interface that must be supported.

classAbstractDigestAuthHandler ([password mgr])
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy.pass-
word mgr, if given, should be something that is compatible withHTTPPasswordMgr ; refer to sec-
tion 11.5.6 for information on the interface that must be supported.

classHTTPDigestAuthHandler ([password mgr])
Handle authentication with the remote host.password mgr, if given, should be something that is compatible
with HTTPPasswordMgr ; refer to section 11.5.6 for information on the interface that must be supported.

classProxyDigestAuthHandler ([password mgr])
Handle authentication with the proxy.password mgr, if given, should be something that is compatible with
HTTPPasswordMgr ; refer to section 11.5.6 for information on the interface that must be supported.

classHTTPHandler ()

414 Chapter 11. Internet Protocols and Support

A class to handle opening of HTTP URLs.

classHTTPSHandler ()
A class to handle opening of HTTPS URLs.

classFileHandler ()
Open local files.

classFTPHandler ()
Open FTP URLs.

classCacheFTPHandler ()
Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

classGopherHandler ()
Open gopher URLs.

classUnknownHandler ()
A catch-all class to handle unknown URLs.

11.5.1 Request Objects

The following methods describe all ofRequest ’s public interface, and so all must be overridden in subclasses.

add data (data)
Set theRequest data todata. This is ignored by all handlers except HTTP handlers — and there it should
be anapplication/x-www-form-encoded buffer, and will change the request to bePOSTrather thanGET.

get method ()
Return a string indicating the HTTP request method. This is only meaningful for HTTP requests, and
currently always takes one of the values (”GET”, ”POST”).

has data ()
Return whether the instance has a non-None data.

get data ()
Return the instance’s data.

add header (key, val)
Add another header to the request. Headers are currently ignored by all handlers except HTTP handlers,
where they are added to the list of headers sent to the server. Note that there cannot be more than one header
with the same name, and later calls will overwrite previous calls in case thekeycollides. Currently, this
is no loss of HTTP functionality, since all headers which have meaning when used more than once have a
(header-specific) way of gaining the same functionality using only one header.

get full url ()
Return the URL given in the constructor.

get type ()
Return the type of the URL — also known as the scheme.

get host ()
Return the host to which a connection will be made.

get selector ()
Return the selector — the part of the URL that is sent to the server.

set proxy (host, type)
Prepare the request by connecting to a proxy server. Thehostandtypewill replace those of the instance,
and the instance’s selector will be the original URL given in the constructor.

11.5.2 OpenerDirector Objects

OpenerDirector instances have the following methods:

11.5. urllib2 — extensible library for opening URLs 415

add handler (handler)
handlershould be an instance ofBaseHandler . The following methods are searched, and added to the
possible chains.

•protocol open() — signal that the handler knows how to openprotocolURLs.

•protocol error type() — signal that the handler knows how to handletypeerrors fromprotocol.

close ()
Explicitly break cycles, and delete all the handlers. Because theOpenerDirector needs to know the
registered handlers, and a handler needs to know who theOpenerDirector who called it is, there is a
reference cycle. Even though recent versions of Python have cycle-collection, it is sometimes preferable to
explicitly break the cycles.

open (url[, data])
Open the givenurl (which can be a request object or a string), optionally passing the givendata. Arguments,
return values and exceptions raised are the same as those ofurlopen() (which simply calls theopen()
method on the default installedOpenerDirector).

error (proto[, arg[, ...]])
Handle an error in a given protocol. This will call the registered error handlers for the given protocol with
the given arguments (which are protocol specific). The HTTP protocol is a special case which uses the
HTTP response code to determine the specific error handler; refer to thehttp error *() methods of
the handler classes.

Return values and exceptions raised are the same as those ofurlopen() .

11.5.3 BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly useful, and others that are meant to be used
by derived classes. These are intended for direct use:

add parent (director)
Add a director as parent.

close ()
Remove any parents.

The following members and methods should only be used by classes derived fromBaseHandler :

parent
A valid OpenerDirector , which can be used to open using a different protocol, or handle errors.

default open (req)
This method isnot defined inBaseHandler , but subclasses should define it if they want to catch all
URLs.

This method, if implemented, will be called by the parentOpenerDirector . It should return a file-like
object as described in the return value of theopen() of OpenerDirector , or None. It should raise
URLError , unless a truly exceptional thing happens (for example,MemoryError should not be mapped
to URLError).

This method will be called before any protocol-specific open method.

protocol open (req)
This method isnot defined inBaseHandler , but subclasses should define it if they want to handle URLs
with the given protocol.

This method, if defined, will be called by the parentOpenerDirector . Return values should be the same
as fordefault open() .

unknown open (req)
This method isnotdefined inBaseHandler , but subclasses should define it if they want to catch all URLs
with no specific registered handler to open it.

This method, if implemented, will be called by theparent OpenerDirector . Return values should be
the same as fordefault open() .

416 Chapter 11. Internet Protocols and Support

http error default (req, fp, code, msg, hdrs)
This method isnot defined inBaseHandler , but subclasses should override it if they intend to provide a
catch-all for otherwise unhandled HTTP errors. It will be called automatically by theOpenerDirector
getting the error, and should not normally be called in other circumstances.

req will be a Request object, fp will be a file-like object with the HTTP error body,codewill be the
three-digit code of the error,msgwill be the user-visible explanation of the code andhdrswill be a mapping
object with the headers of the error.

Return values and exceptions raised should be the same as those ofurlopen() .

http error nnn(req, fp, code, msg, hdrs)
nnnshould be a three-digit HTTP error code. This method is also not defined inBaseHandler , but will
be called, if it exists, on an instance of a subclass, when an HTTP error with codennnoccurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as forhttp error default() .

11.5.4 HTTPRedirectHandler Objects

Note: Some HTTP redirections require action from this module’s client code. If this is the case,HTTPError is
raised. See RFC 2616 for details of the precise meanings of the various redirection codes.

redirect request (req, fp, code, msg, hdrs)
Return aRequest or None in response to a redirect. This is called by the default implementations of the
http error 30*() methods when a redirection is received from the server. If a redirection should take
place, return a newRequest to allow http error 30*() to perform the redirect. Otherwise, raise
HTTPError if no otherHandler should try to handle this URL, or returnNone if you can’t but another
Handler might.

Note: The default implementation of this method does not strictly follow RFC 2616, which says that 301
and 302 responses toPOSTrequests must not be automatically redirected without confirmation by the user.
In reality, browsers do allow automatic redirection of these responses, changing the POST to aGET, and the
default implementation reproduces this behavior.

http error 301 (req, fp, code, msg, hdrs)
Redirect to theLocation: URL. This method is called by the parentOpenerDirector when getting
an HTTP ‘moved permanently’ response.

http error 302 (req, fp, code, msg, hdrs)
The same ashttp error 301() , but called for the ‘found’ response.

http error 303 (req, fp, code, msg, hdrs)
The same ashttp error 301() , but called for the ‘see other’ response.

http error 307 (req, fp, code, msg, hdrs)
The same ashttp error 301() , but called for the ‘temporary redirect’ response.

11.5.5 ProxyHandler Objects

protocol open (request)
TheProxyHandler will have a methodprotocol open() for everyprotocolwhich has a proxy in the
proxiesdictionary given in the constructor. The method will modify requests to go through the proxy, by
calling request.set proxy() , and call the next handler in the chain to actually execute the protocol.

11.5.6 HTTPPasswordMgr Objects

These methods are available onHTTPPasswordMgr andHTTPPasswordMgrWithDefaultRealm objects.

add password (realm, uri, user, passwd)
uri can be either a single URI, or a sequence of URIs.realm, userandpasswdmust be strings. This causes

11.5. urllib2 — extensible library for opening URLs 417

(user, passwd) to be used as authentication tokens when authentication forrealmand a super-URI of any
of the given URIs is given.

find user password (realm, authuri)
Get user/password for given realm and URI, if any. This method will return(None, None) if there is no
matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realmNone will be searched if the given
realmhas no matching user/password.

11.5.7 AbstractBasicAuthHandler Objects

handle authentication request (authreq, host, req, headers)
Handle an authentication request by getting a user/password pair, and re-trying the request.authreqshould
be the name of the header where the information about the realm is included in the request,hostis the host
to authenticate to,reqshould be the (failed)Request object, andheadersshould be the error headers.

11.5.8 HTTPBasicAuthHandler Objects

http error 401 (req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

11.5.9 ProxyBasicAuthHandler Objects

http error 407 (req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

11.5.10 AbstractDigestAuthHandler Objects

handle authentication request (authreq, host, req, headers)
authreqshould be the name of the header where the information about the realm is included in the request,
hostshould be the host to authenticate to,req should be the (failed)Request object, andheadersshould
be the error headers.

11.5.11 HTTPDigestAuthHandler Objects

http error 401 (req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

11.5.12 ProxyDigestAuthHandler Objects

http error 407 (req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

11.5.13 HTTPHandler Objects

http open (req)
Send an HTTP request, which can be either GET or POST, depending onreq.has data() .

11.5.14 HTTPSHandler Objects

https open (req)
Send an HTTPS request, which can be either GET or POST, depending onreq.has data() .

418 Chapter 11. Internet Protocols and Support

11.5.15 FileHandler Objects

file open (req)
Open the file locally, if there is no host name, or the host name is’localhost’ . Change the protocol to
ftp otherwise, and retry opening it usingparent .

11.5.16 FTPHandler Objects

ftp open (req)
Open the FTP file indicated byreq. The login is always done with empty username and password.

11.5.17 CacheFTPHandler Objects

CacheFTPHandler objects areFTPHandler objects with the following additional methods:

setTimeout (t)
Set timeout of connections tot seconds.

setMaxConns (m)
Set maximum number of cached connections tom.

11.5.18 GopherHandler Objects

gopher open (req)
Open the gopher resource indicated byreq.

11.5.19 UnknownHandler Objects

unknown open ()
Raise aURLError exception.

11.5.20 Examples

This example gets the python.org main page and displays the first 100 bytes of it:

>>> import urllib2
>>> f = urllib2.urlopen(’http://www.python.org/’)
>>> print f.read(100)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<?xml-stylesheet href="./css/ht2html

Here we are sending a data-stream to the stdin of a CGI and reading the data it returns to us:

>>> import urllib2
>>> req = urllib2.Request(url=’https://localhost/cgi-bin/test.cgi’,
... data=’This data is passed to stdin of the CGI’)
>>> f = urllib2.urlopen(req)
>>> print f.read()
Got Data: "This data is passed to stdin of the CGI"

The code for the sample CGI used in the above example is:

11.5. urllib2 — extensible library for opening URLs 419

#!/usr/bin/env python
import sys
data = sys.stdin.read()
print ’Content-type: text-plain\n\nGot Data: "%s"’ % data

11.6 httplib — HTTP protocol client

This module defines classes which implement the client side of the HTTP and HTTPS protocols. It is normally
not used directly — the moduleurllib uses it to handle URLs that use HTTP and HTTPS.

Note: HTTPS support is only available if thesocket module was compiled with SSL support.

Note: The public interface for this module changed substantially in Python 2.0. TheHTTPclass is retained only
for backward compatibility with 1.5.2. It should not be used in new code. Refer to the online docstrings for usage.

The constants defined in this module are:

HTTP PORT
The default port for the HTTP protocol (always80).

HTTPS PORT
The default port for the HTTPS protocol (always443).

The module provides the following classes:

classHTTPConnection (host[, port])
An HTTPConnection instance represents one transaction with an HTTP server. It should be instantiated
passing it a host and optional port number. If no port number is passed, the port is extracted from the host
string if it has the formhost: port, else the default HTTP port (80) is used. For example, the following calls
all create instances that connect to the server at the same host and port:

>>> h1 = httplib.HTTPConnection(’www.cwi.nl’)
>>> h2 = httplib.HTTPConnection(’www.cwi.nl:80’)
>>> h3 = httplib.HTTPConnection(’www.cwi.nl’, 80)

New in version 2.0.

classHTTPSConnection (host[, port, key file, cert file])
A subclass ofHTTPConnection that uses SSL for communication with secure servers. Default port
is 443 . key file is the name of a PEM formatted file that contains your private key.cert file is a PEM
formatted certificate chain file.

Warning: This does not do any certificate verification!

New in version 2.0.

classHTTPResponse(sock[, debuglevel=0][, strict=0])
Class whose instances are returned upon successful connection. Not instantiated directly by user. New in
version 2.0.

The following exceptions are raised as appropriate:

exceptionHTTPException
The base class of the other exceptions in this module. It is a subclass ofException . New in version 2.0.

exceptionNotConnected
A subclass ofHTTPException . New in version 2.0.

exceptionInvalidURL
A subclass ofHTTPException , raised if a port is given and is either non-numeric or empty. New in
version 2.3.

exceptionUnknownProtocol
A subclass ofHTTPException . New in version 2.0.

420 Chapter 11. Internet Protocols and Support

exceptionUnknownTransferEncoding
A subclass ofHTTPException . New in version 2.0.

exceptionUnimplementedFileMode
A subclass ofHTTPException . New in version 2.0.

exceptionIncompleteRead
A subclass ofHTTPException . New in version 2.0.

exceptionImproperConnectionState
A subclass ofHTTPException . New in version 2.0.

exceptionCannotSendRequest
A subclass ofImproperConnectionState . New in version 2.0.

exceptionCannotSendHeader
A subclass ofImproperConnectionState . New in version 2.0.

exceptionResponseNotReady
A subclass ofImproperConnectionState . New in version 2.0.

exceptionBadStatusLine
A subclass ofHTTPException . Raised if a server responds with a HTTP status code that we don’t
understand. New in version 2.0.

11.6.1 HTTPConnection Objects

HTTPConnection instances have the following methods:

request (method, url[, body[, headers]])
This will send a request to the server using the HTTP request methodmethodand the selectorurl. If the
bodyargument is present, it should be a string of data to send after the headers are finished. The header
Content-Length is automatically set to the correct value. Theheadersargument should be a mapping of
extra HTTP headers to send with the request.

getresponse ()
Should be called after a request is sent to get the response from the server. Returns anHTTPResponse
instance.

set debuglevel (level)
Set the debugging level (the amount of debugging output printed). The default debug level is0, meaning no
debugging output is printed.

connect ()
Connect to the server specified when the object was created.

close ()
Close the connection to the server.

send (data)
Send data to the server. This should be used directly only after theendheaders() method has been
called and beforegetreply() has been called.

putrequest (request, selector)
This should be the first call after the connection to the server has been made. It sends a line to the server
consisting of therequeststring, theselectorstring, and the HTTP version (HTTP/1.1).

putheader (header, argument[, ...])
Send an RFC 822-style header to the server. It sends a line to the server consisting of the header, a colon
and a space, and the first argument. If more arguments are given, continuation lines are sent, each consisting
of a tab and an argument.

endheaders ()
Send a blank line to the server, signalling the end of the headers.

11.6. httplib — HTTP protocol client 421

11.6.2 HTTPResponse Objects

HTTPResponse instances have the following methods and attributes:

read ([amt])
Reads and returns the response body, or up to the nextamtbytes.

getheader (name[, default])
Get the contents of the headername, or defaultif there is no matching header.

msg
A mimetools.Message instance containing the response headers.

version
HTTP protocol version used by server. 10 for HTTP/1.0, 11 for HTTP/1.1.

status
Status code returned by server.

reason
Reason phrase returned by server.

11.6.3 Examples

Here is an example session that uses the ‘GET’ method:

>>> import httplib
>>> conn = httplib.HTTPConnection("www.python.org")
>>> conn.request("GET", "/index.html")
>>> r1 = conn.getresponse()
>>> print r1.status, r1.reason
200 OK
>>> data1 = r1.read()
>>> conn.request("GET", "/parrot.spam")
>>> r2 = conn.getresponse()
>>> print r2.status, r2.reason
404 Not Found
>>> data2 = r2.read()
>>> conn.close()

Here is an example session that shows how to ‘POST’ requests:

>>> import httplib, urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> headers = {"Content-type": "application/x-www-form-urlencoded",
... "Accept": "text/plain"}
>>> conn = httplib.HTTPConnection("musi-cal.mojam.com:80")
>>> conn.request("POST", "/cgi-bin/query", params, headers)
>>> response = conn.getresponse()
>>> print response.status, response.reason
200 OK
>>> data = response.read()
>>> conn.close()

422 Chapter 11. Internet Protocols and Support

11.7 ftplib — FTP protocol client

This module defines the classFTP and a few related items. TheFTP class implements the client side of the
FTP protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such
as mirroring other ftp servers. It is also used by the moduleurllib to handle URLs that use FTP. For more
information on FTP (File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using theftplib module:

>>> from ftplib import FTP
>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port
>>> ftp.login() # user anonymous, passwd anonymous@
>>> ftp.retrlines(’LIST’) # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

.

.

.
>>> ftp.retrbinary(’RETR README’, open(’README’, ’wb’).write)
’226 Transfer complete.’
>>> ftp.quit()

The module defines the following items:

classFTP([host[, user[, passwd[, acct]]]])
Return a new instance of theFTP class. Whenhost is given, the method callconnect(host) is made.
Whenuser is given, additionally the method calllogin(user, passwd, acct) is made (wherepasswd
andacctdefault to the empty string when not given).

all errors
The set of all exceptions (as a tuple) that methods ofFTP instances may raise as a result of problems with
the FTP connection (as opposed to programming errors made by the caller). This set includes the four
exceptions listed below as well assocket.error andIOError .

exceptionerror reply
Exception raised when an unexpected reply is received from the server.

exceptionerror temp
Exception raised when an error code in the range 400–499 is received.

exceptionerror perm
Exception raised when an error code in the range 500–599 is received.

exceptionerror proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.

See Also:

Modulenetrc (section 12.18):
Parser for the ‘.netrc’ file format. The file ‘.netrc’ is typically used by FTP clients to load user authentication
information before prompting the user.

The file ‘Tools/scripts/ftpmirror.py’ in the Python source distribution is a script that can mirror FTP sites, or portions
thereof, using theftplib module. It can be used as an extended example that applies this module.

11.7.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files. These are
named for the command which is used followed by ‘lines ’ for the text version or ‘binary ’ for the binary
version.

11.7. ftplib — FTP protocol client 423

FTP instances have the following methods:

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request. A value of2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

connect (host[, port])
Connect to the given host and port. The default port number is21 , as specified by the FTP protocol
specification. It is rarely needed to specify a different port number. This function should be called only
once for each instance; it should not be called at all if a host was given when the instance was created. All
other methods can only be used after a connection has been made.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

login ([user[, passwd[, acct]]])
Log in as the givenuser. The passwdandacct parameters are optional and default to the empty string.
If no user is specified, it defaults to’anonymous’ . If user is ’anonymous’ , the defaultpasswdis
’anonymous@’ . This function should be called only once for each instance, after a connection has been
established; it should not be called at all if a host and user were given when the instance was created. Most
FTP commands are only allowed after the client has logged in.

abort ()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd (command)
Send a simple command string to the server and return the response string.

voidcmd (command)
Send a simple command string to the server and handle the response. Return nothing if a response code in
the range 200–299 is received. Raise an exception otherwise.

retrbinary (command, callback[, maxblocksize[, rest]])
Retrieve a file in binary transfer mode.commandshould be an appropriate ‘RETR’ command: ’RETR
filename’ . Thecallback function is called for each block of data received, with a single string argument
giving the data block. The optionalmaxblocksizeargument specifies the maximum chunk size to read on the
low-level socket object created to do the actual transfer (which will also be the largest size of the data blocks
passed tocallback). A reasonable default is chosen.restmeans the same thing as in thetransfercmd()
method.

retrlines (command[, callback])
Retrieve a file or directory listing inASCII transfer mode.commandshould be an appropriate ‘RETR’
command (seeretrbinary()) or a ‘LIST ’ command (usually just the string’LIST’). Thecallback
function is called for each line, with the trailing CRLF stripped. The defaultcallback prints the line to
sys.stdout .

set pasv (boolean)
Enable “passive” mode ifbooleanis true, other disable passive mode. (In Python 2.0 and before, passive
mode was off by default; in Python 2.1 and later, it is on by default.)

storbinary (command, file[, blocksize])
Store a file in binary transfer mode.commandshould be an appropriate ‘STOR’ command:"STOR file-
name" . file is an open file object which is read untilEOF using itsread() method in blocks of size
blocksizeto provide the data to be stored. Theblocksizeargument defaults to 8192. Changed in version
2.1: default forblocksizeadded.

storlines (command, file)
Store a file in ASCII transfer mode. commandshould be an appropriate ‘STOR’ command (see
storbinary()). Lines are read untilEOF from the open file objectfile using itsreadline() method
to provide the data to be stored.

transfercmd (cmd[, rest])

424 Chapter 11. Internet Protocols and Support

Initiate a transfer over the data connection. If the transfer is active, send a ‘EPRT’ or ‘ PORT’ command and
the transfer command specified bycmd, and accept the connection. If the server is passive, send a ‘EPSV’
or ‘PASV’ command, connect to it, and start the transfer command. Either way, return the socket for the
connection.

If optional rest is given, a ‘REST’ command is sent to the server, passingrestas an argument.rest is usually
a byte offset into the requested file, telling the server to restart sending the file’s bytes at the requested offset,
skipping over the initial bytes. Note however that RFC 959 requires only thatrest be a string containing
characters in the printable range from ASCII code 33 to ASCII code 126. Thetransfercmd() method,
therefore, convertsrest to a string, but no check is performed on the string’s contents. If the server does not
recognize the ‘REST’ command, anerror reply exception will be raised. If this happens, simply call
transfercmd() without arestargument.

ntransfercmd (cmd[, rest])
Like transfercmd() , but returns a tuple of the data connection and the expected size of the data. If the
expected size could not be computed,None will be returned as the expected size.cmdandrestmeans the
same thing as intransfercmd() .

nlst (argument[, . . .])
Return a list of files as returned by the ‘NLST’ command. The optionalargumentis a directory to list
(default is the current server directory). Multiple arguments can be used to pass non-standard options to the
‘NLST’ command.

dir (argument[, . . .])
Produce a directory listing as returned by the ‘LIST ’ command, printing it to standard output. The optional
argumentis a directory to list (default is the current server directory). Multiple arguments can be used to
pass non-standard options to the ‘LIST ’ command. If the last argument is a function, it is used as acallback
function as forretrlines() ; the default prints tosys.stdout . This method returnsNone.

rename (fromname, toname)
Rename filefromnameon the server totoname.

delete (filename)
Remove the file namedfilenamefrom the server. If successful, returns the text of the response, otherwise
raiseserror perm on permission errors orerror reply on other errors.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

rmd(dirname)
Remove the directory nameddirnameon the server.

size (filename)
Request the size of the file namedfilenameon the server. On success, the size of the file is returned as an
integer, otherwiseNone is returned. Note that the ‘SIZE ’ command is not standardized, but is supported
by many common server implementations.

quit ()
Send a ‘QUIT’ command to the server and close the connection. This is the “polite” way to close a connec-
tion, but it may raise an exception of the server reponds with an error to the ‘QUIT’ command. This implies
a call to theclose() method which renders theFTP instance useless for subsequent calls (see below).

close ()
Close the connection unilaterally. This should not be applied to an already closed connection such as after
a successful call toquit() . After this call theFTP instance should not be used any more (after a call to
close() or quit() you cannot reopen the connection by issuing anotherlogin() method).

11.7. ftplib — FTP protocol client 425

11.8 gopherlib — Gopher protocol client

This module provides a minimal implementation of client side of the Gopher protocol. It is used by the module
urllib to handle URLs that use the Gopher protocol.

The module defines the following functions:

send selector (selector, host[, port])
Send aselectorstring to the gopher server athostandport (default70). Returns an open file object from
which the returned document can be read.

send query (selector, query, host[, port])
Send aselectorstring and aquerystring to a gopher server athostandport (default70). Returns an open
file object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character of the selector
string. If the data is text (first character of the selector is ‘0’), lines are terminated by CRLF, and the data is
terminated by a line consisting of a single ‘. ’, and a leading ‘. ’ should be stripped from lines that begin with
‘ .. ’. Directory listings (first character of the selector is ‘1’) are transferred using the same protocol.

11.9 poplib — POP3 protocol client

This module defines a class,POP3, which encapsulates a connection to an POP3 server and implements the
protocol as defined in RFC 1725. ThePOP3class supports both the minimal and optional command sets.

Note that POP3, though widely supported, is obsolescent. The implementation quality of POP3 servers varies
widely, and too many are quite poor. If your mailserver supports IMAP, you would be better off using the
imaplib .IMAP4 class, as IMAP servers tend to be better implemented.

A single class is provided by thepoplib module:

classPOP3(host[, port])
This class implements the actual POP3 protocol. The connection is created when the instance is initialized.
If port is omitted, the standard POP3 port (110) is used.

One exception is defined as an attribute of thepoplib module:

exceptionerror proto
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

See Also:

Module imaplib (section 11.10):
The standard Python IMAP module.

Frequently Asked Questions About Fetchmail
(http://www.tuxedo.org/˜esr/fetchmail/fetchmail-FAQ.html)

The FAQ for thefetchmail POP/IMAP client collects information on POP3 server variations and RFC
noncompliance that may be useful if you need to write an application based on the POP protocol.

11.9.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the response text
sent by the server.

An POP3instance has the following methods:

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request. A value of2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

426 Chapter 11. Internet Protocols and Support

getwelcome ()
Returns the greeting string sent by the POP3 server.

user (username)
Send user command, response should indicate that a password is required.

pass (password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server is
locked untilquit() is called.

apop (user, secret)
Use the more secure APOP authentication to log into the POP3 server.

rpop (user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

stat ()
Get mailbox status. The result is a tuple of 2 integers:(message count, mailbox size) .

list ([which])
Request message list, result is in the form(response, [’mesg num octets’, ...]) . If which is
set, it is the message to list.

retr (which)
Retrieve whole message numberwhich, and set its seen flag. Result is in form(response, [’line’,
...], octets) .

dele (which)
Flag message numberwhich for deletion. On most servers deletions are not actually performed until QUIT
(the major exception is Eudora QPOP, which deliberately violates the RFCs by doing pending deletes on
any disconnect).

rset ()
Remove any deletion marks for the mailbox.

noop ()
Do nothing. Might be used as a keep-alive.

quit ()
Signoff: commit changes, unlock mailbox, drop connection.

top (which, howmuch)
Retrieves the message header plushowmuchlines of the message after the header of message numberwhich.
Result is in form(response, [’line’, ...], octets) .

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the message’s seen
flag; unfortunately, TOP is poorly specified in the RFCs and is frequently broken in off-brand servers. Test
this method by hand against the POP3 servers you will use before trusting it.

uidl ([which])
Return message digest (unique id) list. Ifwhich is specified, result contains the unique id for that message
in the form’ response mesgnum uid, otherwise result is list(response, [’mesgnum uid’, ...],
octets) .

11.9.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

11.9. poplib — POP3 protocol client 427

import getpass, poplib

M = poplib.POP3(’localhost’)
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):

for j in M.retr(i+1)[1]:
print j

At the end of the module, there is a test section that contains a more extensive example of usage.

11.10 imaplib — IMAP4 protocol client

This module defines three classes,IMAP4, IMAP4 SSL andIMAP4 stream , which encapsulate a connection
to an IMAP4 server and implement a large subset of the IMAP4rev1 client protocol as defined in RFC 2060. It is
backward compatible with IMAP4 (RFC 1730) servers, but note that the ‘STATUS’ command is not supported in
IMAP4.

Three classes are provided by theimaplib module,IMAP4 is the base class:

classIMAP4([host[, port]])
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4
or IMAP4rev1) is determined when the instance is initialized. Ifhostis not specified,’’ (the local host) is
used. Ifport is omitted, the standard IMAP4 port (143) is used.

Three exceptions are defined as attributes of theIMAP4 class:

exceptionIMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

exceptionIMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class ofIMAP4.error . Note that
closing the instance and instantiating a new one will usually allow recovery from this exception.

exceptionIMAP4.readonly
This exception is raised when a writable mailbox has its status changed by the server. This is a sub-class of
IMAP4.error . Some other client now has write permission, and the mailbox will need to be re-opened
to re-obtain write permission.

There’s also a subclass for secure connections:

classIMAP4 SSL([host[, port[, keyfile[, certfile]]]])
This is a subclass derived fromIMAP4 that connects over an SSL encrypted socket (to use this class you
need a socket module that was compiled with SSL support). Ifhost is not specified,’’ (the local host)
is used. Ifport is omitted, the standard IMAP4-over-SSL port (993) is used.keyfileandcertfile are also
optional - they can contain a PEM formatted private key and certificate chain file for the SSL connection.

The second subclass allows for connections created by a child process:

classIMAP4 stream (command)
This is a subclass derived fromIMAP4 that connects to thestdin/stdout file descriptors created by
passingcommandto os.popen2() . New in version 2.3.

The following utility functions are defined:

Internaldate2tuple (datestr)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returns atime module
tuple.

Int2AP (num)
Converts an integer into a string representation using characters from the set [A .. P].

428 Chapter 11. Internet Protocols and Support

ParseFlags (flagstr)
Converts an IMAP4 ‘FLAGS’ response to a tuple of individual flags.

Time2Internaldate (date time)
Converts atime module tuple to an IMAP4 ‘INTERNALDATE’ representation. Returns a string in the
form: "DD-Mmm-YYYY HH:MM:SS +HHMM"(including double-quotes).

Note that IMAP4 message numbers change as the mailbox changes; in particular, after an ‘EXPUNGE’ command
performs deletions the remaining messages are renumbered. So it is highly advisable to use UIDs instead, with
the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found at the
University of Washington’sIMAP Information Center(http://www.cac.washington.edu/imap/).

11.10.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

All arguments to commands are converted to strings, except for ‘AUTHENTICATE’, and the last argument to
‘APPEND’ which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-sensitive char-
acters and isn’t enclosed with either parentheses or double quotes) each string is quoted. However, thepassword
argument to the ‘LOGIN’ command is always quoted. If you want to avoid having an argument string quoted (eg:
theflagsargument to ‘STORE’) then enclose the string in parentheses (eg:r’(\Deleted)’).

Each command returns a tuple:(type, [data, ...]) wheretypeis usually’OK’ or ’NO’ , anddata is either
the text from the command response, or mandated results from the command. Eachdata is either a string, or a
tuple. If a tuple, then the first part is the header of the response, and the second part contains the data (ie: ’literal’
value).

The messagesetoptions to commands below is a string specifying one or more messages to be acted upon. It
may be a simple message number (’1’), a range of message numbers (’2:4’), or a group of non-contiguous
ranges separated by commas (’1:3,6:9’). A range can contain an asterisk to indicate an infinite upper bound
(’3:*’).

An IMAP4 instance has the following methods:

append (mailbox, flags, datetime, message)
Append message to named mailbox.

authenticate (func)
Authenticate command — requires response processing. This is currently unimplemented, and raises an
exception.

check ()
Checkpoint mailbox on server.

close ()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command before ‘LOGOUT’.

copy (messageset, newmailbox)
Copymessagesetmessages onto end ofnew mailbox.

create (mailbox)
Create new mailbox namedmailbox.

delete (mailbox)
Delete old mailbox namedmailbox.

expunge ()
Permanently remove deleted items from selected mailbox. Generates an ‘EXPUNGE’ response for each
deleted message. Returned data contains a list of ‘EXPUNGE’ message numbers in order received.

11.10. imaplib — IMAP4 protocol client 429

fetch (messageset, messageparts)
Fetch (parts of) messages.messagepartsshould be a string of message part names enclosed within paren-
theses, eg: ‘"(UID BODY[TEXT])" ’. Returned data are tuples of message part envelope and data.

getacl (mailbox)
Get the ‘ACL’s for mailbox. The method is non-standard, but is supported by the ‘Cyrus ’ server.

getquota (root)
Get the ‘quota ’ root’s resource usage and limits. This method is part of the IMAP4 QUOTA extension
defined in rfc2087. New in version 2.3.

getquotaroot (mailbox)
Get the list of ‘quota ’ ‘ roots ’ for the namedmailbox. This method is part of the IMAP4 QUOTA
extension defined in rfc2087. New in version 2.3.

list ([directory[, pattern]])
List mailbox names indirectorymatchingpattern. directorydefaults to the top-level mail folder, andpattern
defaults to match anything. Returned data contains a list of ‘LIST ’ responses.

login (user, password)
Identify the client using a plaintext password. Thepasswordwill be quoted.

login cram md5(user, password)
Force use of ‘CRAM-MD5’ authentication when identifying the client to protect the password. Will only
work if the server ‘CAPABILITY ’ response includes the phrase ‘AUTH=CRAM-MD5’. New in version 2.3.

logout ()
Shutdown connection to server. Returns server ‘BYE’ response.

lsub ([directory[, pattern]])
List subscribed mailbox names in directory matching pattern.directorydefaults to the top level directory
andpatterndefaults to match any mailbox. Returned data are tuples of message part envelope and data.

noop ()
Send ‘NOOP’ to server.

open (host, port)
Opens socket toport at host. The connection objects established by this method will be used in theread ,
readline , send , andshutdown methods. You may override this method.

partial (messagenum, messagepart, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

proxyauth (user)
Assume authentication asuser. Allows an authorised administrator to proxy into any user’s mailbox. New
in version 2.3.

read (size)
Readssizebytes from the remote server. You may override this method.

readline ()
Reads one line from the remote server. You may override this method.

recent ()
Prompt server for an update. Returned data isNone if no new messages, else value of ‘RECENT’ response.

rename (oldmailbox, newmailbox)
Rename mailbox namedoldmailboxto newmailbox.

response (code)
Return data for responsecodeif received, orNone. Returns the given code, instead of the usual type.

search (charset, criterion[, ...])
Search mailbox for matching messages. Returned data contains a space separated list of matching message
numbers.charsetmay beNone, in which case no ‘CHARSET’ will be specified in the request to the server.
The IMAP protocol requires that at least one criterion be specified; an exception will be raised when the
server returns an error.

430 Chapter 11. Internet Protocols and Support

Example:

M is a connected IMAP4 instance...
msgnums = M.search(None, ’FROM’, ’"LDJ"’)

or:
msgnums = M.search(None, ’(FROM "LDJ")’)

select ([mailbox[, readonly]])
Select a mailbox. Returned data is the count of messages inmailbox (‘EXISTS’ response). The default
mailboxis ’INBOX’ . If the readonlyflag is set, modifications to the mailbox are not allowed.

send (data)
Sendsdata to the remote server. You may override this method.

setacl (mailbox, who, what)
Set an ‘ACL’ for mailbox. The method is non-standard, but is supported by the ‘Cyrus ’ server.

setquota (root, limits)
Set the ‘quota ’ root’s resourcelimits. This method is part of the IMAP4 QUOTA extension defined in
rfc2087. New in version 2.3.

shutdown ()
Close connection established inopen . You may override this method.

socket ()
Returns socket instance used to connect to server.

sort (sort criteria, charset, searchcriterion[, ...])
Thesort command is a variant ofsearch with sorting semantics for the results. Returned data contains
a space separated list of matching message numbers.

Sort has two arguments before thesearch criterion argument(s); a parenthesized list ofsort criteria, and
the searchingcharset. Note that unlikesearch , the searchingcharsetargument is mandatory. There is also
a uid sort command which corresponds tosort the way thatuid search corresponds tosearch .
Thesort command first searches the mailbox for messages that match the given searching criteria using
the charset argument for the interpretation of strings in the searching criteria. It then returns the numbers of
matching messages.

This is an ‘IMAP4rev1 ’ extension command.

status (mailbox, names)
Request named status conditions formailbox.

store (messageset, command, flaglist)
Alters flag dispositions for messages in mailbox.commandis specified by section 6.4.6 of RFC 2060 as
being one of ”FLAGS”, ”+FLAGS”, or ”-FLAGS”, optionally with a suffix of ”.SILENT”.

For example, to set the delete flag on all messages:

typ, data = M.search(None, ’ALL’)
for num in data[0].split():

M.store(num, ’+FLAGS’, ’\\Deleted’)
M.expunge()

subscribe (mailbox)
Subscribe to new mailbox.

uid (command, arg[, ...])
Execute command args with messages identified by UID, rather than message number. Returns response
appropriate to command. At least one argument must be supplied; if none are provided, the server will
return an error and an exception will be raised.

unsubscribe (mailbox)
Unsubscribe from old mailbox.

11.10. imaplib — IMAP4 protocol client 431

xatom (name[, arg[, ...]])
Allow simple extension commands notified by server in ‘CAPABILITY ’ response.

Instances ofIMAP4 SSL have just one additional method:

ssl ()
Returns SSLObject instance used for the secure connection with the server.

The following attributes are defined on instances ofIMAP4:

PROTOCOLVERSION
The most recent supported protocol in the ‘CAPABILITY ’ response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module variableDebug.
Values greater than three trace each command.

11.10.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib

M = imaplib.IMAP4()
M.login(getpass.getuser(), getpass.getpass())
M.select()
typ, data = M.search(None, ’ALL’)
for num in data[0].split():

typ, data = M.fetch(num, ’(RFC822)’)
print ’Message %s\n%s\n’ % (num, data[0][1])

M.close()
M.logout()

11.11 nntplib — NNTP protocol client

This module defines the classNNTPwhich implements the client side of the NNTP protocol. It can be used to
implement a news reader or poster, or automated news processors. For more information on NNTP (Network
News Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects
of the last 10 articles:

432 Chapter 11. Internet Protocols and Support

>>> s = NNTP(’news.cwi.nl’)
>>> resp, count, first, last, name = s.group(’comp.lang.python’)
>>> print ’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last
Group comp.lang.python has 59 articles, range 3742 to 3803
>>> resp, subs = s.xhdr(’subject’, first + ’-’ + last)
>>> for id, sub in subs[-10:]: print id, sub
...
3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?
3794 Emacs and doc strings
3795 a few questions about the Mac implementation
3796 Re: executable python scripts
3797 Re: executable python scripts
3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules
3802 Re: executable python scripts
3803 Re: \POSIX{} wait and SIGCHLD
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(’news.cwi.nl’)
>>> f = open(’/tmp/article’)
>>> s.post(f)
’240 Article posted successfully.’
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

classNNTP(host[, port [, user[, password[, readermode]]]])
Return a new instance of theNNTPclass, representing a connection to the NNTP server running on hosthost,
listening at portport. The defaultport is 119. If the optionaluserandpasswordare provided, or if suitable
credentials are present in ‘/.netrc’, the ‘AUTHINFO USER’ and ‘AUTHINFO PASS’ commands are used
to identify and authenticate the user to the server. If the optional flagreadermodeis true, then a ‘mode
reader ’ command is sent before authentication is performed. Reader mode is sometimes necessary if
you are connecting to an NNTP server on the local machine and intend to call reader-specific commands,
such as ‘group ’. If you get unexpectedNNTPPermanentError s, you might need to setreadermode.
readermodedefaults toNone.

classNNTPError ()
Derived from the standard exceptionException , this is the base class for all exceptions raised by the
nntplib module.

classNNTPReplyError ()
Exception raised when an unexpected reply is received from the server. For backwards compatibility, the
exceptionerror reply is equivalent to this class.

classNNTPTemporaryError ()
Exception raised when an error code in the range 400–499 is received. For backwards compatibility, the
exceptionerror temp is equivalent to this class.

classNNTPPermanentError ()
Exception raised when an error code in the range 500–599 is received. For backwards compatibility, the
exceptionerror perm is equivalent to this class.

classNNTPProtocolError ()
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.
For backwards compatibility, the exceptionerror proto is equivalent to this class.

11.11. nntplib — NNTP protocol client 433

classNNTPDataError ()
Exception raised when there is some error in the response data. For backwards compatibility, the exception
error data is equivalent to this class.

11.11.1 NNTP Objects

NNTP instances have the following methods. Theresponsethat is returned as the first item in the return tuple of
almost all methods is the server’s response: a string beginning with a three-digit code. If the server’s response
indicates an error, the method raises one of the above exceptions.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally
a single line per request or response. A value of2 or higher produces the maximum amount of debugging
output, logging each line sent and received on the connection (including message text).

newgroups (date, time,[file])
Send a ‘NEWGROUPS’ command. Thedateargument should be a string of the form’ yymmdd’ indicating
the date, andtimeshould be a string of the form’ hhmmss’ indicating the time. Return a pair(response,
groups) wheregroupsis a list of group names that are new since the given date and time. If thefileparameter
is supplied, then the output of the ‘NEWGROUPS’ command is stored in a file. Iffile is a string, then the
method will open a file object with that name, write to it then close it. Iffile is a file object, then it will start
calling write() on it to store the lines of the command output. Iffile is supplied, then the returnedlist is
an empty list.

newnews(group, date, time,[file])
Send a ‘NEWNEWS’ command. Here,group is a group name or’*’ , anddateand time have the same
meaning as fornewgroups() . Return a pair(response, articles) wherearticles is a list of article ids.
If the file parameter is supplied, then the output of the ‘NEWNEWS’ command is stored in a file. Iffile is a
string, then the method will open a file object with that name, write to it then close it. Iffile is a file object,
then it will start callingwrite() on it to store the lines of the command output. Iffile is supplied, then the
returnedlist is an empty list.

list ([file])
Send a ‘LIST ’ command. Return a pair(response, list) wherelist is a list of tuples. Each tuple has
the form (group, last, first, flag) , wheregroup is a group name,last andfirst are the last and first
article numbers (as strings), andflag is ’y’ if posting is allowed,’n’ if not, and’m’ if the newsgroup is
moderated. (Note the ordering:last, first.) If the file parameter is supplied, then the output of the ‘LIST ’
command is stored in a file. Iffile is a string, then the method will open a file object with that name, write
to it then close it. Iffile is a file object, then it will start callingwrite() on it to store the lines of the
command output. Iffile is supplied, then the returnedlist is an empty list.

group (name)
Send a ‘GROUP’ command, wherenameis the group name. Return a tuple(response, count, first,
last, name) wherecountis the (estimated) number of articles in the group,first is the first article number
in the group,last is the last article number in the group, andnameis the group name. The numbers are
returned as strings.

help ([file])
Send a ‘HELP’ command. Return a pair(response, list) wherelist is a list of help strings. If thefile
parameter is supplied, then the output of the ‘HELP’ command is stored in a file. Iffile is a string, then the
method will open a file object with that name, write to it then close it. Iffile is a file object, then it will start
calling write() on it to store the lines of the command output. Iffile is supplied, then the returnedlist is
an empty list.

stat (id)
Send a ‘STAT’ command, whereid is the message id (enclosed in ‘<’ and ‘>’) or an article number (as a

434 Chapter 11. Internet Protocols and Support

string). Return a triple(response, number, id) wherenumberis the article number (as a string) andid
is the article id (enclosed in ‘<’ and ‘>’).

next ()
Send a ‘NEXT’ command. Return as forstat() .

last ()
Send a ‘LAST’ command. Return as forstat() .

head (id)
Send a ‘HEAD’ command, whereid has the same meaning as forstat() . Return a tuple(response,
number, id, list) where the first three are the same as forstat() , and list is a list of the article’s
headers (an uninterpreted list of lines, without trailing newlines).

body (id,[file])
Send a ‘BODY’ command, whereid has the same meaning as forstat() . If the file parameter is supplied,
then the body is stored in a file. Iffile is a string, then the method will open a file object with that name,
write to it then close it. Iffile is a file object, then it will start callingwrite() on it to store the lines of the
body. Return as forhead() . If file is supplied, then the returnedlist is an empty list.

article (id)
Send an ‘ARTICLE’ command, whereid has the same meaning as forstat() . Return as forhead() .

slave ()
Send a ‘SLAVE’ command. Return the server’sresponse.

xhdr (header, string,[file])
Send an ‘XHDR’ command. This command is not defined in the RFC but is a common extension. Theheader
argument is a header keyword, e.g.’subject’ . Thestring argument should have the form’ first- last’
wherefirst andlast are the first and last article numbers to search. Return a pair(response, list) , where
list is a list of pairs(id, text) , whereid is an article id (as a string) andtext is the text of the requested
header for that article. If thefile parameter is supplied, then the output of the ‘XHDR’ command is stored in
a file. If file is a string, then the method will open a file object with that name, write to it then close it. Iffile
is a file object, then it will start callingwrite() on it to store the lines of the command output. Iffile is
supplied, then the returnedlist is an empty list.

post (file)
Post an article using the ‘POST’ command. Thefile argument is an open file object which is read until EOF
using itsreadline() method. It should be a well-formed news article, including the required headers.
Thepost() method automatically escapes lines beginning with ‘. ’.

ihave (id, file)
Send an ‘IHAVE’ command. If the response is not an error, treatfile exactly as for thepost() method.

date ()
Return a triple(response, date, time) , containing the current date and time in a form suitable for the
newnews() andnewgroups() methods. This is an optional NNTP extension, and may not be supported
by all servers.

xgtitle (name,[file])
Process an ‘XGTITLE’ command, returning a pair(response, list) , wherelist is a list of tuples containing
(name, title) . If the file parameter is supplied, then the output of the ‘XGTITLE’ command is stored in
a file. If file is a string, then the method will open a file object with that name, write to it then close it. If
file is a file object, then it will start callingwrite() on it to store the lines of the command output. If
file is supplied, then the returnedlist is an empty list. This is an optional NNTP extension, and may not be
supported by all servers.

xover (start, end,[file])
Return a pair(resp, list) . list is a list of tuples, one for each article in the range delimited by thestart
andendarticle numbers. Each tuple is of the form(article number, subject, poster, date, id, refer-
ences, size, lines) . If the file parameter is supplied, then the output of the ‘XOVER’ command is stored
in a file. If file is a string, then the method will open a file object with that name, write to it then close it.
If file is a file object, then it will start callingwrite() on it to store the lines of the command output. If
file is supplied, then the returnedlist is an empty list. This is an optional NNTP extension, and may not be

11.11. nntplib — NNTP protocol client 435

supported by all servers.

xpath (id)
Return a pair(resp, path) , wherepath is the directory path to the article with message IDid. This is an
optional NNTP extension, and may not be supported by all servers.

quit ()
Send a ‘QUIT’ command and close the connection. Once this method has been called, no other methods of
the NNTP object should be called.

11.12 smtplib — SMTP protocol client

Thesmtplib module defines an SMTP client session object that can be used to send mail to any Internet machine
with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult RFC 821 (Simple
Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

classSMTP([host[, port[, local hostname]]])
A SMTPinstance encapsulates an SMTP connection. It has methods that support a full repertoire of SMTP
and ESMTP operations. If the optional host and port parameters are given, the SMTPconnect() method
is called with those parameters during initialization. AnSMTPConnectError is raised if the specified
host doesn’t respond correctly.

For normal use, you should only require the initialization/connect,sendmail() , andquit() methods.
An example is included below.

A nice selection of exceptions is defined as well:

exceptionSMTPException
Base exception class for all exceptions raised by this module.

exceptionSMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use the
SMTPinstance before connecting it to a server.

exceptionSMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated in some
instances when the SMTP server returns an error code. The error code is stored in thesmtp code attribute
of the error, and thesmtp error attribute is set to the error message.

exceptionSMTPSenderRefused
Sender address refused. In addition to the attributes set by on allSMTPResponseException exceptions,
this sets ‘sender’ to the string that the SMTP server refused.

exceptionSMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessible through the attribute
recipients , which is a dictionary of exactly the same sort asSMTP.sendmail() returns.

exceptionSMTPDataError
The SMTP server refused to accept the message data.

exceptionSMTPConnectError
Error occurred during establishment of a connection with the server.

exceptionSMTPHeloError
The server refused our ‘HELO’ message.

See Also:

RFC 821, “Simple Mail Transfer Protocol”
Protocol definition for SMTP. This document covers the model, operating procedure, and protocol details
for SMTP.

RFC 1869, “SMTP Service Extensions”
Definition of the ESMTP extensions for SMTP. This describes a framework for extending SMTP with
new commands, supporting dynamic discovery of the commands provided by the server, and defines a few

436 Chapter 11. Internet Protocols and Support

additional commands.

11.12.1 SMTP Objects

An SMTPinstance has the following methods:

set debuglevel (level)
Set the debug output level. A true value forlevel results in debug messages for connection and for all
messages sent to and received from the server.

connect ([host[, port]])
Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP port
(25). If the hostname ends with a colon (‘: ’) followed by a number, that suffix will be stripped off and the
number interpreted as the port number to use. This method is automatically invoked by the constructor if a
host is specified during instantiation.

docmd(cmd,[, argstring])
Send a commandcmd to the server. The optional argumentargstring is simply concatenated to the com-
mand, separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline responses
are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly. It is used to implement other
methods and may be useful for testing private extensions.

If the connection to the server is lost while waiting for the reply,SMTPServerDisconnected will be
raised.

helo ([hostname])
Identify yourself to the SMTP server using ‘HELO’. The hostname argument defaults to the fully qualified
domain name of the local host.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly called by
thesendmail() when necessary.

ehlo ([hostname])
Identify yourself to an ESMTP server using ‘EHLO’. The hostname argument defaults to the fully quali-
fied domain name of the local host. Examine the response for ESMTP option and store them for use by
has extn() .

Unless you wish to usehas extn() before sending mail, it should not be necessary to call this method
explicitly. It will be implicitly called bysendmail() when necessary.

has extn (name)
Return1 if nameis in the set of SMTP service extensions returned by the server,0 otherwise. Case is
ignored.

verify (address)
Check the validity of an address on this server using SMTP ‘VRFY’. Returns a tuple consisting of code 250
and a full RFC 822 address (including human name) if the user address is valid. Otherwise returns an SMTP
error code of 400 or greater and an error string.

Note: Many sites disable SMTP ‘VRFY’ in order to foil spammers.

login (user, password)
Log in on an SMTP server that requires authentication. The arguments are the username and the password
to authenticate with. If there has been no previous ‘EHLO’ or ‘ HELO’ command this session, this method
tries ESMTP ‘EHLO’ first. This method will return normally if the authentication was successful, or may
raise the following exceptions:

SMTPHeloError The server didn’t reply properly to the ‘HELO’ greeting.

SMTPAuthenticationError The server didn’t accept the username/password combination.

SMTPError No suitable authentication method was found.

11.12. smtplib — SMTP protocol client 437

starttls ([keyfile[, certfile]])
Put the SMTP connection in TLS (Transport Layer Security) mode. All SMTP commands that follow will
be encrypted. You should then callehlo() again.

If keyfileandcertfileare provided, these are passed to thesocket module’sssl() function.

sendmail (from addr, to addrs, msg[, mail options, rcpt options])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address
strings, and a message string. The caller may pass a list of ESMTP options (such as ‘8bitmime ’) to be
used in ‘MAIL FROM’ commands asmail options. ESMTP options (such as ‘DSN’ commands) that should
be used with all ‘RCPT’ commands can be passed asrcpt options. (If you need to use different ESMTP
options to different recipients you have to use the low-level methods such asmail , rcpt anddata to
send the message.)

Note: The from addr and to addrsparameters are used to construct the message envelope used by the
transport agents. TheSMTPdoes not modify the message headers in any way.

If there has been no previous ‘EHLO’ or ‘ HELO’ command this session, this method tries ESMTP ‘EHLO’
first. If the server does ESMTP, message size and each of the specified options will be passed to it (if the
option is in the feature set the server advertises). If ‘EHLO’ fails, ‘HELO’ will be tried and ESMTP options
suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it will throw
an exception. That is, if this method does not throw an exception, then someone should get your mail. If
this method does not throw an exception, it returns a dictionary, with one entry for each recipient that was
refused. Each entry contains a tuple of the SMTP error code and the accompanying error message sent by
the server.

This method may raise the following exceptions:

SMTPRecipientsRefused All recipients were refused. Nobody got the mail. Therecipients at-
tribute of the exception object is a dictionary with information about the refused recipients (like the
one returned when at least one recipient was accepted).

SMTPHeloError The server didn’t reply properly to the ‘HELO’ greeting.

SMTPSenderRefused The server didn’t accept thefrom addr.

SMTPDataError The server replied with an unexpected error code (other than a refusal of a recipient).

Unless otherwise noted, the connection will be open even after an exception is raised.

quit ()
Terminate the SMTP session and close the connection.

Low-level methods corresponding to the standard SMTP/ESMTP commands ‘HELP’, ‘ RSET’, ‘ NOOP’, ‘ MAIL’,
‘RCPT’, and ‘DATA’ are also supported. Normally these do not need to be called directly, so they are not docu-
mented here. For details, consult the module code.

11.12.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses), and the
message to be delivered. Note that the headers to be included with the message must be included in the message
as entered; this example doesn’t do any processing of the RFC 822 headers. In particular, the ‘To’ and ‘From’
addresses must be included in the message headers explicitly.

438 Chapter 11. Internet Protocols and Support

import smtplib

def prompt(prompt):
return raw_input(prompt).strip()

fromaddr = prompt("From: ")
toaddrs = prompt("To: ").split()
print "Enter message, end with ˆD (Unix) or ˆZ (Windows):"

Add the From: and To: headers at the start!
msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, ", ".join(toaddrs)))
while 1:

try:
line = raw_input()

except EOFError:
break

if not line:
break

msg = msg + line

print "Message length is " + repr(len(msg))

server = smtplib.SMTP(’localhost’)
server.set_debuglevel(1)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

11.13 telnetlib — Telnet client

The telnetlib module provides aTelnet class that implements the Telnet protocol. See RFC 854 for de-
tails about the protocol. In addition, it provides symbolic constants for the protocol characters (see below), and
for the telnet options. The symbolic names of the telnet options follow the definitions inarpa/telnet.h ,
with the leadingTELOPT removed. For symbolic names of options which are traditionally not included in
arpa/telnet.h , see the module source itself.

The symbolic constants for the telnet commands are: IAC, DONT, DO, WONT, WILL, SE (Subnegotiation End),
NOP (No Operation), DM (Data Mark), BRK (Break), IP (Interrupt process), AO (Abort output), AYT (Are You
There), EC (Erase Character), EL (Erase Line), GA (Go Ahead), SB (Subnegotiation Begin).

classTelnet ([host[, port]])
Telnet represents a connection to a Telnet server. The instance is initially not connected by default; the
open() method must be used to establish a connection. Alternatively, the host name and optional port
number can be passed to the constructor, to, in which case the connection to the server will be established
before the constructor returns.

Do not reopen an already connected instance.

This class has manyread *() methods. Note that some of them raiseEOFError when the end of the
connection is read, because they can return an empty string for other reasons. See the individual descriptions
below.

See Also:

RFC 854, “Telnet Protocol Specification”
Definition of the Telnet protocol.

11.13. telnetlib — Telnet client 439

11.13.1 Telnet Objects

Telnet instances have the following methods:

read until (expected[, timeout])
Read until a given string,expected, is encountered or untiltimeoutseconds have passed.

When no match is found, return whatever is available instead, possibly the empty string. RaiseEOFError
if the connection is closed and no cooked data is available.

read all ()
Read all data untilEOF; block until connection closed.

read some()
Read at least one byte of cooked data unlessEOF is hit. Return’’ if EOF is hit. Block if no data is
immediately available.

read very eager ()
Read everything that can be without blocking in I/O (eager).

RaiseEOFError if connection closed and no cooked data available. Return’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read eager ()
Read readily available data.

RaiseEOFError if connection closed and no cooked data available. Return’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read lazy ()
Process and return data already in the queues (lazy).

RaiseEOFError if connection closed and no data available. Return’’ if no cooked data available other-
wise. Do not block unless in the midst of an IAC sequence.

read very lazy ()
Return any data available in the cooked queue (very lazy).

RaiseEOFError if connection closed and no data available. Return’’ if no cooked data available other-
wise. This method never blocks.

read sb data ()
Return the data collected between a SB/SE pair (suboption begin/end). The callback should access these
data when it was invoked with aSEcommand. This method never blocks.

New in version 2.3.

open (host[, port])
Connect to a host. The optional second argument is the port number, which defaults to the standard Telnet
port (23).

Do not try to reopen an already connected instance.

msg(msg[, *args])
Print a debug message when the debug level is> 0. If extra arguments are present, they are substituted in
the message using the standard string formatting operator.

set debuglevel (debuglevel)
Set the debug level. The higher the value ofdebuglevel, the more debug output you get (onsys.stdout).

close ()
Close the connection.

get socket ()
Return the socket object used internally.

fileno ()
Return the file descriptor of the socket object used internally.

write (buffer)
Write a string to the socket, doubling any IAC characters. This can block if the connection is blocked. May

440 Chapter 11. Internet Protocols and Support

raisesocket.error if the connection is closed.

interact ()
Interaction function, emulates a very dumb Telnet client.

mt interact ()
Multithreaded version ofinteract() .

expect (list[, timeout])
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.RegexObject instances) or un-
compiled (strings). The optional second argument is a timeout, in seconds; the default is to block indefi-
nitely.

Return a tuple of three items: the index in the list of the first regular expression that matches; the match
object returned; and the text read up till and including the match.

If end of file is found and no text was read, raiseEOFError . Otherwise, when nothing matches, return
(-1, None, text) wheretext is the text received so far (may be the empty string if a timeout happened).

If a regular expression ends with a greedy match (such asd.* c) or if more than one expression can match the
same input, the results are indeterministic, and may depend on the I/O timing.

set option negotiation callback (callback)
Each time a telnet option is read on the input flow, thiscallback (if set) is called with the following pa-
rameters : callback(telnet socket, command (DO/DONT/WILL/WONT), option). No other action is done
afterwards by telnetlib.

11.13.2 Telnet Example

A simple example illustrating typical use:

import getpass
import sys
import telnetlib

HOST = "localhost"
user = raw_input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until("login: ")
tn.write(user + "\n")
if password:

tn.read_until("Password: ")
tn.write(password + "\n")

tn.write("ls\n")
tn.write("exit\n")

print tn.read_all()

11.14 urlparse — Parse URLs into components

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in components
(addressing scheme, network location, path etc.), to combine the components back into a URL string, and to
convert a “relative URL” to an absolute URL given a “base URL.”

11.14. urlparse — Parse URLs into components 441

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and discovered
a bug in an earlier draft!).

It defines the following functions:

urlparse (urlstring[, default scheme[, allow fragments]])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
scheme:// netloc/ path; parameters?query#fragment. Each tuple item is a string, possibly empty. The
components are not broken up in smaller parts (e.g. the network location is a single string), and % escapes
are not expanded. The delimiters as shown above are not part of the tuple items, except for a leading slash
in thepathcomponent, which is retained if present.

Example:

urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

(’http’, ’www.cwi.nl:80’, ’/%7Eguido/Python.html’, ’’, ’’, ’’)

If the default schemeargument is specified, it gives the default addressing scheme, to be used only if the
URL string does not specify one. The default value for this argument is the empty string.

If the allow fragmentsargument is zero, fragment identifiers are not allowed, even if the URL’s addressing
scheme normally does support them. The default value for this argument is1.

urlunparse (tuple)
Construct a URL string from a tuple as returned byurlparse() . This may result in a slightly different,
but equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g. a ? with an empty
query (the draft states that these are equivalent).

urlsplit (urlstring[, default scheme[, allow fragments]])
This is similar tourlparse() , but does not split the params from the URL. This should generally be
used instead ofurlparse() if the more recent URL syntax allowing parameters to be applied to each
segment of thepath portion of the URL (see RFC 2396). A separate function is needed to separate the
path segments and parameters. This function returns a 5-tuple: (addressing scheme, network location, path,
query, fragment identifier). New in version 2.2.

urlunsplit (tuple)
Combine the elements of a tuple as returned byurlsplit() into a complete URL as a string. New in
version 2.2.

urljoin (base, url[, allow fragments])
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative URL” (url). Infor-
mally, this uses components of the base URL, in particular the addressing scheme, the network location and
(part of) the path, to provide missing components in the relative URL.

Example:

urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)

yields the string

’http://www.cwi.nl/%7Eguido/FAQ.html’

Theallow fragmentsargument has the same meaning as forurlparse() .

urldefrag (url)
If url contains a fragment identifier, returns a modified version ofurl with no fragment identifier, and the
fragment identifier as a separate string. If there is no fragment identifier inurl, returnsurl unmodified and
an empty string.

See Also:

442 Chapter 11. Internet Protocols and Support

RFC 1738, “Uniform Resource Locators (URL)”
This specifies the formal syntax and semantics of absolute URLs.

RFC 1808, “Relative Uniform Resource Locators”
This Request For Comments includes the rules for joining an absolute and a relative URL, including a fair
number of “Abnormal Examples” which govern the treatment of border cases.

RFC 2396, “Uniform Resource Identifiers (URI): Generic Syntax”
Document describing the generic syntactic requirements for both Uniform Resource Names (URNs) and
Uniform Resource Locators (URLs).

11.15 SocketServer — A framework for network servers

TheSocketServer module simplifies the task of writing network servers.

There are four basic server classes:TCPServer uses the Internet TCP protocol, which provides for continuous
streams of data between the client and server.UDPServer uses datagrams, which are discrete packets of infor-
mation that may arrive out of order or be lost while in transit. The more infrequently usedUnixStreamServer
andUnixDatagramServer classes are similar, but use UNIX domain sockets; they’re not available on non-
UNIX platforms. For more details on network programming, consult a book such as W. Richard Steven’sUNIX
Network Programmingor Ralph Davis’sWin32 Network Programming.

These four classes process requestssynchronously; each request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process
or thread to handle each request; theForkingMixIn andThreadingMixIn mix-in classes can be used to
support asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding itshandle() method; this method will process incoming re-
quests. Second, you must instantiate one of the server classes, passing it the server’s address and the request
handler class. Finally, call thehandle request() or serve forever() method of the server object to
process one or many requests.

When inheriting fromThreadingMixIn for threaded connection behavior, you should explicitly declare how
you want your threads to behave on an abrupt shutdown. TheThreadingMixIn class defines an attribute
daemon threads, which indicates whether or not the server should wait for thread termination. You should set the
flag explicitly if you would like threads to behave autonomously; the default isFalse , meaning that Python will
not exit until all threads created byThreadingMixIn have exited.

Server classes have the same external methods and attributes, no matter what network protocol they use:

fileno ()
Return an integer file descriptor for the socket on which the server is listening. This function is most
commonly passed toselect.select() , to allow monitoring multiple servers in the same process.

handle request ()
Process a single request. This function calls the following methods in order:get request() ,
verify request() , andprocess request() . If the user-providedhandle() method of the
handler class raises an exception, the server’shandle error() method will be called.

serve forever ()
Handle an infinite number of requests. This simply callshandle request() inside an infinite loop.

address family
The family of protocols to which the server’s socket belongs. socket.AF INET and
socket.AF UNIX are two possible values.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server address
The address on which the server is listening. The format of addresses varies depending on the protocol

11.15. SocketServer — A framework for network servers 443

family; see the documentation for the socket module for details. For Internet protocols, this is a tuple
containing a string giving the address, and an integer port number:(’127.0.0.1’, 80) , for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

allow reuse address
Whether the server will allow the reuse of an address. This defaults toFalse , and can be set in subclasses
to change the policy.

request queue size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive
while the server is busy are placed into a queue, up torequest queue size requests. Once the queue
is full, further requests from clients will get a “Connection denied” error. The default value is usually 5, but
this can be overridden by subclasses.

socket type
The type of socket used by the server;socket.SOCK STREAMandsocket.SOCK DGRAMare two
possible values.

There are various server methods that can be overridden by subclasses of base server classes likeTCPServer ;
these methods aren’t useful to external users of the server object.

finish request ()
Actually processes the request by instantiatingRequestHandlerClass and calling itshandle()
method.

get request ()
Must accept a request from the socket, and return a 2-tuple containing thenewsocket object to be used to
communicate with the client, and the client’s address.

handle error (request, clientaddress)
This function is called if theRequestHandlerClass ’s handle() method raises an exception. The
default action is to print the traceback to standard output and continue handling further requests.

process request (request, clientaddress)
Callsfinish request() to create an instance of theRequestHandlerClass . If desired, this func-
tion can create a new process or thread to handle the request; theForkingMixIn andThreadingMixIn
classes do this.

server activate ()
Called by the server’s constructor to activate the server. May be overridden.

server bind ()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify request (request, clientaddress)
Must return a Boolean value; if the value is true, the request will be processed, and if it’s false, the request
will be denied. This function can be overridden to implement access controls for a server. The default
implementation always return true.

The request handler class must define a newhandle() method, and can override any of the following methods.
A new instance is created for each request.

finish ()
Called after thehandle() method to perform any clean-up actions required. The default implementation
does nothing. Ifsetup() or handle() raise an exception, this function will not be called.

handle ()
This function must do all the work required to service a request. Several instance attributes are available to
it; the request is available asself.request ; the client address asself.client address ; and the
server instance asself.server , in case it needs access to per-server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services,self.request is a string. How-

444 Chapter 11. Internet Protocols and Support

ever, this can be hidden by using the mix-in request handler classesStreamRequestHandler or
DatagramRequestHandler , which override thesetup() and finish() methods, and provides
self.rfile andself.wfile attributes. self.rfile andself.wfile can be read or written,
respectively, to get the request data or return data to the client.

setup ()
Called before thehandle() method to perform any initialization actions required. The default implemen-
tation does nothing.

11.16 BaseHTTPServer — Basic HTTP server

This module defines two classes for implementing HTTP servers (Web servers). Usually, this module isn’t
used directly, but is used as a basis for building functioning Web servers. See theSimpleHTTPServer and
CGIHTTPServer modules.

The first class,HTTPServer , is aSocketServer.TCPServer subclass. It creates and listens at the HTTP
socket, dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,
handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

server_address = (’’, 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

classHTTPServer (server address, RequestHandlerClass)
This class builds on theTCPServer class by storing the server address as instance variables named
server name andserver port . The server is accessible by the handler, typically through the han-
dler’sserver instance variable.

classBaseHTTPRequestHandler (request, clientaddress, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to
any actual HTTP requests; it must be subclassed to handle each request method (e.g. GET or POST).
BaseHTTPRequestHandler provides a number of class and instance variables, and methods for use by
subclasses.

The handler will parse the request and the headers, then call a method specific to the request type.
The method name is constructed from the request. For example, for the request method ‘SPAM’, the
do SPAM() method will be called with no arguments. All of the relevant information is stored in instance
variables of the handler. Subclasses should not need to override or extend theinit () method.

BaseHTTPRequestHandler has the following instance variables:

client address
Contains a tuple of the form(host, port) referring to the client’s address.

command
Contains the command (request type). For example,’GET’ .

path
Contains the request path.

request version
Contains the version string from the request. For example,’HTTP/1.0’ .

headers
Holds an instance of the class specified by theMessageClass class variable. This instance parses and
manages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile

11.16. BaseHTTPServer — Basic HTTP server 445

Contains the output stream for writing a response back to the client. Proper adherence to the HTTP protocol
must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server version
Specifies the server software version. You may want to override this. The format is multiple whitespace-
separated strings, where each string is of the form name[/version]. For example,’BaseHTTP/0.2’ .

sys version
Contains the Python system version, in a form usable by theversion string method and the
server version class variable. For example,’Python/1.4’ .

error message format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed format
specifiers, so the format operand must be a dictionary. Thecodekey should be an integer, specifying the
numeric HTTP error code value.messageshould be a string containing a (detailed) error message of what
occurred, andexplainshould be an explanation of the error code number. Defaultmessageandexplain
values can found in theresponsesclass variable.

protocol version
This specifies the HTTP protocol version used in responses. If set to’HTTP/1.1’ , the server will permit
HTTP persistent connections; however, your servermust then include an accurateContent-Length
header (usingsend header()) in all of its responses to clients. For backwards compatibility, the setting
defaults to’HTTP/1.0’ .

MessageClass
Specifies arfc822.Message -like class to parse HTTP headers. Typically, this is not overridden, and it
defaults tomimetools.Message .

responses
This variable contains a mapping of error code integers to two-element tuples containing a short and
long message. For example,{ code: (shortmessage, longmessage)} . The shortmessageis usu-
ally used as themessagekey in an error response, andlongmessageas the explain key (see the
error message format class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle ()
Callshandle one request() once (or, if persistent connections are enabled, multiple times) to handle
incoming HTTP requests. You should never need to override it; instead, implement appropriatedo *()
methods.

handle one request ()
This method will parse and dispatch the request to the appropriatedo *() method. You should never need
to override it.

send error (code[, message])
Sends and logs a complete error reply to the client. The numericcodespecifies the HTTP error code, with
messageas optional, more specific text. A complete set of headers is sent, followed by text composed using
theerror message format class variable.

send response (code[, message])
Sends a response header and logs the accepted request. The HTTP response line is sent, followed byServer
andDate headers. The values for these two headers are picked up from theversion string() and
date time string() methods, respectively.

send header (keyword, value)
Writes a specific HTTP header to the output stream.keywordshould specify the header keyword, withvalue
specifying its value.

end headers ()
Sends a blank line, indicating the end of the HTTP headers in the response.

log request ([code[, size]])
Logs an accepted (successful) request.codeshould specify the numeric HTTP code associated with the

446 Chapter 11. Internet Protocols and Support

response. If a size of the response is available, then it should be passed as thesizeparameter.

log error (...)
Logs an error when a request cannot be fulfilled. By default, it passes the message tolog message() ,
so it takes the same arguments (formatand additional values).

log message (format, ...)
Logs an arbitrary message tosys.stderr . This is typically overridden to create custom error logging
mechanisms. Theformatargument is a standard printf-style format string, where the additional arguments
to log message() are applied as inputs to the formatting. The client address and current date and time
are prefixed to every message logged.

version string ()
Returns the server software’s version string. This is a combination of theserver version and
sys version class variables.

date time string ()
Returns the current date and time, formatted for a message header.

log data time string ()
Returns the current date and time, formatted for logging.

address string ()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP address.

See Also:

ModuleCGIHTTPServer (section 11.18):
Extended request handler that supports CGI scripts.

ModuleSimpleHTTPServer (section 11.17):
Basic request handler that limits response to files actually under the document root.

11.17 SimpleHTTPServer — Simple HTTP request handler

The SimpleHTTPServer module defines a request-handler class, interface compatible with
BaseHTTPServer.BaseHTTPRequestHandler which serves files only from a base directory.

TheSimpleHTTPServer module defines the following class:

classSimpleHTTPRequestHandler (request, clientaddress, server)
This class is used, to serve files from current directory and below, directly mapping the directory structure
to HTTP requests.

A lot of the work is done by the base classBaseHTTPServer.BaseHTTPRequestHandler , such as
parsing the request. This class implements thedo GET() anddo HEAD() functions.

TheSimpleHTTPRequestHandler defines the following member variables:

server version
This will be "SimpleHTTP/" + version , where version is defined in the module.

extensions map
A dictionary mapping suffixes into MIME types. Default is signified by an empty string, and is considered
to betext/plain . The mapping is used case-insensitively, and so should contain only lower-cased keys.

TheSimpleHTTPRequestHandler defines the following methods:

do HEAD()
This method serves the’HEAD’ request type: it sends the headers it would send for the equivalentGET
request. See thedo GET() method for more complete explanation of the possible headers.

do GET()
The request is mapped to a local file by interpreting the request as a path relative to the current working
directory.

If the request was mapped to a directory, a403 respond is output, followed by the explanation

11.17. SimpleHTTPServer — Simple HTTP request handler 447

’Directory listing not supported’ . Any IOError exception in opening the requested file,
is mapped to a404 , ’File not found’ error. Otherwise, the content type is guessed using theexten-
sions mapvariable.

A ’Content-type:’ with the guessed content type is output, and then a blank line, signifying end of
headers, and then the contents of the file. The file is always opened in binary mode.

For example usage, see the implementation of thetest() function.

See Also:

ModuleBaseHTTPServer (section 11.16):
Base class implementation for Web server and request handler.

11.18 CGIHTTPServer — CGI-capable HTTP request handler

The CGIHTTPServer module defines a request-handler class, interface compati-
ble with BaseHTTPServer.BaseHTTPRequestHandler and inherits behavior from
SimpleHTTPServer.SimpleHTTPRequestHandler but can also run CGI scripts.

Note: This module can run CGI scripts on UNIX and Windows systems; on Mac OS it will only be able to run
Python scripts within the same process as itself.

TheCGIHTTPServer module defines the following class:

classCGIHTTPRequestHandler (request, clientaddress, server)
This class is used to serve either files or output of CGI scripts from the current directory and be-
low. Note that mapping HTTP hierarchic structure to local directory structure is exactly as in
SimpleHTTPServer.SimpleHTTPRequestHandler .

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a CGI script.
Only directory-based CGI are used — the other common server configuration is to treat special extensions
as denoting CGI scripts.

Thedo GET() anddo HEAD() functions are modified to run CGI scripts and serve the output, instead
of serving files, if the request leads to somewhere below thecgi directories path.

TheCGIHTTPRequestHandler defines the following data member:

cgi directories
This defaults to[’/cgi-bin’, ’/htbin’] and describes directories to treat as containing CGI scripts.

TheCGIHTTPRequestHandler defines the following methods:

do POST()
This method serves the’POST’ request type, only allowed for CGI scripts. Error 501, ”Can only POST to
CGI scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI script will
be translated to error 403.

For example usage, see the implementation of thetest() function.

See Also:

ModuleBaseHTTPServer (section 11.16):
Base class implementation for Web server and request handler.

11.19 Cookie — HTTP state management

TheCookie module defines classes for abstracting the concept of cookies, an HTTP state management mecha-
nism. It supports both simple string-only cookies, and provides an abstraction for having any serializable data-type
as cookie value.

448 Chapter 11. Internet Protocols and Support

The module formerly strictly applied the parsing rules described in the RFC 2109 and RFC 2068 specifications. It
has since been discovered that MSIE 3.0x doesn’t follow the character rules outlined in those specs. As a result,
the parsing rules used are a bit less strict.

exceptionCookieError
Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrectSet-Cookie: header, etc.

classBaseCookie ([input])
This class is a dictionary-like object whose keys are strings and whose values areMorsel instances. Note
that upon setting a key to a value, the value is first converted to aMorsel containing the key and the value.

If input is given, it is passed to theload() method.

classSimpleCookie ([input])
This class derives fromBaseCookie and overridesvalue decode() andvalue encode() to be
the identity andstr() respectively.

classSerialCookie ([input])
This class derives fromBaseCookie and overridesvalue decode() andvalue encode() to be
thepickle.loads() andpickle.dumps() .

Deprecated since release 2.3.Reading pickled values from untrusted cookie data is a huge security hole, as
pickle strings can be crafted to cause arbitrary code to execute on your server. It is supported for backwards
compatibility only, and may eventually go away.

classSmartCookie ([input])
This class derives fromBaseCookie . It overridesvalue decode() to bepickle.loads() if it is
a valid pickle, and otherwise the value itself. It overridesvalue encode() to bepickle.dumps()
unless it is a string, in which case it returns the value itself.

Deprecated since release 2.3.The same security warning fromSerialCookie applies here.

A further security note is warranted. For backwards compatibility, theCookie module exports a class named
Cookie which is just an alias forSmartCookie . This is probably a mistake and will likely be removed in a
future version. You should not use theCookie class in your applications, for the same reason why you should
not use theSerialCookie class.

See Also:

RFC 2109, “HTTP State Management Mechanism”
This is the state management specification implemented by this module.

11.19.1 Cookie Objects

value decode (val)
Return a decoded value from a string representation. Return value can be any type. This method does
nothing inBaseCookie — it exists so it can be overridden.

value encode (val)
Return an encoded value.val can be any type, but return value must be a string. This method does nothing
in BaseCookie — it exists so it can be overridden

In general, it should be the case thatvalue encode() and value decode() are inverses on the
range ofvalue decode.

output ([attrs[, header[, sep]]])
Return a string representation suitable to be sent as HTTP headers.attrs and headerare sent to each
Morsel ’s output() method.sepis used to join the headers together, and is by default a newline.

js output ([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP headers was sent.

The meaning forattrs is the same as inoutput() .

load (rawdata)
If rawdatais a string, parse it as anHTTP COOKIEand add the values found there asMorsel s. If it is a
dictionary, it is equivalent to:

11.19. Cookie — HTTP state management 449

for k, v in rawdata.items():
cookie[k] = v

11.19.2 Morsel Objects

classMorsel ()
Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid RFC 2109 attributes, which
are

•expires

•path

•comment

•domain

•max-age

•secure

•version

The keys are case-insensitive.

value
The value of the cookie.

coded value
The encoded value of the cookie — this is what should be sent.

key
The name of the cookie.

set (key, value, codedvalue)
Set thekey, valueandcoded valuemembers.

isReservedKey (K)
WhetherK is a member of the set of keys of aMorsel .

output ([attrs[, header]])
Return a string representation of the Morsel, suitable to be sent as an HTTP header. By default, all the
attributes are included, unlessattrs is given, in which case it should be a list of attributes to use.headeris
by default"Set-Cookie:" .

js output ([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP header was sent.

The meaning forattrs is the same as inoutput() .

OutputString ([attrs])
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning forattrs is the same as inoutput() .

11.19.3 Example

The following example demonstrates how to use theCookie module.

450 Chapter 11. Internet Protocols and Support

>>> import Cookie
>>> C = Cookie.SimpleCookie()
>>> C = Cookie.SerialCookie()
>>> C = Cookie.SmartCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> print C # generate HTTP headers
Set-Cookie: sugar=wafer;
Set-Cookie: fig=newton;
>>> print C.output() # same thing
Set-Cookie: sugar=wafer;
Set-Cookie: fig=newton;
>>> C = Cookie.SmartCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print C.output(header="Cookie:")
Cookie: rocky=road; Path=/cookie;
>>> print C.output(attrs=[], header="Cookie:")
Cookie: rocky=road;
>>> C = Cookie.SmartCookie()
>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)
>>> print C
Set-Cookie: vienna=finger;
Set-Cookie: chips=ahoy;
>>> C = Cookie.SmartCookie()
>>> C.load(’keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";’)
>>> print C
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;";
>>> C = Cookie.SmartCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> print C
Set-Cookie: oreo=doublestuff; Path=/;
>>> C = Cookie.SmartCookie()
>>> C["twix"] = "none for you"
>>> C["twix"].value
’none for you’
>>> C = Cookie.SimpleCookie()
>>> C["number"] = 7 # equivalent to C["number"] = str(7)
>>> C["string"] = "seven"
>>> C["number"].value
’7’
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number=7;
Set-Cookie: string=seven;
>>> C = Cookie.SerialCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number="I7\012.";
Set-Cookie: string="S’seven’\012p1\012.";
>>> C = Cookie.SmartCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number="I7\012.";
Set-Cookie: string=seven;

11.19. Cookie — HTTP state management 451

11.20 xmlrpclib — XML-RPC client access

New in version 2.2.

XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP as a transport. With it, a client
can call methods with parameters on a remote server (the server is named by a URI) and get back structured data.
This module supports writing XML-RPC client code; it handles all the details of translating between conformable
Python objects and XML on the wire.

classServerProxy (uri[, transport[, encoding[, verbose[, allow none]]]])
A ServerProxy instance is an object that manages communication with a remote XML-RPC server. The
required first argument is a URI (Uniform Resource Indicator), and will normally be the URL of the server.
The optional second argument is a transport factory instance; by default it is an internalSafeTransport
instance for https: URLs and an internal HTTPTransport instance otherwise. The optional third argu-
ment is an encoding, by default UTF-8. The optional fourth argument is a debugging flag. Ifallow none
is true, the Python constantNone will be translated into XML; the default behaviour is forNone to raise
a TypeError . This is a commonly-used extension to the XML-RPC specification, but isn’t supported by
all clients and servers; seehttp://ontosys.com/xml-rpc/extensions.html for a description.

Both the HTTP and HTTPS transports support the URL syntax extension for HTTP Basic Authentication:
http://user:pass@host:port/path . The user:pass portion will be base64-encoded as an
HTTP ‘Authorization’ header, and sent to the remote server as part of the connection process when invoking
an XML-RPC method. You only need to use this if the remote server requires a Basic Authentication user
and password.

The returned instance is a proxy object with methods that can be used to invoke corresponding RPC calls on
the remote server. If the remote server supports the introspection API, the proxy can also be used to query
the remote server for the methods it supports (service discovery) and fetch other server-associated metadata.

ServerProxy instance methods take Python basic types and objects as arguments and return Python
basic types and classes. Types that are conformable (e.g. that can be marshalled through XML), include the
following (and except where noted, they are unmarshalled as the same Python type):

Name Meaning
boolean TheTrue andFalse constants
integers Pass in directly
floating-point numbers Pass in directly
strings Pass in directly
arrays Any Python sequence type containing conformable elements. Arrays are returned as lists
structures A Python dictionary. Keys must be strings, values may be any conformable type.
dates in seconds since the epoch; pass in an instance of theDateTime wrapper class
binary data pass in an instance of theBinary wrapper class

This is the full set of data types supported by XML-RPC. Method calls may also raise a specialFault
instance, used to signal XML-RPC server errors, orProtocolError used to signal an error in the
HTTP/HTTPS transport layer. Note that even though starting with Python 2.2 you can subclass builtin
types, the xmlrpclib module currently does not marshal instances of such subclasses.

When passing strings, characters special to XML such as ‘<’, ‘ >’, and ‘&’ will be automatically escaped.
However, it’s the caller’s responsibility to ensure that the string is free of characters that aren’t allowed in
XML, such as the control characters with ASCII values between 0 and 31; failing to do this will result in
an XML-RPC request that isn’t well-formed XML. If you have to pass arbitrary strings via XML-RPC, use
theBinary wrapper class described below.

Server is retained as an alias forServerProxy for backwards compatibility. New code should use
ServerProxy .

See Also:

XML-RPC HOWTO
(http://xmlrpc-c.sourceforge.net/xmlrpc-howto/xmlrpc-howto.html)

A good description of XML operation and client software in several languages. Contains pretty much
everything an XML-RPC client developer needs to know.

XML-RPC-Hacks page

452 Chapter 11. Internet Protocols and Support

(http://xmlrpc-c.sourceforge.net/hacks.php)
Extensions for various open-source libraries to support instrospection and multicall.

11.20.1 ServerProxy Objects

A ServerProxy instance has a method corresponding to each remote procedure call accepted by the XML-
RPC server. Calling the method performs an RPC, dispatched by both name and argument signature (e.g. the
same method name can be overloaded with multiple argument signatures). The RPC finishes by returning a value,
which may be either returned data in a conformant type or aFault or ProtocolError object indicating an
error.

Servers that support the XML introspection API support some common methods grouped under the reserved
system member:

system.listMethods ()
This method returns a list of strings, one for each (non-system) method supported by the XML-RPC server.

system.methodSignature (name)
This method takes one parameter, the name of a method implemented by the XML-RPC server.It returns an
array of possible signatures for this method. A signature is an array of types. The first of these types is the
return type of the method, the rest are parameters.

Because multiple signatures (ie. overloading) is permitted, this method returns a list of signatures rather
than a singleton.

Signatures themselves are restricted to the top level parameters expected by a method. For instance if a
method expects one array of structs as a parameter, and it returns a string, its signature is simply ”string,
array”. If it expects three integers and returns a string, its signature is ”string, int, int, int”.

If no signature is defined for the method, a non-array value is returned. In Python this means that the type
of the returned value will be something other that list.

system.methodHelp (name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It returns
a documentation string describing the use of that method. If no such string is available, an empty string is
returned. The documentation string may contain HTML markup.

Introspection methods are currently supported by servers written in PHP, C and Microsoft .NET. Partial introspec-
tion support is included in recent updates to UserLand Frontier. Introspection support for Perl, Python and Java is
available at the XML-RPC Hacks page.

11.20.2 Boolean Objects

This class may be initialized from any Python value; the instance returned depends only on its truth value. It
supports various Python operators throughcmp () , repr () , int () , and nonzero ()
methods, all implemented in the obvious ways.

It also has the following method, supported mainly for internal use by the unmarshalling code:

encode (out)
Write the XML-RPC encoding of this Boolean item to the out stream object.

11.20.3 DateTime Objects

This class may initialized from date in seconds since the epoch, a time tuple, or an ISO 8601 time/date string. It
has the following methods, supported mainly for internal use by the marshalling/unmarshalling code:

decode (string)
Accept a string as the instance’s new time value.

encode (out)
Write the XML-RPC encoding of this DateTime item to the out stream object.

11.20. xmlrpclib — XML-RPC client access 453

It also supports certain of Python’s built-in operators throughcmp and repr methods.

11.20.4 Binary Objects

This class may initialized from string data (which may include NULs). The primary access to the content of a
Binary object is provided by an attribute:

data
The binary data encapsulated by theBinary instance. The data is provided as an 8-bit string.

Binary objects have the following methods, supported mainly for internal use by the marshalling/unmarshalling
code:

decode (string)
Accept a base64 string and decode it as the instance’s new data.

encode (out)
Write the XML-RPC base 64 encoding of this binary item to the out stream object.

It also supports certain of Python’s built-in operators through acmp () method.

11.20.5 Fault Objects

A Fault object encapsulates the content of an XML-RPC fault tag. Fault objects have the following members:

faultCode
A string indicating the fault type.

faultString
A string containing a diagnostic message associated with the fault.

11.20.6 ProtocolError Objects

A ProtocolError object describes a protocol error in the underlying transport layer (such as a 404 ‘not found’
error if the server named by the URI does not exist). It has the following members:

url
The URI or URL that triggered the error.

errcode
The error code.

errmsg
The error message or diagnostic string.

headers
A string containing the headers of the HTTP/HTTPS request that triggered the error.

11.20.7 Convenience Functions

boolean (value)
Convert any Python value to one of the XML-RPC Boolean constants,True or False .

binary (data)
Trivially convert any Python string to aBinary object.

454 Chapter 11. Internet Protocols and Support

11.20.8 Example of Client Usage

simple test program (from the XML-RPC specification)

server = ServerProxy("http://localhost:8000") # local server
server = ServerProxy("http://betty.userland.com")

print server

try:
print server.examples.getStateName(41)

except Error, v:
print "ERROR", v

11.21 SimpleXMLRPCServer — Basic XML-RPC server

The SimpleXMLRPCServer module provides a basic server framework for XML-RPC servers written in
Python. Servers can either be free standing, usingSimpleXMLRPCServer , or embedded in a CGI environ-
ment, usingCGIXMLRPCRequestHandler .

classSimpleXMLRPCServer (addr[, requestHandler[, logRequests]])
Create a new server instance. TherequestHandlerparameter should be a factory for request handler in-
stances; it defaults toSimpleXMLRPCRequestHandler . Theaddr andrequestHandlerparameters are
passed to theSocketServer .TCPServer constructor. IflogRequestsis true (the default), requests will
be logged; setting this parameter to false will turn off logging. This class provides methods for registration
of functions that can be called by the XML-RPC protocol.

classCGIXMLRPCRequestHandler ()
Create a new instance to handle XML-RPC requests in a CGI environment. New in version 2.3.

classSimpleXMLRPCRequestHandler ()
Create a new request handler instance. This request handler supportsPOSTrequests and modifies logging
so that thelogRequestsparameter to theSimpleXMLRPCServer constructor parameter is honored.

11.21.1 SimpleXMLRPCServer Objects

TheSimpleXMLRPCServer class is based onSocketServer.TCPServer and provides a means of creat-
ing simple, stand alone XML-RPC servers.

register function (function[, name])
Register a function that can respond to XML-RPC requests. Ifnameis given, it will be the method name
associated withfunction, otherwisefunction. name will be used. namecan be either a normal or
Unicode string, and may contain characters not legal in Python identifiers, including the period character.

register instance (instance[, allow dotted names])
Register an object which is used to expose method names which have not been registered using
register function() . If instancecontains a dispatch() method, it is called with the requested
method name and the parameters from the request; the return value is returned to the client as the result. If
instancedoes not have adispatch() method, it is searched for an attribute matching the name of the
requested method.

If the optionalallow dotted namesargument is true and the instance does not have adispatch()
method, then if the requested method name contains periods, each component of the method name is
searched for individually, with the effect that a simple hierarchical search is performed. The value found
from this search is then called with the parameters from the request, and the return value is passed back to
the client.

11.21. SimpleXMLRPCServer — Basic XML-RPC server 455

Warning: Enabling theallow dotted namesoption allows intruders to access your module’s global
variables and may allow intruders to execute arbitrary code on your machine. Only use this option on a
secure, closed network.

Changed in version 2.3.5, 2.4.1:allow dotted nameswas added to plug a security hole; prior versions are
insecure.

register introspection functions ()
Registers the XML-RPC introspection functionssystem.listMethods , system.methodHelp and
system.methodSignature . New in version 2.3.

register multicall functions ()
Registers the XML-RPC multicall function system.multicall.

Example:

class MyFuncs:
def div(self, x, y) : return x // y

server = SimpleXMLRPCServer(("localhost", 8000))
server.register_function(pow)
server.register_function(lambda x,y: x+y, ’add’)
server.register_introspection_functions()
server.register_instance(MyFuncs())
server.serve_forever()

11.21.2 CGIXMLRPCRequestHandler

TheCGIXMLRPCRequestHandler class can be used to handle XML-RPC requests sent to Python CGI scripts.

register function (function[, name])
Register a function that can respond to XML-RPC requests. Ifnameis given, it will be the method name
associated with function, otherwisefunction. name will be used. namecan be either a normal or
Unicode string, and may contain characters not legal in Python identifiers, including the period character.

register instance (instance)
Register an object which is used to expose method names which have not been registered using
register function() . If instance contains adispatch() method, it is called with the requested
method name and the parameters from the request; the return value is returned to the client as the result. If
instance does not have adispatch() method, it is searched for an attribute matching the name of the
requested method; if the requested method name contains periods, each component of the method name is
searched for individually, with the effect that a simple hierarchical search is performed. The value found
from this search is then called with the parameters from the request, and the return value is passed back to
the client.

register introspection functions ()
Register the XML-RPC introspection functionssystem.listMethods , system.methodHelp and
system.methodSignature .

register multicall functions ()
Register the XML-RPC multicall functionsystem.multicall .

handle request ([request text = None])
Handle a XML-RPC request. Ifrequest text is given, it should be the POST data provided by the HTTP
server, otherwise the contents of stdin will be used.

Example:

456 Chapter 11. Internet Protocols and Support

class MyFuncs:
def div(self, x, y) : return div(x,y)

handler = CGIXMLRPCRequestHandler()
handler.register_function(pow)
handler.register_function(lambda x,y: x+y, ’add’)
handler.register_introspection_functions()
handler.register_instance(MyFuncs())
handler.handle_request()

11.22 DocXMLRPCServer — Self-documenting XML-RPC server

New in version 2.3.

TheDocXMLRPCServer module extends the classes found inSimpleXMLRPCServer to serve HTML doc-
umentation in response to HTTP GET requests. Servers can either be free standing, usingDocXMLRPCServer ,
or embedded in a CGI environment, usingDocCGIXMLRPCRequestHandler .

classDocXMLRPCServer (addr[, requestHandler[, logRequests]])
Create a new server instance. All parameters have the same meaning as for
SimpleXMLRPCServer.SimpleXMLRPCServer ; requestHandler defaults to
DocXMLRPCRequestHandler .

classDocCGIXMLRPCRequestHandler ()
Create a new instance to handle XML-RPC requests in a CGI environment.

classDocXMLRPCRequestHandler ()
Create a new request handler instance. This request handler supports XML-RPC POST requests, documen-
tation GET requests, and modifies logging so that thelogRequestsparameter to theDocXMLRPCServer
constructor parameter is honored.

11.22.1 DocXMLRPCServer Objects

TheDocXMLRPCServer class is derived fromSimpleXMLRPCServer.SimpleXMLRPCServer and pro-
vides a means of creating self-documenting, stand alone XML-RPC servers. HTTP POST requests are handled
as XML-RPC method calls. HTTP GET requests are handled by generating pydoc-style HTML documentation.
This allows a server to provide its own web-based documentation.

set server title (server title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML ”title”
element.

set server name(server name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a ”h1” element.

set server documentation (server documentation)
Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

11.22.2 DocCGIXMLRPCRequestHandler

TheDocCGIXMLRPCRequestHandler class is derived fromSimpleXMLRPCServer.CGIXMLRPCRequestHandler
and provides a means of creating self-documenting, XML-RPC CGI scripts. HTTP POST requests are handled
as XML-RPC method calls. HTTP GET requests are handled by generating pydoc-style HTML documentation.
This allows a server to provide its own web-based documentation.

11.22. DocXMLRPCServer — Self-documenting XML-RPC server 457

set server title (server title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML ”title”
element.

set server name(server name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a ”h1” element.

set server documentation (server documentation)
Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

11.23 asyncore — Asynchronous socket handler

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.” Multi-
threaded programming is the simplest and most popular way to do it, but there is another very different technique,
that lets you have nearly all the advantages of multi-threading, without actually using multiple threads. It’s re-
ally only practical if your program is largely I/O bound. If your program is processor bound, then pre-emptive
scheduled threads are probably what you really need. Network servers are rarely processor bound, however.

If your operating system supports theselect() system call in its I/O library (and nearly all do), then you can
use it to juggle multiple communication channels at once; doing other work while your I/O is taking place in the
“background.” Although this strategy can seem strange and complex, especially at first, it is in many ways easier
to understand and control than multi-threaded programming. Theasyncore module solves many of the difficult
problems for you, making the task of building sophisticated high-performance network servers and clients a snap.
For “conversational” applications and protocols the companionasynchat module is invaluable.

The basic idea behind both modules is to create one or more networkchannels, instances of class
asyncore.dispatcher andasynchat.async chat . Creating the channels adds them to a global map,
used by theloop() function if you do not provide it with your ownmap.

Once the initial channel(s) is(are) created, calling theloop() function activates channel service, which continues
until the last channel (including any that have been added to the map during asynchronous service) is closed.

loop ([timeout[, use poll[, map]]])
Enter a polling loop that only terminates after all open channels have been closed. All arguments are
optional. Thetimeoutargument sets the timeout parameter for the appropriateselect() or poll() call,
measured in seconds; the default is 30 seconds. Theuse poll parameter, if true, indicates thatpoll()
should be used in preference toselect() (the default isFalse). The mapparameter is a dictionary
whose items are the channels to watch. As channels are closed they are deleted from their map. Ifmap
is omitted, a global map is used (this map is updated by the default classinit () – make sure you
extend, rather than override, init () if you want to retain this behavior).

Channels (instances ofasyncore.dispatcher , asynchat.async chat and subclasses thereof)
can freely be mixed in the map.

classdispatcher ()
Thedispatcher class is a thin wrapper around a low-level socket object. To make it more useful, it has a
few methods for event-handling which are called from the asynchronous loop. Otherwise, it can be treated
as a normal non-blocking socket object.

Two class attributes can be modified, to improve performance, or possibly even to conserve memory.

ac in buffer size
The asynchronous input buffer size (default4096).

ac out buffer size
The asynchronous output buffer size (default4096).

The firing of low-level events at certain times or in certain connection states tells the asynchronous loop
that certain higher-level events have taken place. For example, if we have asked for a socket to connect
to another host, we know that the connection has been made when the socket becomes writable for the

458 Chapter 11. Internet Protocols and Support

first time (at this point you know that you may write to it with the expectation of success). The implied
higher-level events are:

Event Description
handle connect() Implied by the first write event
handle close() Implied by a read event with no data available
handle accept() Implied by a read event on a listening socket

During asynchronous processing, each mapped channel’sreadable() andwritable() methods are
used to determine whether the channel’s socket should be added to the list of channelsselect() ed or
poll() ed for read and write events.

Thus, the set of channel events is larger than the basic socket events. The full set of methods that can be overridden
in your subclass follows:

handle read ()
Called when the asynchronous loop detects that aread() call on the channel’s socket will succeed.

handle write ()
Called when the asynchronous loop detects that a writable socket can be written. Often this method will
implement the necessary buffering for performance. For example:

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

handle expt ()
Called when there is out of band (OOB) data for a socket connection. This will almost never happen, as
OOB is tenuously supported and rarely used.

handle connect ()
Called when the active opener’s socket actually makes a connection. Might send a “welcome” banner, or
initiate a protocol negotiation with the remote endpoint, for example.

handle close ()
Called when the socket is closed.

handle error ()
Called when an exception is raised and not otherwise handled. The default version prints a condensed
traceback.

handle accept ()
Called on listening channels (passive openers) when a connection can be established with a new remote
endpoint that has issued aconnect() call for the local endpoint.

readable ()
Called each time around the asynchronous loop to determine whether a channel’s socket should be added to
the list on which read events can occur. The default method simply returnsTrue , indicating that by default,
all channels will be interested in read events.

writable ()
Called each time around the asynchronous loop to determine whether a channel’s socket should be added
to the list on which write events can occur. The default method simply returnsTrue , indicating that by
default, all channels will be interested in write events.

In addition, each channel delegates or extends many of the socket methods. Most of these are nearly identical to
their socket partners.

create socket (family, type)
This is identical to the creation of a normal socket, and will use the same options for creation. Refer to the
socket documentation for information on creating sockets.

connect (address)
As with the normal socket object,addressis a tuple with the first element the host to connect to, and the
second the port number.

11.23. asyncore — Asynchronous socket handler 459

send (data)
Senddatato the remote end-point of the socket.

recv (buffer size)
Read at mostbuffer sizebytes from the socket’s remote end-point. An empty string implies that the channel
has been closed from the other end.

listen (backlog)
Listen for connections made to the socket. Thebacklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

bind (address)
Bind the socket toaddress. The socket must not already be bound. (The format ofaddressdepends on the
address family — see above.)

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return
value is a pair(conn, address) whereconnis anewsocket object usable to send and receive data on the
connection, andaddressis the address bound to the socket on the other end of the connection.

close ()
Close the socket. All future operations on the socket object will fail. The remote end-point will receive no
more data (after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

11.23.1 asyncore Example basic HTTP client

As a basic example, below is a very basic HTTP client that uses thedispatcher class to implement its socket
handling:

class http_client(asyncore.dispatcher):
def __init__(self, host,path):

asyncore.dispatcher.__init__(self)
self.path = path
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((host, 80))
self.buffer = ’GET %s HTTP/1.0\r\n\r\n’ % self.path

def handle_connect(self):
pass

def handle_read(self):
data = self.recv(8192)
print data

def writable(self):
return (len(self.buffer) > 0)

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

11.24 asynchat — Asynchronous socket command/response han-
dler

This module builds on theasyncore infrastructure, simplifying asynchronous clients and servers and mak-
ing it easier to handle protocols whose elements are terminated by arbitrary strings, or are of variable length.
asynchat defines the abstract classasync chat that you subclass, providing implementations of the

460 Chapter 11. Internet Protocols and Support

collect incoming data() andfound terminator() methods. It uses the same asynchronous loop
asasyncore , and the two types of channel,asyncore.dispatcher andasynchat.async chat , can
freely be mixed in the channel map. Typically anasyncore.dispatcher server channel generates new
asynchat.async chat channel objects as it receives incoming connection requests.

classasync chat ()
This class is an abstract subclass ofasyncore.dispatcher . To make practical use of the
code you must subclassasync chat , providing meaningfulcollect incoming data() and
found terminator() methods. Theasyncore.dispatcher methods can be used, although not
all make sense in a message/response context.

Like asyncore.dispatcher , async chat defines a set of events that are generated by an analysis of
socket conditions after aselect() call. Once the polling loop has been started theasync chat object’s
methods are called by the event-processing framework with no action on the part of the programmer.

Unlike asyncore.dispatcher , async chat allows you to define a first-in-first-out queue (fifo) of
producers. A producer need have only one method,more() , which should return data to be transmitted on
the channel. The producer indicates exhaustion (i.e. that it contains no more data) by having itsmore()
method return the empty string. At this point theasync chat object removes the producer from the fifo
and starts using the next producer, if any. When the producer fifo is empty thehandle write() method
does nothing. You use the channel object’sset terminator() method to describe how to recognize
the end of, or an important breakpoint in, an incoming transmission from the remote endpoint.

To build a functioningasync chat subclass your input methodscollect incoming data() and
found terminator() must handle the data that the channel receives asynchronously. The methods are
described below.

close when done ()
Pushes aNone on to the producer fifo. When this producer is popped off the fifo it causes the channel to be
closed.

collect incoming data (data)
Called withdataholding an arbitrary amount of received data. The default method, which must be overrid-
den, raises aNotImplementedError exception.

discard buffers ()
In emergencies this method will discard any data held in the input and/or output buffers and the producer
fifo.

found terminator ()
Called when the incoming data stream matches the termination condition set byset terminator . The
default method, which must be overridden, raises aNotImplementedError exception. The buffered
input data should be available via an instance attribute.

get terminator ()
Returns the current terminator for the channel.

handle close ()
Called when the channel is closed. The default method silently closes the channel’s socket.

handle read ()
Called when a read event fires on the channel’s socket in the asynchronous loop. The default method
checks for the termination condition established byset terminator() , which can be either the ap-
pearance of a particular string in the input stream or the receipt of a particular number of characters.
When the terminator is found,handle read calls thefound terminator() method after calling
collect incoming data() with any data preceding the terminating condition.

handle write ()
Called when the application may write data to the channel. The default method calls the
initiate send() method, which in turn will callrefill buffer() to collect data from the pro-
ducer fifo associated with the channel.

push (data)
Creates asimple producer object (see below) containing the data and pushes it on to the channel’s
producer fifo to ensure its transmission. This is all you need to do to have the channel write the data
out to the network, although it is possible to use your own producers in more complex schemes to implement

11.24. asynchat — Asynchronous socket command/response handler 461

encryption and chunking, for example.

push with producer (producer)
Takes a producer object and adds it to the producer fifo associated with the channel. When all currently-
pushed producers have been exhausted the channel will consume this producer’s data by calling itsmore()
method and send the data to the remote endpoint.

readable ()
Should returnTrue for the channel to be included in the set of channels tested by theselect() loop for
readability.

refill buffer ()
Refills the output buffer by calling themore() method of the producer at the head of the fifo. If it is
exhausted then the producer is popped off the fifo and the next producer is activated. If the current producer
is, or becomes,None then the channel is closed.

set terminator (term)
Sets the terminating condition to be recognised on the channel.term may be any of three types of value,
corresponding to three different ways to handle incoming protocol data.

term Description
string Will call found terminator() when the string is found in the input stream
integer Will call found terminator() when the indicated number of characters have been received
None The channel continues to collect data forever

Note that any data following the terminator will be available for reading by the channel after
found terminator() is called.

writable ()
Should returnTrue as long as items remain on the producer fifo, or the channel is connected and the
channel’s output buffer is non-empty.

11.24.1 asynchat - Auxiliary Classes and Functions

classsimple producer (data[, buffer size=512])
A simple producer takes a chunk of data and an optional buffer size. Repeated calls to itsmore()
method yield successive chunks of the data no larger thanbuffer size.

more ()
Produces the next chunk of information from the producer, or returns the empty string.

classfifo ([list=None])
Each channel maintains afifo holding data which has been pushed by the application but not yet popped
for writing to the channel. Afifo is a list used to hold data and/or producers until they are required. If the
list argument is provided then it should contain producers or data items to be written to the channel.

is empty ()
ReturnsTrue iff the fifo is empty.

first ()
Returns the least-recentlypush() ed item from the fifo.

push (data)
Adds the given data (which may be a string or a producer object) to the producer fifo.

pop ()
If the fifo is not empty, returnsTrue, first() , deleting the popped item. ReturnsFalse, None for
an empty fifo.

The asynchat module also defines one utility function, which may be of use in network and textual analysis
operations.

find prefix at end (haystack, needle)
ReturnsTrue if string haystackends with any non-empty prefix of stringneedle.

462 Chapter 11. Internet Protocols and Support

11.24.2 asynchat Example

The following partial example shows how HTTP requests can be read withasync chat . A web server might
create anhttp request handler object for each incoming client connection. Notice that initially the chan-
nel terminator is set to match the blank line at the end of the HTTP headers, and a flag indicates that the headers
are being read.

Once the headers have been read, if the request is of type POST (indicating that further data are present in the
input stream) then theContent-Length: header is used to set a numeric terminator to read the right amount
of data from the channel.

Thehandle request() method is called once all relevant input has been marshalled, after setting the channel
terminator toNone to ensure that any extraneous data sent by the web client are ignored.

class http_request_handler(asynchat.async_chat):

def __init__(self, conn, addr, sessions, log):
asynchat.async_chat.__init__(self, conn=conn)
self.addr = addr
self.sessions = sessions
self.ibuffer = []
self.obuffer = ""
self.set_terminator("\r\n\r\n")
self.reading_headers = True
self.handling = False
self.cgi_data = None
self.log = log

def collect_incoming_data(self, data):
"""Buffer the data"""
self.ibuffer.append(data)

def found_terminator(self):
if self.reading_headers:

self.reading_headers = False
self.parse_headers("".join(self.ibuffer))
self.ibuffer = []
if self.op.upper() == "POST":

clen = self.headers.getheader("content-length")
self.set_terminator(int(clen))

else:
self.handling = True
self.set_terminator(None)
self.handle_request()

elif not self.handling:
self.set_terminator(None) # browsers sometimes over-send
self.cgi_data = parse(self.headers, "".join(self.ibuffer))
self.handling = True
self.ibuffer = []
self.handle_request()

11.24. asynchat — Asynchronous socket command/response handler 463

464

CHAPTER

TWELVE

Internet Data Handling

This chapter describes modules which support handling data formats commonly used on the Internet.

formatter Generic output formatter and device interface.
email.Iterators Iterate over a message object tree.
mailcap Mailcap file handling.
mailbox Read various mailbox formats.
mhlib Manipulate MH mailboxes from Python.
mimetools Tools for parsing MIME-style message bodies.
mimetypes Mapping of filename extensions to MIME types.
MimeWriter Generic MIME file writer.
mimify Mimification and unmimification of mail messages.
multifile Support for reading files which contain distinct parts, such as some MIME data.
rfc822 Parse RFC 2822 style mail messages.
base64 Encode and decode files using the MIME base64 data.
binascii Tools for converting between binary and variousASCII-encoded binary representations.
binhex Encode and decode files in binhex4 format.
quopri Encode and decode files using the MIME quoted-printable encoding.
uu Encode and decode files in uuencode format.
xdrlib Encoders and decoders for the External Data Representation (XDR).
netrc Loading of ‘.netrc’ files.
robotparser Loads a ‘robots.txt’ file and answers questions about fetchability of other URLs.
csv Write and read tabular data to and from delimited files.

12.1 formatter — Generic output formatting

This module supports two interface definitions, each with multiple implementations. Theformatter interface is
used by theHTMLParser class of thehtmllib module, and thewriter interface is required by the formatter
interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects.
Formatters manage several stack structures to allow various properties of a writer object to be changed and re-
stored; writers need not be able to handle relative changes nor any sort of “change back” operation. Specific
writer properties which may be controlled via formatter objects are horizontal alignment, font, and left margin
indentations. A mechanism is provided which supports providing arbitrary, non-exclusive style settings to a writer
as well. Additional interfaces facilitate formatting events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as
physical devices. The provided implementations all work with abstract devices. The interface makes available
mechanisms for setting the properties which formatter objects manage and inserting data into the output.

465

12.1.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces
described below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS IS
Value which can be used in the font specification passed to thepush font() method described below, or
as the new value to any otherpush property() method. Pushing theAS IS value allows the correspond-
ing pop property() method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end paragraph (blanklines)
Close any open paragraphs and insert at leastblanklinesbefore the next paragraph.

add line break ()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

add hor rule (*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph,
but the logical paragraph is not broken. The arguments and keywords are passed on to the writer’s
send line break() method.

add flowing data (data)
Provide data which should be formatted with collapsed whitespace. Whitespace from preceding and succes-
sive calls toadd flowing data() is considered as well when the whitespace collapse is performed.
The data which is passed to this method is expected to be word-wrapped by the output device. Note that
any word-wrapping still must be performed by the writer object due to the need to rely on device and font
information.

add literal data (data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab
characters, are considered legal in the value ofdata.

add label data (format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used for con-
structing bulleted or numbered lists. If theformatvalue is a string, it is interpreted as a format specification
for counter, which should be an integer. The result of this formatting becomes the value of the label; if
format is not a string it is used as the label value directly. The label value is passed as the only argument to
the writer’ssend label data() method. Interpretation of non-string label values is dependent on the
associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute label
values. Each character in the format string is copied to the label value, with some characters recognized
to indicate a transform on the counter value. Specifically, the character ‘1’ represents the counter value
formatter as an Arabic number, the characters ‘A’ and ‘a’ represent alphabetic representations of the counter
value in upper and lower case, respectively, and ‘I ’ and ‘i ’ represent the counter value in Roman numerals,
in upper and lower case. Note that the alphabetic and roman transforms require that the counter value be
greater than zero.

flush softspace ()
Send any pending whitespace buffered from a previous call toadd flowing data() to the associated
writer object. This should be called before any direct manipulation of the writer object.

push alignment (align)
Push a new alignment setting onto the alignment stack. This may beAS IS if no change is desired. If the
alignment value is changed from the previous setting, the writer’snew alignment() method is called
with thealign value.

pop alignment ()
Restore the previous alignment.

466 Chapter 12. Internet Data Handling

push font ((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set toAS IS are set to the
values passed in while others are maintained at their current settings. The writer’snew font() method
is called with the fully resolved font specification.

pop font ()
Restore the previous font.

push margin (margin)
Increase the number of left margin indentations by one, associating the logical tagmargin with the new
indentation. The initial margin level is0. Changed values of the logical tag must be true values; false values
other thanAS IS are not sufficient to change the margin.

pop margin ()
Restore the previous margin.

push style (*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A
tuple representing the entire stack, includingAS IS values, is passed to the writer’snew styles()
method.

pop style ([n = 1])
Pop the lastn style specifications passed topush style() . A tuple representing the revised stack,
includingAS IS values, is passed to the writer’snew styles() method.

set spacing (spacing)
Set the spacing style for the writer.

assert line data ([flag = 1])
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used
when the writer has been manipulated directly. The optionalflag argument can be set to false if the writer
manipulations produced a hard line break at the end of the output.

12.1.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these
classes without modification or subclassing.

classNullFormatter ([writer])
A formatter which does nothing. Ifwriter is omitted, aNullWriter instance is created. No methods
of the writer are called byNullFormatter instances. Implementations should inherit from this class if
implementing a writer interface but don’t need to inherit any implementation.

classAbstractFormatter (writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may
be used directly in most circumstances. It has been used to implement a full-featured World Wide Web
browser.

12.1.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described
below are the required interfaces which all writers must support once initialized. Note that while most applications
can use theAbstractFormatter class as a formatter, the writer must typically be provided by the application.

flush ()
Flush any buffered output or device control events.

new alignment (align)
Set the alignment style. Thealign value can be any object, but by convention is a string orNone, where
None indicates that the writer’s “preferred” alignment should be used. Conventionalalign values are
’left’ , ’center’ , ’right’ , and’justify’ .

new font (font)

12.1. formatter — Generic output formatting 467

Set the font style. The value offontwill be None, indicating that the device’s default font should be used, or
a tuple of the form(size, italic, bold, teletype) . Size will be a string indicating the size of font that should
be used; specific strings and their interpretation must be defined by the application. Theitalic, bold, and
teletypevalues are Boolean values specifying which of those font attributes should be used.

new margin (margin, level)
Set the margin level to the integerleveland the logical tag tomargin. Interpretation of the logical tag is at
the writer’s discretion; the only restriction on the value of the logical tag is that it not be a false value for
non-zero values oflevel.

new spacing (spacing)
Set the spacing style tospacing.

new styles (styles)
Set additional styles. Thestylesvalue is a tuple of arbitrary values; the valueAS IS should be ignored. The
stylestuple may be interpreted either as a set or as a stack depending on the requirements of the application
and writer implementation.

send line break ()
Break the current line.

send paragraph (blankline)
Produce a paragraph separation of at leastblanklineblank lines, or the equivalent. Theblanklinevalue will
be an integer. Note that the implementation will receive a call tosend line break() before this call
if a line break is needed; this method should not include ending the last line of the paragraph. It is only
responsible for vertical spacing between paragraphs.

send hor rule (*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application- and
writer-specific, and should be interpreted with care. The method implementation may assume that a line
break has already been issued viasend line break() .

send flowing data (data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls
to this method, the writer may assume that spans of multiple whitespace characters have been collapsed to
single space characters.

send literal data (data)
Output character data which has already been formatted for display. Generally, this should be interpreted to
mean that line breaks indicated by newline characters should be preserved and no new line breaks should
be introduced. The data may contain embedded newline and tab characters, unlike data provided to the
send formatted data() interface.

send label data (data)
Setdata to the left of the current left margin, if possible. The value ofdata is not restricted; treatment
of non-string values is entirely application- and writer-dependent. This method will only be called at the
beginning of a line.

12.1.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most applications
will need to derive new writer classes from theNullWriter class.

classNullWriter ()
A writer which only provides the interface definition; no actions are taken on any methods. This should be
the base class for all writers which do not need to inherit any implementation methods.

classAbstractWriter ()
A writer which can be used in debugging formatters, but not much else. Each method simply announces
itself by printing its name and arguments on standard output.

classDumbWriter ([file[, maxcol = 72]])
Simple writer class which writes output on the file object passed in asfile or, if file is omitted, on standard
output. The output is simply word-wrapped to the number of columns specified bymaxcol. This class is

468 Chapter 12. Internet Data Handling

suitable for reflowing a sequence of paragraphs.

12.2 email — An email and MIME handling package

New in version 2.2.

The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. It subsumes most of the functionality in several older standard modules such asrfc822 ,
mimetools , multifile , and other non-standard packages such asmimecntl . It is specificallynotdesigned
to do any sending of email messages to SMTP (RFC 2821) servers; that is the function of thesmtplib module.
The email package attempts to be as RFC-compliant as possible, supporting in addition to RFC 2822, such
MIME-related RFCs as RFC 2045-RFC 2047, and RFC 2231.

The primary distinguishing feature of theemail package is that it splits the parsing and generating of email
messages from the internalobject modelrepresentation of email. Applications using theemail package deal
primarily with objects; you can add sub-objects to messages, remove sub-objects from messages, completely re-
arrange the contents, etc. There is a separate parser and a separate generator which handles the transformation
from flat text to the object model, and then back to flat text again. There are also handy subclasses for some
common MIME object types, and a few miscellaneous utilities that help with such common tasks as extracting
and parsing message field values, creating RFC-compliant dates, etc.

The following sections describe the functionality of theemail package. The ordering follows a progression that
should be common in applications: an email message is read as flat text from a file or other source, the text is
parsed to produce the object structure of the email message, this structure is manipulated, and finally rendered
back into flat text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From there,
a similar progression can be taken as above.

Also included are detailed specifications of all the classes and modules that theemail package provides, the ex-
ception classes you might encounter while using theemail package, some auxiliary utilities, and a few examples.
For users of the oldermimelib package, or previous versions of theemail package, a section on differences
and porting is provided.

See Also:

Modulesmtplib (section 11.12):
SMTP protocol client

12.2.1 Representing an email message

The central class in theemail package is theMessage class; it is the base class for theemail object model.
Message provides the core functionality for setting and querying header fields, and for accessing message bodies.

Conceptually, aMessage object consists ofheadersandpayloads. Headers are RFC 2822 style field names and
values where the field name and value are separated by a colon. The colon is not part of either the field name or
the field value.

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also be
a single envelope header, also known as theUnix-From header or theFrom header. The payload is either a
string in the case of simple message objects or a list ofMessage objects for MIME container documents (e.g.
multipart/* andmessage/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface
for accessing both the headers and the payload. It provides convenience methods for generating a flat text repre-
sentation of the message object tree, for accessing commonly used header parameters, and for recursively walking
over the object tree.

Here are the methods of theMessage class:

classMessage ()
The constructor takes no arguments.

12.2. email — An email and MIME handling package 469

as string ([unixfrom])
Return the entire message flatten as a string. When optionalunixfrom is True , the envelope header is
included in the returned string.unixfromdefaults toFalse .

Note that this method is provided as a convenience and may not always format the message the way you
want. For more flexibility, instantiate aGenerator instance and use itsflatten() method directly.
For example:

from cStringIO import StringIO
from email.Generator import Generator
fp = StringIO()
g = Generator(fp, mangle_from_=False, maxheaderlen=60)
g.flatten(msg)
text = fp.getvalue()

str ()
Equivalent toas string(unixfrom=True) .

is multipart ()
ReturnTrue if the message’s payload is a list of sub-Message objects, otherwise returnFalse . When
is multipart() returns False, the payload should be a string object.

set unixfrom (unixfrom)
Set the message’s envelope header tounixfrom, which should be a string.

get unixfrom ()
Return the message’s envelope header. Defaults toNone if the envelope header was never set.

attach (payload)
Add the givenpayloadto the current payload, which must beNone or a list ofMessage objects before the
call. After the call, the payload will always be a list ofMessage objects. If you want to set the payload to
a scalar object (e.g. a string), useset payload() instead.

get payload ([i[, decode]])
Return a reference the current payload, which will be a list ofMessage objects whenis multipart()
is True , or a string whenis multipart() is False . If the payload is a list and you mutate the list
object, you modify the message’s payload in place.

With optional argumenti, get payload() will return the i-th element of the payload, counting from
zero, if is multipart() is True . An IndexError will be raised ifi is less than 0 or greater than or
equal to the number of items in the payload. If the payload is a string (i.e.is multipart() is False)
andi is given, aTypeError is raised.

Optionaldecodeis a flag indicating whether the payload should be decoded or not, according to theContent-
Transfer-Encoding: header. WhenTrue and the message is not a multipart, the payload will be decoded if
this header’s value is ‘quoted-printable ’ or ‘ base64 ’. If some other encoding is used, orContent-
Transfer-Encoding: header is missing, or if the payload has bogus base64 data, the payload is returned as-is
(undecoded). If the message is a multipart and thedecodeflag isTrue , thenNone is returned. The default
for decodeis False .

set payload (payload[, charset])
Set the entire message object’s payload topayload. It is the client’s responsibility to ensure the payload
invariants. Optionalcharsetsets the message’s default character set; seeset charset() for details.

Changed in version 2.2.2:charsetargument added.

set charset (charset)
Set the character set of the payload tocharset, which can either be aCharset instance (see
email.Charset), a string naming a character set, orNone. If it is a string, it will be converted to a
Charset instance. Ifcharsetis None, thecharset parameter will be removed from theContent-Type:
header. Anything else will generate aTypeError .

The message will be assumed to be of typetext/* encoded withcharset.input charset . It will
be converted tocharset.output charset and encoded properly, if needed, when generating the
plain text representation of the message. MIME headers (MIME-Version:, Content-Type:, Content-Transfer-
Encoding:) will be added as needed.

470 Chapter 12. Internet Data Handling

New in version 2.2.2.

get charset ()
Return theCharset instance associated with the message’s payload. New in version 2.2.2.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers. Note
that there are some semantic differences between these methods and a normal mapping (i.e. dictionary) interface.
For example, in a dictionary there are no duplicate keys, but here there may be duplicate message headers. Also,
in dictionaries there is no guaranteed order to the keys returned bykeys() , but in aMessage object, headers
are always returned in the order they appeared in the original message, or were added to the message later. Any
header deleted and then re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.

Note that in all cases, any envelope header present in the message is not included in the mapping interface.

len ()
Return the total number of headers, including duplicates.

contains (name)
Return true if the message object has a field namedname. Matching is done case-insensitively andname
should not include the trailing colon. Used for thein operator, e.g.:

if ’message-id’ in myMessage:
print ’Message-ID:’, myMessage[’message-id’]

getitem (name)
Return the value of the named header field.nameshould not include the colon field separator. If the header
is missing,None is returned; aKeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those field
values will be returned is undefined. Use theget all() method to get the values of all the extant named
headers.

setitem (name, val)
Add a header to the message with field namenameand valueval. The field is appended to the end of the
message’s existing fields.

Note that this doesnot overwrite or delete any existing header with the same name. If you want to ensure
that the new header is the only one present in the message with field namename, delete the field first, e.g.:

del msg[’subject’]
msg[’subject’] = ’Python roolz!’

delitem (name)
Delete all occurrences of the field with namenamefrom the message’s headers. No exception is raised if
the named field isn’t present in the headers.

has key (name)
Return true if the message contains a header field namedname, otherwise return false.

keys ()
Return a list of all the message’s header field names.

values ()
Return a list of all the message’s field values.

items ()
Return a list of 2-tuples containing all the message’s field headers and values.

get (name[, failobj])
Return the value of the named header field. This is identical togetitem () except that optional
failobj is returned if the named header is missing (defaults toNone).

Here are some additional useful methods:

get all (name[, failobj])

12.2. email — An email and MIME handling package 471

Return a list of all the values for the field namedname. If there are no such named headers in the message,
failobj is returned (defaults toNone).

add header (name, value, ** params)
Extended header setting. This method is similar tosetitem () except that additional header param-
eters can be provided as keyword arguments.nameis the header field to add andvalue is theprimary
value for the header.

For each item in the keyword argument dictionaryparams, the key is taken as the parameter name, with
underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter
will be added askey="value" unless the value isNone, in which case only the key will be added.

Here’s an example:

msg.add_header(’Content-Disposition’, ’attachment’, filename=’bud.gif’)

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

replace header (name, value)
Replace a header. Replace the first header found in the message that matchesname, retaining header order
and field name case. If no matching header was found, aKeyError is raised.

New in version 2.2.2.

get content type ()
Return the message’s content type. The returned string is coerced to lower case of the formmain-
type/subtype. If there was noContent-Type: header in the message the default type as given by
get default type() will be returned. Since according to RFC 2045, messages always have a de-
fault type,get content type() will always return a value.

RFC 2045 defines a message’s default type to betext/plain unless it appears inside amultipart/digest con-
tainer, in which case it would bemessage/rfc822. If the Content-Type: header has an invalid type specifica-
tion, RFC 2045 mandates that the default type betext/plain.

New in version 2.2.2.

get content maintype ()
Return the message’s main content type. This is themaintype part of the string returned by
get content type() .

New in version 2.2.2.

get content subtype ()
Return the message’s sub-content type. This is thesubtype part of the string returned by
get content type() .

New in version 2.2.2.

get default type ()
Return the default content type. Most messages have a default content type oftext/plain, except for messages
that are subparts ofmultipart/digest containers. Such subparts have a default content type ofmessage/rfc822.

New in version 2.2.2.

set default type (ctype)
Set the default content type.ctypeshould either betext/plain or message/rfc822, although this is not en-
forced. The default content type is not stored in theContent-Type: header.

New in version 2.2.2.

get params ([failobj[, header[, unquote]]])
Return the message’sContent-Type: parameters, as a list. The elements of the returned list are 2-tuples of
key/value pairs, as split on the ‘=’ sign. The left hand side of the ‘=’ is the key, while the right hand side
is the value. If there is no ‘=’ sign in the parameter the value is the empty string, otherwise the value is as
described inget param() and is unquoted if optionalunquoteis True (the default).

Optionalfailobj is the object to return if there is noContent-Type: header. Optionalheaderis the header to
search instead ofContent-Type:.

472 Chapter 12. Internet Data Handling

Changed in version 2.2.2:unquoteargument added.

get param (param[, failobj[, header[, unquote]]])
Return the value of theContent-Type: header’s parameterparamas a string. If the message has noContent-
Type: header or if there is no such parameter, thenfailobj is returned (defaults toNone).

Optionalheaderif given, specifies the message header to use instead ofContent-Type:.

Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-
tuple if the parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of the
form (CHARSET, LANGUAGE, VALUE). Note that bothCHARSETandLANGUAGEcan beNone, in
which case you should considerVALUEto be encoded in theus-ascii charset. You can usually ignore
LANGUAGE.

Your application should be prepared to deal with 3-tuple return values, and can convert the parameter to a
Unicode string like so:

param = msg.get_param(’foo’)
if isinstance(param, tuple):

param = unicode(param[2], param[0] or ’us-ascii’)

In any case, the parameter value (either the returned string, or theVALUEitem in the 3-tuple) is always
unquoted, unlessunquoteis set toFalse .

Changed in version 2.2.2:unquoteargument added, and 3-tuple return value possible.

set param (param, value[, header[, requote[, charset[, language]]]])
Set a parameter in theContent-Type: header. If the parameter already exists in the header, its value will be
replaced withvalue. If the Content-Type: header as not yet been defined for this message, it will be set to
text/plain and the new parameter value will be appended as per RFC 2045.

Optionalheaderspecifies an alternative header toContent-Type:, and all parameters will be quoted as nec-
essary unless optionalrequoteis False (the default isTrue).

If optional charsetis specified, the parameter will be encoded according to RFC 2231. Optionallanguage
specifies the RFC 2231 language, defaulting to the empty string. Bothcharsetand languageshould be
strings.

New in version 2.2.2.

del param (param[, header[, requote]])
Remove the given parameter completely from theContent-Type: header. The header will be re-written in
place without the parameter or its value. All values will be quoted as necessary unlessrequoteis False
(the default isTrue). Optionalheaderspecifies an alternative toContent-Type:.

New in version 2.2.2.

set type (type[, header][, requote])
Set the main type and subtype for theContent-Type: header. type must be a string in the formmain-
type/subtype, otherwise aValueError is raised.

This method replaces theContent-Type: header, keeping all the parameters in place. Ifrequoteis False ,
this leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the default).

An alternative header can be specified in theheaderargument. When theContent-Type: header is set a
MIME-Version: header is also added.

New in version 2.2.2.

get filename ([failobj])
Return the value of thefilename parameter of theContent-Disposition: header of the message, orfailobj
if either the header is missing, or has nofilename parameter. The returned string will always be unquoted
as perUtils.unquote() .

get boundary ([failobj])
Return the value of theboundary parameter of theContent-Type: header of the message, orfailobj if
either the header is missing, or has noboundary parameter. The returned string will always be unquoted
as perUtils.unquote() .

12.2. email — An email and MIME handling package 473

set boundary (boundary)
Set theboundary parameter of theContent-Type: header toboundary. set boundary() will always
quoteboundaryif necessary. AHeaderParseError is raised if the message object has noContent-Type:
header.

Note that using this method is subtly different than deleting the oldContent-Type: header and adding a new
one with the new boundary viaadd header() , becauseset boundary() preserves the order of the
Content-Type: header in the list of headers. However, it doesnotpreserve any continuation lines which may
have been present in the originalContent-Type: header.

get content charset ([failobj])
Return thecharset parameter of theContent-Type: header, coerced to lower case. If there is noContent-
Type: header, or if that header has nocharset parameter,failobj is returned.

Note that this method differs fromget charset() which returns theCharset instance for the default
encoding of the message body.

New in version 2.2.2.

get charsets ([failobj])
Return a list containing the character set names in the message. If the message is amultipart, then the list
will contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of thecharset parameter in theContent-Type:
header for the represented subpart. However, if the subpart has noContent-Type: header, nocharset
parameter, or is not of thetext main MIME type, then that item in the returned list will befailobj.

walk ()
Thewalk() method is an all-purpose generator which can be used to iterate over all the parts and subparts
of a message object tree, in depth-first traversal order. You will typically usewalk() as the iterator in a
for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():
>>> print part.get_content_type()
multipart/report
text/plain
message/delivery-status
text/plain
text/plain
message/rfc822

Message objects can also optionally contain two instance attributes, which can be used when generating the
plain text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers, and the
first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader because
it falls outside the standard MIME armor. However, when viewing the raw text of the message, or when
viewing the message in a non-MIME aware reader, this text can become visible.

The preambleattribute contains this leading extra-armor text for MIME documents. When theParser
discovers some text after the headers but before the first boundary string, it assigns this text to the message’s
preambleattribute. When theGenerator is writing out the plain text representation of a MIME message,
and it finds the message has apreambleattribute, it will write this text in the area between the headers and
the first boundary. Seeemail.Parser andemail.Generator for details.

Note that if the message object has no preamble, thepreambleattribute will beNone.

epilogue
Theepilogueattribute acts the same way as thepreambleattribute, except that it contains text that appears
between the last boundary and the end of the message.

One note: when generating the flat text for amultipart message that has noepilogue(using the standard
Generator class), no newline is added after the closing boundary line. If the message object has an
epilogueand its value does not start with a newline, a newline is printed after the closing boundary. This

474 Chapter 12. Internet Data Handling

seems a little clumsy, but it makes the most practical sense. The upshot is that if you want to ensure that a
newline get printed after your closingmultipart boundary, set theepilogueto the empty string.

Deprecated methods

The following methods are deprecated inemail version 2. They are documented here for completeness.

add payload (payload)
Add payloadto the message object’s existing payload. If, prior to calling this method, the object’s payload
wasNone (i.e. never before set), then after this method is called, the payload will be the argumentpayload.

If the object’s payload was already a list (i.e.is multipart() returns 1), thenpayloadis appended to
the end of the existing payload list.

For any other type of existing payload,add payload() will transform the new payload into a list con-
sisting of the old payload andpayload, but only if the document is already a MIME multipart document.
This condition is satisfied if the message’sContent-Type: header’s main type is eithermultipart, or there is
no Content-Type: header. In any other situation,MultipartConversionError is raised.

Deprecated since release 2.2.2.Use theattach() method instead.

get type ([failobj])
Return the message’s content type, as a string of the formmaintype/subtype as taken from theContent-Type:
header. The returned string is coerced to lowercase.

If there is noContent-Type: header in the message,failobj is returned (defaults toNone).

Deprecated since release 2.2.2.Use theget content type() method instead.

get main type ([failobj])
Return the message’smaincontent type. This essentially returns themaintypepart of the string returned by
get type() , with the same semantics forfailobj.

Deprecated since release 2.2.2.Use theget content maintype() method instead.

get subtype ([failobj])
Return the message’s sub-content type. This essentially returns thesubtypepart of the string returned by
get type() , with the same semantics forfailobj.

Deprecated since release 2.2.2.Use theget content subtype() method instead.

12.2.2 Parsing email messages

Message object structures can be created in one of two ways: they can be created from whole cloth by instantiating
Message objects and stringing them together viaattach() andset payload() calls, or they can be created
by parsing a flat text representation of the email message.

Theemail package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a string or a file object, and the parser will return to you the rootMessage
instance of the object structure. For simple, non-MIME messages the payload of this root object will likely be
a string containing the text of the message. For MIME messages, the root object will returnTrue from its
is multipart() method, and the subparts can be accessed via theget payload() andwalk() methods.

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. There is no magical connection between theemail package’s bundled parser and theMessage
class, so your custom parser can create message object trees any way it finds necessary.

The primary parser class isParser which parses both the headers and the payload of the message. In the
case ofmultipart messages, it will recursively parse the body of the container message. Two modes of parsing
are supported,strict parsing, which will usually reject any non-RFC compliant message, andlax parsing, which
attempts to adjust for common MIME formatting problems.

Theemail.Parser module also provides a second class, calledHeaderParser which can be used if you’re
only interested in the headers of the message.HeaderParser can be much faster in these situations, since it does
not attempt to parse the message body, instead setting the payload to the raw body as a string.HeaderParser
has the same API as theParser class.

12.2. email — An email and MIME handling package 475

Parser class API

classParser ([class[, strict]])
The constructor for theParser class takes an optional argumentclass. This must be a callable factory
(such as a function or a class), and it is used whenever a sub-message object needs to be created. It defaults
to Message (seeemail.Message). The factory will be called without arguments.

The optionalstrict flag specifies whether strict or lax parsing should be performed. When things like MIME
terminating boundaries are missing, or when messages contain other formatting problems, theParser will
raise aMessageParseError , if the strict flag isTrue . However, when lax parsing is enabled (i.e.strict
is False), theParser will attempt to work around such broken formatting to produce a usable message
structure (this doesn’t meanMessageParseError s are never raised; some ill-formatted messages just
can’t be parsed). Thestrict flag defaults toFalse since lax parsing usually provides the most convenient
behavior.

Changed in version 2.2.2: Thestrict flag was added.

The other publicParser methods are:

parse (fp[, headersonly])
Read all the data from the file-like objectfp, parse the resulting text, and return the root message object.fp
must support both thereadline() and theread() methods on file-like objects.

The text contained infp must be formatted as a block of RFC 2822 style headers and header continuation
lines, optionally preceded by a envelope header. The header block is terminated either by the end of the
data or by a blank line. Following the header block is the body of the message (which may contain MIME-
encoded subparts).

Optionalheadersonlyis as with theparse() method.

Changed in version 2.2.2: Theheadersonlyflag was added.

parsestr (text[, headersonly])
Similar to theparse() method, except it takes a string object instead of a file-like object. Calling
this method on a string is exactly equivalent to wrappingtext in a StringIO instance first and calling
parse() .

Optionalheadersonlyis a flag specifying whether to stop parsing after reading the headers or not. The
default isFalse , meaning it parses the entire contents of the file.

Changed in version 2.2.2: Theheadersonlyflag was added.

Since creating a message object structure from a string or a file object is such a common task, two functions are
provided as a convenience. They are available in the top-levelemail package namespace.

message from string (s[, class[, strict]])
Return a message object structure from a string. This is exactly equivalent toParser().parsestr(s) .
Optional classandstrict are interpreted as with theParser class constructor.

Changed in version 2.2.2: Thestrict flag was added.

message from file (fp[, class[, strict]])
Return a message object structure tree from an open file object. This is exactly equivalent to
Parser().parse(fp) . Optional classandstrict are interpreted as with theParser class constructor.

Changed in version 2.2.2: Thestrict flag was added.

Here’s an example of how you might use this at an interactive Python prompt:

>>> import email
>>> msg = email.message_from_string(myString)

Additional notes

Here are some notes on the parsing semantics:

476 Chapter 12. Internet Data Handling

• Most non-multipart type messages are parsed as a single message object with a string payload. These objects
will return False for is multipart() . Theirget payload() method will return a string object.

• All multipart type messages will be parsed as a container message object with a list of sub-message ob-
jects for their payload. The outer container message will returnTrue for is multipart() and their
get payload() method will return the list ofMessage subparts.

• Most messages with a content type ofmessage/* (e.g. message/delivery-status andmessage/rfc822) will
also be parsed as container object containing a list payload of length 1. Theiris multipart() method
will return True . The single element in the list payload will be a sub-message object.

12.2.3 Generating MIME documents

One of the most common tasks is to generate the flat text of the email message represented by a message object
structure. You will need to do this if you want to send your message via thesmtplib module or thenntplib
module, or print the message on the console. Taking a message object structure and producing a flat text document
is the job of theGenerator class.

Again, as with theemail.Parser module, you aren’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that
the transformation from flat text, to a message structure via theParser class, and back to flat text, is idempotent
(the input is identical to the output).

Here are the public methods of theGenerator class:

classGenerator (outfp[, mangle from [, maxheaderlen]])
The constructor for theGenerator class takes a file-like object calledoutfp for an argument.outfpmust
support thewrite() method and be usable as the output file in a Python extended print statement.

Optionalmangle from is a flag that, whenTrue , puts a ‘>’ character in front of any line in the body
that starts exactly as ‘From ’, i.e. From followed by a space at the beginning of the line. This is the only
guaranteed portable way to avoid having such lines be mistaken for a Unix mailbox format envelope header
separator (seeWHY THE CONTENT-LENGTH FORMAT IS BADfor details).mangle from defaults to
True , but you might want to set this toFalse if you are not writing Unix mailbox format files.

Optionalmaxheaderlenspecifies the longest length for a non-continued header. When a header line is longer
thanmaxheaderlen(in characters, with tabs expanded to 8 spaces), the header will be split as defined in the
email.Header class. Set to zero to disable header wrapping. The default is 78, as recommended (but
not required) by RFC 2822.

The other publicGenerator methods are:

flatten (msg[, unixfrom])
Print the textual representation of the message object structure rooted atmsgto the output file specified
when theGenerator instance was created. Subparts are visited depth-first and the resulting text will be
properly MIME encoded.

Optionalunixfrom is a flag that forces the printing of the envelope header delimiter before the first RFC
2822 header of the root message object. If the root object has no envelope header, a standard one is crafted.
By default, this is set toFalse to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed.

New in version 2.2.2.

clone (fp)
Return an independent clone of thisGenerator instance with the exact same options.

New in version 2.2.2.

write (s)
Write the strings to the underlying file object, i.e.outfppassed toGenerator ’s constructor. This provides
just enough file-like API forGenerator instances to be used in extended print statements.

12.2. email — An email and MIME handling package 477

As a convenience, see the methodsMessage.as string() and str(aMessage) , a.k.a.
Message. str () , which simplify the generation of a formatted string representation of a message
object. For more detail, seeemail.Message .

Theemail.Generator module also provides a derived class, calledDecodedGenerator which is like the
Generator base class, except that non-text parts are substituted with a format string representing the part.

classDecodedGenerator (outfp[, mangle from [, maxheaderlen[, fmt]]])
This class, derived fromGenerator walks through all the subparts of a message. If the subpart is of main
typetext, then it prints the decoded payload of the subpart. Optionalmangle from andmaxheaderlenare
as with theGenerator base class.

If the subpart is not of main typetext, optionalfmt is a format string that is used instead of the message
payload.fmt is expanded with the following keywords, ‘%(keyword)s ’ format:

•type – Full MIME type of the non-text part

•maintype – Main MIME type of the non-text part

•subtype – Sub-MIME type of the non-text part

•filename – Filename of the non-text part

•description – Description associated with the non-text part

•encoding – Content transfer encoding of the non-text part

The default value forfmt is None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

New in version 2.2.2.

Deprecated methods

The following methods are deprecated inemail version 2. They are documented here for completeness.

call (msg[, unixfrom])
This method is identical to theflatten() method.

Deprecated since release 2.2.2.Use theflatten() method instead.

12.2.4 Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individual Message objects by hand. In fact, you can also take an existing structure and add newMessage
objects, move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by creatingMessage instances, adding attachments and all the appropriate
headers manually. For MIME messages though, theemail package provides some convenient subclasses to
make things easier. Each of these classes should be imported from a module with the same name as the class,
from within theemail package. E.g.:

import email.MIMEImage.MIMEImage

or

from email.MIMEText import MIMEText

Here are the classes:

478 Chapter 12. Internet Data Handling

classMIMEBase(maintype, subtype, ** params)
This is the base class for all the MIME-specific subclasses ofMessage . Ordinarily you won’t create
instances specifically ofMIMEBase, although you could.MIMEBase is provided primarily as a convenient
base class for more specific MIME-aware subclasses.

maintypeis theContent-Type: major type (e.g.text or image), and subtypeis theContent-Type: mi-
nor type (e.g. plain or gif). params is a parameter key/value dictionary and is passed directly to
Message.add header() .

TheMIMEBase class always adds aContent-Type: header (based onmaintype, subtype, and params),
and aMIME-Version: header (always set to1.0).

classMIMENonMultipart ()
A subclass ofMIMEBase, this is an intermediate base class for MIME messages that are notmultipart. The
primary purpose of this class is to prevent the use of theattach() method, which only makes sense for
multipart messages. Ifattach() is called, aMultipartConversionError exception is raised.

New in version 2.2.2.

classMIMEMultipart ([subtype[, boundary[, subparts[, params]]]])
A subclass ofMIMEBase, this is an intermediate base class for MIME messages that aremultipart. Optional
subtypedefaults tomixed, but can be used to specify the subtype of the message. AContent-Type: header

of multipart/ subtypewill be added to the message object. AMIME-Version: header will also be added.

Optionalboundaryis the multipart boundary string. WhenNone (the default), the boundary is calculated
when needed.

subpartsis a sequence of initial subparts for the payload. It must be possible to convert this sequence to a
list. You can always attach new subparts to the message by using theMessage.attach() method.

Additional parameters for theContent-Type: header are taken from the keyword arguments, or passed into
the paramsargument, which is a keyword dictionary.

New in version 2.2.2.

classMIMEAudio (audiodata[, subtype[, encoder[, ** params]]])
A subclass ofMIMENonMultipart , theMIMEAudio class is used to create MIME message objects of
major typeaudio. audiodatais a string containing the raw audio data. If this data can be decoded by
the standard Python modulesndhdr , then the subtype will be automatically included in theContent-Type:
header. Otherwise you can explicitly specify the audio subtype via thesubtypeparameter. If the minor
type could not be guessed andsubtypewas not given, thenTypeError is raised.

Optional encoder is a callable (i.e. function) which will perform the actual encoding of the audio
data for transport. This callable takes one argument, which is theMIMEAudio instance. It should use
get payload() andset payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding: or other headers to the message object as necessary. The default encoding is
base64. See theemail.Encoders module for a list of the built-in encoders.

paramsare passed straight through to the base class constructor.

classMIMEImage(imagedata[, subtype[, encoder[, ** params]]])
A subclass ofMIMENonMultipart , theMIMEImage class is used to create MIME message objects of
major typeimage. imagedatais a string containing the raw image data. If this data can be decoded by
the standard Python moduleimghdr , then the subtype will be automatically included in theContent-Type:
header. Otherwise you can explicitly specify the image subtype via thesubtypeparameter. If the minor
type could not be guessed andsubtypewas not given, thenTypeError is raised.

Optional encoder is a callable (i.e. function) which will perform the actual encoding of the image
data for transport. This callable takes one argument, which is theMIMEImage instance. It should use
get payload() andset payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding: or other headers to the message object as necessary. The default encoding is
base64. See theemail.Encoders module for a list of the built-in encoders.

paramsare passed straight through to theMIMEBase constructor.

classMIMEMessage(msg[, subtype])
A subclass ofMIMENonMultipart , theMIMEMessage class is used to create MIME objects of main
type message. msg is used as the payload, and must be an instance of classMessage (or a subclass
thereof), otherwise aTypeError is raised.

12.2. email — An email and MIME handling package 479

Optional subtypesets the subtype of the message; it defaults torfc822.

classMIMEText (text[, subtype[, charset[, encoder]]])
A subclass ofMIMENonMultipart , theMIMEText class is used to create MIME objects of major type
text. text is the string for the payload. subtypeis the minor type and defaults toplain. charsetis the
character set of the text and is passed as a parameter to theMIMENonMultipart constructor; it defaults
to us-ascii . No guessing or encoding is performed on the text data.

Deprecated since release 2.2.2.The encodingargument has been deprecated. Encoding now happens
implicitly based on the charsetargument.

12.2.5 Internationalized headers

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822
standard which came into widespread use at a time when most email was composed ofASCII characters only. RFC
2822 is a specification written assuming email contains only 7-bitASCII characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific
character sets can now be used in email messages. The base standard still requires email messages to be transfered
using only 7-bitASCII characters, so a slew of RFCs have been written describing how to encode email containing
non-ASCII characters into RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046, RFC 2047,
and RFC 2231. Theemail package supports these standards in itsemail.Header andemail.Charset
modules.

If you want to include non-ASCII characters in your email headers, say in theSubject: or To: fields, you should
use theHeader class and assign the field in theMessage object to an instance ofHeader instead of using a
string for the header value. For example:

>>> from email.Message import Message
>>> from email.Header import Header
>>> msg = Message()
>>> h = Header(’p\xf6stal’, ’iso-8859-1’)
>>> msg[’Subject’] = h
>>> print msg.as_string()
Subject: =?iso-8859-1?q?p=F6stal?=

Notice here how we wanted theSubject: field to contain a non-ASCII character? We did this by creating aHeader
instance and passing in the character set that the byte string was encoded in. When the subsequentMessage
instance was flattened, theSubject: field was properly RFC 2047 encoded. MIME-aware mail readers would show
this header using the embedded ISO-8859-1 character.

New in version 2.2.2.

Here is theHeader class description:

classHeader ([s[, charset[, maxlinelen[, header name[, continuation ws[, errors]]]]]])
Create a MIME-compliant header that can contain strings in different character sets.

Optionals is the initial header value. IfNone (the default), the initial header value is not set. You can later
append to the header withappend() method calls.s may be a byte string or a Unicode string, but see the
append() documentation for semantics.

Optionalcharsetserves two purposes: it has the same meaning as thecharsetargument to theappend()
method. It also sets the default character set for all subsequentappend() calls that omit thecharset
argument. Ifcharsetis not provided in the constructor (the default), theus-ascii character set is used
both ass’s initial charset and as the default for subsequentappend() calls.

The maximum line length can be specified explicit viamaxlinelen. For splitting the first line to a shorter
value (to account for the field header which isn’t included ins, e.g. Subject:) pass in the name of the field
in header name. The defaultmaxlinelenis 76, and the default value forheader nameis None, meaning it
is not taken into account for the first line of a long, split header.

480 Chapter 12. Internet Data Handling

Optionalcontinuation wsmust be RFC 2822-compliant folding whitespace, and is usually either a space
or a hard tab character. This character will be prepended to continuation lines.

Optionalerrors is passed straight through to theappend() method.

append (s[, charset[, errors]])
Append the strings to the MIME header.

Optionalcharset, if given, should be aCharset instance (seeemail.Charset) or the name of a char-
acter set, which will be converted to aCharset instance. A value ofNone (the default) means that the
charsetgiven in the constructor is used.

s may be a byte string or a Unicode string. If it is a byte string (i.e.isinstance(s, str) is true),
thencharsetis the encoding of that byte string, and aUnicodeError will be raised if the string cannot
be decoded with that character set.

If s is a Unicode string, thencharsetis a hint specifying the character set of the characters in the string. In
this case, when producing an RFC 2822-compliant header using RFC 2047 rules, the Unicode string will be
encoded using the following charsets in order:us-ascii , thecharsethint, utf-8 . The first character set
to not provoke aUnicodeError is used.

Optionalerrors is passed through to anyunicode() or ustr.encode() call, and defaults to “strict”.

encode ([splitchars])
Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulating
non-ASCII parts in base64 or quoted-printable encodings. Optionalsplitcharsis a string containing char-
acters to split long ASCII lines on, in rough support of RFC 2822’shighest level syntactic breaks. This
doesn’t affect RFC 2047 encoded lines.

TheHeader class also provides a number of methods to support standard operators and built-in functions.

str ()
A synonym forHeader.encode() . Useful forstr(aHeader) .

unicode ()
A helper for the built-inunicode() function. Returns the header as a Unicode string.

eq (other)
This method allows you to compare twoHeader instances for equality.

ne (other)
This method allows you to compare twoHeader instances for inequality.

Theemail.Header module also provides the following convenient functions.

decode header (header)
Decode a message header value without converting the character set. The header value is inheader.

This function returns a list of(decoded string, charset) pairs containing each of the decoded
parts of the header.charsetis None for non-encoded parts of the header, otherwise a lower case string
containing the name of the character set specified in the encoded string.

Here’s an example:

>>> from email.Header import decode_header
>>> decode_header(’=?iso-8859-1?q?p=F6stal?=’)
[(’p\\xf6stal’, ’iso-8859-1’)]

make header (decodedseq[, maxlinelen[, header name[, continuation ws]]])
Create aHeader instance from a sequence of pairs as returned bydecode header() .

decode header() takes a header value string and returns a sequence of pairs of the format
(decoded string, charset) wherecharsetis the name of the character set.

This function takes one of those sequence of pairs and returns aHeader instance. Optionalmaxlinelen,
header name, andcontinuation wsare as in theHeader constructor.

12.2. email — An email and MIME handling package 481

12.2.6 Representing character sets

This module provides a classCharset for representing character sets and character set conversions in email
messages, as well as a character set registry and several convenience methods for manipulating this registry.
Instances ofCharset are used in several other modules within theemail package.

New in version 2.2.2.

classCharset ([input charset])
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in
an email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or
bodies. Certain character sets must be converted outright, and are not allowed in email.

Optional input charsetis as described below; it is always coerced to lower case. After being alias nor-
malized it is also used as a lookup into the registry of character sets to find out the header encoding, body
encoding, and output conversion codec to be used for the character set. For example, ifinput charsetis
iso-8859-1 , then headers and bodies will be encoded using quoted-printable and no output conversion
codec is necessary. Ifinput charsetis euc-jp , then headers will be encoded with base64, bodies will
not be encoded, but output text will be converted from theeuc-jp character set to theiso-2022-jp
character set.

Charset instances have the following data attributes:

input charset
The initial character set specified. Common aliases are converted to theirofficial email names (e.g.
latin 1 is converted toiso-8859-1). Defaults to 7-bitus-ascii .

header encoding
If the character set must be encoded before it can be used in an email header, this attribute
will be set to Charset.QP (for quoted-printable),Charset.BASE64 (for base64 encoding), or
Charset.SHORTEST for the shortest of QP or BASE64 encoding. Otherwise, it will beNone.

body encoding
Same asheader encoding, but describes the encoding for the mail message’s body, which indeed may be
different than the header encoding.Charset.SHORTEST is not allowed forbody encoding.

output charset
Some character sets must be converted before they can be used in email headers or bodies. If thein-
put charsetis one of them, this attribute will contain the name of the character set output will be converted
to. Otherwise, it will beNone.

input codec
The name of the Python codec used to convert theinput charsetto Unicode. If no conversion codec is
necessary, this attribute will beNone.

output codec
The name of the Python codec used to convert Unicode to theoutput charset. If no conversion codec is
necessary, this attribute will have the same value as theinput codec.

Charset instances also have the following methods:

get body encoding ()
Return the content transfer encoding used for body encoding.

This is either the string ‘quoted-printable ’ or ‘ base64 ’ depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object being en-
coded. The function should then set theContent-Transfer-Encoding: header itself to whatever is appropriate.

Returns the string ‘quoted-printable ’ if body encoding is QP, returns the string ‘base64 ’ if
body encodingis BASE64, and returns the string ‘7bit ’ otherwise.

convert (s)

482 Chapter 12. Internet Data Handling

Convert the strings from theinput codecto theoutput codec.

to splittable (s)
Convert a possibly multibyte string to a safely splittable format.s is the string to split.

Uses theinput codecto try and convert the string to Unicode, so it can be safely split on character bound-
aries (even for multibyte characters).

Returns the string as-is if it isn’t known how to converts to Unicode with theinput charset.

Characters that could not be converted to Unicode will be replaced with the Unicode replacement character
‘U+FFFD’.

from splittable (ustr[, to output])
Convert a splittable string back into an encoded string.ustr is a Unicode string to “unsplit”.

This method uses the proper codec to try and convert the string from Unicode back into an encoded format.
Return the string as-is if it is not Unicode, or if it could not be converted from Unicode.

Characters that could not be converted from Unicode will be replaced with an appropriate character (usually
‘?’).

If to output is True (the default), usesoutput codecto convert to an encoded format. Ifto output is
False , it usesinput codec.

get output charset ()
Return the output character set.

This is theoutput charsetattribute if that is notNone, otherwise it isinput charset.

encoded header len ()
Return the length of the encoded header string, properly calculating for quoted-printable or base64 encoding.

header encode (s[, convert])
Header-encode the strings.

If convertis True , the string will be converted from the input charset to the output charset automatically.
This is not useful for multibyte character sets, which have line length issues (multibyte characters must be
split on a character, not a byte boundary); use the higher-levelHeader class to deal with these issues (see
email.Header). convertdefaults toFalse .

The type of encoding (base64 or quoted-printable) will be based on theheader encodingattribute.

body encode (s[, convert])
Body-encode the strings.

If convertis True (the default), the string will be converted from the input charset to output charset auto-
matically. Unlikeheader encode() , there are no issues with byte boundaries and multibyte charsets in
email bodies, so this is usually pretty safe.

The type of encoding (base64 or quoted-printable) will be based on thebody encodingattribute.

TheCharset class also provides a number of methods to support standard operations and built-in functions.

str ()
Returnsinput charsetas a string coerced to lower case.repr () is an alias for str () .

eq (other)
This method allows you to compare twoCharset instances for equality.

ne (other)
This method allows you to compare twoCharset instances for inequality.

Theemail.Charset module also provides the following functions for adding new entries to the global char-
acter set, alias, and codec registries:

add charset (charset[, header enc[, body enc[, output charset]]])
Add character properties to the global registry.

charsetis the input character set, and must be the canonical name of a character set.

Optionalheader encandbody encis eitherCharset.QP for quoted-printable,Charset.BASE64 for
base64 encoding,Charset.SHORTEST for the shortest of quoted-printable or base64 encoding, orNone
for no encoding.SHORTESTis only valid forheader enc. The default isNone for no encoding.

12.2. email — An email and MIME handling package 483

Optionaloutput charsetis the character set that the output should be in. Conversions will proceed from
input charset, to Unicode, to the output charset when the methodCharset.convert() is called. The
default is to output in the same character set as the input.

Both input charsetandoutput charsetmust have Unicode codec entries in the module’s character set-to-
codec mapping; useadd codec() to add codecs the module does not know about. See thecodecs
module’s documentation for more information.

The global character set registry is kept in the module global dictionaryCHARSETS.

add alias (alias, canonical)
Add a character set alias.alias is the alias name, e.g.latin-1 . canonicalis the character set’s canonical
name, e.g.iso-8859-1 .

The global charset alias registry is kept in the module global dictionaryALIASES.

add codec (charset, codecname)
Add a codec that map characters in the given character set to and from Unicode.

charsetis the canonical name of a character set.codecnameis the name of a Python codec, as appropriate
for the second argument to theunicode() built-in, or to theencode() method of a Unicode string.

12.2.7 Encoders

When creatingMessage objects from scratch, you often need to encode the payloads for transport through
compliant mail servers. This is especially true forimage/* andtext/* type messages containing binary data.

Theemail package provides some convenient encodings in itsEncoders module. These encoders are actually
used by theMIMEImage andMIMEText class constructors to provide default encodings. All encoder functions
take exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset the
payload to this newly encoded value. They should also set theContent-Transfer-Encoding: header as appropriate.

Here are the encoding functions provided:

encode quopri (msg)
Encodes the payload into quoted-printable form and sets theContent-Transfer-Encoding: header to
quoted-printable 1. This is a good encoding to use when most of your payload is normal printable
data, but contains a few unprintable characters.

encode base64 (msg)
Encodes the payload into base64 form and sets theContent-Transfer-Encoding: header tobase64 . This is
a good encoding to use when most of your payload is unprintable data since it is a more compact form than
quoted-printable. The drawback of base64 encoding is that it renders the text non-human readable.

encode 7or8bit (msg)
This doesn’t actually modify the message’s payload, but it does set theContent-Transfer-Encoding: header
to either7bit or 8bit as appropriate, based on the payload data.

encode noop (msg)
This does nothing; it doesn’t even set theContent-Transfer-Encoding: header.

12.2.8 Exception classes

The following exception classes are defined in theemail.Errors module:

exceptionMessageError ()
This is the base class for all exceptions that theemail package can raise. It is derived from the standard
Exception class and defines no additional methods.

exceptionMessageParseError ()
This is the base class for exceptions thrown by theParser class. It is derived fromMessageError .

exceptionHeaderParseError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived

1Note that encoding withencode quopri() also encodes all tabs and space characters in the data.

484 Chapter 12. Internet Data Handling

from MessageParseError . It can be raised from theParser.parse() or Parser.parsestr()
methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header of
the message, finding a continuation line before the first RFC 2822 header is found, or finding a line in the
headers which is neither a header or a continuation line.

exceptionBoundaryError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived
from MessageParseError . It can be raised from theParser.parse() or Parser.parsestr()
methods.

Situations where it can be raised include not being able to find the starting or terminating boundary in a
multipart/* message when strict parsing is used.

exceptionMultipartConversionError ()
Raised when a payload is added to aMessage object usingadd payload() , but the payload
is already a scalar and the message’sContent-Type: main type is not eithermultipart or missing.
MultipartConversionError multiply inherits fromMessageError and the built-inTypeError .

SinceMessage.add payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if theattach() method is called on an instance of a class derived from
MIMENonMultipart (e.g.MIMEImage).

12.2.9 Miscellaneous utilities

There are several useful utilities provided in theemail.Utils module:

quote (str)
Return a new string with backslashes instr replaced by two backslashes, and double quotes replaced by
backslash-double quote.

unquote (str)
Return a new string which is anunquotedversion ofstr. If str ends and begins with double quotes, they are
stripped off. Likewise ifstr ends and begins with angle brackets, they are stripped off.

parseaddr (address)
Parse address – which should be the value of some address-containing field such asTo: or Cc: – into its
constituentrealnameandemail addressparts. Returns a tuple of that information, unless the parse fails, in
which case a 2-tuple of(’’, ’’) is returned.

formataddr (pair)
The inverse ofparseaddr() , this takes a 2-tuple of the form(realname, email address) and
returns the string value suitable for aTo: or Cc: header. If the first element ofpair is false, then the second
element is returned unmodified.

getaddresses (fieldvalues)
This method returns a list of 2-tuples of the form returned byparseaddr() . fieldvaluesis a sequence of
header field values as might be returned byMessage.get all() . Here’s a simple example that gets all
the recipients of a message:

from email.Utils import getaddresses

tos = msg.get_all(’to’, [])
ccs = msg.get_all(’cc’, [])
resent_tos = msg.get_all(’resent-to’, [])
resent_ccs = msg.get_all(’resent-cc’, [])
all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

parsedate (date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that
format as specified, soparsedate() tries to guess correctly in such cases.date is a string containing
an RFC 2822 date, such as"Mon, 20 Nov 1995 19:12:08 -0500" . If it succeeds in parsing the
date,parsedate() returns a 9-tuple that can be passed directly totime.mktime() ; otherwiseNone

12.2. email — An email and MIME handling package 485

will be returned. Note that fields 6, 7, and 8 of the result tuple are not usable.

parsedate tz (date)
Performs the same function asparsedate() , but returns eitherNone or a 10-tuple; the first 9 elements
make up a tuple that can be passed directly totime.mktime() , and the tenth is the offset of the date’s
timezone from UTC (which is the official term for Greenwich Mean Time)2. If the input string has no
timezone, the last element of the tuple returned isNone. Note that fields 6, 7, and 8 of the result tuple are
not usable.

mktime tz (tuple)
Turn a 10-tuple as returned byparsedate tz() into a UTC timestamp. It the timezone item in the tuple
is None, assume local time. Minor deficiency:mktime tz() interprets the first 8 elements oftupleas a
local time and then compensates for the timezone difference. This may yield a slight error around changes
in daylight savings time, though not worth worrying about for common use.

formatdate ([timeval[, localtime]])
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted bytime.gmtime() and
time.localtime() , otherwise the current time is used.

Optionallocaltimeis a flag that whenTrue , interpretstimeval, and returns a date relative to the local time-
zone instead of UTC, properly taking daylight savings time into account. The default isFalse meaning
UTC is used.

make msgid ([idstring])
Returns a string suitable for an RFC 2822-compliantMessage-ID: header. Optionalidstring if given, is a
string used to strengthen the uniqueness of the message id.

decode rfc2231 (s)
Decode the strings according to RFC 2231.

encode rfc2231 (s[, charset[, language]])
Encode the strings according to RFC 2231. Optionalcharsetand language, if given is the character set
name and language name to use. If neither is given,s is returned as-is. Ifcharsetis given butlanguageis
not, the string is encoded using the empty string forlanguage.

decode params (params)
Decode parameters list according to RFC 2231.paramsis a sequence of 2-tuples containing elements of
the form(content-type, string-value) .

The following functions have been deprecated:

dump address pair (pair)
Deprecated since release 2.2.2.Useformataddr() instead.

decode (s)
Deprecated since release 2.2.2.UseHeader.decode header() instead.

encode (s[, charset[, encoding]])
Deprecated since release 2.2.2.UseHeader.encode() instead.

12.2.10 Iterators

Iterating over a message object tree is fairly easy with theMessage.walk() method. The
email.Iterators module provides some useful higher level iterations over message object trees.

body line iterator (msg[, decode])
This iterates over all the payloads in all the subparts ofmsg, returning the string payloads line-by-line.
It skips over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python

2Note that the sign of the timezone offset is the opposite of the sign of thetime.timezone variable for the same timezone; the latter
variable follows the POSIX standard while this module follows RFC 2822.

486 Chapter 12. Internet Data Handling

string. This is somewhat equivalent to reading the flat text representation of the message from a file us-
ing readline() , skipping over all the intervening headers.

Optionaldecodeis passed through toMessage.get payload() .

typed subpart iterator (msg[, maintype[, subtype]])
This iterates over all the subparts ofmsg, returning only those subparts that match the MIME type specified
by maintypeandsubtype.

Note thatsubtypeis optional; if omitted, then subpart MIME type matching is done only with the main type.
maintypeis optional too; it defaults totext.

Thus, by defaulttyped subpart iterator() returns each subpart that has a MIME type oftext/*.

The following function has been added as a useful debugging tool. It shouldnotbe considered part of the supported
public interface for the package.

structure (msg[, fp[, level]])
Prints an indented representation of the content types of the message object structure. For example:

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed

text/plain
text/plain
multipart/digest

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

text/plain

Optionalfp is a file-like object to print the output to. It must be suitable for Python’s extended print state-
ment.level is used internally.

12.2.11 Differences from email v1 (up to Python 2.2.1)

Version 1 of theemail package was bundled with Python releases up to Python 2.2.1. Version 2 was developed
for the Python 2.3 release, and backported to Python 2.2.2. It was also available as a separate distutils based
package.email version 2 is almost entirely backward compatible with version 1, with the following differences:

• Theemail.Header andemail.Charset modules have been added.

• The pickle format forMessage instances has changed. Since this was never (and still isn’t) formally
defined, this isn’t considered a backward incompatibility. However if your application pickles and unpickles
Message instances, be aware that inemail version 2,Message instances now have private variables
charsetand default type.

• Several methods in theMessage class have been deprecated, or their signatures changed. Also, many new
methods have been added. See the documentation for theMessage class for details. The changes should
be completely backward compatible.

• The object structure has changed in the face ofmessage/rfc822 content types. Inemail version 1, such a
type would be represented by a scalar payload, i.e. the container message’sis multipart() returned
false,get payload() was not a list object, but a singleMessage instance.

12.2. email — An email and MIME handling package 487

This structure was inconsistent with the rest of the package, so the object representation formessage/rfc822
content types was changed. Inemail version 2, the containerdoesreturnTrue from is multipart() ,
andget payload() returns a list containing a singleMessage item.

Note that this is one place that backward compatibility could not be completely maintained. However, if
you’re already testing the return type ofget payload() , you should be fine. You just need to make sure
your code doesn’t do aset payload() with a Message instance on a container with a content type of
message/rfc822.

• TheParser constructor’sstrict argument was added, and itsparse() andparsestr() methods grew
a headersonlyargument. Thestrict flag was also added to functionsemail.message from file()
andemail.message from string() .

• Generator. call () is deprecated; useGenerator.flatten() instead. TheGenerator
class has also grown theclone() method.

• TheDecodedGenerator class in theemail.Generator module was added.

• The intermediate base classesMIMENonMultipart andMIMEMultipart have been added, and inter-
posed in the class hierarchy for most of the other MIME-related derived classes.

• The encoderargument to theMIMEText constructor has been deprecated. Encoding now happens im-
plicitly based on the charsetargument.

• The following functions in the email.Utils module have been deprecated:
dump address pairs() , decode() , and encode() . The following functions have been
added to the module: make msgid() , decode rfc2231() , encode rfc2231() , and
decode params() .

• The non-public functionemail.Iterators. structure() was added.

12.2.12 Differences from mimelib

Theemail package was originally prototyped as a separate library calledmimelib . Changes have been made
so that method names are more consistent, and some methods or modules have either been added or removed. The
semantics of some of the methods have also changed. For the most part, any functionality available inmimelib
is still available in theemail package, albeit often in a different way. Backward compatibility between the
mimelib package and theemail package was not a priority.

Here is a brief description of the differences between themimelib and theemail packages, along with hints on
how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been changed to
email . In addition, the top-level package has the following differences:

• messageFromString() has been renamed tomessage from string() .

• messageFromFile() has been renamed tomessage from file() .

TheMessage class has the following differences:

• The methodasString() was renamed toas string() .

• The methodismultipart() was renamed tois multipart() .

• Theget payload() method has grown adecodeoptional argument.

• The methodgetall() was renamed toget all() .

• The methodaddheader() was renamed toadd header() .

• The methodgettype() was renamed toget type() .

488 Chapter 12. Internet Data Handling

• The methodgetmaintype() was renamed toget main type() .

• The methodgetsubtype() was renamed toget subtype() .

• The methodgetparams() was renamed toget params() . Also, whereasgetparams() returned a
list of strings,get params() returns a list of 2-tuples, effectively the key/value pairs of the parameters,
split on the ‘=’ sign.

• The methodgetparam() was renamed toget param() .

• The methodgetcharsets() was renamed toget charsets() .

• The methodgetfilename() was renamed toget filename() .

• The methodgetboundary() was renamed toget boundary() .

• The methodsetboundary() was renamed toset boundary() .

• The methodgetdecodedpayload() was removed. To get similar functionality, pass the value 1 to the
decodeflag of the get payload() method.

• The method getpayloadastext() was removed. Similar functionality is supported by the
DecodedGenerator class in theemail.Generator module.

• The methodgetbodyastext() was removed. You can get similar functionality by creating an iterator
with typed subpart iterator() in theemail.Iterators module.

The Parser class has no differences in its public interface. It does have some additional smarts to recognize
message/delivery-status type messages, which it represents as aMessage instance containing separateMessage
subparts for each header block in the delivery status notification3.

TheGenerator class has no differences in its public interface. There is a new class in theemail.Generator
module though, calledDecodedGenerator which provides most of the functionality previously available in
theMessage.getpayloadastext() method.

The following modules and classes have been changed:

• TheMIMEBase class constructor argumentsmajor and minor have changed tomaintypeand subtype
respectively.

• The Image class/module has been renamed toMIMEImage. The minor argument has been renamed to
subtype.

• The Text class/module has been renamed toMIMEText . The minor argument has been renamed to
subtype.

• The MessageRFC822 class/module has been renamed toMIMEMessage. Note that an earlier version
of mimelib called this class/moduleRFC822, but that clashed with the Python standard library module
rfc822 on some case-insensitive file systems.

Also, theMIMEMessage class now represents any kind of MIME message with main typemessage. It
takes an optional argumentsubtypewhich is used to set the MIME subtype.subtypedefaults torfc822.

mimelib provided some utility functions in itsaddress anddate modules. All of these functions have been
moved to theemail.Utils module.

The MsgReader class/module has been removed. Its functionality is most closely supported in the
body line iterator() function in theemail.Iterators module.

3Delivery Status Notifications (DSN) are defined in RFC 1894.

12.2. email — An email and MIME handling package 489

12.2.13 Examples

Here are a few examples of how to use theemail package to read, write, and send simple email messages, as
well as more complex MIME messages.

First, let’s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we’ll need
from email.MIMEText import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCII characters.
fp = open(textfile, ’rb’)
Create a text/plain message
msg = MIMEText(fp.read())
fp.close()

me == the sender’s email address
you == the recipient’s email address
msg[’Subject’] = ’The contents of %s’ % textfile
msg[’From’] = me
msg[’To’] = you

Send the message via our own SMTP server, but don’t include the
envelope header.
s = smtplib.SMTP()
s.connect()
s.sendmail(me, [you], msg.as_string())
s.close()

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in
a directory:

Import smtplib for the actual sending function
import smtplib

Here are the email pacakge modules we’ll need
from email.MIMEImage import MIMEImage
from email.MIMEMultipart import MIMEMultipart

COMMASPACE = ’, ’

Create the container (outer) email message.
msg = MIMEMultipart()
msg[’Subject’] = ’Our family reunion’
me == the sender’s email address
family = the list of all recipients’ email addresses
msg[’From’] = me
msg[’To’] = COMMASPACE.join(family)
msg.preamble = ’Our family reunion’
Guarantees the message ends in a newline
msg.epilogue = ’’

Assume we know that the image files are all in PNG format
for file in pngfiles:

Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
fp = open(file, ’rb’)
img = MIMEImage(fp.read())
fp.close()

490 Chapter 12. Internet Data Handling

msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP()
s.connect()
s.sendmail(me, family, msg.as_string())
s.close()

Here’s an example of how to send the entire contents of a directory as an email message:4

#!/usr/bin/env python

"""Send the contents of a directory as a MIME message.

Usage: dirmail [options] from to [to ...]*

Options:
-h / --help

Print this message and exit.

-d directory
--directory=directory

Mail the contents of the specified directory, otherwise use the
current directory. Only the regular files in the directory are sent,
and we don’t recurse to subdirectories.

‘from’ is the email address of the sender of the message.

‘to’ is the email address of the recipient of the message, and multiple
recipients may be given.

The email is sent by forwarding to your local SMTP server, which then does the
normal delivery process. Your local machine must be running an SMTP server.
"""

import sys
import os
import getopt
import smtplib
For guessing MIME type based on file name extension
import mimetypes

from email import Encoders
from email.Message import Message
from email.MIMEAudio import MIMEAudio
from email.MIMEBase import MIMEBase
from email.MIMEMultipart import MIMEMultipart
from email.MIMEImage import MIMEImage
from email.MIMEText import MIMEText

COMMASPACE = ’, ’

def usage(code, msg=’’):
print >> sys.stderr, __doc__
if msg:

print >> sys.stderr, msg
sys.exit(code)

def main():
try:

4Thanks to Matthew Dixon Cowles for the original inspiration and examples.

12.2. email — An email and MIME handling package 491

opts, args = getopt.getopt(sys.argv[1:], ’hd:’, [’help’, ’directory=’])
except getopt.error, msg:

usage(1, msg)

dir = os.curdir
for opt, arg in opts:

if opt in (’-h’, ’--help’):
usage(0)

elif opt in (’-d’, ’--directory’):
dir = arg

if len(args) < 2:
usage(1)

sender = args[0]
recips = args[1:]

Create the enclosing (outer) message
outer = MIMEMultipart()
outer[’Subject’] = ’Contents of directory %s’ % os.path.abspath(dir)
outer[’To’] = COMMASPACE.join(recips)
outer[’From’] = sender
outer.preamble = ’You will not see this in a MIME-aware mail reader.\n’
To guarantee the message ends with a newline
outer.epilogue = ’’

for filename in os.listdir(dir):
path = os.path.join(dir, filename)
if not os.path.isfile(path):

continue
Guess the content type based on the file’s extension. Encoding
will be ignored, although we should check for simple things like
gzip’d or compressed files.
ctype, encoding = mimetypes.guess_type(path)
if ctype is None or encoding is not None:

No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.
ctype = ’application/octet-stream’

maintype, subtype = ctype.split(’/’, 1)
if maintype == ’text’:

fp = open(path)
Note: we should handle calculating the charset
msg = MIMEText(fp.read(), _subtype=subtype)
fp.close()

elif maintype == ’image’:
fp = open(path, ’rb’)
msg = MIMEImage(fp.read(), _subtype=subtype)
fp.close()

elif maintype == ’audio’:
fp = open(path, ’rb’)
msg = MIMEAudio(fp.read(), _subtype=subtype)
fp.close()

else:
fp = open(path, ’rb’)
msg = MIMEBase(maintype, subtype)
msg.set_payload(fp.read())
fp.close()
Encode the payload using Base64
Encoders.encode_base64(msg)

Set the filename parameter
msg.add_header(’Content-Disposition’, ’attachment’, filename=filename)
outer.attach(msg)

492 Chapter 12. Internet Data Handling

Now send the message
s = smtplib.SMTP()
s.connect()
s.sendmail(sender, recips, outer.as_string())
s.close()

if __name__ == ’__main__’:
main()

And finally, here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python

"""Unpack a MIME message into a directory of files.

Usage: unpackmail [options] msgfile

Options:
-h / --help

Print this message and exit.

-d directory
--directory=directory

Unpack the MIME message into the named directory, which will be
created if it doesn’t already exist.

msgfile is the path to the file containing the MIME message.
"""

import sys
import os
import getopt
import errno
import mimetypes
import email

def usage(code, msg=’’):
print >> sys.stderr, __doc__
if msg:

print >> sys.stderr, msg
sys.exit(code)

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], ’hd:’, [’help’, ’directory=’])
except getopt.error, msg:

usage(1, msg)

dir = os.curdir
for opt, arg in opts:

if opt in (’-h’, ’--help’):
usage(0)

elif opt in (’-d’, ’--directory’):
dir = arg

try:
msgfile = args[0]

except IndexError:
usage(1)

try:

12.2. email — An email and MIME handling package 493

os.mkdir(dir)
except OSError, e:

Ignore directory exists error
if e.errno <> errno.EEXIST: raise

fp = open(msgfile)
msg = email.message_from_file(fp)
fp.close()

counter = 1
for part in msg.walk():

multipart/* are just containers
if part.get_content_maintype() == ’multipart’:

continue
Applications should really sanitize the given filename so that an
email message can’t be used to overwrite important files
filename = part.get_filename()
if not filename:

ext = mimetypes.guess_extension(part.get_type())
if not ext:

Use a generic bag-of-bits extension
ext = ’.bin’

filename = ’part-%03d%s’ % (counter, ext)
counter += 1
fp = open(os.path.join(dir, filename), ’wb’)
fp.write(part.get_payload(decode=1))
fp.close()

if __name__ == ’__main__’:
main()

12.3 mailcap — Mailcap file handling.

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react
to files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For
example, a mailcap file might contain a line like ‘video/mpeg; xmpeg %s ’. Then, if the user encounters an
email message or Web document with the MIME typevideo/mpeg, ‘%s’ will be replaced by a filename (usually
one belonging to a temporary file) and thexmpegprogram can be automatically started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail
Format Information,” but is not an Internet standard. However, mailcap files are supported on most UNIX systems.

findmatch (caps, MIMEtype[, key[, filename[, plist]]])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can be
passed toos.system()), and the second element is the mailcap entry for a given MIME type. If no
matching MIME type can be found,(None, None) is returned.

keyis the name of the field desired, which represents the type of activity to be performed; the default value
is ’view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be ’compose’ and ’edit’, if you wanted to create a new body of the given MIME type
or alter the existing body data. See RFC 1524 for a complete list of these fields.

filenameis the filename to be substituted for ‘%s’ in the command line; the default value is’/dev/null’
which is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the
list must be a string containing the parameter name, an equals sign (‘=’), and the parameter’s value. Mailcap
entries can contain named parameters like%{foo} , which will be replaced by the value of the parameter
named ’foo’. For example, if the command line ‘showpartial %{id} %{number} %{total} ’
was in a mailcap file, andplist was set to[’id=1’, ’number=2’, ’total=3’] , the resulting com-
mand line would be’showpartial 1 2 3’ .

494 Chapter 12. Internet Data Handling

In a mailcap file, the “test” field can optionally be specified to test some external condition (such as the
machine architecture, or the window system in use) to determine whether or not the mailcap line applies.
findmatch() will automatically check such conditions and skip the entry if the check fails.

getcaps ()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed
to thefindmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t be necessary to
know the details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s mailcap
file ‘$HOME/.mailcap’ will override settings in the system mailcap files ‘/etc/mailcap’, ‘ /usr/etc/mailcap’,
and ‘/usr/local/etc/mailcap’.

An example usage:

>>> import mailcap
>>> d=mailcap.getcaps()
>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)
(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

12.4 mailbox — Read various mailbox formats

This module defines a number of classes that allow easy and uniform access to mail messages in a (UNIX) mailbox.

classUnixMailbox (fp[, factory])
Access to a classic UNIX -style mailbox, where all messages are contained in a single file and separated by
‘From ’ (a.k.a. ‘From ’) lines. The file objectfp points to the mailbox file. The optionalfactoryparameter
is a callable that should create new message objects.factoryis called with one argument,fp by thenext()
method of the mailbox object. The default is therfc822.Message class (see therfc822 module – and
the note below).

Note: For reasons of this module’s internal implementation, you will probably want to open thefp object in
binary mode. This is especially important on Windows.

For maximum portability, messages in a UNIX -style mailbox are separated by any line that begins exactly
with the string’From ’ (note the trailing space) if preceded by exactly two newlines. Because of the wide-
range of variations in practice, nothing else on the Fromline should be considered. However, the current
implementation doesn’t check for the leading two newlines. This is usually fine for most applications.

TheUnixMailbox class implements a more strict version of Fromline checking, using a regular expres-
sion that usually correctly matched Fromdelimiters. It considers delimiter line to be separated by ‘From
name time’ lines. For maximum portability, use thePortableUnixMailbox class instead. This class
is identical toUnixMailbox except that individual messages are separated by only ‘From ’ lines.

For more information, seeConfiguring Netscape Mail onUNIX : Why the Content-Length Format is Bad.

classPortableUnixMailbox (fp[, factory])
A less-strict version ofUnixMailbox , which considers only the ‘From ’ at the beginning of the line
separating messages. The “name time” portion of the From line is ignored, to protect against some variations
that are observed in practice. This works since lines in the message which begin with’From ’ are quoted
by mail handling software at delivery-time.

classMmdfMailbox (fp[, factory])
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines
consisting of 4 control-A characters. The file objectfp points to the mailbox file. Optionalfactoryis as with
theUnixMailbox class.

classMHMailbox (dirname[, factory])
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The name of
the mailbox directory is passed indirname. factory is as with theUnixMailbox class.

12.4. mailbox — Read various mailbox formats 495

classMaildir (dirname[, factory])
Access a Qmail mail directory. All new and current mail for the mailbox specified bydirnameis made
available.factory is as with theUnixMailbox class.

classBabylMailbox (fp[, factory])
Access a Babyl mailbox, which is similar to an MMDF mailbox. In Babyl format, each message has two
sets of headers, theoriginal headers and thevisible headers. The original headers appear before a line
containing only’*** EOOH ***’ (End-Of-Original-Headers) and the visible headers appear after the
EOOHline. Babyl-compliant mail readers will show you only the visible headers, andBabylMailbox
objects will return messages containing only the visible headers. You’ll have to do your own parsing of the
mailbox file to get at the original headers. Mail messages start with the EOOH line and end with a line
containing only’\037\014’ . factory is as with theUnixMailbox class.

Note that because therfc822 module is deprecated, it is recommended that you use theemail package to create
message objects from a mailbox. (The default can’t be changed for backwards compatibility reasons.) The safest
way to do this is with bit of code:

import email
import email.Errors
import mailbox

def msgfactory(fp):
try:

return email.message_from_file(fp)
except email.Errors.MessageParseError:

Don’t return None since that will
stop the mailbox iterator
return ’’

mbox = mailbox.UnixMailbox(fp, msgfactory)

The above wrapper is defensive against ill-formed MIME messages in the mailbox, but you have to be prepared
to receive the empty string from the mailbox’snext() method. On the other hand, if you know your mailbox
contains only well-formed MIME messages, you can simplify this to:

import email
import mailbox

mbox = mailbox.UnixMailbox(fp, email.message_from_file)

See Also:

mbox - file containing mail messages
(http://www.qmail.org/man/man5/mbox.html)

Description of the traditional “mbox” mailbox format.

maildir - directory for incoming mail messages
(http://www.qmail.org/man/man5/maildir.html)

Description of the “maildir” mailbox format.

Configuring Netscape Mail onUNIX : Why the Content-Length Format is Bad
(http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/content-length.html)

A description of problems with relying on theContent-Length: header for messages stored in mailbox files.

12.4.1 Mailbox Objects

All implementations of mailbox objects are iterable objects, and have one externally visible method. This method
is used by iterators created from mailbox objects and may also be used directly.

496 Chapter 12. Internet Data Handling

next ()
Return the next message in the mailbox, created with the optionalfactoryargument passed into the mailbox
object’s constructor. By default this is anrfc822.Message object (see therfc822 module). Depending
on the mailbox implementation thefp attribute of this object may be a true file object or a class instance sim-
ulating a file object, taking care of things like message boundaries if multiple mail messages are contained
in a single file, etc. If no more messages are available, this method returnsNone.

12.5 mhlib — Access to MH mailboxes

Themhlib module provides a Python interface to MH folders and their contents.

The module contains three basic classes,MH, which represents a particular collection of folders,Folder , which
represents a single folder, andMessage , which represents a single message.

classMH([path[, profile]])
MHrepresents a collection of MH folders.

classFolder (mh, name)
TheFolder class represents a single folder and its messages.

classMessage (folder, number[, name])
Message objects represent individual messages in a folder. The Message class is derived from
mimetools.Message .

12.5.1 MH Objects

MHinstances have the following methods:

error (format[, ...])
Print an error message – can be overridden.

getprofile (key)
Return a profile entry (None if not set).

getpath ()
Return the mailbox pathname.

getcontext ()
Return the current folder name.

setcontext (name)
Set the current folder name.

listfolders ()
Return a list of top-level folders.

listallfolders ()
Return a list of all folders.

listsubfolders (name)
Return a list of direct subfolders of the given folder.

listallsubfolders (name)
Return a list of all subfolders of the given folder.

makefolder (name)
Create a new folder.

deletefolder (name)
Delete a folder – must have no subfolders.

openfolder (name)
Return a new open folder object.

12.5. mhlib — Access to MH mailboxes 497

12.5.2 Folder Objects

Folder instances represent open folders and have the following methods:

error (format[, ...])
Print an error message – can be overridden.

getfullname ()
Return the folder’s full pathname.

getsequencesfilename ()
Return the full pathname of the folder’s sequences file.

getmessagefilename (n)
Return the full pathname of messagen of the folder.

listmessages ()
Return a list of messages in the folder (as numbers).

getcurrent ()
Return the current message number.

setcurrent (n)
Set the current message number ton.

parsesequence (seq)
Parse msgs syntax into list of messages.

getlast ()
Get last message, or0 if no messages are in the folder.

setlast (n)
Set last message (internal use only).

getsequences ()
Return dictionary of sequences in folder. The sequence names are used as keys, and the values are the lists
of message numbers in the sequences.

putsequences (dict)
Return dictionary of sequences in folder name: list.

removemessages (list)
Remove messages in list from folder.

refilemessages (list, tofolder)
Move messages in list to other folder.

movemessage(n, tofolder, ton)
Move one message to a given destination in another folder.

copymessage (n, tofolder, ton)
Copy one message to a given destination in another folder.

12.5.3 Message Objects

TheMessage class adds one method to those ofmimetools.Message :

openmessage (n)
Return a new open message object (costs a file descriptor).

12.6 mimetools — Tools for parsing MIME messages

Deprecated since release 2.3.The email package should be used in preference to themimetools module.
This module is present only to maintain backward compatibility.

498 Chapter 12. Internet Data Handling

This module defines a subclass of therfc822 module’sMessage class and a number of utility functions that
are useful for the manipulation for MIME multipart or encoded message.

It defines the following items:

classMessage (fp[, seekable])
Return a new instance of theMessage class. This is a subclass of therfc822.Message class, with some
additional methods (see below). Theseekableargument has the same meaning as forrfc822.Message .

choose boundary ()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
’ hostipaddr. uid. pid. timestamp. random’ .

decode (input, output, encoding)
Read data encoded using the allowed MIMEencodingfrom open file objectinput and write the decoded
data to open file objectoutput. Valid values forencodinginclude’base64’ , ’quoted-printable’ ,
’uuencode’ , ’x-uuencode’ , ’uue’ , ’x-uue’ , ’7bit’ , and ’8bit’ . Decoding messages en-
coded in’7bit’ or ’8bit’ has no effect. The input is simply copied to the output.

encode (input, output, encoding)
Read data from open file objectinput and write it encoded using the allowed MIMEencodingto open file
objectoutput. Valid values forencodingare the same as fordecode() .

copyliteral (input, output)
Read lines from open fileinput until EOF and write them to open fileoutput.

copybinary (input, output)
Read blocks untilEOF from open fileinput and write them to open fileoutput. The block size is currently
fixed at 8192.

See Also:

Moduleemail (section 12.2):
Comprehensive email handling package; supercedes themimetools module.

Modulerfc822 (section 12.11):
Provides the base class formimetools.Message .

Modulemultifile (section 12.10):
Support for reading files which contain distinct parts, such as MIME data.

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-faq/.html
The MIME Frequently Asked Questions document. For an overview of MIME, see the answer to question
1.1 in Part 1 of this document.

12.6.1 Additional Methods of Message Objects

TheMessage class defines the following methods in addition to therfc822.Message methods:

getplist ()
Return the parameter list of theContent-Type: header. This is a list of strings. For parameters of the form
‘key=value’, keyis converted to lower case butvalueis not. For example, if the message contains the header
‘Content-type: text/html; spam=1; Spam=2; Spam ’ then getplist() will return the
Python list[’spam=1’, ’spam=2’, ’Spam’] .

getparam (name)
Return thevalueof the first parameter (as returned bygetplist()) of the form ‘name=value’ for the
givenname. If valueis surrounded by quotes of the form ‘<...>’ or ‘ " ..." ’, these are removed.

getencoding ()
Return the encoding specified in theContent-Transfer-Encoding: message header. If no such header exists,
return’7bit’ . The encoding is converted to lower case.

gettype ()
Return the message type (of the form ‘type/ subtype’) as specified in theContent-Type: header. If no such
header exists, return’text/plain’ . The type is converted to lower case.

12.6. mimetools — Tools for parsing MIME messages 499

getmaintype ()
Return the main type as specified in theContent-Type: header. If no such header exists, return’text’ .
The main type is converted to lower case.

getsubtype ()
Return the subtype as specified in theContent-Type: header. If no such header exists, return’plain’ . The
subtype is converted to lower case.

12.7 mimetypes — Map filenames to MIME types

Themimetypes module converts between a filename or URL and the MIME type associated with the filename
extension. Conversions are provided from filename to MIME type and from MIME type to filename extension;
encodings are not supported for the latter conversion.

The module provides one class and a number of convenience functions. The functions are the normal interface to
this module, but some applications may be interested in the class as well.

The functions described below provide the primary interface for this module. If the module has not been initialized,
they will call init() if they rely on the informationinit() sets up.

guess type (filename[, strict])
Guess the type of a file based on its filename or URL, given byfilename. The return value is a tuple(type,
encoding) wheretype is None if the type can’t be guessed (missing or unknown suffix) or a string of the
form ’ type/ subtype’ , usable for a MIMEcontent-type: header.

encodingis None for no encoding or the name of the program used to encode (e.g.compressor gzip). The
encoding is suitable for use as aContent-Encoding: header,notas aContent-Transfer-Encoding: header. The
mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first tried case sensitively,
then case insensitively.

Optionalstrict is a flag specifying whether the list of known MIME types is limited to only the official types
registered with IANAare recognized. Whenstrict is true (the default), only the IANA types are supported;
whenstrict is false, some additional non-standard but commonly used MIME types are also recognized.

guess all extensions (type[, strict])
Guess the extensions for a file based on its MIME type, given bytype. The return value is a list of strings
giving all possible filename extensions, including the leading dot (‘. ’). The extensions are not guaranteed
to have been associated with any particular data stream, but would be mapped to the MIME typetypeby
guess type() .

Optionalstrict has the same meaning as with theguess type() function.

guess extension (type[, strict])
Guess the extension for a file based on its MIME type, given bytype. The return value is a string giving a
filename extension, including the leading dot (‘. ’). The extension is not guaranteed to have been associated
with any particular data stream, but would be mapped to the MIME typetypeby guess type() . If no
extension can be guessed fortype, None is returned.

Optionalstrict has the same meaning as with theguess type() function.

Some additional functions and data items are available for controlling the behavior of the module.

init ([files])
Initialize the internal data structures. If given,filesmust be a sequence of file names which should be used
to augment the default type map. If omitted, the file names to use are taken fromknownfiles . Each file
named infilesor knownfiles takes precedence over those named before it. Callinginit() repeatedly
is allowed.

read mime types (filename)
Load the type map given in the filefilename, if it exists. The type map is returned as a dictionary mapping
filename extensions, including the leading dot (‘. ’), to strings of the form’ type/ subtype’ . If the file
filenamedoes not exist or cannot be read,None is returned.

add type (type, ext[, strict])
Add a mapping from the mimetypetype to the extensionext. When the extension is already known, the

500 Chapter 12. Internet Data Handling

new type will replace the old one. When the type is already known the extension will be added to the list of
known extensions.

Whenstrict is the mapping will added to the official MIME types, otherwise to the non-standard ones.

inited
Flag indicating whether or not the global data structures have been initialized. This is set to true byinit() .

knownfiles
List of type map file names commonly installed. These files are typically named ‘mime.types’ and are
installed in different locations by different packages.

suffix map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the ‘.tgz’ extension is mapped to
‘ .tar.gz’ to allow the encoding and type to be recognized separately.

encodings map
Dictionary mapping filename extensions to encoding types.

types map
Dictionary mapping filename extensions to MIME types.

common types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types.

TheMimeTypes class may be useful for applications which may want more than one MIME-type database:

classMimeTypes ([filenames])
This class represents a MIME-types database. By default, it provides access to the same database as the
rest of this module. The initial database is a copy of that provided by the module, and may be extended
by loading additional ‘mime.types’-style files into the database using theread() or readfp() methods.
The mapping dictionaries may also be cleared before loading additional data if the default data is not desired.

The optionalfilenamesparameter can be used to cause additional files to be loaded “on top” of the default
database.

New in version 2.2.

12.7.1 MimeTypes Objects

MimeTypes instances provide an interface which is very like that of themimetypes module.

suffix map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the ‘.tgz’ extension is mapped to
‘ .tar.gz’ to allow the encoding and type to be recognized separately. This is initially a copy of the global
suffix mapdefined in the module.

encodings map
Dictionary mapping filename extensions to encoding types. This is initially a copy of the global
encodings mapdefined in the module.

types map
Dictionary mapping filename extensions to MIME types. This is initially a copy of the globaltypes map
defined in the module.

common types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types. This is initially
a copy of the globalcommon types defined in the module.

guess extension (type[, strict])
Similar to theguess extension() function, using the tables stored as part of the object.

guess type (url[, strict])
Similar to theguess type() function, using the tables stored as part of the object.

12.7. mimetypes — Map filenames to MIME types 501

read (path)
Load MIME information from a file namedpath. This usesreadfp() to parse the file.

readfp (file)
Load MIME type information from an open file. The file must have the format of the standard ‘mime.types’
files.

12.8 MimeWriter — Generic MIME file writer

Deprecated since release 2.3.Theemail package should be used in preference to theMimeWriter module.
This module is present only to maintain backward compatibility.

This module defines the classMimeWriter . TheMimeWriter class implements a basic formatter for creating
MIME multi-part files. It doesn’t seek around the output file nor does it use large amounts of buffer space. You
must write the parts out in the order that they should occur in the final file.MimeWriter does buffer the headers
you add, allowing you to rearrange their order.

classMimeWriter (fp)
Return a new instance of theMimeWriter class. The only argument passed,fp, is a file object to be used
for writing. Note that aStringIO object could also be used.

12.8.1 MimeWriter Objects

MimeWriter instances have the following methods:

addheader (key, value[, prefix])
Add a header line to the MIME message. Thekey is the name of the header, where thevalueobviously
provides the value of the header. The optional argumentprefixdetermines where the header is inserted; ‘0’
means append at the end, ‘1’ is insert at the start. The default is to append.

flushheaders ()
Causes all headers accumulated so far to be written out (and forgotten). This is useful if you don’t need
a body part at all, e.g. for a subpart of typemessage/rfc822 that’s (mis)used to store some header-like
information.

startbody (ctype[, plist[, prefix]])
Returns a file-like object which can be used to write to the body of the message. The content-type is set
to the providedctype, and the optional parameterplist provides additional parameters for the content-type
declaration.prefix functions as inaddheader() except that the default is to insert at the start.

startmultipartbody (subtype[, boundary[, plist[, prefix]]])
Returns a file-like object which can be used to write to the body of the message. Additionally, this method
initializes the multi-part code, wheresubtypeprovides the multipart subtype,boundarymay provide a user-
defined boundary specification, andplist provides optional parameters for the subtype.prefix functions as
in startbody() . Subparts should be created usingnextpart() .

nextpart ()
Returns a new instance ofMimeWriter which represents an individual part in a multipart message. This
may be used to write the part as well as used for creating recursively complex multipart messages. The
message must first be initialized withstartmultipartbody() before usingnextpart() .

lastpart ()
This is used to designate the last part of a multipart message, and shouldalwaysbe used when writing
multipart messages.

12.9 mimify — MIME processing of mail messages

Deprecated since release 2.3.Theemail package should be used in preference to themimify module. This
module is present only to maintain backward compatibility.

502 Chapter 12. Internet Data Handling

Themimify module defines two functions to convert mail messages to and from MIME format. The mail mes-
sage can be either a simple message or a so-called multipart message. Each part is treated separately. Mimifying
(a part of) a message entails encoding the message as quoted-printable if it contains any characters that cannot be
represented using 7-bitASCII. Unmimifying (a part of) a message entails undoing the quoted-printable encoding.
Mimify and unmimify are especially useful when a message has to be edited before being sent. Typical use would
be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

mimify (infile, outfile)
Copy the message ininfile to outfile, converting parts to quoted-printable and adding MIME mail headers
when necessary.infile andoutfilecan be file objects (actually, any object that has areadline() method
(for infile) or a write() method (foroutfile)) or strings naming the files. Ifinfile andoutfile are both
strings, they may have the same value.

unmimify (infile, outfile[, decodebase64])
Copy the message ininfile to outfile, decoding all quoted-printable parts.infile andoutfilecan be file objects
(actually, any object that has areadline() method (forinfile) or a write() method (foroutfile))
or strings naming the files. Ifinfile and outfile are both strings, they may have the same value. If the
decode base64argument is provided and tests true, any parts that are coded in the base64 encoding are
decoded as well.

mime decode header (line)
Return a decoded version of the encoded header line inline. This only supports the ISO 8859-1 charset
(Latin-1).

mime encode header (line)
Return a MIME-encoded version of the header line inline.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCII characters (characters
with the 8th bit set), or if there are any lines longer thanMAXLENcharacters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored in
CHARSET, and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-l length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively.infile defaults to standard input,outfiledefaults to stan-
dard output. The same file can be specified for input and output.

If the -l option is given when encoding, if there are any lines longer than the specifiedlength, the containing part
will be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

See Also:

Modulequopri (section 12.15):
Encode and decode MIME quoted-printable files.

12.9. mimify — MIME processing of mail messages 503

12.10 multifile — Support for files containing distinct parts

TheMultiFile object enables you to treat sections of a text file as file-like input objects, with’’ being returned
by readline() when a given delimiter pattern is encountered. The defaults of this class are designed to make it
useful for parsing MIME multipart messages, but by subclassing it and overriding methods it can be easily adapted
for more general use.

classMultiFile (fp[, seekable])
Create a multi-file. You must instantiate this class with an input object argument for theMultiFile
instance to get lines from, such as a file object returned byopen() .

MultiFile only ever looks at the input object’sreadline() , seek() andtell() methods, and the
latter two are only needed if you want random access to the individual MIME parts. To useMultiFile on
a non-seekable stream object, set the optionalseekableargument to false; this will prevent using the input
object’sseek() andtell() methods.

It will be useful to know that inMultiFile ’s view of the world, text is composed of three kinds of lines: data,
section-dividers, and end-markers. MultiFile is designed to support parsing of messages that may have multiple
nested message parts, each with its own pattern for section-divider and end-marker lines.

See Also:

Moduleemail (section 12.2):
Comprehensive email handling package; supercedes themultifile module.

12.10.1 MultiFile Objects

A MultiFile instance has the following methods:

readline (str)
Read a line. If the line is data (not a section-divider or end-marker or real EOF) return it. If the line matches
the most-recently-stacked boundary, return’’ and setself.last to 1 or 0 according as the match is or
is not an end-marker. If the line matches any other stacked boundary, raise an error. On encountering end-
of-file on the underlying stream object, the method raisesError unless all boundaries have been popped.

readlines (str)
Return all lines remaining in this part as a list of strings.

read ()
Read all lines, up to the next section. Return them as a single (multiline) string. Note that this doesn’t take
a size argument!

seek (pos[, whence])
Seek. Seek indices are relative to the start of the current section. Thepos and whencearguments are
interpreted as for a file seek.

tell ()
Return the file position relative to the start of the current section.

next ()
Skip lines to the next section (that is, read lines until a section-divider or end-marker has been consumed).
Return true if there is such a section, false if an end-marker is seen. Re-enable the most-recently-pushed
boundary.

is data (str)
Return true ifstr is data and false if it might be a section boundary. As written, it tests for a prefix other than
’--’ at start of line (which all MIME boundaries have) but it is declared so it can be overridden in derived
classes.

Note that this test is used intended as a fast guard for the real boundary tests; if it always returns false it will
merely slow processing, not cause it to fail.

push (str)
Push a boundary string. When an appropriately decorated version of this boundary is found as an input line,

504 Chapter 12. Internet Data Handling

it will be interpreted as a section-divider or end-marker. All subsequent reads will return the empty string
to indicate end-of-file, until a call topop() removes the boundary a ornext() call reenables it.

It is possible to push more than one boundary. Encountering the most-recently-pushed boundary will return
EOF; encountering any other boundary will raise an error.

pop ()
Pop a section boundary. This boundary will no longer be interpreted as EOF.

section divider (str)
Turn a boundary into a section-divider line. By default, this method prepends’--’ (which MIME section
boundaries have) but it is declared so it can be overridden in derived classes. This method need not append
LF or CR-LF, as comparison with the result ignores trailing whitespace.

end marker (str)
Turn a boundary string into an end-marker line. By default, this method prepends’--’ and appends’--’
(like a MIME-multipart end-of-message marker) but it is declared so it can be overridden in derived classes.
This method need not append LF or CR-LF, as comparison with the result ignores trailing whitespace.

Finally, MultiFile instances have two public instance variables:

level
Nesting depth of the current part.

last
True if the last end-of-file was for an end-of-message marker.

12.10.2 MultiFile Example

import mimetools
import multifile
import StringIO

def extract_mime_part_matching(stream, mimetype):
"""Return the first element in a multipart MIME message on stream
matching mimetype."""

msg = mimetools.Message(stream)
msgtype = msg.gettype()
params = msg.getplist()

data = StringIO.StringIO()
if msgtype[:10] == "multipart/":

file = multifile.MultiFile(stream)
file.push(msg.getparam("boundary"))
while file.next():

submsg = mimetools.Message(file)
try:

data = StringIO.StringIO()
mimetools.decode(file, data, submsg.getencoding())

except ValueError:
continue

if submsg.gettype() == mimetype:
break

file.pop()
return data.getvalue()

12.11 rfc822 — Parse RFC 2822 mail headers

12.11. rfc822 — Parse RFC 2822 mail headers 505

Deprecated since release 2.3.Theemail package should be used in preference to therfc822 module. This
module is present only to maintain backward compatibility.

This module defines a class,Message , which represents an “email message” as defined by the Internet standard
RFC 2822.5 Such messages consist of a collection of message headers, and a message body. This module also
defines a helper classAddressList for parsing RFC 2822 addresses. Please refer to the RFC for information
on the specific syntax of RFC 2822 messages.

Themailbox module provides classes to read mailboxes produced by various end-user mail programs.

classMessage (file[, seekable])
A Message instance is instantiated with an input object as parameter. Message relies only on the input
object having areadline() method; in particular, ordinary file objects qualify. Instantiation reads head-
ers from the input object up to a delimiter line (normally a blank line) and stores them in the instance. The
message body, following the headers, is not consumed.

This class can work with any input object that supports areadline() method. If the input object has
seek and tell capability, therewindbody() method will work; also, illegal lines will be pushed back onto
the input stream. If the input object lacks seek but has anunread() method that can push back a line
of input, Message will use that to push back illegal lines. Thus this class can be used to parse messages
coming from a buffered stream.

The optionalseekableargument is provided as a workaround for certain stdio libraries in whichtell()
discards buffered data before discovering that thelseek() system call doesn’t work. For maximum
portability, you should set the seekable argument to zero to prevent that initialtell() when passing in an
unseekable object such as a file object created from a socket object.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating
CR-LF is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g.m[’From’] , m[’from’] and
m[’FROM’] all yield the same result.

classAddressList (field)
You may instantiate theAddressList helper class using a single string parameter, a comma-separated
list of RFC 2822 addresses to be parsed. (The parameterNone yields an empty list.)

quote (str)
Return a new string with backslashes instr replaced by two backslashes and double quotes replaced by
backslash-double quote.

unquote (str)
Return a new string which is anunquotedversion ofstr. If str ends and begins with double quotes, they are
stripped off. Likewise ifstr ends and begins with angle brackets, they are stripped off.

parseaddr (address)
Parseaddress, which should be the value of some address-containing field such asTo: or Cc:, into its
constituent “realname” and “email address” parts. Returns a tuple of that information, unless the parse fails,
in which case a 2-tuple(None, None) is returned.

dump address pair (pair)
The inverse ofparseaddr() , this takes a 2-tuple of the form(realname, email address) and returns
the string value suitable for aTo: or Cc: header. If the first element ofpair is false, then the second element
is returned unmodified.

parsedate (date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that
format as specified, soparsedate() tries to guess correctly in such cases.date is a string containing
an RFC 2822 date, such as’Mon, 20 Nov 1995 19:12:08 -0500’ . If it succeeds in parsing the
date,parsedate() returns a 9-tuple that can be passed directly totime.mktime() ; otherwiseNone
will be returned. Note that fields 6, 7, and 8 of the result tuple are not usable.

parsedate tz (date)
Performs the same function asparsedate() , but returns eitherNone or a 10-tuple; the first 9 elements

5This module originally conformed to RFC 822, hence the name. Since then, RFC 2822 has been released as an update to RFC 822. This
module should be considered RFC 2822-conformant, especially in cases where the syntax or semantics have changed since RFC 822.

506 Chapter 12. Internet Data Handling

make up a tuple that can be passed directly totime.mktime() , and the tenth is the offset of the date’s
timezone from UTC (which is the official term for Greenwich Mean Time). (Note that the sign of the
timezone offset is the opposite of the sign of thetime.timezone variable for the same timezone; the
latter variable follows the POSIX standard while this module follows RFC 2822.) If the input string has no
timezone, the last element of the tuple returned isNone. Note that fields 6, 7, and 8 of the result tuple are
not usable.

mktime tz (tuple)
Turn a 10-tuple as returned byparsedate tz() into a UTC timestamp. If the timezone item in the tuple
is None, assume local time. Minor deficiency: this first interprets the first 8 elements as a local time and
then compensates for the timezone difference; this may yield a slight error around daylight savings time
switch dates. Not enough to worry about for common use.

See Also:

Moduleemail (section 12.2):
Comprehensive email handling package; supercedes therfc822 module.

Modulemailbox (section 12.4):
Classes to read various mailbox formats produced by end-user mail programs.

Modulemimetools (section 12.6):
Subclass ofrfc822.Message that handles MIME encoded messages.

12.11.1 Message Objects

A Message instance has the following methods:

rewindbody ()
Seek to the start of the message body. This only works if the file object is seekable.

isheader (line)
Returns a line’s canonicalized fieldname (the dictionary key that will be used to index it) if the line is a legal
RFC 2822 header; otherwise returnsNone (implying that parsing should stop here and the line be pushed
back on the input stream). It is sometimes useful to override this method in a subclass.

islast (line)
Return true if the given line is a delimiter on which Message should stop. The delimiter line is consumed,
and the file object’s read location positioned immediately after it. By default this method just checks that
the line is blank, but you can override it in a subclass.

iscomment (line)
ReturnTrue if the given line should be ignored entirely, just skipped. By default this is a stub that always
returnsFalse , but you can override it in a subclass.

getallmatchingheaders (name)
Return a list of lines consisting of all headers matchingname, if any. Each physical line, whether it is a
continuation line or not, is a separate list item. Return the empty list if no header matchesname.

getfirstmatchingheader (name)
Return a list of lines comprising the first header matchingname, and its continuation line(s), if any. Return
None if there is no header matchingname.

getrawheader (name)
Return a single string consisting of the text after the colon in the first header matchingname. This includes
leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any continuation
line(s) were present. ReturnNone if there is no header matchingname.

getheader (name[, default])
Like getrawheader(name) , but strip leading and trailing whitespace. Internal whitespace is not
stripped. The optionaldefault argument can be used to specify a different default to be returned when
there is no header matchingname.

get (name[, default])
An alias forgetheader() , to make the interface more compatible with regular dictionaries.

12.11. rfc822 — Parse RFC 2822 mail headers 507

getaddr (name)
Return a pair(full name, email address) parsed from the string returned bygetheader(name) . If no
header matchingnameexists, return(None, None) ; otherwise both the full name and the address are
(possibly empty) strings.

Example: If m’s first From: header contains the string’jack@cwi.nl (Jack Jansen)’ , then
m.getaddr(’From’) will yield the pair (’Jack Jansen’, ’jack@cwi.nl’) . If the header
contained’Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist (name)
This is similar togetaddr(list) , but parses a header containing a list of email addresses (e.g. aTo: header)
and returns a list of(full name, email address) pairs (even if there was only one address in the header).
If there is no header matchingname, return an empty list.

If multiple headers exist that match the named header (e.g. if there are severalCc: headers), all are parsed
for addresses. Any continuation lines the named headers contain are also parsed.

getdate (name)
Retrieve a header usinggetheader() and parse it into a 9-tuple compatible withtime.mktime() ;
note that fields 6, 7, and 8 are not usable. If there is no header matchingname, or it is unparsable, return
None.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested
and found correct on a large collection of email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

getdate tz (name)
Retrieve a header usinggetheader() and parse it into a 10-tuple; the first 9 elements will make a tuple
compatible withtime.mktime() , and the 10th is a number giving the offset of the date’s timezone from
UTC. Note that fields 6, 7, and 8 are not usable. Similarly togetdate() , if there is no header matching
name, or it is unparsable, returnNone.

Message instances also support a limited mapping interface. In particular:m[name] is like
m.getheader(name) but raisesKeyError if there is no matching header; andlen(m) , m.get(name[,
default]) , m.has key(name) , m.keys() , m.values() m.items() , andm.setdefault(name[,
default]) act as expected, with the one difference thatsetdefault() uses an empty string as the default value.
Message instances also support the mapping writable interfacem[name] = value and del m[name] .
Message objects do not support theclear() , copy() , popitem() , or update() methods of the mapping
interface. (Support forget() andsetdefault() was only added in Python 2.2.)

Finally, Message instances have some public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read (except that setitem calls
may disturb this order). Each line contains a trailing newline. The blank line terminating the headers is not
contained in the list.

fp
The file or file-like object passed at instantiation time. This can be used to read the message content.

unixfrom
The UNIX ‘From ’ line, if the message had one, or an empty string. This is needed to regenerate the
message in some contexts, such as anmbox-style mailbox file.

12.11.2 AddressList Objects

An AddressList instance has the following methods:

len ()
Return the number of addresses in the address list.

str ()
Return a canonicalized string representation of the address list. Addresses are rendered in ”name”
¡host@domain¿ form, comma-separated.

508 Chapter 12. Internet Data Handling

add (alist)
Return a newAddressList instance that contains all addresses in bothAddressList operands, with
duplicates removed (set union).

iadd (alist)
In-place version of add () ; turns thisAddressList instance into the union of itself and the right-
hand instance,alist.

sub (alist)
Return a newAddressList instance that contains every address in the left-handAddressList operand
that is not present in the right-hand address operand (set difference).

isub (alist)
In-place version of sub () , removing addresses in this list which are also inalist.

Finally, AddressList instances have one public instance variable:

addresslist
A list of tuple string pairs, one per address. In each member, the first is the canonicalized name part, the
second is the actual route-address (‘@’-separated username-host.domain pair).

12.12 base64 — Encode and decode MIME base64 data

This module performs base64 encoding and decoding of arbitrary binary strings into text strings that can be safely
sent by email or included as part of an HTTP POST request. The encoding scheme is defined in RFC 1521 (MIME
(Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of
Internet Message Bodies, section 5.2, “Base64 Content-Transfer-Encoding”) and is used for MIME email and
various other Internet-related applications; it is not the same as the output produced by theuuencodeprogram.
For example, the string’www.python.org’ is encoded as the string’d3d3LnB5dGhvbi5vcmc=\n’ .

decode (input, output)
Decode the contents of theinput file and write the resulting binary data to theoutputfile. input andout-
put must either be file objects or objects that mimic the file object interface.input will be read untilin-
put.read() returns an empty string.

decodestring (s)
Decode the strings, which must contain one or more lines of base64 encoded data, and return a string
containing the resulting binary data.

encode (input, output)
Encode the contents of theinput file and write the resulting base64 encoded data to theoutputfile. input
andoutput must either be file objects or objects that mimic the file object interface.input will be read
until input.read() returns an empty string.encode() returns the encoded data plus a trailing newline
character (’\n’).

encodestring (s)
Encode the strings, which can contain arbitrary binary data, and return a string containing one or more
lines of base64-encoded data.encodestring() returns a string containing one or more lines of base64-
encoded data always including an extra trailing newline (’\n’).

See Also:

Modulebinascii (section 12.13):
Support module containingASCII-to-binary and binary-to-ASCII conversions.

RFC 1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies”
Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

12.13 binascii — Convert between binary and ASCII

12.12. base64 — Encode and decode MIME base64 data 509

The binascii module contains a number of methods to convert between binary and variousASCII-encoded
binary representations. Normally, you will not use these functions directly but use wrapper modules likeuu or
binhex instead, this module solely exists because bit-manipulation of large amounts of data is slow in Python.

Thebinascii module defines the following functions:

a2b uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain
45 (binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a uu(data)
Convert binary data to a line ofASCII characters, the return value is the converted line, including a newline
char. The length ofdatashould be at most 45.

a2b base64 (string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed
at a time.

b2a base64 (data)
Convert binary data to a line ofASCII characters in base64 coding. The return value is the converted line,
including a newline char. The length ofdatashould be at most 57 to adhere to the base64 standard.

a2b qp(string[, header])
Convert a block of quoted-printable data back to binary and return the binary data. More than one line may
be passed at a time. If the optional argumentheaderis present and true, underscores will be decoded as
spaces.

b2a qp(data[, quotetabs, istext, header])
Convert binary data to a line(s) ofASCII characters in quoted-printable encoding. The return value is the
converted line(s). If the optional argumentquotetabsis present and true, all tabs and spaces will be encoded.
If the optional argumentheaderis present and true, spaces will be encoded as underscores per RFC1522.
If the optional argumentheaderis present and false, newline characters will be encoded as well, otherwise
linefeed conversion might corrupt the binary data stream.

a2b hqx (string)
Convert binhex4 formattedASCII data to binary, without doing RLE-decompression. The string should
contain a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the
remaining bits zero.

rledecode hqx (data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses0x90 after a
byte as a repeat indicator, followed by a count. A count of0 specifies a byte value of0x90 . The routine
returns the decompressed data, unless data input data ends in an orphaned repeat indicator, in which case
theIncomplete exception is raised.

rlecode hqx (data)
Perform binhex4 style RLE-compression ondataand return the result.

b2a hqx (data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should already
be RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc hqx (data, crc)
Compute the binhex4 crc value ofdata, starting with an initialcrc and returning the result.

crc32 (data[, crc])
Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This is consistent with the ZIP
file checksum. Since the algorithm is designed for use as a checksum algorithm, it is not suitable for use as
a general hash algorithm. Use as follows:

print binascii.crc32("hello world")
Or, in two pieces:
crc = binascii.crc32("hello")
crc = binascii.crc32(" world", crc)
print crc

510 Chapter 12. Internet Data Handling

b2a hex (data)
hexlify (data)

Return the hexadecimal representation of the binarydata. Every byte ofdata is converted into the corre-
sponding 2-digit hex representation. The resulting string is therefore twice as long as the length ofdata.

a2b hex (hexstr)
unhexlify (hexstr)

Return the binary data represented by the hexadecimal stringhexstr. This function is the inverse of
b2a hex() . hexstrmust contain an even number of hexadecimal digits (which can be upper or lower
case), otherwise aTypeError is raised.

exceptionError
Exception raised on errors. These are usually programming errors.

exceptionIncomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by
reading a little more data and trying again.

See Also:

Modulebase64 (section 12.12):
Support for base64 encoding used in MIME email messages.

Modulebinhex (section 12.14):
Support for the binhex format used on the Macintosh.

Moduleuu (section 12.16):
Support for UU encoding used on UNIX .

Modulequopri (section 12.15):
Support for quoted-printable encoding used in MIME email messages.

12.14 binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files
in ASCII. On the Macintosh, both forks of a file and the finder information are encoded (or decoded), on other
platforms only the data fork is handled.

Thebinhex module defines the following functions:

binhex (input, output)
Convert a binary file with filenameinput to binhex fileoutput. Theoutputparameter can either be a filename
or a file-like object (any object supporting awrite() andclose() method).

hexbin (input[, output])
Decode a binhex fileinput. inputmay be a filename or a file-like object supportingread() andclose()
methods. The resulting file is written to a file namedoutput, unless the argument is omitted in which case
the output filename is read from the binhex file.

The following exception is also defined:

exceptionError
Exception raised when something can’t be encoded using the binhex format (for example, a filename is too
long to fit in the filename field), or when input is not properly encoded binhex data.

See Also:

Modulebinascii (section 12.13):
Support module containingASCII-to-binary and binary-to-ASCII conversions.

12.14.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

12.14. binhex — Encode and decode binhex4 files 511

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline convention
(carriage-return as end of line).

As of this writing,hexbin() appears to not work in all cases.

12.15 quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet
Message Bodies”. The quoted-printable encoding is designed for data where there are relatively few nonprintable
characters; the base64 encoding scheme available via thebase64 module is more compact if there are many such
characters, as when sending a graphics file.

decode (input, output[,header])
Decode the contents of theinput file and write the resulting decoded binary data to theoutputfile. input
andoutput must either be file objects or objects that mimic the file object interface.input will be read
until input.readline() returns an empty string. If the optional argumentheaderis present and true,
underscore will be decoded as space. This is used to decode “Q”-encoded headers as described in RFC
1522: “MIME (Multipurpose Internet Mail Extensions) Part Two: Message Header Extensions for Non-
ASCII Text”.

encode (input, output, quotetabs)
Encode the contents of theinput file and write the resulting quoted-printable data to theoutputfile. input
andoutput must either be file objects or objects that mimic the file object interface.input will be read
until input.readline() returns an empty string.quotetabsis a flag which controls whether to encode
embedded spaces and tabs; when true it encodes such embedded whitespace, and when false it leaves them
unencoded. Note that spaces and tabs appearing at the end of lines are always encoded, as per RFC 1521.

decodestring (s[,header])
Like decode() , except that it accepts a source string and returns the corresponding decoded string.

encodestring (s[, quotetabs])
Like encode() , except that it accepts a source string and returns the corresponding encoded string.
quotetabsis optional (defaulting to 0), and is passed straight through toencode() .

See Also:

Modulemimify (section 12.9):
General utilities for processing of MIME messages.

Modulebase64 (section 12.12):
Encode and decode MIME base64 data

12.16 uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ASCII-only connections. Wherever a file argument is expected, the methods accept a file-like object. For back-
wards compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened
for reading and writing; the pathname’-’ is understood to mean the standard input or output. However, this
interface is deprecated; it’s better for the caller to open the file itself, and be sure that, when required, the mode is
’rb’ or ’wb’ on Windows.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

Theuu module defines the following functions:

encode (in file, out file[, name[, mode]])
Uuencode filein file into file out file. The uuencoded file will have the header specifyingnameandmode
as the defaults for the results of decoding the file. The default defaults are taken fromin file, or ’-’ and
0666 respectively.

512 Chapter 12. Internet Data Handling

decode (in file[, out file[, mode]])
This call decodes uuencoded filein file placing the result on fileout file. If out file is a pathname,mode
is used to set the permission bits if the file must be created. Defaults forout file andmodeare taken from
the uuencode header. However, if the file specified in the header already exists, auu.Error is raised.

exceptionError ()
Subclass ofException , this can be raised byuu.decode() under various situations, such as described
above, but also including a badly formated header, or truncated input file.

See Also:

Modulebinascii (section 12.13):
Support module containingASCII-to-binary and binary-to-ASCII conversions.

12.17 xdrlib — Encode and decode XDR data

Thexdrlib module supports the External Data Representation Standard as described in RFC 1014, written by
Sun Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another for
unpacking from XDR representation. There are also two exception classes.

classPacker ()
Packer is the class for packing data into XDR representation. ThePacker class is instantiated with no
arguments.

classUnpacker (data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input
buffer is given asdata.

See Also:

RFC 1014, “XDR: External Data Representation Standard”
This RFC defined the encoding of data which was XDR at the time this module was originally written. It
has apparently been obsoleted by RFC 1832.

RFC 1832, “XDR: External Data Representation Standard”
Newer RFC that provides a revised definition of XDR.

12.17.1 Packer Objects

Packer instances have the following methods:

get buffer ()
Returns the current pack buffer as a string.

reset ()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriatepack type()
method. Each method takes a single argument, the value to pack. The following simple data type packing meth-
ods are supported:pack uint() , pack int() , pack enum() , pack bool() , pack uhyper() , and
pack hyper() .

pack float (value)
Packs the single-precision floating point numbervalue.

pack double (value)
Packs the double-precision floating point numbervalue.

The following methods support packing strings, bytes, and opaque data:

pack fstring (n, s)
Packs a fixed length string,s. n is the length of the string but it isnotpacked into the data buffer. The string

12.17. xdrlib — Encode and decode XDR data 513

is padded with null bytes if necessary to guaranteed 4 byte alignment.

pack fopaque (n, data)
Packs a fixed length opaque data stream, similarly topack fstring() .

pack string (s)
Packs a variable length string,s. The length of the string is first packed as an unsigned integer, then the
string data is packed withpack fstring() .

pack opaque (data)
Packs a variable length opaque data string, similarly topack string() .

pack bytes (bytes)
Packs a variable length byte stream, similarly topack string() .

The following methods support packing arrays and lists:

pack list (list, pack item)
Packs alist of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is
not available until the entire list has been walked. For each item in the list, an unsigned integer1 is packed
first, followed by the data value from the list.pack item is the function that is called to pack the individual
item. At the end of the list, an unsigned integer0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

pack farray (n, array, pack item)
Packs a fixed length list (array) of homogeneous items.n is the length of the list; it isnot packed into the
buffer, but aValueError exception is raised iflen(array) is not equal ton. As above,pack item is the
function used to pack each element.

pack array (list, pack item)
Packs a variable lengthlist of homogeneous items. First, the length of the list is packed as an unsigned
integer, then each element is packed as inpack farray() above.

12.17.2 Unpacker Objects

TheUnpacker class offers the following methods:

reset (data)
Resets the string buffer with the givendata.

get position ()
Returns the current unpack position in the data buffer.

set position (position)
Sets the data buffer unpack position toposition. You should be careful about usingget position()
andset position() .

get buffer ()
Returns the current unpack data buffer as a string.

done ()
Indicates unpack completion. Raises anError exception if all of the data has not been unpacked.

In addition, every data type that can be packed with aPacker , can be unpacked with anUnpacker . Unpacking
methods are of the formunpack type() , and take no arguments. They return the unpacked object.

unpack float ()
Unpacks a single-precision floating point number.

unpack double ()
Unpacks a double-precision floating point number, similarly tounpack float() .

514 Chapter 12. Internet Data Handling

In addition, the following methods unpack strings, bytes, and opaque data:

unpack fstring (n)
Unpacks and returns a fixed length string.n is the number of characters expected. Padding with null bytes
to guaranteed 4 byte alignment is assumed.

unpack fopaque (n)
Unpacks and returns a fixed length opaque data stream, similarly tounpack fstring() .

unpack string ()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned
integer, then the string data is unpacked withunpack fstring() .

unpack opaque ()
Unpacks and returns a variable length opaque data string, similarly tounpack string() .

unpack bytes ()
Unpacks and returns a variable length byte stream, similarly tounpack string() .

The following methods support unpacking arrays and lists:

unpack list (unpack item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first
unpacking an unsigned integer flag. If the flag is1, then the item is unpacked and appended to the list. A
flag of0 indicates the end of the list.unpack item is the function that is called to unpack the items.

unpack farray (n, unpack item)
Unpacks and returns (as a list) a fixed length array of homogeneous items.n is number of list elements to
expect in the buffer. As above,unpack item is the function used to unpack each element.

unpack array (unpack item)
Unpacks and returns a variable lengthlist of homogeneous items. First, the length of the list is unpacked as
an unsigned integer, then each element is unpacked as inunpack farray() above.

12.17.3 Exceptions

Exceptions in this module are coded as class instances:

exceptionError
The base exception class.Error has a single public data membermsg containing the description of the
error.

exceptionConversionError
Class derived fromError . Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

12.18 netrc — netrc file processing

New in version 1.5.2.

The netrc class parses and encapsulates the netrc file format used by the UNIX ftp program and other FTP
clients.

classnetrc ([file])

12.18. netrc — netrc file processing 515

A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument, if
present, specifies the file to parse. If no argument is given, the file ‘.netrc’ in the user’s home directory will
be read. Parse errors will raiseNetrcParseError with diagnostic information including the file name,
line number, and terminating token.

exceptionNetrcParseError
Exception raised by thenetrc class when syntactical errors are encountered in source text. Instances of
this exception provide three interesting attributes:msg is a textual explanation of the error,filename is
the name of the source file, andlineno gives the line number on which the error was found.

12.18.1 netrc Objects

A netrc instance has the following methods:

authenticators (host)
Return a 3-tuple(login, account, password) of authenticators forhost. If the netrc file did not contain
an entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching host nor
default entry is available, returnNone.

repr ()
Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder the
entries.)

Instances ofnetrc have public instance variables:

hosts
Dictionary mapping host names to(login, account, password) tuples. The ‘default’ entry, if any, is
represented as a pseudo-host by that name.

macros
Dictionary mapping macro names to string lists.

Note: Passwords are limited to a subset of the ASCII character set. Versions of this module prior to 2.3 were ex-
tremely limited. Starting with 2.3, all ASCII punctuation is allowed in passwords. However, note that whitespace
and non-printable characters are not allowed in passwords. This is a limitation of the way the .netrc file is parsed
and may be removed in the future.

12.19 robotparser — Parser for robots.txt

This module provides a single class,RobotFileParser , which answers questions about whether or not a
particular user agent can fetch a URL on the Web site that published the ‘robots.txt’ file. For more details on the
structure of ‘robots.txt’ files, seehttp://www.robotstxt.org/wc/norobots.html.

classRobotFileParser ()
This class provides a set of methods to read, parse and answer questions about a single ‘robots.txt’ file.

set url (url)
Sets the URL referring to a ‘robots.txt’ file.

read ()
Reads the ‘robots.txt’ URL and feeds it to the parser.

parse (lines)
Parses the lines argument.

can fetch (useragent, url)
ReturnsTrue if the useragentis allowed to fetch theurl according to the rules contained in the parsed
‘ robots.txt’ file.

mtime ()
Returns the time therobots.txt file was last fetched. This is useful for long-running web spiders
that need to check for newrobots.txt files periodically.

516 Chapter 12. Internet Data Handling

modified ()
Sets the time therobots.txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import robotparser
>>> rp = robotparser.RobotFileParser()
>>> rp.set_url("http://www.musi-cal.com/robots.txt")
>>> rp.read()
>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
False
>>> rp.can_fetch("*", "http://www.musi-cal.com/")
True

12.20 csv — CSV File Reading and Writing

New in version 2.3.

The so-called CSV (Comma Separated Values) format is the most common import and export format for spread-
sheets and databases. There is no “CSV standard”, so the format is operationally defined by the many applications
which read and write it. The lack of a standard means that subtle differences often exist in the data produced and
consumed by different applications. These differences can make it annoying to process CSV files from multiple
sources. Still, while the delimiters and quoting characters vary, the overall format is similar enough that it is pos-
sible to write a single module which can efficiently manipulate such data, hiding the details of reading and writing
the data from the programmer.

Thecsv module implements classes to read and write tabular data in CSV format. It allows programmers to say,
“write this data in the format preferred by Excel,” or “read data from this file which was generated by Excel,”
without knowing the precise details of the CSV format used by Excel. Programmers can also describe the CSV
formats understood by other applications or define their own special-purpose CSV formats.

Thecsv module’sreader andwriter objects read and write sequences. Programmers can also read and write
data in dictionary form using theDictReader andDictWriter classes.

Note: This version of thecsv module doesn’t support Unicode input. Also, there are currently some issues
regardingASCII NUL characters. Accordingly, all input should generally be printableASCII to be safe. These
restrictions will be removed in the future.

See Also:

PEP 305, “CSV File API”
The Python Enhancement Proposal which proposed this addition to Python.

12.20.1 Module Contents

Thecsv module defines the following functions:

reader (csvfile[, dialect=’excel’ [, fmtparam]])
Return a reader object which will iterate over lines in the givencsvfile. csvfilecan be any object which
supports the iterator protocol and returns a string each time itsnext method is called. Ifcsvfileis a file
object, it must be opened with the ’b’ flag on platforms where that makes a difference. An optionaldialect
parameter can be given which is used to define a set of parameters specific to a particular CSV dialect. It may
be an instance of a subclass of theDialect class or one of the strings returned by thelist dialects
function. The other optionalfmtparamkeyword arguments can be given to override individual formatting
parameters in the current dialect. For more information about the dialect and formatting parameters, see
section 12.20.2, “Dialects and Formatting Parameters” for details of these parameters.

All data read are returned as strings. No automatic data type conversion is performed.

writer (csvfile[, dialect=’excel’ [, fmtparam]])

12.20. csv — CSV File Reading and Writing 517

Return a writer object responsible for converting the user’s data into delimited strings on the given file-
like object. csvfilecan be any object with awrite method. Ifcsvfileis a file object, it must be opened
with the ’b’ flag on platforms where that makes a difference. An optionaldialect parameter can be given
which is used to define a set of parameters specific to a particular CSV dialect. It may be an instance of
a subclass of theDialect class or one of the strings returned by thelist dialects function. The
other optionalfmtparamkeyword arguments can be given to override individual formatting parameters in
the current dialect. For more information about the dialect and formatting parameters, see section 12.20.2,
“Dialects and Formatting Parameters” for details of these parameters. To make it as easy as possible to
interface with modules which implement the DB API, the valueNone is written as the empty string. While
this isn’t a reversible transformation, it makes it easier to dump SQL NULL data values to CSV files without
preprocessing the data returned from acursor.fetch*() call. All other non-string data are stringified
with str() before being written.

register dialect (name, dialect)
Associatedialect with name. dialect must be a subclass ofcsv.Dialect . namemust be a string or
Unicode object.

unregister dialect (name)
Delete the dialect associated withnamefrom the dialect registry. AnError is raised ifnameis not a
registered dialect name.

get dialect (name)
Return the dialect associated withname. An Error is raised ifnameis not a registered dialect name.

list dialects ()
Return the names of all registered dialects.

Thecsv module defines the following classes:

classDictReader (csvfile, fieldnames[, restkey=None[, restval=None[, dialect=’excel’ [, fmtparam]]]
])

Create an object which operates like a regular reader but maps the information read into a dict whose keys
are given by thefieldnamesparameter. If the row read has fewer fields than the fieldnames sequence, the
value of restval will be used as the default value. If the row read has more fields than the fieldnames
sequence, the remaining data is added as a sequence keyed by the value ofrestkey. If the row read has fewer
fields than the fieldnames sequence, the remaining keys take the value of the optionalrestvalparameter. All
other parameters are interpreted as forreader objects.

classDictWriter (csvfile, fieldnames[, restval=”” [, extrasaction=’raise’ [, dialect=’excel’ [, fmt-
param]]]])

Create an object which operates like a regular writer but maps dictionaries onto output rows. Thefieldnames
parameter identifies the order in which values in the dictionary passed to thewriterow() method are
written to thecsvfile. The optionalrestvalparameter specifies the value to be written if the dictionary is
missing a key infieldnames. If the dictionary passed to thewriterow() method contains a key not found
in fieldnames, the optionalextrasactionparameter indicates what action to take. If it is set to’raise’
a ValueError is raised. If it is set to’ignore’ , extra values in the dictionary are ignored. All other
parameters are interpreted as forwriter objects.

classDialect
TheDialect class is a container class relied on primarily for its attributes, which are used to define the
parameters for a specificreader or writer instance.

classSniffer ()
TheSniffer class is used to deduce the format of a CSV file.

TheSniffer class provides a single method:

sniff (sample[,delimiters=None])
Analyze the givensampleand return aDialect subclass reflecting the parameters found. If the optional
delimitersparameter is given, it is interpreted as a string containing possible valid delimiter characters.

has header (sample)
Analyze the sample text (presumed to be in CSV format) and returnTrue if the first row appears to be a
series of column headers.

518 Chapter 12. Internet Data Handling

Thecsv module defines the following constants:

QUOTEALL
Instructswriter objects to quote all fields.

QUOTEMINIMAL
Instructswriter objects to only quote those fields which contain the currentdelimiter or begin with the
currentquotechar.

QUOTENONNUMERIC
Instructswriter objects to quote all non-numeric fields.

QUOTENONE
Instructswriter objects to never quote fields. When the currentdelimiter occurs in output data it is
preceded by the currentescapecharcharacter. WhenQUOTENONEis in effect, it is an error not to have a
single-characterescapechardefined, even if no data to be written contains thedelimitercharacter.

Thecsv module defines the following exception:

exceptionError
Raised by any of the functions when an error is detected.

12.20.2 Dialects and Formatting Parameters

To make it easier to specify the format of input and output records, specific formatting parameters are grouped
together into dialects. A dialect is a subclass of theDialect class having a set of specific methods and a single
validate() method. When creatingreader or writer objects, the programmer can specify a string or
a subclass of theDialect class as the dialect parameter. In addition to, or instead of, thedialect parameter,
the programmer can also specify individual formatting parameters, which have the same names as the attributes
defined below for theDialect class.

Dialects support the following attributes:

delimiter
A one-character string used to separate fields. It defaults to’,’ .

doublequote
Controls how instances ofquotecharappearing inside a field should be themselves be quoted. WhenTrue ,
the character is doubled. WhenFalse , theescapecharmust be a one-character string which is used as a
prefix to thequotechar. It defaults toTrue .

escapechar
A one-character string used to escape thedelimiter if quotingis set toQUOTENONE. It defaults toNone.

lineterminator
The string used to terminate lines in the CSV file. It defaults to’\r\n’ .

quotechar
A one-character string used to quote elements containing thedelimiteror which start with thequotechar. It
defaults to’"’ .

quoting
Controls when quotes should be generated by the writer. It can take on any of theQUOTE* constants (see
section 12.20.1) and defaults toQUOTEMINIMAL.

skipinitialspace
WhenTrue , whitespace immediately following thedelimiter is ignored. The default isFalse .

12.20.3 Reader Objects

Reader objects (DictReader instances and objects returned by thereader() function) have the following
public methods:

next ()

12.20. csv — CSV File Reading and Writing 519

Return the next row of the reader’s iterable object as a list, parsed according to the current dialect.

12.20.4 Writer Objects

Writer objects (DictWriter instances and objects returned by thewriter() function) have the following
public methods. Arow must be a sequence of strings or numbers forWriter objects and a dictionary mapping
fieldnames to strings or numbers (by passing them throughstr() first) for DictWriter objects. Note that
complex numbers are written out surrounded by parens. This may cause some problems for other programs which
read CSV files (assuming they support complex numbers at all).

writerow (row)
Write therow parameter to the writer’s file object, formatted according to the current dialect.

writerows (rows)
Write all therowsparameters (a list ofrow objects as described above) to the writer’s file object, formatted
according to the current dialect.

12.20.5 Examples

The “Hello, world” of csv reading is

import csv
reader = csv.reader(file("some.csv"))
for row in reader:

print row

The corresponding simplest possible writing example is

import csv
writer = csv.writer(file("some.csv", "w"))
for row in someiterable:

writer.writerow(row)

520 Chapter 12. Internet Data Handling

CHAPTER

THIRTEEN

Structured Markup Processing Tools

Python supports a variety of modules to work with various forms of structured data markup. This includes modules
to work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup Language (HTML),
and several interfaces for working with the Extensible Markup Language (XML).

It is important to note that modules in thexml package require that there be at least one SAX-compliant
XML parser available. Starting with Python 2.3, the Expat parser is included with Python, so the
xml.parsers.expat module will always be available. You may still want to be aware of thePyXML add-on
package; that package provides an extended set of XML libraries for Python.

The documentation for thexml.dom andxml.sax packages are the definition of the Python bindings for the
DOM and SAX interfaces.

HTMLParser A simple parser that can handle HTML and XHTML.
sgmllib Only as much of an SGML parser as needed to parse HTML.
htmllib A parser for HTML documents.
htmlentitydefs Definitions of HTML general entities.
xml.parsers.expat An interface to the Expat non-validating XML parser.
xml.dom Document Object Model API for Python.
xml.dom.minidom Lightweight Document Object Model (DOM) implementation.
xml.dom.pulldom Support for building partial DOM trees from SAX events.
xml.sax Package containing SAX2 base classes and convenience functions.
xml.sax.handler Base classes for SAX event handlers.
xml.sax.saxutils Convenience functions and classes for use with SAX.
xml.sax.xmlreader Interface which SAX-compliant XML parsers must implement.
xmllib A parser for XML documents.

See Also:

Python/XML Libraries
(http://pyxml.sourceforge.net/)

Home page for the PyXML package, containing an extension ofxml package bundled with Python.

13.1 HTMLParser — Simple HTML and XHTML parser

This module defines a classHTMLParser which serves as the basis for parsing text files formatted in HTML
(HyperText Mark-up Language) and XHTML. Unlike the parser inhtmllib , this parser is not based on the
SGML parser insgmllib .

classHTMLParser ()
TheHTMLParser class is instantiated without arguments.

An HTMLParser instance is fed HTML data and calls handler functions when tags begin and end. The
HTMLParser class is meant to be overridden by the user to provide a desired behavior.

Unlike the parser inhtmllib , this parser does not check that end tags match start tags or call the end-tag
handler for elements which are closed implicitly by closing an outer element.

HTMLParser instances have the following methods:

521

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined version
should always call theHTMLParser base class methodclose() .

getpos ()
Return current line number and offset.

get starttag text ()
Return the text of the most recently opened start tag. This should not normally be needed for structured
processing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal
changes (whitespace between attributes can be preserved, etc.).

handle starttag (tag, attrs)
This method is called to handle the start of a tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

The tag argument is the name of the tag converted to lower case. Theattrs argument is a list of(name,
value) pairs containing the attributes found inside the tag’s<> brackets. Thenamewill be translated to
lower case and double quotes and backslashes in thevaluehave been interpreted. For instance, for the tag
 , this method would be called as ‘handle starttag(’a’,
[(’href’, ’http://www.cwi.nl/’)]) ’.

handle startendtag (tag, attrs)
Similar tohandle starttag() , but called when the parser encounters an XHTML-style empty tag (<a
.../>). This method may be overridden by subclasses which require this particular lexical information;
the default implementation simple callshandle starttag() andhandle endtag() .

handle endtag (tag)
This method is called to handle the end tag of an element. It is intended to be overridden by a derived class;
the base class implementation does nothing. Thetag argument is the name of the tag converted to lower
case.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base
class implementation does nothing.

handle charref (name)
This method is called to process a character reference of the form ‘&#ref ; ’. It is intended to be overridden
by a derived class; the base class implementation does nothing.

handle entityref (name)
This method is called to process a general entity reference of the form ‘&name; ’ wherenameis an general
entity reference. It is intended to be overridden by a derived class; the base class implementation does
nothing.

handle comment(data)
This method is called when a comment is encountered. Thecommentargument is a string containing the
text between the ‘-- ’ and ‘-- ’ delimiters, but not the delimiters themselves. For example, the comment
‘<!--text--> ’ will cause this method to be called with the argument’text’ . It is intended to be
overridden by a derived class; the base class implementation does nothing.

handle decl (decl)
Method called when an SGML declaration is read by the parser. Thedecl parameter will be the entire
contents of the declaration inside the<! ...> markup.It is intended to be overridden by a derived class; the
base class implementation does nothing.

handle pi (data)
Method called when a processing instruction is encountered. Thedataparameter will contain the entire pro-

522 Chapter 13. Structured Markup Processing Tools

cessing instruction. For example, for the processing instruction<?proc color=’red’> , this method
would be called ashandle pi("proc color=’red’") . It is intended to be overridden by a derived
class; the base class implementation does nothing.

Note: The HTMLParser class uses the SGML syntactic rules for processing instructions. An XHTML
processing instruction using the trailing ‘?’ will cause the ‘?’ to be included indata.

13.1.1 Example HTML Parser Application

As a basic example, below is a very basic HTML parser that uses theHTMLParser class to print out tags as they
are encountered:

from HTMLParser import HTMLParser

class MyHTMLParser(HTMLParser):

def handle_starttag(self, tag, attrs):
print "Encountered the beginning of a %s tag" % tag

def handle_endtag(self, tag):
print "Encountered the end of a %s tag" % tag

13.2 sgmllib — Simple SGML parser

This module defines a classSGMLParser which serves as the basis for parsing text files formatted in SGML
(Standard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it only parses
SGML insofar as it is used by HTML, and the module only exists as a base for thehtmllib module. Another
HTML parser which supports XHTML and offers a somewhat different interface is available in theHTMLParser
module.

classSGMLParser ()
TheSGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the fol-
lowing constructs:

•Opening and closing tags of the form ‘<tag attr=" value" ...> ’ and ‘</ tag>’, respectively.

•Numeric character references of the form ‘&#name; ’.

•Entity references of the form ‘&name; ’.

•SGML comments of the form ‘<!-- text--> ’. Note that spaces, tabs, and newlines are allowed be-
tween the trailing ‘>’ and the immediately preceding ‘-- ’.

SGMLParser instances have the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the
archaic HTML tag<PLAINTEXT> can be implemented.)

setliteral ()
Enter literal mode (CDATA mode).

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed orclose() is called.

13.2. sgmllib — Simple SGML parser 523

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined version
should always callclose() .

get starttag text ()
Return the text of the most recently opened start tag. This should not normally be needed for structured
processing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal
changes (whitespace between attributes can be preserved, etc.).

handle starttag (tag, method, attributes)
This method is called to handle start tags for which either astart tag() or do tag() method has been
defined. Thetag argument is the name of the tag converted to lower case, and themethodargument is
the bound method which should be used to support semantic interpretation of the start tag. Theattributes
argument is a list of(name, value) pairs containing the attributes found inside the tag’s<> brackets. The
namehas been translated to lower case and double quotes and backslashes in thevaluehave been inter-
preted. For instance, for the tag , this method would be called as
‘unknown starttag(’a’, [(’href’, ’http://www.cwi.nl/’)]) ’. The base implemen-
tation simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which anend tag() method has been defined. Thetag argu-
ment is the name of the tag converted to lower case, and themethodargument is the bound method which
should be used to support semantic interpretation of the end tag. If noend tag() method is defined for
the closing element, this handler is not called. The base implementation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base
class implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. In the base implementa-
tion, ref must be a decimal number in the range 0-255. It translates the character toASCII and calls the
methodhandle data() with the character as argument. Ifref is invalid or out of range, the method
unknown charref(ref) is called to handle the error. A subclass must override this method to provide
support for named character entities.

handle entityref (ref)
This method is called to process a general entity reference of the form ‘&ref ; ’ where ref is an general
entity reference. It looks forref in the instance (or class) variableentitydefs which should be a
mapping from entity names to corresponding translations. If a translation is found, it calls the method
handle data() with the translation; otherwise, it calls the methodunknown entityref(ref) . The
defaultentitydefs defines translations for& , &apos , > , < , and" .

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the text
between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<!--text--> ’ will cause this method to be called with the argument’text’ . The default method does
nothing.

handle decl (data)
Method called when an SGML declaration is read by the parser. In practice, theDOCTYPEdeclaration is the
only thing observed in HTML, but the parser does not discriminate among different (or broken) declarations.
Internal subsets in aDOCTYPEdeclaration are not supported. Thedataparameter will be the entire contents
of the declaration inside the<! ...> markup. The default implementation does nothing.

report unbalanced (tag)
This method is called when an end tag is found which does not correspond to any open element.

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown endtag (tag)

524 Chapter 13. Structured Markup Processing Tools

This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. Refer to
handle charref() to determine what is handled by default. It is intended to be overridden by
a derived class; the base class implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived
class; the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of the
following form to define processing of specific tags. Tag names in the input stream are case independent; thetag
occurring in method names must be in lower case:

start tag(attributes)
This method is called to process an opening tagtag. It has preference overdo tag() . The attributes
argument has the same meaning as described forhandle starttag() above.

do tag(attributes)
This method is called to process an opening tagtag that does not come with a matching closing tag. The
attributesargument has the same meaning as described forhandle starttag() above.

end tag()
This method is called to process a closing tagtag.

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags
processed bystart tag() are pushed on this stack. Definition of anend tag() method is optional for these
tags. For tags processed bydo tag() or by unknown tag() , no end tag() method must be defined; if
defined, it will not be used. If bothstart tag() anddo tag() methods exist for a tag, thestart tag()
method takes precedence.

13.3 htmllib — A parser for HTML documents

This module defines a class which can serve as a base for parsing text files formatted in the HyperText Mark-up
Language (HTML). The class is not directly concerned with I/O — it must be provided with input in string form
via a method, and makes calls to methods of a “formatter” object in order to produce output. TheHTMLParser
class is designed to be used as a base class for other classes in order to add functionality, and allows most of its
methods to be extended or overridden. In turn, this class is derived from and extends theSGMLParser class
defined in modulesgmllib . TheHTMLParser implementation supports the HTML 2.0 language as described
in RFC 1866. Two implementations of formatter objects are provided in theformatter module; refer to the
documentation for that module for information on the formatter interface.

The following is a summary of the interface defined bysgmllib.SGMLParser :

• The interface to feed data to an instance is through thefeed() method, which takes a string argument.
This can be called with as little or as much text at a time as desired; ‘p.feed(a); p.feed(b) ’ has
the same effect as ‘p.feed(a+b) ’. When the data contains complete HTML tags, these are processed
immediately; incomplete elements are saved in a buffer. To force processing of all unprocessed data, call
theclose() method.

For example, to parse the entire contents of a file, use:

parser.feed(open(’myfile.html’).read())
parser.close()

• The interface to define semantics for HTML tags is very simple: derive a class and define methods called
start tag() , end tag() , ordo tag() . The parser will call these at appropriate moments:start tag
or do tag() is called when an opening tag of the form<tag ...> is encountered;end tag() is called

13.3. htmllib — A parser for HTML documents 525

when a closing tag of the form<tag> is encountered. If an opening tag requires a corresponding closing
tag, like<H1> ... </H1> , the class should define thestart tag() method; if a tag requires no closing
tag, like<P>, the class should define thedo tag() method.

The module defines a single class:

classHTMLParser (formatter)
This is the basic HTML parser class. It supports all entity names required by the HTML 2.0 specification
(RFC 1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements.

See Also:

Moduleformatter (section 12.1):
Interface definition for transforming an abstract flow of formatting events into specific output events on
writer objects.

ModuleHTMLParser (section 13.1):
Alternate HTML parser that offers a slightly lower-level view of the input, but is designed to work with
XHTML, and does not implement some of the SGML syntax not used in “HTML as deployed” and which
isn’t legal for XHTML.

Modulehtmlentitydefs (section 13.4):
Definition of replacement text for HTML 2.0 entities.

Modulesgmllib (section 13.2):
Base class forHTMLParser .

13.3.1 HTMLParser Objects

In addition to tag methods, theHTMLParser class provides some additional methods and instance variables for
use within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should
be. In general, this should only be true when character data is to be treated as “preformatted” text, as
within a <PRE>element. The default value is false. This affects the operation ofhandle data() and
save end() .

anchor bgn (href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes of the
<A> tag with the same names. The default implementation maintains a list of hyperlinks (defined by the
HREFattribute for<A> tags) within the document. The list of hyperlinks is available as the data attribute
anchorlist .

anchor end ()
This method is called at the end of an anchor region. The default implementation adds a textual footnote
marker using an index into the list of hyperlinks created byanchor bgn() .

handle image (source, alt[, ismap[, align[, width[, height]]]])
This method is called to handle images. The default implementation simply passes thealt value to the
handle data() method.

save bgn ()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the stored data
via save end() . Use of thesave bgn() / save end() pair may not be nested.

save end ()
Ends buffering character data and returns all data saved since the preceding call tosave bgn() . If the
nofill flag is false, whitespace is collapsed to single spaces. A call to this method without a preceding
call tosave bgn() will raise aTypeError exception.

526 Chapter 13. Structured Markup Processing Tools

13.4 htmlentitydefs — Definitions of HTML general entities

This module defines three dictionaries,name2codepoint , codepoint2name , and entitydefs .
entitydefs is used by thehtmllib module to provide theentitydefs member of theHTMLParser
class. The definition provided here contains all the entities defined by XHTML 1.0 that can be handled using
simple textual substitution in the Latin-1 character set (ISO-8859-1).

entitydefs
A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

name2codepoint
A dictionary that maps HTML entity names to the Unicode codepoints. New in version 2.3.

codepoint2name
A dictionary that maps Unicode codepoints to HTML entity names. New in version 2.3.

13.5 xml.parsers.expat — Fast XML parsing using Expat

New in version 2.0.

Thexml.parsers.expat module is a Python interface to the Expat non-validating XML parser. The module
provides a single extension type,xmlparser , that represents the current state of an XML parser. After an
xmlparser object has been created, various attributes of the object can be set to handler functions. When an
XML document is then fed to the parser, the handler functions are called for the character data and markup in the
XML document.

This module uses thepyexpat module to provide access to the Expat parser. Direct use of thepyexpat module
is deprecated.

This module provides one exception and one type object:

exceptionExpatError
The exception raised when Expat reports an error. See section 13.5.2, “ExpatError Exceptions,” for more
information on interpreting Expat errors.

exceptionerror
Alias for ExpatError .

XMLParserType
The type of the return values from theParserCreate() function.

Thexml.parsers.expat module contains two functions:

ErrorString (errno)
Returns an explanatory string for a given error numbererrno.

ParserCreate ([encoding[, namespaceseparator]])
Creates and returns a newxmlparser object.encoding, if specified, must be a string naming the encoding
used by the XML data. Expat doesn’t support as many encodings as Python does, and its repertoire of
encodings can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and ASCII. Ifencodingis
given it will override the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value fornames-
pace separator. The value must be a one-character string; aValueError will be raised if the string
has an illegal length (None is considered the same as omission). When namespace processing is enabled,
element type names and attribute names that belong to a namespace will be expanded. The element name
passed to the element handlersStartElementHandler andEndElementHandler will be the con-
catenation of the namespace URI, the namespace separator character, and the local part of the name. If the
namespace separator is a zero byte (chr(0)) then the namespace URI and the local part will be concate-
nated without any separator.

For example, ifnamespaceseparatoris set to a space character (‘ ’) and the following document is parsed:

13.4. htmlentitydefs — Definitions of HTML general entities 527

<?xml version="1.0"?>
<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">
<py:elem1 />
<elem2 xmlns="" />

</root>

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root
http://www.python.org/ns/ elem1
elem2

See Also:

The Expat XML Parser
(http://www.libexpat.org/)

Home page of the Expat project.

13.5.1 XMLParser Objects

xmlparser objects have the following methods:

Parse (data[, isfinal])
Parses the contents of the stringdata, calling the appropriate handler functions to process the parsed data.
isfinal must be true on the final call to this method.datacan be the empty string at any time.

ParseFile (file)
Parse XML data reading from the objectfile. file only needs to provide theread(nbytes) method, returning
the empty string when there’s no more data.

SetBase (base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations.
Resolving relative identifiers is left to the application: this value will be passed through
as the base argument to theExternalEntityRefHandler , NotationDeclHandler , and
UnparsedEntityDeclHandler functions.

GetBase ()
Returns a string containing the base set by a previous call toSetBase() , or None if SetBase() hasn’t
been called.

GetInputContext ()
Returns the input data that generated the current event as a string. The data is in the encoding of the entity
which contains the text. When called while an event handler is not active, the return value isNone. New
in version 2.1.

ExternalEntityParserCreate (context[, encoding])
Create a “child” parser which can be used to parse an external parsed entity referred to by con-
tent parsed by the parent parser. Thecontext parameter should be the string passed to the
ExternalEntityRefHandler() handler function, described below. The child parser is created with
theordered attributes , returns unicode andspecified attributes set to the values
of this parser.

xmlparser objects have the following attributes:

buffer size
The size of the buffer used whenbuffer text is true. This value cannot be changed at this time. New
in version 2.3.

buffer text
Setting this to true causes thexmlparser object to buffer textual content returned by Expat to avoid multi-
ple calls to theCharacterDataHandler() callback whenever possible. This can improve performance

528 Chapter 13. Structured Markup Processing Tools

substantially since Expat normally breaks character data into chunks at every line ending. This attribute is
false by default, and may be changed at any time. New in version 2.3.

buffer used
If buffer text is enabled, the number of bytes stored in the buffer. These bytes represent UTF-8
encoded text. This attribute has no meaningful interpretation whenbuffer text is false. New in
version 2.3.

ordered attributes
Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather than a dictionary.
The attributes are presented in the order found in the document text. For each attribute, two list entries are
presented: the attribute name and the attribute value. (Older versions of this module also used this format.)
By default, this attribute is false; it may be changed at any time. New in version 2.1.

returns unicode
If this attribute is set to a non-zero integer, the handler functions will be passed Unicode strings. If
returns unicode is 0, 8-bit strings containing UTF-8 encoded data will be passed to the handlers.
Changed in version 1.6: Can be changed at any time to affect the result type.

specified attributes
If set to a non-zero integer, the parser will report only those attributes which were specified in the document
instance and not those which were derived from attribute declarations. Applications which set this need
to be especially careful to use what additional information is available from the declarations as needed to
comply with the standards for the behavior of XML processors. By default, this attribute is false; it may be
changed at any time. New in version 2.1.

The following attributes contain values relating to the most recent error encountered by anxmlparser
object, and will only have correct values once a call toParse() or ParseFile() has raised a
xml.parsers.expat.ExpatError exception.

ErrorByteIndex
Byte index at which an error occurred.

ErrorCode
Numeric code specifying the problem. This value can be passed to theErrorString() function, or
compared to one of the constants defined in theerrors object.

ErrorColumnNumber
Column number at which an error occurred.

ErrorLineNumber
Line number at which an error occurred.

Here is the list of handlers that can be set. To set a handler on anxmlparser objecto, useo. handlername=
func. handlernamemust be taken from the following list, andfuncmust be a callable object accepting the correct
number of arguments. The arguments are all strings, unless otherwise stated.

XmlDeclHandler (version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of the appli-
cable version of the XML recommendation, the encoding of the document text, and an optional “standalone”
declaration.versionandencodingwill be strings of the type dictated by thereturns unicode attribute,
andstandalonewill be 1 if the document is declared standalone,0 if it is declared not to be standalone, or
-1 if the standalone clause was omitted. This is only available with Expat version 1.95.0 or newer. New in
version 2.1.

StartDoctypeDeclHandler (doctypeName, systemId, publicId, hasinternal subset)
Called when Expat begins parsing the document type declaration (<!DOCTYPE ...). ThedoctypeNameis
provided exactly as presented. ThesystemIdandpublicId parameters give the system and public identifiers
if specified, orNone if omitted. has internal subsetwill be true if the document contains and internal
document declaration subset. This requires Expat version 1.2 or newer.

EndDoctypeDeclHandler ()
Called when Expat is done parsing the document type delaration. This requires Expat version 1.2 or newer.

ElementDeclHandler (name, model)

13.5. xml.parsers.expat — Fast XML parsing using Expat 529

Called once for each element type declaration.nameis the name of the element type, andmodel is a
representation of the content model.

AttlistDeclHandler (elname, attname, type, default, required)
Called for each declared attribute for an element type. If an attribute list declaration declares three attributes,
this handler is called three times, once for each attribute.elnameis the name of the element to which the
declaration applies andattnameis the name of the attribute declared. The attribute type is a string passed
as type; the possible values are’CDATA’ , ’ID’ , ’IDREF’ , ... default gives the default value for the
attribute used when the attribute is not specified by the document instance, orNone if there is no default
value (#IMPLIED values). If the attribute is required to be given in the document instance,requiredwill
be true. This requires Expat version 1.95.0 or newer.

StartElementHandler (name, attributes)
Called for the start of every element.nameis a string containing the element name, andattributes is a
dictionary mapping attribute names to their values.

EndElementHandler (name)
Called for the end of every element.

ProcessingInstructionHandler (target, data)
Called for every processing instruction.

CharacterDataHandler (data)
Called for character data. This will be called for normal character data, CDATA marked con-
tent, and ignorable whitespace. Applications which must distinguish these cases can use the
StartCdataSectionHandler , EndCdataSectionHandler , and ElementDeclHandler
callbacks to collect the required information.

UnparsedEntityDeclHandler (entityName, base, systemId, publicId, notationName)
Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat library;
for more recent versions, useEntityDeclHandler instead. (The underlying function in the Expat
library has been declared obsolete.)

EntityDeclHandler (entityName, isparameter entity, value, base, systemId, publicId, notationName)
Called for all entity declarations. For parameter and internal entities,value will be a string giving the
declared contents of the entity; this will beNone for external entities. ThenotationNameparameter will
beNone for parsed entities, and the name of the notation for unparsed entities.is parameter entitywill
be true if the entity is a paremeter entity or false for general entities (most applications only need to be
concerned with general entities). This is only available starting with version 1.95.0 of the Expat library.
New in version 2.1.

NotationDeclHandler (notationName, base, systemId, publicId)
Called for notation declarations.notationName, base, andsystemId, andpublicId are strings if given. If the
public identifier is omitted,publicId will be None.

StartNamespaceDeclHandler (prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed before
theStartElementHandler is called for the element on which declarations are placed.

EndNamespaceDeclHandler (prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This is
called once for each namespace declaration on the element in the reverse of the order for which the
StartNamespaceDeclHandler was called to indicate the start of each namespace declaration’s scope.
Calls to this handler are made after the correspondingEndElementHandler for the end of the element.

CommentHandler (data)
Called for comments.data is the text of the comment, excluding the leading ‘<!-- ’ and trailing ‘--> ’.

StartCdataSectionHandler ()
Called at the start of a CDATA section. This andStartCdataSectionHandler are needed to be able
to identify the syntactical start and end for CDATA sections.

EndCdataSectionHandler ()
Called at the end of a CDATA section.

530 Chapter 13. Structured Markup Processing Tools

DefaultHandler (data)
Called for any characters in the XML document for which no applicable handler has been specified. This
means characters that are part of a construct which could be reported, but for which no handler has been
supplied.

DefaultHandlerExpand (data)
This is the same as theDefaultHandler , but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

NotStandaloneHandler ()
Called if the XML document hasn’t been declared as being a standalone document. This happens when
there is an external subset or a reference to a parameter entity, but the XML declaration does not set
standalone toyes in an XML declaration. If this handler returns0, then the parser will throw an
XML ERRORNOT STANDALONEerror. If this handler is not set, no exception is raised by the parser
for this condition.

ExternalEntityRefHandler (context, base, systemId, publicId)
Called for references to external entities.baseis the current base, as set by a previous call toSetBase() .
The public and system identifiers,systemIdandpublicId, are strings if given; if the public identifier is not
given,publicId will be None. Thecontextvalue is opaque and should only be used as described below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating the sub-
parser usingExternalEntityParserCreate(context) , initializing it with the appropriate callbacks,
and parsing the entity. This handler should return an integer; if it returns0, the parser will throw an
XML ERROREXTERNALENTITY HANDLINGerror, otherwise parsing will continue.

If this handler is not provided, external entities are reported by theDefaultHandler callback, if pro-
vided.

13.5.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

code
Expat’s internal error number for the specific error. This will match one of the constants defined in the
errors object from this module. New in version 2.1.

lineno
Line number on which the error was detected. The first line is numbered1. New in version 2.1.

offset
Character offset into the line where the error occurred. The first column is numbered0. New in version
2.1.

13.5.3 Example

The following program defines three handlers that just print out their arguments.

13.5. xml.parsers.expat — Fast XML parsing using Expat 531

import xml.parsers.expat

3 handler functions
def start_element(name, attrs):

print ’Start element:’, name, attrs
def end_element(name):

print ’End element:’, name
def char_data(data):

print ’Character data:’, repr(data)

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>
<parent id="top"><child1 name="paul">Text goes here</child1>
<child2 name="fred">More text</child2>
</parent>""", 1)

The output from this program is:

Start element: parent {’id’: ’top’}
Start element: child1 {’name’: ’paul’}
Character data: ’Text goes here’
End element: child1
Character data: ’\n’
Start element: child2 {’name’: ’fred’}
Character data: ’More text’
End element: child2
Character data: ’\n’
End element: parent

13.5.4 Content Model Descriptions

Content modules are described using nested tuples. Each tuple contains four values: the type, the quantifier, the
name, and a tuple of children. Children are simply additional content module descriptions.

The values of the first two fields are constants defined in themodel object of thexml.parsers.expat
module. These constants can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

XML CTYPE ANY
The element named by the model name was declared to have a content model ofANY.

XML CTYPE CHOICE
The named element allows a choice from a number of options; this is used for content models such as(A
| B | C) .

XML CTYPE EMPTY
Elements which are declared to beEMPTYhave this model type.

XML CTYPE MIXED

XML CTYPE NAME

XML CTYPE SEQ
Models which represent a series of models which follow one after the other are indicated with this model

532 Chapter 13. Structured Markup Processing Tools

type. This is used for models such as(A, B, C) .

The constants in the quantifier group are:

XML CQUANTNONE
No modifier is given, so it can appear exactly once, as forA.

XML CQUANTOPT
The model is optional: it can appear once or not at all, as forA?.

XML CQUANTPLUS
The model must occur one or more times (likeA+).

XML CQUANTREP
The model must occur zero or more times, as forA* .

13.5.5 Expat error constants

The following constants are provided in theerrors object of thexml.parsers.expat module. These
constants are useful in interpreting some of the attributes of theExpatError exception objects raised when an
error has occurred.

Theerrors object has the following attributes:

XML ERRORASYNC ENTITY

XML ERRORATTRIBUTE EXTERNALENTITY REF
An entity reference in an attribute value referred to an external entity instead of an internal entity.

XML ERRORBAD CHAR REF
A character reference referred to a character which is illegal in XML (for example, character0, or ‘� ’).

XML ERRORBINARY ENTITY REF
An entity reference referred to an entity which was declared with a notation, so cannot be parsed.

XML ERRORDUPLICATE ATTRIBUTE
An attribute was used more than once in a start tag.

XML ERRORINCORRECTENCODING

XML ERRORINVALID TOKEN
Raised when an input byte could not properly be assigned to a character; for example, a NUL byte (value
0) in a UTF-8 input stream.

XML ERRORJUNK AFTER DOC ELEMENT
Something other than whitespace occurred after the document element.

XML ERRORMISPLACED XML PI
An XML declaration was found somewhere other than the start of the input data.

XML ERRORNO ELEMENTS
The document contains no elements (XML requires all documents to contain exactly one top-level element)..

XML ERRORNO MEMORY
Expat was not able to allocate memory internally.

XML ERRORPARAMENTITY REF
A parameter entity reference was found where it was not allowed.

XML ERRORPARTIAL CHAR

XML ERRORRECURSIVE ENTITY REF
An entity reference contained another reference to the same entity; possibly via a different name, and
possibly indirectly.

XML ERRORSYNTAX
Some unspecified syntax error was encountered.

XML ERRORTAG MISMATCH

13.5. xml.parsers.expat — Fast XML parsing using Expat 533

An end tag did not match the innermost open start tag.

XML ERRORUNCLOSEDTOKEN
Some token (such as a start tag) was not closed before the end of the stream or the next token was encoun-
tered.

XML ERRORUNDEFINED ENTITY
A reference was made to a entity which was not defined.

XML ERRORUNKNOWNENCODING
The document encoding is not supported by Expat.

13.6 xml.dom — The Document Object Model API

New in version 2.0.

The Document Object Model, or “DOM,” is a cross-language API from the World Wide Web Consortium (W3C)
for accessing and modifying XML documents. A DOM implementation presents an XML document as a tree
structure, or allows client code to build such a structure from scratch. It then gives access to the structure through
a set of objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit of the
document at a time. If you are looking at one SAX element, you have no access to another. If you are looking at a
text node, you have no access to a containing element. When you write a SAX application, you need to keep track
of your program’s position in the document somewhere in your own code. SAX does not do it for you. Also, if
you need to look ahead in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course you could
build some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that code. The DOM is
a standard tree representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology. The Python
mapping of the API is substantially based on the DOM Level 2 recommendation. The mapping of the Level 3
specification, currently only available in draft form, is being developed by thePython XML Special Interest
Groupas part of thePyXML package. Refer to the documentation bundled with that package for information on
the current state of DOM Level 3 support.

DOM applications typically start by parsing some XML into a DOM. How this is accomplished is not covered
at all by DOM Level 1, and Level 2 provides only limited improvements: There is aDOMImplementation
object class which provides access toDocument creation methods, but no way to access an XML
reader/parser/Document builder in an implementation-independent way. There is also no well-defined way to
access these methods without an existingDocument object. In Python, each DOM implementation will provide
a functiongetDOMImplementation() . DOM Level 3 adds a Load/Store specification, which defines an
interface to the reader, but this is not yet available in the Python standard library.

Once you have a DOM document object, you can access the parts of your XML document through its properties
and methods. These properties are defined in the DOM specification; this portion of the reference manual describes
the interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL. The Python
mapping defined here is based in large part on the IDL version of the specification, but strict compliance is not
required (though implementations are free to support the strict mapping from IDL). See section 13.6.3, “Confor-
mance,” for a detailed discussion of mapping requirements.

See Also:

Document Object Model (DOM) Level 2 Specification
(http://www.w3.org/TR/DOM-Level-2-Core/)

The W3C recommendation upon which the Python DOM API is based.

Document Object Model (DOM) Level 1 Specification
(http://www.w3.org/TR/REC-DOM-Level-1/)

The W3C recommendation for the DOM supported byxml.dom.minidom .

534 Chapter 13. Structured Markup Processing Tools

PyXML
(http://pyxml.sourceforge.net)

Users that require a full-featured implementation of DOM should use the PyXML package.

CORBA Scripting with Python
(http://cgi.omg.org/cgi-bin/doc?orbos/99-08-02.pdf)

This specifies the mapping from OMG IDL to Python.

13.6.1 Module Contents

Thexml.dom contains the following functions:

registerDOMImplementation (name, factory)
Register thefactory function with the namename. The factory function should return an object which
implements theDOMImplementation interface. The factory function can return the same object every
time, or a new one for each call, as appropriate for the specific implementation (e.g. if that implementation
supports some customization).

getDOMImplementation ([name[, features]])
Return a suitable DOM implementation. Thename is either well-known, the module name of a
DOM implementation, orNone. If it is not None, imports the corresponding module and returns a
DOMImplementation object if the import succeeds. If no name is given, and if the environment variable
PYTHON DOM is set, this variable is used to find the implementation.

If name is not given, this examines the available implementations to find one with the required feature set. If
no implementation can be found, raise anImportError . The features list must be a sequence of(feature,
version) pairs which are passed to thehasFeature() method on availableDOMImplementation
objects.

Some convenience constants are also provided:

EMPTY NAMESPACE
The value used to indicate that no namespace is associated with a node in the DOM. This is typically
found as thenamespaceURI of a node, or used as thenamespaceURIparameter to a namespaces-specific
method. New in version 2.2.

XML NAMESPACE
The namespace URI associated with the reserved prefixxml , as defined byNamespaces in XML(section 4).
New in version 2.2.

XMLNS NAMESPACE
The namespace URI for namespace declarations, as defined byDocument Object Model (DOM) Level 2
Core Specification(section 1.1.8). New in version 2.2.

XHTML NAMESPACE
The URI of the XHTML namespace as defined byXHTML 1.0: The Extensible HyperText Markup Language
(section 3.1.1). New in version 2.2.

In addition,xml.dom contains a baseNode class and the DOM exception classes. TheNode class provided
by this module does not implement any of the methods or attributes defined by the DOM specification; concrete
DOM implementations must provide those. TheNode class provided as part of this module does provide the
constants used for thenodeType attribute on concreteNode objects; they are located within the class rather than
at the module level to conform with the DOM specifications.

13.6.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly rare that you
must do this, however, so this usage is not yet documented.

13.6. xml.dom — The Document Object Model API 535

Interface Section Purpose
DOMImplementation 13.6.2 Interface to the underlying implementation.
Node 13.6.2 Base interface for most objects in a document.
NodeList 13.6.2 Interface for a sequence of nodes.
DocumentType 13.6.2 Information about the declarations needed to process a document.
Document 13.6.2 Object which represents an entire document.
Element 13.6.2 Element nodes in the document hierarchy.
Attr 13.6.2 Attribute value nodes on element nodes.
Comment 13.6.2 Representation of comments in the source document.
Text 13.6.2 Nodes containing textual content from the document.
ProcessingInstruction 13.6.2 Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of par-
ticular features in the DOM they are using. DOM Level 2 added the ability to create newDocument and
DocumentType objects using theDOMImplementation as well.

hasFeature (feature, version)

Node Objects

All of the components of an XML document are subclasses ofNode.

nodeType
An integer representing the node type. Symbolic constants for the types are on theNode
object: ELEMENTNODE, ATTRIBUTE NODE, TEXT NODE, CDATA SECTION NODE,
ENTITY NODE, PROCESSINGINSTRUCTION NODE, COMMENTNODE, DOCUMENTNODE,
DOCUMENTTYPE NODE, NOTATION NODE. This is a read-only attribute.

parentNode
The parent of the current node, orNone for the document node. The value is always aNode object or
None. For Element nodes, this will be the parent element, except for the root element, in which case it
will be theDocument object. ForAttr nodes, this is alwaysNone. This is a read-only attribute.

attributes
A NamedNodeMapof attribute objects. Only elements have actual values for this; others provideNone
for this attribute. This is a read-only attribute.

previousSibling
The node that immediately precedes this one with the same parent. For instance the element with an end-tag
that comes just before theself element’s start-tag. Of course, XML documents are made up of more than
just elements so the previous sibling could be text, a comment, or something else. If this node is the first
child of the parent, this attribute will beNone. This is a read-only attribute.

nextSibling
The node that immediately follows this one with the same parent. See alsopreviousSibling . If this is
the last child of the parent, this attribute will beNone. This is a read-only attribute.

childNodes
A list of nodes contained within this node. This is a read-only attribute.

firstChild
The first child of the node, if there are any, orNone. This is a read-only attribute.

lastChild
The last child of the node, if there are any, orNone. This is a read-only attribute.

localName
The part of thetagName following the colon if there is one, else the entiretagName . The value is a string.

536 Chapter 13. Structured Markup Processing Tools

prefix
The part of thetagName preceding the colon if there is one, else the empty string. The value is a string, or
None

namespaceURI
The namespace associated with the element name. This will be a string orNone. This is a read-only
attribute.

nodeName
This has a different meaning for each node type; see the DOM specification for details. You can always
get the information you would get here from another property such as thetagName property for elements
or thename property for attributes. For all node types, the value of this attribute will be either a string or
None. This is a read-only attribute.

nodeValue
This has a different meaning for each node type; see the DOM specification for details. The situation is
similar to that withnodeName. The value is a string orNone.

hasAttributes ()
Returns true if the node has any attributes.

hasChildNodes ()
Returns true if the node has any child nodes.

isSameNode (other)
Returns true ifotherrefers to the same node as this node. This is especially useful for DOM implementations
which use any sort of proxy architecture (because more than one object can refer to the same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “working draft” stage, but this
particular interface appears uncontroversial. Changes from the W3C will not necessarily affect this method
in the Python DOM interface (though any new W3C API for this would also be supported).

appendChild (newChild)
Add a new child node to this node at the end of the list of children, returningnewChild.

insertBefore (newChild, refChild)
Insert a new child node before an existing child. It must be the case thatrefChild is a child of this node; if
not,ValueError is raised.newChildis returned.

removeChild (oldChild)
Remove a child node.oldChild must be a child of this node; if not,ValueError is raised.oldChild is
returned on success. IfoldChild will not be used further, itsunlink() method should be called.

replaceChild (newChild, oldChild)
Replace an existing node with a new node. It must be the case thatoldChild is a child of this node; if not,
ValueError is raised.

normalize ()
Join adjacent text nodes so that all stretches of text are stored as singleText instances. This simplifies
processing text from a DOM tree for many applications. New in version 2.1.

cloneNode (deep)
Clone this node. Settingdeepmeans to clone all child nodes as well. This returns the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recommen-
dation: theElement objects provides one as its list of child nodes, and thegetElementsByTagName() and
getElementsByTagNameNS() methods ofNode return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

item (i)
Return thei’th item from the sequence, if there is one, orNone. The indexi is not allowed to be less then
zero or greater than or equal to the length of the sequence.

13.6. xml.dom — The Document Object Model API 537

length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allowNodeList
objects to be used as Python sequences. AllNodeList implementations must include support for len ()
and getitem () ; this allows iteration over theNodeList in for statements and proper support for the
len() built-in function.

If a DOM implementation supports modification of the document, theNodeList implementation must also
support the setitem () and delitem () methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset if the parser
uses it and can provide the information) is available from aDocumentType object. TheDocumentType for a
document is available from theDocument object’sdoctype attribute; if there is noDOCTYPEdeclaration for
the document, the document’sdoctype attribute will be set toNone instead of an instance of this interface.

DocumentType is a specialization ofNode, and adds the following attributes:

publicId
The public identifier for the external subset of the document type definition. This will be a string orNone.

systemId
The system identifier for the external subset of the document type definition. This will be a URI as a string,
or None.

internalSubset
A string giving the complete internal subset from the document. This does not include the brackets which
enclose the subset. If the document has no internal subset, this should beNone.

name
The name of the root element as given in theDOCTYPEdeclaration, if present.

entities
This is aNamedNodeMapgiving the definitions of external entities. For entity names defined more than
once, only the first definition is provided (others are ignored as required by the XML recommendation).
This may beNone if the information is not provided by the parser, or if no entities are defined.

notations
This is aNamedNodeMapgiving the definitions of notations. For notation names defined more than once,
only the first definition is provided (others are ignored as required by the XML recommendation). This may
beNone if the information is not provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, processing in-
structions, comments etc. Remeber that it inherits properties fromNode.

documentElement
The one and only root element of the document.

createElement (tagName)
Create and return a new element node. The element is not inserted into the document when it is created. You
need to explicitly insert it with one of the other methods such asinsertBefore() orappendChild() .

createElementNS (namespaceURI, tagName)
Create and return a new element with a namespace. ThetagNamemay have a prefix. The element is not
inserted into the document when it is created. You need to explicitly insert it with one of the other methods
such asinsertBefore() or appendChild() .

createTextNode (data)
Create and return a text node containing the data passed as a parameter. As with the other creation methods,
this one does not insert the node into the tree.

538 Chapter 13. Structured Markup Processing Tools

createComment (data)
Create and return a comment node containing the data passed as a parameter. As with the other creation
methods, this one does not insert the node into the tree.

createProcessingInstruction (target, data)
Create and return a processing instruction node containing thetarget anddata passed as parameters. As
with the other creation methods, this one does not insert the node into the tree.

createAttribute (name)
Create and return an attribute node. This method does not associate the attribute node with any particular
element. You must usesetAttributeNode() on the appropriateElement object to use the newly
created attribute instance.

createAttributeNS (namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. ThetagNamemay have a prefix. This method does
not associate the attribute node with any particular element. You must usesetAttributeNode() on
the appropriateElement object to use the newly created attribute instance.

getElementsByTagName (tagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type name.

getElementsByTagNameNS (namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace URI and
localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass ofNode, so inherits all the attributes of that class.

tagName
The element type name. In a namespace-using document it may have colons in it. The value is a string.

getElementsByTagName (tagName)
Same as equivalent method in theDocument class.

getElementsByTagNameNS (tagName)
Same as equivalent method in theDocument class.

getAttribute (attname)
Return an attribute value as a string.

getAttributeNode (attrname)
Return theAttr node for the attribute named byattrname.

getAttributeNS (namespaceURI, localName)
Return an attribute value as a string, given anamespaceURIandlocalName.

getAttributeNodeNS (namespaceURI, localName)
Return an attribute value as a node, given anamespaceURIandlocalName.

removeAttribute (attname)
Remove an attribute by name. No exception is raised if there is no matching attribute.

removeAttributeNode (oldAttr)
Remove and returnoldAttr from the attribute list, if present. IfoldAttr is not present,NotFoundErr is
raised.

removeAttributeNS (namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a qname. No exception is raised if there is
no matching attribute.

setAttribute (attname, value)
Set an attribute value from a string.

setAttributeNode (newAttr)
Add a new attibute node to the element, replacing an existing attribute if necessary if thename attribute

13.6. xml.dom — The Document Object Model API 539

matches. If a replacement occurs, the old attribute node will be returned. IfnewAttr is already in use,
InuseAttributeErr will be raised.

setAttributeNodeNS (newAttr)
Add a new attibute node to the element, replacing an existing attribute if necessary if thenamespaceURI
and localName attributes match. If a replacement occurs, the old attribute node will be returned. If
newAttris already in use,InuseAttributeErr will be raised.

setAttributeNS (namespaceURI, qname, value)
Set an attribute value from a string, given anamespaceURIand aqname. Note that a qname is the whole
attribute name. This is different than above.

Attr Objects

Attr inherits fromNode, so inherits all its attributes.

name
The attribute name. In a namespace-using document it may have colons in it.

localName
The part of the name following the colon if there is one, else the entire name. This is a read-only attribute.

prefix
The part of the name preceding the colon if there is one, else the empty string.

NamedNodeMap Objects

NamedNodeMapdoesnot inherit fromNode.

length
The length of the attribute list.

item (index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but will be
consistent for the life of a DOM. Each item is an attribute node. Get its value with thevalue attribbute.

There are also experimental methods that give this class more mapping behavior. You can use them or you can
use the standardizedgetAttribute*() family of methods on theElement objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass ofNode, but cannot have child nodes.

data
The content of the comment as a string. The attribute contains all characters between the leading<!-- and
trailing --> , but does not include them.

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM implementation support the
DOM’s XML extension, portions of the text enclosed in CDATA marked sections are stored inCDATASection
objects. These two interfaces are identical, but provide different values for thenodeType attribute.

These interfaces extend theNode interface. They cannot have child nodes.

data
The content of the text node as a string.

Note: The use of aCDATASection node does not indicate that the node represents a complete CDATA marked
section, only that the content of the node was part of a CDATA section. A single CDATA section may be
represented by more than one node in the document tree. There is no way to determine whether two adjacent
CDATASection nodes represent different CDATA marked sections.

540 Chapter 13. Structured Markup Processing Tools

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from theNode interface and cannot have
child nodes.

target
The content of the processing instruction up to the first whitespace character. This is a read-only attribute.

data
The content of the processing instruction following the first whitespace character.

Exceptions

New in version 2.1.

The DOM Level 2 recommendation defines a single exception,DOMException , and a number of constants that
allow applications to determine what sort of error occurred.DOMException instances carry acode attribute
that provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of exceptions so that a specific excep-
tion exists for each of the exception codes defined by the DOM. The implementations must raise the appropriate
specific exception, each of which carries the appropriate value for thecode attribute.

exceptionDOMException
Base exception class used for all specific DOM exceptions. This exception class cannot be directly instan-
tiated.

exceptionDomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to be used in the Python
DOM implementations, but may be received from DOM implementations not written in Python.

exceptionHierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not allowed.

exceptionIndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exceptionInuseAttributeErr
Raised when an attempt is made to insert anAttr node that is already present elsewhere in the document.

exceptionInvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exceptionInvalidCharacterErr
This exception is raised when a string parameter contains a character that is not permitted in the context it’s
being used in by the XML 1.0 recommendation. For example, attempting to create anElement node with
a space in the element type name will cause this error to be raised.

exceptionInvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exceptionInvalidStateErr
Raised when an attempt is made to use an object that is not defined or is no longer usable.

exceptionNamespaceErr
If an attempt is made to change any object in a way that is not permitted with regard to theNamespaces in
XML recommendation, this exception is raised.

exceptionNotFoundErr
Exception when a node does not exist in the referenced context. For example,
NamedNodeMap.removeNamedItem() will raise this if the node passed in does not exist in
the map.

exceptionNotSupportedErr
Raised when the implementation does not support the requested type of object or operation.

13.6. xml.dom — The Document Object Model API 541

exceptionNoDataAllowedErr
This is raised if data is specified for a node which does not support data.

exceptionNoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such as for read-only nodes).

exceptionSyntaxErr
Raised when an invalid or illegal string is specified.

exceptionWrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, and the implementation
does not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above according to
this table:

Constant Exception
DOMSTRINGSIZE ERR DomstringSizeErr
HIERARCHYREQUESTERR HierarchyRequestErr
INDEX SIZE ERR IndexSizeErr
INUSE ATTRIBUTE ERR InuseAttributeErr
INVALID ACCESSERR InvalidAccessErr
INVALID CHARACTERERR InvalidCharacterErr
INVALID MODIFICATION ERR InvalidModificationErr
INVALID STATE ERR InvalidStateErr
NAMESPACEERR NamespaceErr
NOT FOUNDERR NotFoundErr
NOT SUPPORTEDERR NotSupportedErr
NO DATA ALLOWEDERR NoDataAllowedErr
NO MODIFICATION ALLOWEDERR NoModificationAllowedErr
SYNTAX ERR SyntaxErr
WRONGDOCUMENTERR WrongDocumentErr

13.6.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API, the W3C
DOM recommendations, and the OMG IDL mapping for Python.

Type Mapping

The primitive IDL types used in the DOM specification are mapped to Python types according to the following
table.

IDL Type Python Type
boolean IntegerType (with a value of0 or 1)
int IntegerType
long int IntegerType
unsigned int IntegerType

Additionally, theDOMString defined in the recommendation is mapped to a Python string or Unicode string.
Applications should be able to handle Unicode whenever a string is returned from the DOM.

The IDL null value is mapped toNone, which may be accepted or provided by the implementation whenever
null is allowed by the API.

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDLattribute declarations in much
the way the Java mapping does. Mapping the IDL declarations

542 Chapter 13. Structured Markup Processing Tools

readonly attribute string someValue;
attribute string anotherValue;

yields three accessor functions: a “get” method forsomeValue (get someValue()), and “get” and “set”
methods foranotherValue (get anotherValue() and set anotherValue()). The mapping, in
particular, does not require that the IDL attributes are accessible as normal Python attributes:object.someValue
is not required to work, and may raise anAttributeError .

The Python DOM API, however,doesrequire that normal attribute access work. This means that the typical
surrogates generated by Python IDL compilers are not likely to work, and wrapper objects may be needed on the
client if the DOM objects are accessed via CORBA. While this does require some additional consideration for
CORBA DOM clients, the implementers with experience using DOM over CORBA from Python do not consider
this a problem. Attributes that are declaredreadonly may not restrict write access in all DOM implementations.

Additionally, the accessor functions are not required. If provided, they should take the form defined by the Python
IDL mapping, but these methods are considered unnecessary since the attributes are accessible directly from
Python. “Set” accessors should never be provided forreadonly attributes.

13.7 xml.dom.minidom — Lightweight DOM implementation

New in version 2.0.

xml.dom.minidom is a light-weight implementation of the Document Object Model interface. It is intended to
be simpler than the full DOM and also significantly smaller.

DOM applications typically start by parsing some XML into a DOM. Withxml.dom.minidom , this is done
through the parse functions:

from xml.dom.minidom import parse, parseString

dom1 = parse(’c:\\temp\\mydata.xml’) # parse an XML file by name

datasource = open(’c:\\temp\\mydata.xml’)
dom2 = parse(datasource) # parse an open file

dom3 = parseString(’<myxml>Some data<empty/> some more data</myxml>’)

Theparse() function can take either a filename or an open file object.

parse (filename or file, parser)
Return aDocument from the given input.filename or file may be either a file name, or a file-like object.
parser, if given, must be a SAX2 parser object. This function will change the document handler of the
parser and activate namespace support; other parser configuration (like setting an entity resolver) must have
been done in advance.

If you have XML in a string, you can use theparseString() function instead:

parseString (string[, parser])
Return aDocument that represents thestring. This method creates aStringIO object for the string and
passes that on toparse .

Both functions return aDocument object representing the content of the document.

What theparse() andparseString() functions do is connect an XML parser with a “DOM builder” that
can accept parse events from any SAX parser and convert them into a DOM tree. The name of the functions
are perhaps misleading, but are easy to grasp when learning the interfaces. The parsing of the document will be
completed before these functions return; it’s simply that these functions do not provide a parser implementation
themselves.

You can also create aDocument by calling a method on a “DOM Implementation” object. You can get

13.7. xml.dom.minidom — Lightweight DOM implementation 543

this object either by calling thegetDOMImplementation() function in thexml.dom package or the
xml.dom.minidom module. Using the implementation from thexml.dom.minidom module will always
return aDocument instance from the minidom implementation, while the version fromxml.dom may pro-
vide an alternate implementation (this is likely if you have thePyXML packageinstalled). Once you have a
Document , you can add child nodes to it to populate the DOM:

from xml.dom.minidom import getDOMImplementation

impl = getDOMImplementation()

newdoc = impl.createDocument(None, "some_tag", None)
top_element = newdoc.documentElement
text = newdoc.createTextNode(’Some textual content.’)
top_element.appendChild(text)

Once you have a DOM document object, you can access the parts of your XML document through its properties
and methods. These properties are defined in the DOM specification. The main property of the document object
is thedocumentElement property. It gives you the main element in the XML document: the one that holds all
others. Here is an example program:

dom3 = parseString("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM, you should clean it up. This is necessary because some versions of Python
do not support garbage collection of objects that refer to each other in a cycle. Until this restriction is removed
from all versions of Python, it is safest to write your code as if cycles would not be cleaned up.

The way to clean up a DOM is to call itsunlink() method:

dom1.unlink()
dom2.unlink()
dom3.unlink()

unlink() is axml.dom.minidom -specific extension to the DOM API. After callingunlink() on a node,
the node and its descendents are essentially useless.

See Also:

Document Object Model (DOM) Level 1 Specification
(http://www.w3.org/TR/REC-DOM-Level-1/)

The W3C recommendation for the DOM supported byxml.dom.minidom .

13.7.1 DOM Objects

The definition of the DOM API for Python is given as part of thexml.dom module documentation. This section
lists the differences between the API andxml.dom.minidom .

unlink ()
Break internal references within the DOM so that it will be garbage collected on versions of Python without
cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory available
sooner, so calling this on DOM objects as soon as they are no longer needed is good practice. This only
needs to be called on theDocument object, but may be called on child nodes to discard children of that
node.

writexml (writer)
Write XML to the writer object. The writer should have awrite() method which matches that of the file
object interface.

Changed in version 2.1: To support pretty output, new keyword parametersindent, addindent, andnewl

544 Chapter 13. Structured Markup Processing Tools

have been added.

Changed in version 2.3: For theDocument node, an additional keyword argument encoding can be used
to specify the encoding field of the XML header.

toxml ([encoding])
Return the XML that the DOM represents as a string.

With no argument, the XML header does not specify an encoding, and the result is Unicode string if the
default encoding cannot represent all characters in the document. Encoding this string in an encoding other
than UTF-8 is likely incorrect, since UTF-8 is the default encoding of XML.

With an explicitencodingargument, the result is a byte string in the specified encoding. It is recommended
that this argument is always specified. To avoid UnicodeError exceptions in case of unrepresentable text
data, the encoding argument should be specified as ”utf-8”.

Changed in version 2.3: theencodingargument was introduced.

toprettyxml ([indent[, newl]])
Return a pretty-printed version of the document.indentspecifies the indentation string and defaults to a
tabulator;newlspecifies the string emitted at the end of each line and defaults to
n.

New in version 2.1. Changed in version 2.3: the encoding argument; seetoxml() .

The following standard DOM methods have special considerations withxml.dom.minidom :

cloneNode (deep)
Although this method was present in the version ofxml.dom.minidom packaged with Python 2.0, it was
seriously broken. This has been corrected for subsequent releases.

13.7.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do not take
much advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\
<slideshow>
<title>Demo slideshow</title>
<slide><title>Slide title</title>
<point>This is a demo</point>
<point>Of a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>
<point>To have more than</point>
<point>one slide</point>
</slide>
</slideshow>
"""

dom = xml.dom.minidom.parseString(document)

def getText(nodelist):
rc = ""
for node in nodelist:

if node.nodeType == node.TEXT_NODE:
rc = rc + node.data

return rc

def handleSlideshow(slideshow):
print "<html>"

13.7. xml.dom.minidom — Lightweight DOM implementation 545

handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])
slides = slideshow.getElementsByTagName("slide")
handleToc(slides)
handleSlides(slides)
print "</html>"

def handleSlides(slides):
for slide in slides:

handleSlide(slide)

def handleSlide(slide):
handleSlideTitle(slide.getElementsByTagName("title")[0])
handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):
print "<title>%s</title>" % getText(title.childNodes)

def handleSlideTitle(title):
print "<h2>%s</h2>" % getText(title.childNodes)

def handlePoints(points):
print ""
for point in points:

handlePoint(point)
print ""

def handlePoint(point):
print "%s" % getText(point.childNodes)

def handleToc(slides):
for slide in slides:

title = slide.getElementsByTagName("title")[0]
print "<p>%s</p>" % getText(title.childNodes)

handleSlideshow(dom)

13.7.3 minidom and the DOM standard

Thexml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features (pri-
marily namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

• Interfaces are accessed through instance objects. Applications should not instantiate the classes themselves;
they should use the creator functions available on theDocument object. Derived interfaces support all
operations (and attributes) from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses onlyin parameters, the arguments are passed in
normal order (from left to right). There are no optional arguments.void operations returnNone.

• IDL attributes map to instance attributes. For compatibility with the OMG IDL language mapping for
Python, an attributefoo can also be accessed through accessor methodsget foo() and set foo() .
readonly attributes must not be changed; this is not enforced at runtime.

• The typesshort int , unsigned int , unsigned long long , andboolean all map to Python
integer objects.

• The typeDOMString maps to Python strings.xml.dom.minidom supports either byte or Unicode
strings, but will normally produce Unicode strings. Values of typeDOMString may also beNone where
allowed to have the IDLnull value by the DOM specification from the W3C.

• const declarations map to variables in their respective scope (e.g.
xml.dom.minidom.Node.PROCESSING INSTRUCTION NODE); they must not be changed.

546 Chapter 13. Structured Markup Processing Tools

• DOMException is currently not supported inxml.dom.minidom . Instead,xml.dom.minidom uses
standard Python exceptions such asTypeError andAttributeError .

• NodeList objects are implemented using Python’s built-in list type. Starting with Python 2.2, these
objects provide the interface defined in the DOM specification, but with earlier versions of Python they
do not support the official API. They are, however, much more “Pythonic” than the interface defined in the
W3C recommendations.

The following interfaces have no implementation inxml.dom.minidom :

• DOMTimeStamp

• DocumentType (added in Python 2.1)

• DOMImplementation (added in Python 2.1)

• CharacterData

• CDATASection

• Notation

• Entity

• EntityReference

• DocumentFragment

Most of these reflect information in the XML document that is not of general utility to most DOM users.

13.8 xml.dom.pulldom — Support for building partial DOM trees

New in version 2.0.

xml.dom.pulldom allows building only selected portions of a Document Object Model representation of a
document from SAX events.

classPullDOM ([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

classDOMEventStream (stream, parser, bufsize)
...

classSAX2DOM([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

parse (stream or string[, parser[, bufsize]])
...

parseString (string[, parser])
...

default bufsize
Default value for thebusizeparameter toparse() . Changed in version 2.1: The value of this variable can
be changed before callingparse() and the new value will take effect.

13.8.1 DOMEventStream Objects

getEvent ()
...

expandNode (node)
...

13.8. xml.dom.pulldom — Support for building partial DOM trees 547

reset ()
...

13.9 xml.sax — Support for SAX2 parsers

New in version 2.0.

Thexml.sax package provides a number of modules which implement the Simple API for XML (SAX) interface
for Python. The package itself provides the SAX exceptions and the convenience functions which will be most
used by users of the SAX API.

The convenience functions are:

make parser ([parser list])
Create and return a SAXXMLReader object. The first parser found will be used. Ifparser list is provided,
it must be a sequence of strings which name modules that have a function namedcreate parser() .
Modules listed inparser list will be used before modules in the default list of parsers.

parse (filename or stream, handler[, error handler])
Create a SAX parser and use it to parse a document. The document, passed in asfilename or stream, can
be a filename or a file object. Thehandlerparameter needs to be a SAXContentHandler instance. If
error handleris given, it must be a SAXErrorHandler instance; if omitted,SAXParseException
will be raised on all errors. There is no return value; all work must be done by thehandlerpassed in.

parseString (string, handler[, error handler])
Similar toparse() , but parses from a bufferstring received as a parameter.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this
context is another term for parser, i.e. some piece of code that reads the bytes or characters from the input source,
and produces a sequence of events. The events then get distributed to the handler objects, i.e. the reader invokes a
method on the handler. A SAX application must therefore obtain a reader object, create or open the input sources,
create the handlers, and connect these objects all together. As the final step of preparation, the reader is called to
parse the input. During parsing, methods on the handler objects are called based on structural and syntactic events
from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the applica-
tion itself. Since Python does not have an explicit notion of interface, they are formally introduced as
classes, but applications may use implementations which do not inherit from the provided classes. The
InputSource , Locator , Attributes , AttributesNS , andXMLReader interfaces are defined in the
modulexml.sax.xmlreader . The handler interfaces are defined inxml.sax.handler . For convenience,
InputSource (which is often instantiated directly) and the handler classes are also available fromxml.sax .
These interfaces are described below.

In addition to these classes,xml.sax provides the following exception classes.

exceptionSAXException (msg[, exception])
Encapsulate an XML error or warning. This class can contain basic error or warning information from
either the XML parser or the application: it can be subclassed to provide additional functionality or to add
localization. Note that although the handlers defined in theErrorHandler interface receive instances
of this exception, it is not required to actually raise the exception — it is also useful as a container for
information.

When instantiated,msgshould be a human-readable description of the error. The optionalexceptionparam-
eter, if given, should beNone or an exception that was caught by the parsing code and is being passed along
as information.

This is the base class for the other SAX exception classes.

exceptionSAXParseException (msg, exception, locator)
Subclass ofSAXException raised on parse errors. Instances of this class are passed to the methods of the
SAX ErrorHandler interface to provide information about the parse error. This class supports the SAX
Locator interface as well as theSAXException interface.

exceptionSAXNotRecognizedException (msg[, exception])

548 Chapter 13. Structured Markup Processing Tools

Subclass ofSAXException raised when a SAXXMLReader is confronted with an unrecognized feature
or property. SAX applications and extensions may use this class for similar purposes.

exceptionSAXNotSupportedException (msg[, exception])
Subclass ofSAXException raised when a SAXXMLReader is asked to enable a feature that is not
supported, or to set a property to a value that the implementation does not support. SAX applications and
extensions may use this class for similar purposes.

See Also:

SAX: The Simple API for XML
(http://www.saxproject.org/)

This site is the focal point for the definition of the SAX API. It provides a Java implementation and online
documentation. Links to implementations and historical information are also available.

Modulexml.sax.handler (section 13.10):
Definitions of the interfaces for application-provided objects.

Modulexml.sax.saxutils (section 13.11):
Convenience functions for use in SAX applications.

Modulexml.sax.xmlreader (section 13.12):
Definitions of the interfaces for parser-provided objects.

13.9.1 SAXException Objects

TheSAXException exception class supports the following methods:

getMessage ()
Return a human-readable message describing the error condition.

getException ()
Return an encapsulated exception object, orNone.

13.10 xml.sax.handler — Base classes for SAX handlers

New in version 2.0.

The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers, and entity resolvers.
Applications normally only need to implement those interfaces whose events they are interested in; they can
implement the interfaces in a single object or in multiple objects. Handler implementations should inherit from
the base classes provided in the modulexml.sax , so that all methods get default implementations.

classContentHandler
This is the main callback interface in SAX, and the one most important to applications. The order of events
in this interface mirrors the order of the information in the document.

classDTDHandler
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and attributes).

classEntityResolver
Basic interface for resolving entities. If you create an object implementing this interface, then register the
object with your Parser, the parser will call the method in your object to resolve all external entities.

classErrorHandler
Interface used by the parser to present error and warning messages to the application. The methods of this
object control whether errors are immediately converted to exceptions or are handled in some other way.

In addition to these classes,xml.sax.handler provides symbolic constants for the feature and property names.

feature namespaces
Value: "http://xml.org/sax/features/namespaces"

13.10. xml.sax.handler — Base classes for SAX handlers 549

true: Perform Namespace processing.
false: Optionally do not perform Namespace processing (implies namespace-prefixes; default).
access: (parsing) read-only; (not parsing) read/write

feature namespace prefixes
Value: "http://xml.org/sax/features/namespace-prefixes"
true: Report the original prefixed names and attributes used for Namespace declarations.
false: Do not report attributes used for Namespace declarations, and optionally do not report original pre-
fixed names (default).
access: (parsing) read-only; (not parsing) read/write

feature string interning
Value: "http://xml.org/sax/features/string-interning"
true: All element names, prefixes, attribute names, Namespace URIs, and local names are interned using
the built-in intern function.
false: Names are not necessarily interned, although they may be (default).
access: (parsing) read-only; (not parsing) read/write

feature validation
Value: "http://xml.org/sax/features/validation"
true: Report all validation errors (implies external-general-entities and external-parameter-entities).
false: Do not report validation errors.
access: (parsing) read-only; (not parsing) read/write

feature external ges
Value: "http://xml.org/sax/features/external-general-entities"
true: Include all external general (text) entities.
false: Do not include external general entities.
access: (parsing) read-only; (not parsing) read/write

feature external pes
Value: "http://xml.org/sax/features/external-parameter-entities"
true: Include all external parameter entities, including the external DTD subset.
false: Do not include any external parameter entities, even the external DTD subset.
access: (parsing) read-only; (not parsing) read/write

all features
List of all features.

property lexical handler
Value: "http://xml.org/sax/properties/lexical-handler"
data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)
description: An optional extension handler for lexical events like comments.
access: read/write

property declaration handler
Value: "http://xml.org/sax/properties/declaration-handler"
data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)
description: An optional extension handler for DTD-related events other than notations and unparsed enti-
ties.
access: read/write

property dom node
Value: "http://xml.org/sax/properties/dom-node"
data type: org.w3c.dom.Node (not supported in Python 2)
description: When parsing, the current DOM node being visited if this is a DOM iterator; when not parsing,
the root DOM node for iteration.
access: (parsing) read-only; (not parsing) read/write

property xml string
Value: "http://xml.org/sax/properties/xml-string"
data type: String
description: The literal string of characters that was the source for the current event.

550 Chapter 13. Structured Markup Processing Tools

access: read-only

all properties
List of all known property names.

13.10.1 ContentHandler Objects

Users are expected to subclassContentHandler to support their application. The following methods are called
by the parser on the appropriate events in the input document:

setDocumentLocator (locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does so, it
must supply the locator to the application by invoking this method before invoking any of the other methods
in the DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even if
the parser is not reporting an error. Typically, the application will use this information for reporting its
own errors (such as character content that does not match an application’s business rules). The information
returned by the locator is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

startDocument ()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or in DTD-
Handler (except forsetDocumentLocator()).

endDocument ()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the parse.
The parser shall not invoke this method until it has either abandoned parsing (because of an unrecoverable
error) or reached the end of input.

startPrefixMapping (prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX XML reader
will automatically replace prefixes for element and attribute names when thefeature namespaces
feature is enabled (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute
values, where they cannot safely be expanded automatically; thestartPrefixMapping() and
endPrefixMapping() events supply the information to the application to expand prefixes in those
contexts itself, if necessary.

Note thatstartPrefixMapping() and endPrefixMapping() events are not guaranteed to be
properly nested relative to each-other: allstartPrefixMapping() events will occur before the corre-
spondingstartElement() event, and allendPrefixMapping() events will occur after the corre-
spondingendElement() event, but their order is not guaranteed.

endPrefixMapping (prefix)
End the scope of a prefix-URI mapping.

See startPrefixMapping() for details. This event will always occur after the corresponding
endElement() event, but the order ofendPrefixMapping() events is not otherwise guaranteed.

startElement (name, attrs)
Signals the start of an element in non-namespace mode.

Thenameparameter contains the raw XML 1.0 name of the element type as a string and theattrsparameter
holds an object of theAttributes interfacecontaining the attributes of the element. The object passed
asattrs may be re-used by the parser; holding on to a reference to it is not a reliable way to keep a copy of
the attributes. To keep a copy of the attributes, use thecopy() method of theattrs object.

13.10. xml.sax.handler — Base classes for SAX handlers 551

endElement (name)
Signals the end of an element in non-namespace mode.

Thenameparameter contains the name of the element type, just as with thestartElement() event.

startElementNS (name, qname, attrs)
Signals the start of an element in namespace mode.

Thenameparameter contains the name of the element type as a(uri, localname) tuple, theqnameparam-
eter contains the raw XML 1.0 name used in the source document, and theattrsparameter holds an instance
of the AttributesNS interfacecontaining the attributes of the element. If no namespace is associated
with the element, theuri component ofnamewill be None. The object passed asattrs may be re-used by
the parser; holding on to a reference to it is not a reliable way to keep a copy of the attributes. To keep a
copy of the attributes, use thecopy() method of theattrs object.

Parsers may set theqnameparameter toNone, unless thefeature namespace prefixes feature is
activated.

endElementNS (name, qname)
Signals the end of an element in namespace mode.

Thenameparameter contains the name of the element type, just as with thestartElementNS() method,
likewise theqnameparameter.

characters (content)
Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return all contigu-
ous character data in a single chunk, or they may split it into several chunks; however, all of the characters
in any single event must come from the same external entity so that the Locator provides useful information.

contentmay be a Unicode string or a byte string; theexpat reader module produces always Unicode
strings.

Note: The earlier SAX 1 interface provided by the Python XML Special Interest Group used a more Java-
like interface for this method. Since most parsers used from Python did not take advantage of the older
interface, the simpler signature was chosen to replace it. To convert old code to the new interface, use
contentinstead of slicing content with the oldoffsetandlengthparameters.

ignorableWhitespace (whitespace)
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C XML
1.0 recommendation, section 2.10): non-validating parsers may also use this method if they are capable of
parsing and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several
chunks; however, all of the characters in any single event must come from the same external entity, so that
the Locator provides useful information.

processingInstruction (target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing instruc-
tions may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration (XML
1.0, section 4.3.1) using this method.

skippedEntity (name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors may skip entities
if they have not seen the declarations (because, for example, the entity was declared in an external DTD sub-
set). All processors may skip external entities, depending on the values of thefeature external ges
and thefeature external pes properties.

552 Chapter 13. Structured Markup Processing Tools

13.10.2 DTDHandler Objects

DTDHandler instances provide the following methods:

notationDecl (name, publicId, systemId)
Handle a notation declaration event.

unparsedEntityDecl (name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

13.10.3 EntityResolver Objects

resolveEntity (publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a string, or
an InputSource to read from. The default implementation returnssystemId.

13.10.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from theXMLReader. If you create
an object that implements this interface, then register the object with yourXMLReader, the parser will call the
methods in your object to report all warnings and errors. There are three levels of errors available: warnings,
(possibly) recoverable errors, and unrecoverable errors. All methods take aSAXParseException as the only
parameter. Errors and warnings may be converted to an exception by raising the passed-in exception object.

error (exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception, parsing
may continue, but further document information should not be expected by the application. Allowing the
parser to continue may allow additional errors to be discovered in the input document.

fatalError (exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate when
this method returns.

warning (exception)
Called when the parser presents minor warning information to the application. Parsing is expected to con-
tinue when this method returns, and document information will continue to be passed to the application.
Raising an exception in this method will cause parsing to end.

13.11 xml.sax.saxutils — SAX Utilities

New in version 2.0.

The modulexml.sax.saxutils contains a number of classes and functions that are commonly useful when
creating SAX applications, either in direct use, or as base classes.

escape (data[, entities])
Escape ‘&’, ‘ <’, and ‘>’ in a string of data.

You can escape other strings of data by passing a dictionary as the optionalentitiesparameter. The keys and
values must all be strings; each key will be replaced with its corresponding value.

unescape (data[, entities])
Unescape ‘& ’, ‘ < ’, and ‘> ’ in a string of data.

You can unescape other strings of data by passing a dictionary as the optionalentitiesparameter. The keys
and values must all be strings; each key will be replaced with its corresponding value.

New in version 2.3.

quoteattr (data[, entities])
Similar toescape() , but also preparesdata to be used as an attribute value. The return value is a quoted
version ofdata with any additional required replacements.quoteattr() will select a quote character

13.11. xml.sax.saxutils — SAX Utilities 553

based on the content ofdata, attempting to avoid encoding any quote characters in the string. If both single-
and double-quote characters are already indata, the double-quote characters will be encoded anddatawill
be wrapped in double-quotes. The resulting string can be used directly as an attribute value:

>>> print "<element attr=%s>" % quoteattr("ab ’ cd \" ef")
<element attr="ab ’ cd " ef">

This function is useful when generating attribute values for HTML or any SGML using the reference con-
crete syntax. New in version 2.2.

classXMLGenerator ([out[, encoding]])
This class implements theContentHandler interface by writing SAX events back into an XML docu-
ment. In other words, using anXMLGenerator as the content handler will reproduce the original docu-
ment being parsed.outshould be a file-like object which will default tosys.stdout. encodingis the encoding
of the output stream which defaults to’iso-8859-1’ .

classXMLFilterBase (base)
This class is designed to sit between anXMLReader and the client application’s event handlers. By default,
it does nothing but pass requests up to the reader and events on to the handlers unmodified, but subclasses
can override specific methods to modify the event stream or the configuration requests as they pass through.

prepare input source (source[, base])
This function takes an input source and an optional base URL and returns a fully resolvedInputSource
object ready for reading. The input source can be given as a string, a file-like object, or anInputSource
object; parsers will use this function to implement the polymorphicsourceargument to theirparse()
method.

13.12 xml.sax.xmlreader — Interface for XML parsers

New in version 2.0.

SAX parsers implement theXMLReader interface. They are implemented in a Python module, which must
provide a functioncreate parser() . This function is invoked byxml.sax.make parser() with no
arguments to create a new parser object.

classXMLReader()
Base class which can be inherited by SAX parsers.

classIncrementalParser ()
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document as
they get available. Note that the reader will normally not read the entire file, but read it in chunks as well;
still parse() won’t return until the entire document is processed. So these interfaces should be used if the
blocking behaviour ofparse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately. After
parsing has been finished with a call to close the reset method must be called to make the parser ready to
accept new data, either from feed or using the parse method.

Note that these methods mustnot be called during parsing, that is, after parse has been called and before it
returns.

By default, the class also implements the parse method of the XMLReader interface using the feed, close
and reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

classLocator ()
Interface for associating a SAX event with a document location. A locator object will return valid results
only during calls to DocumentHandler methods; at any other time, the results are unpredictable. If informa-
tion is not available, methods may returnNone.

classInputSource ([systemId])
Encapsulation of the information needed by theXMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (possibly with
character encoding information) and/or the character stream of an entity.

554 Chapter 13. Structured Markup Processing Tools

Applications will create objects of this class for use in theXMLReader.parse() method and for return-
ing from EntityResolver.resolveEntity.

An InputSource belongs to the application, theXMLReader is not allowed to modifyInputSource
objects passed to it from the application, although it may make copies and modify those.

classAttributesImpl (attrs)
This is an implementation of theAttributes interface(see section 13.12.5). This is a dictionary-like
object which represents the element attributes in astartElement() call. In addition to the most useful
dictionary operations, it supports a number of other methods as described by the interface. Objects of this
class should be instantiated by readers;attrs must be a dictionary-like object containing a mapping from
attribute names to attribute values.

classAttributesNSImpl (attrs, qnames)
Namespace-aware variant ofAttributesImpl , which will be passed tostartElementNS() . It is
derived fromAttributesImpl , but understands attribute names as two-tuples ofnamespaceURIand
localname. In addition, it provides a number of methods expecting qualified names as they appear in the
original document. This class implements theAttributesNS interface(see section 13.12.6).

13.12.1 XMLReader Objects

TheXMLReader interface supports the following methods:

parse (source)
Process an input source, producing SAX events. Thesourceobject can be a system identifier (a string
identifying the input source – typically a file name or an URL), a file-like object, or anInputSource
object. Whenparse() returns, the input is completely processed, and the parser object can be discarded
or reset. As a limitation, the current implementation only accepts byte streams; processing of character
streams is for further study.

getContentHandler ()
Return the currentContentHandler .

setContentHandler (handler)
Set the currentContentHandler . If no ContentHandler is set, content events will be discarded.

getDTDHandler ()
Return the currentDTDHandler .

setDTDHandler (handler)
Set the currentDTDHandler . If no DTDHandler is set, DTD events will be discarded.

getEntityResolver ()
Return the currentEntityResolver .

setEntityResolver (handler)
Set the currentEntityResolver . If no EntityResolver is set, attempts to resolve an external entity
will result in opening the system identifier for the entity, and fail if it is not available.

getErrorHandler ()
Return the currentErrorHandler .

setErrorHandler (handler)
Set the current error handler. If noErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

setLocale (locale)
Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support the
requested locale, however, they must throw a SAX exception. Applications may request a locale change in
the middle of a parse.

getFeature (featurename)
Return the current setting for featurefeaturename. If the feature is not recognized,

13.12. xml.sax.xmlreader — Interface for XML parsers 555

SAXNotRecognizedException is raised. The well-known featurenames are listed in the mod-
ulexml.sax.handler .

setFeature (featurename, value)
Set thefeaturenametovalue. If the feature is not recognized,SAXNotRecognizedException is raised.
If the feature or its setting is not supported by the parser,SAXNotSupportedExceptionis raised.

getProperty (propertyname)
Return the current setting for propertypropertyname. If the property is not recognized, a
SAXNotRecognizedException is raised. The well-known propertynames are listed in the module
xml.sax.handler .

setProperty (propertyname, value)
Set thepropertynameto value. If the property is not recognized,SAXNotRecognizedException is
raised. If the property or its setting is not supported by the parser,SAXNotSupportedExceptionis raised.

13.12.2 IncrementalParser Objects

Instances ofIncrementalParser offer the following additional methods:

feed (data)
Process a chunk ofdata.

close ()
Assume the end of the document. That will check well-formedness conditions that can be checked only at
the end, invoke handlers, and may clean up resources allocated during parsing.

reset ()
This method is called after close has been called to reset the parser so that it is ready to parse new documents.
The results of calling parse or feed after close without calling reset are undefined.

13.12.3 Locator Objects

Instances ofLocator provide these methods:

getColumnNumber ()
Return the column number where the current event ends.

getLineNumber ()
Return the line number where the current event ends.

getPublicId ()
Return the public identifier for the current event.

getSystemId ()
Return the system identifier for the current event.

13.12.4 InputSource Objects

setPublicId (id)
Sets the public identifier of thisInputSource .

getPublicId ()
Returns the public identifier of thisInputSource .

setSystemId (id)
Sets the system identifier of thisInputSource .

getSystemId ()
Returns the system identifier of thisInputSource .

setEncoding (encoding)
Sets the character encoding of thisInputSource .

556 Chapter 13. Structured Markup Processing Tools

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the XML
recommendation).

The encoding attribute of theInputSource is ignored if theInputSource also contains a character
stream.

getEncoding ()
Get the character encoding of this InputSource.

setByteStream (bytefile)
Set the byte stream (a Python file-like object which does not perform byte-to-character conversion) for this
input source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte stream in
preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncoding
method.

getByteStream ()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

setCharacterStream (charfile)
Set the character stream for this input source. (The stream must be a Python 1.6 Unicode-wrapped file-like
that performs conversion to Unicode strings.)

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt to
open a URI connection to the system identifier.

getCharacterStream ()
Get the character stream for this input source.

13.12.5 The Attributes Interface

Attributes objects implement a portion of the mapping protocol, including the methodscopy() , get() ,
has key() , items() , keys() , andvalues() . The following methods are also provided:

getLength ()
Return the number of attributes.

getNames ()
Return the names of the attributes.

getType (name)
Returns the type of the attributename, which is normally’CDATA’ .

getValue (name)
Return the value of attributename.

13.12.6 The AttributesNS Interface

This interface is a subtype of theAttributes interface(see section 13.12.5). All methods supported by that
interface are also available onAttributesNS objects.

The following methods are also available:

getValueByQName (name)
Return the value for a qualified name.

getNameByQName(name)
Return the(namespace, localname) pair for a qualifiedname.

getQNameByName(name)
Return the qualified name for a(namespace, localname) pair.

13.12. xml.sax.xmlreader — Interface for XML parsers 557

getQNames()
Return the qualified names of all attributes.

13.13 xmllib — A parser for XML documents

Deprecated since release 2.0.Usexml.sax instead. The newer XML package includes full support for XML
1.0.

Changed in version 1.5.2: Added namespace support.

This module defines a classXMLParser which serves as the basis for parsing text files formatted in XML
(Extensible Markup Language).

classXMLParser ()
TheXMLParser class must be instantiated without arguments.1

This class provides the following interface methods and instance variables:

attributes
A mapping of element names to mappings. The latter mapping maps attribute names that are valid for the
element to the default value of the attribute, or if there is no default toNone. The default value is the empty
dictionary. This variable is meant to be overridden, not extended since the default is shared by all instances
of XMLParser .

elements
A mapping of element names to tuples. The tuples contain a function for handling the start and end tag
respectively of the element, orNone if the methodunknown starttag() or unknown endtag()
is to be called. The default value is the empty dictionary. This variable is meant to be overridden, not
extended since the default is shared by all instances ofXMLParser .

entitydefs
A mapping of entitynames to their values. The default value contains definitions for’lt’ , ’gt’ , ’amp’ ,
’quot’ , and’apos’ .

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at the instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA).

setliteral ()
Enter literal mode (CDATA mode). This mode is automatically exited when the close tag matching the last
unclosed open tag is encountered.

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete tags; incomplete data is
buffered until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined version
should always callclose() .

translate references (data)
Translate all entity and character references indataand return the translated string.

getnamespace ()
Return a mapping of namespace abbreviations to namespace URIs that are currently in effect.

1Actually, a number of keyword arguments are recognized which influence the parser to accept certain non-standard constructs. The
following keyword arguments are currently recognized. The defaults for all of these is0 (false) except for the last one for which the default
is 1 (true). accept unquoted attributes(accept certain attribute values without requiring quotes),accept missing endtag name(accept end
tags that look like</>), map case(map upper case to lower case in tags and attributes),accept utf8 (allow UTF-8 characters in input;
this is required according to the XML standard, but Python does not as yet deal properly with these characters, so this is not the default),
translate attribute references(don’t attempt to translate character and entity references in attribute values).

558 Chapter 13. Structured Markup Processing Tools

handle xml (encoding, standalone)
This method is called when the ‘<?xml ...?> ’ tag is processed. The arguments are the values of the
encoding and standalone attributes in the tag. Both encoding and standalone are optional. The values
passed tohandle xml() default toNone and the string’no’ respectively.

handle doctype (tag, pubid, syslit, data)
This method is called when the ‘<!DOCTYPE...> ’ declaration is processed. The arguments are the tag
name of the root element, the Formal Public Identifier (orNone if not specified), the system identifier, and
the uninterpreted contents of the internal DTD subset as a string (orNone if not present).

handle starttag (tag, method, attributes)
This method is called to handle start tags for which a start tag handler is defined in the instance variable
elements . The tag argument is the name of the tag, and themethodargument is the function (method)
which should be used to support semantic interpretation of the start tag. Theattributesargument is a dictio-
nary of attributes, the key being thenameand the value being thevalueof the attribute found inside the tag’s
<> brackets. Character and entity references in thevaluehave been interpreted. For instance, for the start tag
 , this method would be called ashandle starttag(’A’,
self.elements[’A’][0], {’HREF’: ’http://www.cwi.nl/’}) . The base implementa-
tion simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which an end tag handler is defined in the instance variable
elements . The tag argument is the name of the tag, and themethodargument is the function (method)
which should be used to support semantic interpretation of the end tag. For instance, for the endtag ,
this method would be called ashandle endtag(’A’, self.elements[’A’][1]) . The base
implementation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base
class implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. ref can either be a decimal
number, or a hexadecimal number when preceded by an ‘x ’. In the base implementation,ref must be a
number in the range 0-255. It translates the character toASCII and calls the methodhandle data()
with the character as argument. Ifref is invalid or out of range, the methodunknown charref(ref) is
called to handle the error. A subclass must override this method to provide support for character references
outside of theASCII range.

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the text
between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<!--text--> ’ will cause this method to be called with the argument’text’ . The default method does
nothing.

handle cdata (data)
This method is called when a CDATA element is encountered. Thedata argument is a string containing
the text between the ‘<![CDATA[’ and ‘]]> ’ delimiters, but not the delimiters themselves. For example,
the entity ‘<![CDATA[text]]> ’ will cause this method to be called with the argument’text’ . The
default method does nothing, and is intended to be overridden.

handle proc (name, data)
This method is called when a processing instruction (PI) is encountered. Thenameis the PI target, and
thedataargument is a string containing the text between the PI target and the closing delimiter, but not the
delimiter itself. For example, the instruction ‘<?XML text?> ’ will cause this method to be called with
the arguments’XML’ and’text’ . The default method does nothing. Note that if a document starts with
‘<?xml ..?> ’, handle xml() is called to handle it.

handle special (data)
This method is called when a declaration is encountered. Thedataargument is a string containing the text
between the ‘<! ’ and ‘>’ delimiters, but not the delimiters themselves. For example, the entity declaration
‘<!ENTITY text> ’ will cause this method to be called with the argument’ENTITY text’ . The
default method does nothing. Note that ‘<!DOCTYPE ...> ’ is handled separately if it is located at the

13.13. xmllib — A parser for XML documents 559

start of the document.

syntax error (message)
This method is called when a syntax error is encountered. Themessageis a description of what was wrong.
The default method raises aRuntimeError exception. If this method is overridden, it is permissible for
it to return. This method is only called when the error can be recovered from. Unrecoverable errors raise a
RuntimeError without first callingsyntax error() .

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. It is intended to be overridden
by a derived class; the base class implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived
class; the base class implementation callssyntax error() to signal an error.

See Also:

Extensible Markup Language (XML) 1.0
(http://www.w3.org/TR/REC-xml)

The XML specification, published by the World Wide Web Consortium (W3C), defines the syntax and
processor requirements for XML. References to additional material on XML, including translations of the
specification, are available athttp://www.w3.org/XML/.

Python and XML Processing
(http://www.python.org/topics/xml/)

The Python XML Topic Guide provides a great deal of information on using XML from Python and links
to other sources of information on XML.

SIG for XML Processing in Python
(http://www.python.org/sigs/xml-sig/)

The Python XML Special Interest Group is developing substantial support for processing XML from
Python.

13.13.1 XML Namespaces

This module has support for XML namespaces as defined in the XML Namespaces proposed recommendation.

Tag and attribute names that are defined in an XML namespace are handled as if the name of the tag or ele-
ment consisted of the namespace (the URL that defines the namespace) followed by a space and the name of
the tag or attribute. For instance, the tag<html xmlns=’http://www.w3.org/TR/REC-html40’>
is treated as if the tag name was’http://www.w3.org/TR/REC-html40 html’ , and the tag
<html:a href=’http://frob.com’> inside the above mentioned element is treated as if the
tag name were’http://www.w3.org/TR/REC-html40 a’ and the attribute name as if it were
’http://www.w3.org/TR/REC-html40 href’ .

An older draft of the XML Namespaces proposal is also recognized, but triggers a warning.

See Also:

Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/)

This World Wide Web Consortium recommendation describes the proper syntax and processing require-
ments for namespaces in XML.

560 Chapter 13. Structured Markup Processing Tools

CHAPTER

FOURTEEN

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for mul-
timedia applications. They are available at the discretion of the installation. Here’s an overview:

audioop Manipulate raw audio data.
imageop Manipulate raw image data.
aifc Read and write audio files in AIFF or AIFC format.
sunau Provide an interface to the Sun AU sound format.
wave Provide an interface to the WAV sound format.
chunk Module to read IFF chunks.
colorsys Conversion functions between RGB and other color systems.
rgbimg Read and write image files in “SGI RGB” format (the module isnotSGI specific though!).
imghdr Determine the type of image contained in a file or byte stream.
sndhdr Determine type of a sound file.
ossaudiodev Access to OSS-compatible audio devices.

14.1 audioop — Manipulate raw audio data

The audioop module contains some useful operations on sound fragments. It operates on sound fragments
consisting of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same format as
used by theal andsunaudiodev modules. All scalar items are integers, unless specified otherwise.

This module provides support for u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always
a parameter of the operation.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add (fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters.width is the sample width
in bytes, either1, 2 or 4. Both fragments should have the same length.

adpcm2lin (adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description oflin2adpcm()
for details on ADPCM coding. Return a tuple(sample, newstate) where the sample has the width speci-
fied inwidth.

adpcm32lin (adpcmfragment, width, state)
Decode an alternative 3-bit ADPCM code. Seelin2adpcm3() for details.

avg (fragment, width)
Return the average over all samples in the fragment.

avgpp (fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the usefulness

561

of this routine is questionable.

bias (fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross (fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor (fragment, reference)
Return a factorF such thatrms(add(fragment, mul(reference, - F))) is minimal, i.e., return the
factor with which you should multiplyreferenceto make it match as well as possible tofragment. The
fragments should both contain 2-byte samples.

The time taken by this routine is proportional tolen(fragment) .

findfit (fragment, reference)
Try to matchreferenceas well as possible to a portion offragment(which should be the longer fragment).
This is (conceptually) done by taking slices out offragment, usingfindfactor() to compute the best
match, and minimizing the result. The fragments should both contain 2-byte samples. Return a tuple
(offset, factor) whereoffset is the (integer) offset intofragmentwhere the optimal match started and
factor is the (floating-point) factor as perfindfactor() .

findmax (fragment, length)
Searchfragmentfor a slice of lengthlengthsamples (not bytes!) with maximum energy, i.e., returni for
whichrms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte
samples.

The routine takes time proportional tolen(fragment) .

getsample (fragment, width, index)
Return the value of sampleindexfrom the fragment.

lin2lin (fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm (fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme,
whereby each 4 bit number is the difference between one sample and the next, divided by a (varying) step.
The Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it may well become a standard.

stateis a tuple containing the state of the coder. The coder returns a tuple(adpcmfrag, newstate) , and the
newstateshould be passed to the next call oflin2adpcm() . In the initial call,None can be passed as the
state.adpcmfragis the ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3 (fragment, width, state)
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the Intel/DVI
ADPCM coder and its output is not packed (due to laziness on the side of the author). Its use is discouraged.

lin2ulaw (fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string. u-LAW is
an audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is
used by the Sun audio hardware, among others.

minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width)
Return the maximum of theabsolute valueof all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

mul (fragment, width, factor)
Return a fragment that has all samples in the original fragment multiplied by the floating-point valuefactor.
Overflow is silently ignored.

ratecv (fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])
Convert the frame rate of the input fragment.

562 Chapter 14. Multimedia Services

stateis a tuple containing the state of the converter. The converter returns a tuple(newfragment, new-
state) , andnewstateshould be passed to the next call ofratecv() . The initial call should passNone as
the state.

TheweightAandweightBarguments are parameters for a simple digital filter and default to1 and0 respec-
tively.

reverse (fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms (fragment, width)
Return the root-mean-square of the fragment, i.e.√∑

Si
2

n

This is a measure of the power in an audio signal.

tomono (fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied bylfactor and the right channel
by rfactor before adding the two channels to give a mono signal.

tostereo (fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are computed
from the mono sample, whereby left channel samples are multiplied bylfactor and right channel samples
by rfactor.

ulaw2lin (fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding al-
ways uses 8 bits samples, sowidth refers only to the sample width of the output fragment here.

Note that operations such asmul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments first
and recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(sample, width, lfactor)
rsample = audioop.mul(sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to
tolerate packet loss) you should not only transmit the data but also the state. Note that you should send theinitial
state (the one you passed tolin2adpcm()) along to the decoder, not the final state (as returned by the coder).
If you want to usestruct.struct() to store the state in binary you can code the first element (the predicted
value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well
be that I misinterpreted the standards in which case they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation.
A reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the input
sample and subtract the whole output sample from the input sample:

14.1. audioop — Manipulate raw audio data 563

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = ’\0’*(pos+ipos)*2
postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

14.2 imageop — Manipulate raw image data

The imageop module contains some useful operations on images. It operates on images consisting of 8 or 32
bit pixels stored in Python strings. This is the same format as used bygl.lrectwrite() and theimgfile
module.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop (image, psize, width, height, x0, y0, x1, y1)
Return the selected part ofimage, which should bywidth by height in size and consist of pixels ofpsize
bytes. x0, y0, x1 andy1 are like thegl.lrectread() parameters, i.e. the boundary is included in the
new image. The new boundaries need not be inside the picture. Pixels that fall outside the old image will
have their value set to zero. Ifx0 is bigger thanx1 the new image is mirrored. The same holds for the y
coordinates.

scale (image, psize, width, height, newwidth, newheight)
Returnimagescaled to sizenewwidthby newheight. No interpolation is done, scaling is done by simple-
minded pixel duplication or removal. Therefore, computer-generated images or dithered images will not
look nice after scaling.

tovideo (image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the average
of two vertically-aligned source pixels. The main use of this routine is to forestall excessive flicker if the
image is displayed on a video device that uses interlacing, hence the name.

grey2mono (image, width, height, threshold)
Convert a 8-bit deep greyscale image to a 1-bit deep image by thresholding all the pixels. The resulting
image is tightly packed and is probably only useful as an argument tomono2grey() .

dither2mono (image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering algorithm.

mono2grey (image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-valued on
input get valuep0on output and all one-value input pixels get valuep1on output. To convert a monochrome
black-and-white image to greyscale pass the values0 and255 respectively.

grey2grey4 (image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2 (image, width, height)

564 Chapter 14. Multimedia Services

Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As fordither2mono() , the
dithering algorithm is currently very simple.

grey42grey (image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey (image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

14.3 aifc — Read and write AIFF and AIFC files

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File
Format, a format for storing digital audio samples in a file. AIFF-C is a newer version of the format that includes
the ability to compress the audio data.

Caveat: Some operations may only work under IRIX; these will raiseImportError when attempting to import
thecl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the
number of times per second the sound is sampled. The number of channels indicate if the audio is mono, stereo,
or quadro. Each frame consists of one sample per channel. The sample size is the size in bytes of each sam-
ple. Thus a frame consists ofnchannels*samplesizebytes, and a second’s worth of audio consists ofnchan-
nels*samplesize* frameratebytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame
rate of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100
bytes (176,400 bytes).

Moduleaifc defines the following function:

open (file[, mode])
Open an AIFF or AIFF-C file and return an object instance with methods that are described below. The
argumentfile is either a string naming a file or a file object.modemust be’r’ or ’rb’ when the file must
be opened for reading, or’w’ or ’wb’ when the file must be opened for writing. If omitted,file.mode is
used if it exists, otherwise’rb’ is used. When used for writing, the file object should be seekable, unless
you know ahead of time how many samples you are going to write in total and usewriteframesraw()
andsetnframes() .

Objects returned byopen() when a file is opened for reading have the following methods:

getnchannels ()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth ()
Return the size in bytes of individual samples.

getframerate ()
Return the sampling rate (number of audio frames per second).

getnframes ()
Return the number of audio frames in the file.

getcomptype ()
Return a four-character string describing the type of compression used in the audio file. For AIFF files, the
returned value is’NONE’ .

getcompname ()
Return a human-readable description of the type of compression used in the audio file. For AIFF files, the
returned value is’not compressed’ .

getparams ()
Return a tuple consisting of all of the above values in the above order.

getmarkers ()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is the

14.3. aifc — Read and write AIFF and AIFC files 565

mark ID (an integer), the second is the mark position in frames from the beginning of the data (an integer),
the third is the name of the mark (a string).

getmark (id)
Return the tuple as described ingetmarkers() for the mark with the givenid.

readframes (nframes)
Read and return the nextnframesframes from the audio file. The returned data is a string containing for
each frame the uncompressed samples of all channels.

rewind ()
Rewind the read pointer. The nextreadframes() will start from the beginning.

setpos (pos)
Seek to the specified frame number.

tell ()
Return the current frame number.

close ()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned byopen() when a file is opened for writing have all the above methods, except for
readframes() andsetpos() . In addition the following methods exist. Theget*() methods can only
be called after the correspondingset*() methods have been called. Before the firstwriteframes() or
writeframesraw() , all parameters except for the number of frames must be filled in.

aiff ()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in
’.aiff’ in which case the default is an AIFF file.

aifc ()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends in
’.aiff’ in which case the default is an AIFF file.

setnchannels (nchannels)
Specify the number of channels in the audio file.

setsampwidth (width)
Specify the size in bytes of audio samples.

setframerate (rate)
Specify the sampling frequency in frames per second.

setnframes (nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set
correctly, the file needs to support seeking.

setcomptype (type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files, com-
pression is not possible. The name parameter should be a human-readable description of the compression
type, the type parameter should be a four-character string. Currently the following compression types are
supported: NONE, ULAW, ALAW, G722.

setparams (nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters. This
means that it is possible to use the result of agetparams() call as argument tosetparams() .

setmark (id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This method can be
called at any time beforeclose() .

tell ()
Return the current write position in the output file. Useful in combination withsetmark() .

writeframes (data)
Write data to the output file. This method can only be called after the audio file parameters have been set.

566 Chapter 14. Multimedia Services

writeframesraw (data)
Like writeframes() , except that the header of the audio file is not updated.

close ()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After calling
this method, the object can no longer be used.

14.4 sunau — Read and write Sun AU files

The sunau module provides a convenient interface to the Sun AU sound format. Note that this module is
interface-compatible with the modulesaifc andwave.

An audio file consists of a header followed by the data. The fields of the header are:

Field Contents
magic word The four bytes ‘.snd ’.
header size Size of the header, including info, in bytes.
data size Physical size of the data, in bytes.
encoding Indicates how the audio samples are encoded.
sample rate The sampling rate.
of channels The number of channels in the samples.
info ASCII string giving a description of the audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all 32-bit unsigned integers encoded in
big-endian byte order.

Thesunau module defines the following functions:

open (file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object.modecan be any
of

’r’ Read only mode.

’w’ Write only mode.

Note that it does not allow read/write files.

A modeof ’r’ returns aAU read object, while amodeof ’w’ or ’wb’ returns aAU write object.

openfp (file, mode)
A synonym foropen , maintained for backwards compatibility.

Thesunau module defines the following exception:

exceptionError
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

Thesunau module defines the following data items:

AUDIO FILE MAGIC
An integer every valid Sun AU file begins with, stored in big-endian form. This is the string ‘.snd ’
interpreted as an integer.

AUDIO FILE ENCODINGMULAW8
AUDIO FILE ENCODINGLINEAR 8
AUDIO FILE ENCODINGLINEAR 16
AUDIO FILE ENCODINGLINEAR 24
AUDIO FILE ENCODINGLINEAR 32
AUDIO FILE ENCODINGALAW 8

Values of the encoding field from the AU header which are supported by this module.

AUDIO FILE ENCODINGFLOAT
AUDIO FILE ENCODINGDOUBLE

14.4. sunau — Read and write Sun AU files 567

AUDIO FILE ENCODINGADPCMG721
AUDIO FILE ENCODINGADPCMG722
AUDIO FILE ENCODINGADPCMG723 3
AUDIO FILE ENCODINGADPCMG723 5

Additional known values of the encoding field from the AU header, but which are not supported by this
module.

14.4.1 AU read Objects

AU read objects, as returned byopen() above, have the following methods:

close ()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

getnchannels ()
Returns number of audio channels (1 for mone, 2 for stereo).

getsampwidth ()
Returns sample width in bytes.

getframerate ()
Returns sampling frequency.

getnframes ()
Returns number of audio frames.

getcomptype ()
Returns compression type. Supported compression types are’ULAW’ , ’ALAW’ and’NONE’ .

getcompname ()
Human-readable version ofgetcomptype() . The supported types have the respective names’CCITT
G.711 u-law’ , ’CCITT G.711 A-law’ and’not compressed’ .

getparams ()
Returns a tuple(nchannels, sampwidth, framerate, nframes, comptype, compname) , equivalent to
output of theget*() methods.

readframes (n)
Reads and returns at mostn frames of audio, as a string of bytes. The data will be returned in linear format.
If the original data is in u-LAW format, it will be converted.

rewind ()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise imple-
mentation dependent.

setpos (pos)
Set the file pointer to the specified position. Only values returned fromtell() should be used forpos.

tell ()
Return current file pointer position. Note that the returned value has nothing to do with the actual position
in the file.

The following two functions are defined for compatibility with theaifc , and don’t do anything interesting.

getmarkers ()
ReturnsNone.

getmark (id)
Raise an error.

14.4.2 AU write Objects

AU write objects, as returned byopen() above, have the following methods:

568 Chapter 14. Multimedia Services

setnchannels (n)
Set the number of channels.

setsampwidth (n)
Set the sample width (in bytes.)

setframerate (n)
Set the frame rate.

setnframes (n)
Set the number of frames. This can be later changed, when and if more frames are written.

setcomptype (type, name)
Set the compression type and description. Only’NONE’ and’ULAW’ are supported on output.

setparams (tuple)
Thetupleshould be(nchannels, sampwidth, framerate, nframes, comptype, compname) , with val-
ues valid for theset*() methods. Set all parameters.

tell ()
Return current position in the file, with the same disclaimer for theAU read.tell() and
AU read.setpos() methods.

writeframesraw (data)
Write audio frames, without correctingnframes.

writeframes (data)
Write audio frames and make surenframesis correct.

close ()
Make surenframesis correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after callingwriteframes() or writeframesraw() .

14.5 wave — Read and write WAV files

The wave module provides a convenient interface to the WAV sound format. It does not support compres-
sion/decompression, but it does support mono/stereo.

Thewave module defines the following function and exception:

open (file[, mode])
If file is a string, open the file by that name, other treat it as a seekable file-like object.modecan be any of

’r’ , ’rb’ Read only mode.

’w’ , ’wb’ Write only mode.

Note that it does not allow read/write WAV files.

A mode of ’r’ or ’rb’ returns aWave read object, while amode of ’w’ or ’wb’ returns a
Wave write object. If modeis omitted and a file-like object is passed asfile, file.mode is used as
the default value formode(the ‘b’ flag is still added if necessary).

openfp (file, mode)
A synonym foropen() , maintained for backwards compatibility.

exceptionError
An error raised when something is impossible because it violates the WAV specification or hits an imple-
mentation deficiency.

14.5.1 Wave read Objects

Wave read objects, as returned byopen() , have the following methods:

14.5. wave — Read and write WAV files 569

close ()
Close the stream, and make the instance unusable. This is called automatically on object collection.

getnchannels ()
Returns number of audio channels (1 for mono,2 for stereo).

getsampwidth ()
Returns sample width in bytes.

getframerate ()
Returns sampling frequency.

getnframes ()
Returns number of audio frames.

getcomptype ()
Returns compression type (’NONE’ is the only supported type).

getcompname ()
Human-readable version ofgetcomptype() . Usually’not compressed’ parallels’NONE’ .

getparams ()
Returns a tuple(nchannels, sampwidth, framerate, nframes, comptype, compname) , equivalent to
output of theget*() methods.

readframes (n)
Reads and returns at mostn frames of audio, as a string of bytes.

rewind ()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with theaifc module, and don’t do anything interesting.

getmarkers ()
ReturnsNone.

getmark (id)
Raise an error.

The following two methods define a term “position” which is compatible between them, and is otherwise imple-
mentation dependent.

setpos (pos)
Set the file pointer to the specified position.

tell ()
Return current file pointer position.

14.5.2 Wave write Objects

Wave write objects, as returned byopen() , have the following methods:

close ()
Make surenframesis correct, and close the file. This method is called upon deletion.

setnchannels (n)
Set the number of channels.

setsampwidth (n)
Set the sample width ton bytes.

setframerate (n)
Set the frame rate ton.

setnframes (n)
Set the number of frames ton. This will be changed later if more frames are written.

setcomptype (type, name)

570 Chapter 14. Multimedia Services

Set the compression type and description.

setparams (tuple)
Thetupleshould be(nchannels, sampwidth, framerate, nframes, comptype, compname) , with val-
ues valid for theset*() methods. Sets all parameters.

tell ()
Return current position in the file, with the same disclaimer for theWave read.tell() and
Wave read.setpos() methods.

writeframesraw (data)
Write audio frames, without correctingnframes.

writeframes (data)
Write audio frames and make surenframesis correct.

Note that it is invalid to set any parameters after callingwriteframes() or writeframesraw() , and any
attempt to do so will raisewave.Error .

14.6 chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks.1 This format is used in at least the
Audio Interchange File Format (AIFF/AIFF-C) and the Real Media File Format (RMFF). The WAVE audio file
format is closely related and can also be read using this module.

A chunk has the following structure:

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, not including the header
8 n Data bytes, wheren is the size given in the preceding field

8 + n 0 or 1 Pad byte needed ifn is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the chunk data, not including
the 8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of theChunk class defined here is
to instantiate an instance at the start of each chunk and read from the instance until it reaches the end, after which
a new instance can be instantiated. At the end of the file, creating a new instance will fail with aEOFError
exception.

classChunk (file[, align, bigendian, inclheader])
Class which represents a chunk. Thefile argument is expected to be a file-like object. An instance of this
class is specifically allowed. The only method that is needed isread() . If the methodsseek() and
tell() are present and don’t raise an exception, they are also used. If these methods are present and raise
an exception, they are expected to not have altered the object. If the optional argumentalign is true, chunks
are assumed to be aligned on 2-byte boundaries. Ifalign is false, no alignment is assumed. The default
value is true. If the optional argumentbigendianis false, the chunk size is assumed to be in little-endian
order. This is needed for WAVE audio files. The default value is true. If the optional argumentinclheader
is true, the size given in the chunk header includes the size of the header. The default value is false.

A Chunk object supports the following methods:

getname ()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

getsize ()
Returns the size of the chunk.

1“EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

14.6. chunk — Read IFF chunked data 571

close ()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raiseIOError if called after theclose() method has been called.

isatty ()
ReturnsFalse .

seek (pos[, whence])
Set the chunk’s current position. Thewhenceargument is optional and defaults to0 (absolute file position-
ing); other values are1 (seek relative to the current position) and2 (seek relative to the file’s end). There is
no return value. If the underlying file does not allow seek, only forward seeks are allowed.

tell ()
Return the current position into the chunk.

read ([size])
Read at mostsizebytes from the chunk (less if the read hits the end of the chunk before obtainingsizebytes).
If the sizeargument is negative or omitted, read all data until the end of the chunk. The bytes are returned
as a string object. An empty string is returned when the end of the chunk is encountered immediately.

skip ()
Skip to the end of the chunk. All further calls toread() for the chunk will return’’ . If you are not
interested in the contents of the chunk, this method should be called so that the file points to the start of the
next chunk.

14.7 colorsys — Conversions between color systems

Thecolorsys module defines bidirectional conversions of color values between colors expressed in the RGB
(Red Green Blue) color space used in computer monitors and three other coordinate systems: YIQ, HLS (Hue
Lightness Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color spaces are floating point
values. In the YIQ space, the Y coordinate is between 0 and 1, but the I and Q coordinates can be positive or
negative. In all other spaces, the coordinates are all between 0 and 1.

More information about color spaces can be found athttp://www.poynton.com/ColorFAQ.html.

Thecolorsys module defines the following functions:

rgb to yiq (r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

yiq to rgb (y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

rgb to hls (r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

hls to rgb (h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

rgb to hsv (r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

hsv to rgb (h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys
>>> colorsys.rgb_to_hsv(.3, .4, .2)
(0.25, 0.5, 0.4)
>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)
(0.3, 0.4, 0.2)

572 Chapter 14. Multimedia Services

14.8 rgbimg — Read and write “SGI RGB” files

The rgbimg module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

Note: This module is only built by default for 32-bit platforms; it is not expected to work properly on other
systems.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage (file)
This function returns a tuple(x, y) wherex andy are the size of the image in pixels. Only 4 byte RGBA
pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string
has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is suitable to pass to
gl.lrectwrite() , for instance.

longstoimage (data, x, y, z, file)
This function writes the RGBA data indata to image filefile. x andy give the size of the image.z is 1 if
the saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB data, or 4 if the
saved images should be 4 byte RGBA data. The input data always contains 4 bytes per pixel. These are the
formats returned bygl.lrectread() .

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from
bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X).
The default is zero.

14.9 imghdr — Determine the type of an image

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

what (filename[, h])
Tests the image data contained in the file named byfilename, and returns a string describing the image type.
If optionalh is provided, thefilenameis ignored andh is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value fromwhat() :

Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JFIF format
’bmp’ BMP files
’png’ Portable Network Graphics

14.8. rgbimg — Read and write “SGI RGB” files 573

You can extend the list of file typesimghdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and
an open file-like object. Whenwhat() is called with a byte-stream, the file-like object will beNone.

The test function should return a string describing the image type if the test succeeded, orNone if it failed.

Example:

>>> import imghdr
>>> imghdr.what(’/tmp/bass.gif’)
’gif’

14.10 sndhdr — Determine type of sound file

Thesndhdr provides utility functions which attempt to determine the type of sound data which is in a file. When
these functions are able to determine what type of sound data is stored in a file, they return a tuple(type, sam-
pling rate, channels, frames, bits per sample) . The value fortypeindicates the data type and will be one
of the strings’aifc’ , ’aiff’ , ’au’ , ’hcom’ , ’sndr’ , ’sndt’ , ’voc’ , ’wav’ , ’8svx’ , ’sb’ , ’ub’ ,
or ’ul’ . Thesampling rate will be either the actual value or0 if unknown or difficult to decode. Similarly,
channelswill be either the number of channels or0 if it cannot be determined or if the value is difficult to decode.
The value forframeswill be either the number of frames or-1 . The last item in the tuple,bits per sample, will
either be the sample size in bits or’A’ for A-LAW or ’U’ for u-LAW.

what (filename)
Determines the type of sound data stored in the filefilenameusingwhathdr() . If it succeeds, returns a
tuple as described above, otherwiseNone is returned.

whathdr (filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is given by
filename. This function returns a tuple as described above on success, orNone.

14.11 ossaudiodev — Access to OSS-compatible audio devices

New in version 2.3.

This module allows you to access the OSS (Open Sound System) audio interface. OSS is available for a wide
range of open-source and commercial Unices, and is the standard audio interface for Linux and recent versions of
FreeBSD.

See Also:

Open Sound System Programmer’s Guide
(http://www.opensound.com/pguide/oss.pdf)

the official documentation for the OSS C API

The module defines a large number of constants supplied by the OSS device driver; see<sys/soundcard.h>
on either Linux or FreeBSD for a listing .

ossaudiodev defines the following variables and functions:

exceptionOSSAudioError
This exception is raised on certain errors. The argument is a string describing what went wrong.

(If ossaudiodev receives an error from a system call such asopen() , write() , or ioctl() , it raises
IOError . Errors detected directly byossaudiodev result inOSSAudioError .)

(For backwards compatibility, the exception class is also available asossaudiodev.error .)

574 Chapter 14. Multimedia Services

open ([device,]mode)
Open an audio device and return an OSS audio device object. This object supports many file-like methods,
such asread() , write() , andfileno() (although there are subtle differences between conventional
Unix read/write semantics and those of OSS audio devices). It also supports a number of audio-specific
methods; see below for the complete list of methods.

deviceis the audio device filename to use. If it is not specified, this module first looks in the environment
variable AUDIODEV for a device to use. If not found, it falls back to ‘/dev/dsp’.

modeis one of’r’ for read-only (record) access,’w’ for write-only (playback) access and’rw’ for both.
Since many sound cards only allow one process to have the recorder or player open at a time, it is a good
idea to open the device only for the activity needed. Further, some sound cards are half-duplex: they can be
opened for reading or writing, but not both at once.

Note the unusual calling syntax: thefirst argument is optional, and the second is required. This is a historical
artifact for compatibility with the olderlinuxaudiodev module whichossaudiodev supersedes.

openmixer ([device])
Open a mixer device and return an OSS mixer device object.deviceis the mixer device filename to use. If
it is not specified, this module first looks in the environment variable MIXERDEV for a device to use. If
not found, it falls back to ‘/dev/mixer’.

14.11.1 Audio Device Objects

Before you can write to or read from an audio device, you must call three methods in the correct order:

1. setfmt() to set the output format

2. channels() to set the number of channels

3. speed() to set the sample rate

Alternately, you can use thesetparameters() method to set all three audio parameters at once. This is more
convenient, but may not be as flexible in all cases.

The audio device objects returned byopen() define the following methods:

close ()
Explicitly close the audio device. When you are done writing to or reading from an audio device, you should
explicitly close it. A closed device cannot be used again.

fileno ()
Return the file descriptor associated with the device.

read (size)
Readsizebytes from the audio input and return them as a Python string. Unlike most UNIX device drivers,
OSS audio devices in blocking mode (the default) will blockread() until the entire requested amount of
data is available.

write (data)
Write the Python stringdata to the audio device and return the number of bytes written. If the audio
device is in blocking mode (the default), the entire string is always written (again, this is different from
usual UNIX device semantics). If the device is in non-blocking mode, some data may not be written—see
writeall() .

writeall (data)
Write the entire Python stringdata to the audio device: waits until the audio device is able to accept data,
writes as much data as it will accept, and repeats untildata has been completely written. If the device
is in blocking mode (the default), this has the same effect aswrite() ; writeall() is only useful in
non-blocking mode. Has no return value, since the amount of data written is always equal to the amount of
data supplied.

The following methods each map to exactly oneioctl() system call. The correspondence is obvious: for
example,setfmt() corresponds to theSNDCTL DSP SETFMTioctl, andsync() to SNDCTL DSP SYNC

14.11. ossaudiodev — Access to OSS-compatible audio devices 575

(this can be useful when consulting the OSS documentation). If the underlyingioctl() fails, they all raise
IOError .

nonblock ()
Put the device into non-blocking mode. Once in non-blocking mode, there is no way to return it to blocking
mode.

getfmts ()
Return a bitmask of the audio output formats supported by the soundcard. On a typical Linux system, these
formats are:

Format Description
AFMT MU LAW a logarithmic encoding (used by Sun.au files and/dev/audio)
AFMT A LAW a logarithmic encoding
AFMT IMA ADPCM a 4:1 compressed format defined by the Interactive Multimedia Association
AFMT U8 Unsigned, 8-bit audio
AFMT S16 LE Unsigned, 16-bit audio, little-endian byte order (as used by Intel processors)
AFMT S16 BE Unsigned, 16-bit audio, big-endian byte order (as used by 68k, PowerPC, Sparc)
AFMT S8 Signed, 8 bit audio
AFMT U16 LE Signed, 16-bit little-endian audio
AFMT U16 BE Signed, 16-bit big-endian audio

Most systems support only a subset of these formats. Many devices only supportAFMT U8; the most
common format used today isAFMT S16 LE.

setfmt (format)
Try to set the current audio format toformat—seegetfmts() for a list. Returns the audio format that
the device was set to, which may not be the requested format. May also be used to return the current audio
format—do this by passing an “audio format” ofAFMT QUERY.

channels (nchannels)
Set the number of output channels tonchannels. A value of 1 indicates monophonic sound, 2 stereophonic.
Some devices may have more than 2 channels, and some high-end devices may not support mono. Returns
the number of channels the device was set to.

speed (samplerate)
Try to set the audio sampling rate tosampleratesamples per second. Returns the rate actually set. Most
sound devices don’t support arbitrary sampling rates. Common rates are:

Rate Description
8000 default rate for/dev/audio
11025 speech recording
22050
44100 CD quality audio (at 16 bits/sample and 2 channels)
96000 DVD quality audio (at 24 bits/sample)

sync ()
Wait until the sound device has played every byte in its buffer. (This happens implicitly when the device is
closed.) The OSS documentation recommends closing and re-opening the device rather than usingsync() .

reset ()
Immediately stop playing or recording and return the device to a state where it can accept commands. The
OSS documentation recommends closing and re-opening the device after callingreset() .

post ()
Tell the driver that there is likely to be a pause in the output, making it possible for the device to handle the
pause more intelligently. You might use this after playing a spot sound effect, before waiting for user input,
or before doing disk I/O.

The following convenience methods combine several ioctls, or one ioctl and some simple calculations.

setparameters (format, nchannels, samplerate[, strict=False])
Set the key audio sampling parameters—sample format, number of channels, and sampling rate—in one
method call.format, nchannels, andsamplerateshould be as specified in thesetfmt() , channels() ,
andspeed() methods. Ifstrict is true,setparameters() checks to see if each parameter was actu-

576 Chapter 14. Multimedia Services

ally set to the requested value, and raisesOSSAudioError if not. Returns a tuple (format, nchannels,
samplerate) indicating the parameter values that were actually set by the device driver (i.e., the same as the
return valus ofsetfmt() , channels() , andspeed()).

For example,

(fmt, channels, rate) = dsp.setparameters(fmt, channels, rate)

is equivalent to

fmt = dsp.setfmt(fmt)
channels = dsp.channels(channels)
rate = dsp.rate(channels)

bufsize ()
Returns the size of the hardware buffer, in samples.

obufcount ()
Returns the number of samples that are in the hardware buffer yet to be played.

obuffree ()
Returns the number of samples that could be queued into the hardware buffer to be played without blocking.

14.11.2 Mixer Device Objects

The mixer object provides two file-like methods:

close ()
This method closes the open mixer device file. Any further attempts to use the mixer after this file is closed
will raise an IOError.

fileno ()
Returns the file handle number of the open mixer device file.

The remaining methods are specific to audio mixing:

controls ()
This method returns a bitmask specifying the available mixer controls (“Control” being a specific mixable
“channel”, such asSOUNDMIXER PCMor SOUNDMIXER SYNTH). This bitmask indicates a subset of
all available mixer controls—theSOUNDMIXER * constants defined at module level. To determine if, for
example, the current mixer object supports a PCM mixer, use the following Python code:

mixer=ossaudiodev.openmixer()
if mixer.controls() & (1 << ossaudiodev.SOUND_MIXER_PCM):

PCM is supported
... code ...

For most purposes, theSOUNDMIXER VOLUME(master volume) andSOUNDMIXER PCMcontrols
should suffice—but code that uses the mixer should be flexible when it comes to choosing mixer controls.
On the Gravis Ultrasound, for example,SOUNDMIXER VOLUMEdoes not exist.

stereocontrols ()
Returns a bitmask indicating stereo mixer controls. If a bit is set, the corresponding control is stereo;
if it is unset, the control is either monophonic or not supported by the mixer (use in combination with
controls() to determine which).

See the code example for thecontrols() function for an example of getting data from a bitmask.

reccontrols ()
Returns a bitmask specifying the mixer controls that may be used to record. See the code example for
controls() for an example of reading from a bitmask.

get (control)
Returns the volume of a given mixer control. The returned volume is a 2-tuple

14.11. ossaudiodev — Access to OSS-compatible audio devices 577

(left volume,right volume) . Volumes are specified as numbers from 0 (silent) to 100
(full volume). If the control is monophonic, a 2-tuple is still returned, but both volumes are the same.

RaisesOSSAudioError if an invalid control was is specified, orIOError if an unsupported control is
specified.

set (control, (left, right))
Sets the volume for a given mixer control to(left,right) . left andright must be ints and between
0 (silent) and 100 (full volume). On success, the new volume is returned as a 2-tuple. Note that this may not
be exactly the same as the volume specified, because of the limited resolution of some soundcard’s mixers.

RaisesOSSAudioError if an invalid mixer control was specified, or if the specified volumes were out-
of-range.

get recsrc ()
This method returns a bitmask indicating which control(s) are currently being used as a recording source.

set recsrc (bitmask)
Call this function to specify a recording source. Returns a bitmask indicating the new recording source
(or sources) if successful; raisesIOError if an invalid source was specified. To set the current recording
source to the microphone input:

mixer.setrecsrc (1 << ossaudiodev.SOUND_MIXER_MIC)

578 Chapter 14. Multimedia Services

CHAPTER

FIFTEEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available
at the discretion of the installation. Here’s an overview:

hmac Keyed-Hashing for Message Authentication (HMAC) implementation for Python.
md5 RSA’s MD5 message digest algorithm.
sha NIST’s secure hash algorithm, SHA.
mpz Interface to the GNU MP library for arbitrary precision arithmetic.
rotor Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by A.M. Kuchling of further interest;
the package adds built-in modules for DES and IDEA encryption, provides a Python module for reading and
decrypting PGP files, and then some. These modules are not distributed with Python but available separately. See
the URLhttp://www.amk.ca/python/code/crypto.html for more information.

15.1 hmac — Keyed-Hashing for Message Authentication

New in version 2.2.

This module implements the HMAC algorithm as described by RFC 2104.

new(key[, msg[, digestmod]])
Return a new hmac object. Ifmsgis present, the method callupdate(msg) is made.digestmodis the
digest module for the HMAC object to use. It defaults to themd5module.

An HMAC object has the following methods:

update (msg)
Update the hmac object with the stringmsg. Repeated calls are equivalent to a single call with the concate-
nation of all the arguments:m.update(a); m.update(b) is equivalent tom.update(a + b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is a 16-byte string (formd5)
or a 20-byte string (forsha) which may contain non-ASCII characters, including NUL bytes.

hexdigest ()
Like digest() except the digest is returned as a string of length 32 formd5 (40 for sha), containing
only hexadecimal digits. This may be used to exchange the value safely in email or other non-binary
environments.

copy ()
Return a copy (“clone”) of the hmac object. This can be used to efficiently compute the digests of strings
that share a common initial substring.

15.2 md5— MD5 message digest algorithm

579

This module implements the interface to RSA’s MD5 message digest algorithm (see also Internet RFC 1321). Its
use is quite straightforward: usenew() to create an md5 object. You can now feed this object with arbitrary
strings using theupdate() method, and at any point you can ask it for thedigest(a strong kind of 128-bit
checksum, a.k.a. “fingerprint”) of the concatenation of the strings fed to it so far using thedigest() method.

For example, to obtain the digest of the string’Nobody inspects the spammish repetition’ :

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()
’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

The following values are provided as constants in the module and as attributes of the md5 objects returned by
new() :

digest size
The size of the resulting digest in bytes. This is always16 .

md5 objects support the following methods:

new([arg])
Return a new md5 object. Ifarg is present, the method callupdate(arg) is made.

md5([arg])
For backward compatibility reasons, this is an alternative name for thenew() function.

An md5 object has the following methods:

update (arg)
Update the md5 object with the stringarg. Repeated calls are equivalent to a single call with the concatena-
tion of all the arguments:m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is a 16-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest() except the digest is returned as a string of length 32, containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings
that share a common initial substring.

See Also:

Modulesha (section 15.3):
Similar module implementing the Secure Hash Algorithm (SHA). The SHA algorithm is considered a more
secure hash.

15.3 sha — SHA-1 message digest algorithm

This module implements the interface to NIST’s secure hash algorithm, known as SHA-1. SHA-1 is an improved
version of the original SHA hash algorithm. It is used in the same way as themd5module: usenew() to create

580 Chapter 15. Cryptographic Services

an sha object, then feed this object with arbitrary strings using theupdate() method, and at any point you can
ask it for thedigestof the concatenation of the strings fed to it so far. SHA-1 digests are 160 bits instead of MD5’s
128 bits.

new([string])
Return a new sha object. Ifstring is present, the method callupdate(string) is made.

The following values are provided as constants in the module and as attributes of the sha objects returned by
new() :

blocksize
Size of the blocks fed into the hash function; this is always1. This size is used to allow an arbitrary string
to be hashed.

digest size
The size of the resulting digest in bytes. This is always20 .

An sha object has the same methods as md5 objects:

update (arg)
Update the sha object with the stringarg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments:m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is a 20-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest() except the digest is returned as a string of length 40, containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the sha object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

Secure Hash Standard
(http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt)

The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-1:Secure Hash Standard, pub-
lished in April of 1995. It is available online as plain text (at least one diagram was omitted) and as PDF at
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.pdf.

Cryptographic Toolkit (Secure Hashing)
(http://csrc.nist.gov/encryption/tkhash.html)

Links from NIST to various information on secure hashing.

15.4 mpz — GNU arbitrary magnitude integers

Deprecated since release 2.2.See the references at the end of this section for information about packages which
provide similar functionality. This module will be removed in Python 2.3.

This is an optional module. It is only available when Python is configured to include it, which requires that the
GNU MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision integer
and rational number arithmetic routines. Only the interfaces to theinteger(mpz *()) routines are provided. If
not stated otherwise, the description in the GNU MP documentation can be applied.

Support for rational numbers can be implemented in Python. For an example, see theRat module, provided as
‘Demos/classes/Rat.py’ in the Python source distribution.

In general,mpz-numbers can be used just like other standard Python numbers, e.g., you can use the built-in
operators like+, * , etc., as well as the standard built-in functions likeabs() , int() , . . . ,divmod() , pow() .
Please note:the bitwise-xoroperation has been implemented as a bunch ofands, inverts andors, because the

15.4. mpz — GNU arbitrary magnitude integers 581

library lacks anmpz xor() function, and I didn’t need one.

You create an mpz-number by calling the functionmpz() (see below for an exact description). An mpz-number
is printed like this:mpz(value) .

mpz(value)
Create a new mpz-number.valuecan be an integer, a long, another mpz-number, or even a string. If it is
a string, it is interpreted as an array of radix-256 digits, least significant digit first, resulting in a positive
number. See also thebinary() method, described below.

MPZType
The type of the objects returned bympz() and most other functions in this module.

A number ofextra functions are defined in this module. Non mpz-arguments are converted to mpz-values first,
and the functions return mpz-numbers.

powm(base, exponent, modulus)
Returnpow(base, exponent) % modulus. If exponent== 0, returnmpz(1) . In contrast to the C
library function, this version can handle negative exponents.

gcd (op1, op2)
Return the greatest common divisor ofop1andop2.

gcdext (a, b)
Return a tuple(g, s, t) , such thata* s + b* t == g == gcd(a, b) .

sqrt (op)
Return the square root ofop. The result is rounded towards zero.

sqrtrem (op)
Return a tuple(root, remainder) , such thatroot* root + remainder == op.

divm (numerator, denominator, modulus)
Returns a numberq such thatq * denominator % modulus == numerator. One could also implement
this function in Python, usinggcdext() .

An mpz-number has one method:

binary ()
Convert this mpz-number to a binary string, where the number has been stored as an array of radix-256
digits, least significant digit first.

The mpz-number must have a value greater than or equal to zero, otherwiseValueError will be raised.

See Also:

General Multiprecision Python
(http://gmpy.sourceforge.net/)

This project is building new numeric types to allow arbitrary-precision arithmetic in Python. Their first
efforts are also based on the GNU MP library.

mxNumber — Extended Numeric Types for Python
(http://www.egenix.com/files/python/mxNumber.html)

Another wrapper around the GNU MP library, including a port of that library to Windows.

15.5 rotor — Enigma-like encryption and decryption

Deprecated since release 2.3.The encryption algorithm is insecure.

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The design is
derived from the Enigma device, a machine used during World War II to encipher messages. A rotor is simply a
permutation. For example, if the character ‘A’ is the origin of the rotor, then a given rotor might map ‘A’ to ‘L’,
‘B’ to ‘Z’, ‘C’ to ‘G’, and so on. To encrypt, we choose several different rotors, and set the origins of the rotors
to known positions; their initial position is the ciphering key. To encipher a character, we permute the original
character by the first rotor, and then apply the second rotor’s permutation to the result. We continue until we’ve
applied all the rotors; the resulting character is our ciphertext. We then change the origin of the final rotor by one

582 Chapter 15. Cryptographic Services

position, from ‘A’ to ‘B’; if the final rotor has made a complete revolution, then we rotate the next-to-last rotor
by one position, and apply the same procedure recursively. In other words, after enciphering one character, we
advance the rotors in the same fashion as a car’s odometer. Decoding works in the same way, except we reverse
the permutations and apply them in the opposite order.

The available functions in this module are:

newrotor (key[, numrotors])
Return a rotor object.key is a string containing the encryption key for the object; it can contain arbitrary
binary data but not null bytes. The key will be used to randomly generate the rotor permutations and their
initial positions. numrotorsis the number of rotor permutations in the returned object; if it is omitted, a
default value of 6 will be used.

Rotor objects have the following methods:

setkey (key)
Sets the rotor’s key tokey. The key should not contain null bytes.

encrypt (plaintext)
Reset the rotor object to its initial state and encryptplaintext, returning a string containing the ciphertext.
The ciphertext is always the same length as the original plaintext.

encryptmore (plaintext)
Encryptplaintextwithout resetting the rotor object, and return a string containing the ciphertext.

decrypt (ciphertext)
Reset the rotor object to its initial state and decryptciphertext, returning a string containing the plaintext.
The plaintext string will always be the same length as the ciphertext.

decryptmore (ciphertext)
Decryptciphertextwithout resetting the rotor object, and return a string containing the plaintext.

An example usage:

>>> import rotor
>>> rt = rotor.newrotor(’key’, 12)
>>> rt.encrypt(’bar’)
’\xab4\xf3’
>>> rt.encryptmore(’bar’)
’\xef\xfd$’
>>> rt.encrypt(’bar’)
’\xab4\xf3’
>>> rt.decrypt(’\xab4\xf3’)
’bar’
>>> rt.decryptmore(’\xef\xfd$’)
’bar’
>>> rt.decrypt(’\xef\xfd$’)
’l(\xcd’
>>> del rt

The module’s code is not an exact simulation of the original Enigma device; it implements the rotor encryption
scheme differently from the original. The most important difference is that in the original Enigma, there were
only 5 or 6 different rotors in existence, and they were applied twice to each character; the cipher key was the
order in which they were placed in the machine. The Pythonrotor module uses the supplied key to initialize
a random number generator; the rotor permutations and their initial positions are then randomly generated. The
original device only enciphered the letters of the alphabet, while this module can handle any 8-bit binary data; it
also produces binary output. This module can also operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal more
difficult to crack (especially if you use many rotors), but it won’t be impossible for a truly skillful and determined
attacker to break the cipher. So if you want to keep the NSA out of your files, this rotor cipher may well be unsafe,
but for discouraging casual snooping through your files, it will probably be just fine, and may be somewhat safer
than using the UNIX crypt command.

15.5. rotor — Enigma-like encryption and decryption 583

584

CHAPTER

SIXTEEN

Graphical User Interfaces with Tk

Tk/Tcl has long been an integral part of Python. It provides a robust and platform independent windowing toolkit,
that is available to Python programmers using theTkinter module, and its extension, theTix module.

TheTkinter module is a thin object–oriented layer on top of Tcl/Tk. To useTkinter , you don’t need to write
Tcl code, but you will need to consult the Tk documentation, and occasionally the Tcl documentation.Tkinter
is a set of wrappers that implement the Tk widgets as Python classes. In addition, the internal moduletkinter
provides a threadsafe mechanism which allows Python and Tcl to interact.

Tk is not the only GUI for Python, but is however the most commonly used one; see section??, “Other User
Interface Modules and Packages,” for more information on other GUI toolkits for Python.

Tkinter Interface to Tcl/Tk for graphical user interfaces
Tix Tk Extension Widgets for Tkinter
ScrolledText Text widget with a vertical scroll bar.
turtle An environment for turtle graphics.

16.1 Tkinter — Python interface to Tcl/Tk

The Tkinter module (“Tk interface”) is the standard Python interface to the Tk GUI toolkit. Both Tk and
Tkinter are available on most UNIX platforms, as well as on Windows and Macintosh systems. (Tk itself is not
part of Python; it is maintained at ActiveState.)

See Also:

Python Tkinter Resources
(http://www.python.org/topics/tkinter/)

The Python Tkinter Topic Guide provides a great deal of information on using Tk from Python and links to
other sources of information on Tk.

An Introduction to Tkinter
(http://www.pythonware.com/library/an-introduction-to-tkinter.htm)

Fredrik Lundh’s on-line reference material.

Tkinter reference: a GUI for Python
(http://www.nmt.edu/tcc/help/pubs/lang.html)

On-line reference material.

Tkinter for JPython
(http://jtkinter.sourceforge.net)

The Jython interface to Tkinter.

Python and Tkinter Programming
(http://www.amazon.com/exec/obidos/ASIN/1884777813)

The book by John Grayson (ISBN 1-884777-81-3).

585

16.1.1 Tkinter Modules

Most of the time, theTkinter module is all you really need, but a number of additional modules are available
as well. The Tk interface is located in a binary module namedtkinter . This module contains the low-level
interface to Tk, and should never be used directly by application programmers. It is usually a shared library (or
DLL), but might in some cases be statically linked with the Python interpreter.

In addition to the Tk interface module,Tkinter includes a number of Python modules. The two most important
modules are theTkinter module itself, and a module calledTkconstants . The former automatically imports
the latter, so to use Tkinter, all you need to do is to import one module:

import Tkinter

Or, more often:

from Tkinter import *

classTk(screenName=None, baseName=None, className=’Tk’)
TheTk class is instantiated without arguments. This creates a toplevel widget of Tk which usually is the
main window of an appliation. Each instance has its own associated Tcl interpreter.

Other modules that provide Tk support include:

ScrolledText Text widget with a vertical scroll bar built in.

tkColorChooser Dialog to let the user choose a color.

tkCommonDialog Base class for the dialogs defined in the other modules listed here.

tkFileDialog Common dialogs to allow the user to specify a file to open or save.

tkFont Utilities to help work with fonts.

tkMessageBox Access to standard Tk dialog boxes.

tkSimpleDialog Basic dialogs and convenience functions.

Tkdnd Drag-and-drop support forTkinter . This is experimental and should become deprecated when it is
replaced with the Tk DND.

turtle Turtle graphics in a Tk window.

16.1.2 Tkinter Life Preserver

This section is not designed to be an exhaustive tutorial on either Tk or Tkinter. Rather, it is intended as a stop
gap, providing some introductory orientation on the system.

Credits:

• Tkinter was written by Steen Lumholt and Guido van Rossum.

• Tk was written by John Ousterhout while at Berkeley.

• This Life Preserver was written by Matt Conway at the University of Virginia.

• The html rendering, and some liberal editing, was produced from a FrameMaker version by Ken Manheimer.

• Fredrik Lundh elaborated and revised the class interface descriptions, to get them current with Tk 4.2.

• Mike Clarkson converted the documentation to LATEX, and compiled the User Interface chapter of the refer-
ence manual.

586 Chapter 16. Graphical User Interfaces with Tk

How To Use This Section

This section is designed in two parts: the first half (roughly) covers background material, while the second half
can be taken to the keyboard as a handy reference.

When trying to answer questions of the form “how do I do blah”, it is often best to find out how to do“blah”
in straight Tk, and then convert this back into the correspondingTkinter call. Python programmers can often
guess at the correct Python command by looking at the Tk documentation. This means that in order to use Tkinter,
you will have to know a little bit about Tk. This document can’t fulfill that role, so the best we can do is point you
to the best documentation that exists. Here are some hints:

• The authors strongly suggest getting a copy of the Tk man pages. Specifically, the man pages in themann
directory are most useful. Theman3 man pages describe the C interface to the Tk library and thus are not
especially helpful for script writers.

• Addison-Wesley publishes a book calledTcl and the Tk Toolkitby John Ousterhout (ISBN 0-201-63337-X)
which is a good introduction to Tcl and Tk for the novice. The book is not exhaustive, and for many details
it defers to the man pages.

• ‘Tkinter.py’ is a last resort for most, but can be a good place to go when nothing else makes sense.

See Also:

ActiveState Tcl Home Page
(http://tcl.activestate.com/)

The Tk/Tcl development is largely taking place at ActiveState.

Tcl and the Tk Toolkit
(http://www.amazon.com/exec/obidos/ASIN/020163337X)

The book by John Ousterhout, the inventor of Tcl .

Practical Programming in Tcl and Tk
(http://www.amazon.com/exec/obidos/ASIN/0130220280)

Brent Welch’s encyclopedic book.

16.1. Tkinter — Python interface to Tcl/Tk 587

A Simple Hello World Program

from Tkinter import *

class Application(Frame):
def say_hi(self):

print "hi there, everyone!"

def createWidgets(self):
self.QUIT = Button(self)
self.QUIT["text"] = "QUIT"
self.QUIT["fg"] = "red"
self.QUIT["command"] = self.quit

self.QUIT.pack({"side": "left"})

self.hi_there = Button(self)
self.hi_there["text"] = "Hello",
self.hi_there["command"] = self.say_hi

self.hi_there.pack({"side": "left"})

def __init__(self, master=None):
Frame.__init__(self, master)
self.pack()
self.createWidgets()

app = Application()
app.mainloop()

16.1.3 A (Very) Quick Look at Tcl/Tk

The class hierarchy looks complicated, but in actual practice, application programmers almost always refer to the
classes at the very bottom of the hierarchy.

Notes:

• These classes are provided for the purposes of organizing certain functions under one namespace. They
aren’t meant to be instantiated independently.

• The Tk class is meant to be instantiated only once in an application. Application programmers need not
instantiate one explicitly, the system creates one whenever any of the other classes are instantiated.

• TheWidget class is not meant to be instantiated, it is meant only for subclassing to make “real” widgets
(in C++, this is called an ‘abstract class’).

To make use of this reference material, there will be times when you will need to know how to read short passages
of Tk and how to identify the various parts of a Tk command. (See section 16.1.4 for theTkinter equivalents
of what’s below.)

Tk scripts are Tcl programs. Like all Tcl programs, Tk scripts are just lists of tokens separated by spaces. A Tk
widget is just itsclass, theoptionsthat help configure it, and theactionsthat make it do useful things.

To make a widget in Tk, the command is always of the form:

classCommand newPathname options

classCommanddenotes which kind of widget to make (a button, a label, a menu...)

588 Chapter 16. Graphical User Interfaces with Tk

newPathnameis the new name for this widget. All names in Tk must be unique. To help enforce this, widgets in
Tk are named withpathnames, just like files in a file system. The top level widget, theroot, is called. (pe-
riod) and children are delimited by more periods. For example,.myApp.controlPanel.okButton
might be the name of a widget.

options configure the widget’s appearance and in some cases, its behavior. The options come in the form of a
list of flags and values. Flags are proceeded by a ‘-’, like unix shell command flags, and values are put in
quotes if they are more than one word.

For example:

button .fred -fg red -text "hi there"
ˆ ˆ _____________________/
| | |

class new options
command widget (-opt val -opt val ...)

Once created, the pathname to the widget becomes a new command. This newwidget commandis the program-
mer’s handle for getting the new widget to perform someaction. In C, you’d express this as someAction(fred,
someOptions), in C++, you would express this as fred.someAction(someOptions), and in Tk, you say:

.fred someAction someOptions

Note that the object name,.fred , starts with a dot.

As you’d expect, the legal values forsomeActionwill depend on the widget’s class:.fred disable works if
fred is a button (fred gets greyed out), but does not work if fred is a label (disabling of labels is not supported in
Tk).

The legal values ofsomeOptionsis action dependent. Some actions, likedisable , require no arguments, others,
like a text-entry box’sdelete command, would need arguments to specify what range of text to delete.

16.1.4 Mapping Basic Tk into Tkinter

Class commands in Tk correspond to class constructors in Tkinter.

button .fred =====> fred = Button()

The master of an object is implicit in the new name given to it at creation time. In Tkinter, masters are specified
explicitly.

button .panel.fred =====> fred = Button(panel)

The configuration options in Tk are given in lists of hyphened tags followed by values. In Tkinter, options are
specified as keyword-arguments in the instance constructor, and keyword-args for configure calls or as instance
indices, in dictionary style, for established instances. See section 16.1.6 on setting options.

button .fred -fg red =====> fred = Button(panel, fg = "red")
.fred configure -fg red =====> fred["fg"] = red

OR ==> fred.config(fg = "red")

In Tk, to perform an action on a widget, use the widget name as a command, and follow it with an action name,
possibly with arguments (options). In Tkinter, you call methods on the class instance to invoke actions on the

16.1. Tkinter — Python interface to Tcl/Tk 589

widget. The actions (methods) that a given widget can perform are listed in the Tkinter.py module.

.fred invoke =====> fred.invoke()

To give a widget to the packer (geometry manager), you call pack with optional arguments. In Tkinter, the Pack
class holds all this functionality, and the various forms of the pack command are implemented as methods. All
widgets inTkinter are subclassed from the Packer, and so inherit all the packing methods. See theTix module
documentation for additional information on the Form geometry manager.

pack .fred -side left =====> fred.pack(side = "left")

16.1.5 How Tk and Tkinter are Related

Note: This was derived from a graphical image; the image will be used more directly in a subsequent version of
this document.

From the top down:

Your App Here (Python)
¯

A Python application makes aTkinter call.

Tkinter (Python Module)
¯

This call (say, for example, creating a button widget), is implemented in theTkinter
module, which is written in Python. This Python function will parse the commands and the arguments and
convert them into a form that makes them look as if they had come from a Tk script instead of a Python
script.

tkinter (C)
¯

These commands and their arguments will be passed to a C function in thetkinter- note the lowercase
- extension module.

Tk Widgets
¯

(C and Tcl) This C function is able to make calls into other C modules, including the C functions
that make up the Tk library. Tk is implemented in C and some Tcl. The Tcl part of the Tk widgets is used
to bind certain default behaviors to widgets, and is executed once at the point where the PythonTkinter
module is imported. (The user never sees this stage).

Tk (C)
¯

The Tk part of the Tk Widgets implement the final mapping to ...

Xlib (C)
¯

the Xlib library to draw graphics on the screen.

16.1.6 Handy Reference

Setting Options

Options control things like the color and border width of a widget. Options can be set in three ways:

At object creation time, using keyword arguments :

fred = Button(self, fg = "red", bg = "blue")

After object creation, treating the option name like a dictionary index :

fred["fg"] = "red"
fred["bg"] = "blue"

590 Chapter 16. Graphical User Interfaces with Tk

Use the config() method to update multiple attrs subesequent to object creation:

fred.config(fg = "red", bg = "blue")

For a complete explanation of a given option and its behavior, see the Tk man pages for the widget in question.

Note that the man pages list ”STANDARD OPTIONS” and ”WIDGET SPECIFIC OPTIONS” for each widget.
The former is a list of options that are common to many widgets, the latter are the options that are ideosyncratic
to that particular widget. The Standard Options are documented on theoptions(3) man page.

No distinction between standard and widget-specific options is made in this document. Some options don’t apply
to some kinds of widgets. Whether a given widget responds to a particular option depends on the class of the
widget; buttons have acommandoption, labels do not.

The options supported by a given widget are listed in that widget’s man page, or can be queried at runtime by
calling theconfig() method without arguments, or by calling thekeys() method on that widget. The return
value of these calls is a dictionary whose key is the name of the option as a string (for example,’relief’) and
whose values are 5-tuples.

Some options, likebg are synonyms for common options with long names (bg is shorthand for ”background”).
Passing theconfig() method the name of a shorthand option will return a 2-tuple, not 5-tuple. The 2-tuple
passed back will contain the name of the synonym and the “real” option (such as(’bg’, ’background’)).

Index Meaning Example
0 option name ’relief’
1 option name for database lookup’relief’
2 option class for database lookup ’Relief’
3 default value ’raised’
4 current value ’groove’

Example:

>>> print fred.config()
{’relief’ : (’relief’, ’relief’, ’Relief’, ’raised’, ’groove’)}

Of course, the dictionary printed will include all the options available and their values. This is meant only as an
example.

The Packer

The packer is one of Tk’s geometry-management mechanisms. See alsothe Packer class interface.

Geometry managers are used to specify the relative positioning of the positioning of widgets within their container
- their mutualmaster. In contrast to the more cumbersomeplacer (which is used less commonly, and we do not
cover here), the packer takes qualitative relationship specification -above, to the left of, filling, etc - and works
everything out to determine the exact placement coordinates for you.

The size of anymasterwidget is determined by the size of the ”slave widgets” inside. The packer is used to control
where slave widgets appear inside the master into which they are packed. You can pack widgets into frames, and
frames into other frames, in order to achieve the kind of layout you desire. Additionally, the arrangement is
dynamically adjusted to accomodate incremental changes to the configuration, once it is packed.

Note that widgets do not appear until they have had their geometry specified with a geometry manager. It’s a
common early mistake to leave out the geometry specification, and then be surprised when the widget is created
but nothing appears. A widget will appear only after it has had, for example, the packer’spack() method applied
to it.

The pack() method can be called with keyword-option/value pairs that control where the widget is to appear within
its container, and how it is to behave when the main application window is resized. Here are some examples:

16.1. Tkinter — Python interface to Tcl/Tk 591

fred.pack() # defaults to side = "top"
fred.pack(side = "left")
fred.pack(expand = 1)

Packer Options

For more extensive information on the packer and the options that it can take, see the man pages and page 183 of
John Ousterhout’s book.

anchor
¯

Anchor type. Denotes where the packer is to place each slave in its parcel.

expand
¯

Boolean,0 or 1.

fill
¯

Legal values:’x’ , ’y’ , ’both’ , ’none’ .

ipadx
¯

and ipady
¯

A distance - designating internal padding on each side of the slave widget.

padx
¯

and pady
¯

A distance - designating external padding on each side of the slave widget.

side
¯

Legal values are:’left’ , ’right’ , ’top’ , ’bottom’ .

Coupling Widget Variables

The current-value setting of some widgets (like text entry widgets) can be connected directly to application vari-
ables by using special options. These options arevariable , textvariable , onvalue , offvalue , and
value . This connection works both ways: if the variable changes for any reason, the widget it’s connected to
will be updated to reflect the new value.

Unfortunately, in the current implementation ofTkinter it is not possible to hand over an arbitrary Python
variable to a widget through avariable or textvariable option. The only kinds of variables for which this
works are variables that are subclassed from a class called Variable, defined in theTkinter module.

There are many useful subclasses of Variable already defined:StringVar , IntVar , DoubleVar , and
BooleanVar . To read the current value of such a variable, call theget() method on it, and to change its
value you call theset() method. If you follow this protocol, the widget will always track the value of the
variable, with no further intervention on your part.

For example:

592 Chapter 16. Graphical User Interfaces with Tk

class App(Frame):
def __init__(self, master=None):

Frame.__init__(self, master)
self.pack()

self.entrythingy = Entry()
self.entrythingy.pack()

here is the application variable
self.contents = StringVar()
set it to some value
self.contents.set("this is a variable")
tell the entry widget to watch this variable
self.entrythingy["textvariable"] = self.contents

and here we get a callback when the user hits return.
we will have the program print out the value of the
application variable when the user hits return
self.entrythingy.bind(’<Key-Return>’,

self.print_contents)

def print_contents(self, event):
print "hi. contents of entry is now ---->", \

self.contents.get()

The Window Manager

In Tk, there is a utility command,wm, for interacting with the window manager. Options to thewmcommand
allow you to control things like titles, placement, icon bitmaps, and the like. InTkinter , these commands have
been implemented as methods on theWmclass. Toplevel widgets are subclassed from theWmclass, and so can call
theWmmethods directly.

To get at the toplevel window that contains a given widget, you can often just refer to the widget’s master. Of
course if the widget has been packed inside of a frame, the master won’t represent a toplevel window. To get at
the toplevel window that contains an arbitrary widget, you can call theroot() method. This method begins
with an underscore to denote the fact that this function is part of the implementation, and not an interface to Tk
functionality.

Here are some examples of typical usage:

import Tkinter
class App(Frame):

def __init__(self, master=None):
Frame.__init__(self, master)
self.pack()

create the application
myapp = App()

#
here are method calls to the window manager class
#
myapp.master.title("My Do-Nothing Application")
myapp.master.maxsize(1000, 400)

start the program
myapp.mainloop()

16.1. Tkinter — Python interface to Tcl/Tk 593

Tk Option Data Types

anchor Legal values are points of the compass:"n" , "ne" , "e" , "se" , "s" , "sw" , "w" , "nw" , and also
"center" .

bitmap There are eight built-in, named bitmaps:’error’ , ’gray25’ , ’gray50’ , ’hourglass’ ,
’info’ , ’questhead’ , ’question’ , ’warning’ . To specify an X bitmap filename, give the full
path to the file, preceded with an@, as in"@/usr/contrib/bitmap/gumby.bit" .

boolean You can pass integers 0 or 1 or the strings"yes" or "no" .

callback This is any Python function that takes no arguments. For example:

def print_it():
print "hi there"

fred["command"] = print_it

color Colors can be given as the names of X colors in the rgb.txt file, or as strings representing RGB values in 4
bit: "#RGB" , 8 bit: "#RRGGBB", 12 bit” "#RRRGGGBBB", or 16 bit"#RRRRGGGGBBBB"ranges, where
R,G,B here represent any legal hex digit. See page 160 of Ousterhout’s book for details.

cursor The standard X cursor names from ‘cursorfont.h’ can be used, without theXC prefix. For example to get
a hand cursor (XC hand2), use the string"hand2" . You can also specify a bitmap and mask file of your
own. See page 179 of Ousterhout’s book.

distance Screen distances can be specified in either pixels or absolute distances. Pixels are given as numbers and
absolute distances as strings, with the trailing character denoting units:c for centimetres,i for inches,m
for millimetres,p for printer’s points. For example, 3.5 inches is expressed as"3.5i" .

font Tk uses a list font name format, such as{courier 10 bold} . Font sizes with positive numbers are
measured in points; sizes with negative numbers are measured in pixels.

geometry This is a string of the form ‘widthxheight’, where width and height are measured in pixels for most
widgets (in characters for widgets displaying text). For example:fred["geometry"] = "200x100" .

justify Legal values are the strings:"left" , "center" , "right" , and"fill" .

region This is a string with four space-delimited elements, each of which is a legal distance (see above). For
example:"2 3 4 5" and"3i 2i 4.5i 2i" and"3c 2c 4c 10.43c" are all legal regions.

relief Determines what the border style of a widget will be. Legal values are:"raised" , "sunken" , "flat" ,
"groove" , and"ridge" .

scrollcommand This is almost always theset() method of some scrollbar widget, but can be any widget
method that takes a single argument. Refer to the file ‘Demo/tkinter/matt/canvas-with-scrollbars.py’ in the
Python source distribution for an example.

wrap: Must be one of:"none" , "char" , or "word" .

Bindings and Events

The bind method from the widget command allows you to watch for certain events and to have a callback function
trigger when that event type occurs. The form of the bind method is:

def bind(self, sequence, func, add=’’):

where:

sequenceis a string that denotes the target kind of event. (See the bind man page and page 201 of John Ouster-
hout’s book for details).

594 Chapter 16. Graphical User Interfaces with Tk

func is a Python function, taking one argument, to be invoked when the event occurs. An Event instance will be
passed as the argument. (Functions deployed this way are commonly known ascallbacks.)

add is optional, either ‘’ or ‘+’. Passing an empty string denotes that this binding is to replace any other bindings
that this event is associated with. Preceeding with a ‘+’ means that this function is to be added to the list of
functions bound to this event type.

For example:

def turnRed(self, event):
event.widget["activeforeground"] = "red"

self.button.bind("<Enter>", self.turnRed)

Notice how the widget field of the event is being accesed in theturnRed() callback. This field contains the
widget that caught the X event. The following table lists the other event fields you can access, and how they are
denoted in Tk, which can be useful when referring to the Tk man pages.

Tk Tkinter Event Field Tk Tkinter Event Field
-- ------------------- -- -------------------
%f focus %A char
%h height %E send_event
%k keycode %K keysym
%s state %N keysym_num
%t time %T type
%w width %W widget
%x x %X x_root
%y y %Y y_root

The index Parameter

A number of widgets require“index” parameters to be passed. These are used to point at a specific place in a Text
widget, or to particular characters in an Entry widget, or to particular menu items in a Menu widget.

Entry widget indexes (index, view index, etc.)
¯

Entry widgets have options that refer to character positions in the
text being displayed. You can use theseTkinter functions to access these special points in text widgets:

AtEnd() refers to the last position in the text

AtInsert() refers to the point where the text cursor is

AtSelFirst() indicates the beginning point of the selected text

AtSelLast() denotes the last point of the selected text and finally

At(x[, y]) refers to the character at pixel locationx, y (with y not used in the case of a text entry widget,
which contains a single line of text).

Text widget indexes
¯

The index notation for Text widgets is very rich and is best described in the Tk man pages.

Menu indexes (menu.invoke(), menu.entryconfig(), etc.)
¯

Some options and methods for menus manipulate spe-
cific menu entries. Anytime a menu index is needed for an option or a parameter, you may pass in:

• an integer which refers to the numeric position of the entry in the widget, counted from the top, starting
with 0;

• the string’active’ , which refers to the menu position that is currently under the cursor;

• the string"last" which refers to the last menu item;

• An integer preceded by@, as in@6, where the integer is interpreted as a y pixel coordinate in the
menu’s coordinate system;

16.1. Tkinter — Python interface to Tcl/Tk 595

• the string"none" , which indicates no menu entry at all, most often used with menu.activate() to
deactivate all entries, and finally,

• a text string that is pattern matched against the label of the menu entry, as scanned from the top of
the menu to the bottom. Note that this index type is considered after all the others, which means that
matches for menu items labelledlast , active , or none may be interpreted as the above literals,
instead.

Images

Bitmap/Pixelmap images can be created through the subclasses ofTkinter.Image :

• BitmapImage can be used for X11 bitmap data.

• PhotoImage can be used for GIF and PPM/PGM color bitmaps.

Either type of image is created through either thefile or thedata option (other options are available as well).

The image object can then be used wherever animage option is supported by some widget (e.g. labels, buttons,
menus). In these cases, Tk will not keep a reference to the image. When the last Python reference to the image
object is deleted, the image data is deleted as well, and Tk will display an empty box wherever the image was
used.

16.2 Tix — Extension widgets for Tk

TheTix (Tk Interface Extension) module provides an additional rich set of widgets. Although the standard Tk
library has many useful widgets, they are far from complete. TheTix library provides most of the commonly
needed widgets that are missing from standard Tk:HList , ComboBox, Control (a.k.a. SpinBox) and an
assortment of scrollable widgets.Tix also includes many more widgets that are generally useful in a wide range
of applications:NoteBook , FileEntry , PanedWindow , etc; there are more than 40 of them.

With all these new widgets, you can introduce new interaction techniques into applications, creating more useful
and more intuitive user interfaces. You can design your application by choosing the most appropriate widgets to
match the special needs of your application and users.

See Also:

Tix Homepage
(http://tix.sourceforge.net/)

The home page forTix . This includes links to additional documentation and downloads.

Tix Man Pages
(http://tix.sourceforge.net/dist/current/man/)

On-line version of the man pages and reference material.

Tix Programming Guide
(http://tix.sourceforge.net/dist/current/docs/tix-book/tix.book.html)

On-line version of the programmer’s reference material.

Tix Development Applications
(http://tix.sourceforge.net/Tide/)

Tix applications for development of Tix and Tkinter programs. Tide applications work under Tk or Tkinter,
and includeTixInspect, an inspector to remotely modify and debug Tix/Tk/Tkinter applications.

16.2.1 Using Tix

classTix (screenName[, baseName[, className]])
Toplevel widget of Tix which represents mostly the main window of an application. It has an associated Tcl
interpreter.

596 Chapter 16. Graphical User Interfaces with Tk

Classes in theTix module subclasses the classes in theTkinter module. The former imports the latter,
so to useTix with Tkinter, all you need to do is to import one module. In general, you can just importTix ,
and replace the toplevel call toTkinter.Tk with Tix.Tk :

import Tix
from Tkconstants import *
root = Tix.Tk()

To useTix , you must have theTix widgets installed, usually alongside your installation of the Tk widgets. To
test your installation, try the following:

import Tix
root = Tix.Tk()
root.tk.eval(’package require Tix’)

If this fails, you have a Tk installation problem which must be resolved before proceeding. Use the environ-
ment variable TIX LIBRARY to point to the installedTix library directory, and make sure you have the dy-
namic object library (‘tix8183.dll’ or ‘ libtix8183.so’) in the same directory that contains your Tk dynamic object
library (‘tk8183.dll’ or ‘ libtk8183.so’). The directory with the dynamic object library should also have a file called
‘pkgIndex.tcl’ (case sensitive), which contains the line:

package ifneeded Tix 8.1 [list load "[file join $dir tix8183.dll]" Tix]

16.2.2 Tix Widgets

Tix introduces over 40 widget classes to theTkinter repertoire. There is a demo of all theTix widgets in the
‘Demo/tix’ directory of the standard distribution.

Basic Widgets

classBalloon ()
A Balloonthat pops up over a widget to provide help. When the user moves the cursor inside a widget to
which a Balloon widget has been bound, a small pop-up window with a descriptive message will be shown
on the screen.

classButtonBox ()
TheButtonBoxwidget creates a box of buttons, such as is commonly used forOk Cancel .

classComboBox()
TheComboBoxwidget is similar to the combo box control in MS Windows. The user can select a choice
by either typing in the entry subwdget or selecting from the listbox subwidget.

classControl ()
TheControlwidget is also known as theSpinBox widget. The user can adjust the value by pressing the
two arrow buttons or by entering the value directly into the entry. The new value will be checked against
the user-defined upper and lower limits.

classLabelEntry ()
TheLabelEntrywidget packages an entry widget and a label into one mega widget. It can be used be used
to simplify the creation of “entry-form” type of interface.

classLabelFrame ()
TheLabelFramewidget packages a frame widget and a label into one mega widget. To create widgets inside
a LabelFrame widget, one creates the new widgets relative to theframe subwidget and manage them inside
theframe subwidget.

16.2. Tix — Extension widgets for Tk 597

classMeter ()
The Meter widget can be used to show the progress of a background job which may take a long time to
execute.

classOptionMenu ()
TheOptionMenucreates a menu button of options.

classPopupMenu()
ThePopupMenuwidget can be used as a replacement of thetk popup command. The advantage of the
Tix PopupMenu widget is it requires less application code to manipulate.

classSelect ()
The Selectwidget is a container of button subwidgets. It can be used to provide radio-box or check-box
style of selection options for the user.

classStdButtonBox ()
TheStdButtonBoxwidget is a group of standard buttons for Motif-like dialog boxes.

File Selectors

classDirList ()
TheDirList widget displays a list view of a directory, its previous directories and its sub-directories. The
user can choose one of the directories displayed in the list or change to another directory.

classDirTree ()
TheDirTreewidget displays a tree view of a directory, its previous directories and its sub-directories. The
user can choose one of the directories displayed in the list or change to another directory.

classDirSelectDialog ()
TheDirSelectDialogwidget presents the directories in the file system in a dialog window. The user can use
this dialog window to navigate through the file system to select the desired directory.

classDirSelectBox ()
TheDirSelectBox is similar to the standard Motif(TM) directory-selection box. It is generally used for
the user to choose a directory. DirSelectBox stores the directories mostly recently selected into a ComboBox
widget so that they can be quickly selected again.

classExFileSelectBox ()
TheExFileSelectBoxwidget is usually embedded in a tixExFileSelectDialog widget. It provides an conve-
nient method for the user to select files. The style of theExFileSelectBox widget is very similar to the
standard file dialog on MS Windows 3.1.

classFileSelectBox ()
TheFileSelectBoxis similar to the standard Motif(TM) file-selection box. It is generally used for the user
to choose a file. FileSelectBox stores the files mostly recently selected into aComboBox widget so that
they can be quickly selected again.

classFileEntry ()
TheFileEntrywidget can be used to input a filename. The user can type in the filename manually. Alter-
natively, the user can press the button widget that sits next to the entry, which will bring up a file selection
dialog.

Hierachical ListBox

classHList ()
TheHList widget can be used to display any data that have a hierarchical structure, for example, file system
directory trees. The list entries are indented and connected by branch lines according to their places in the
hierachy.

classCheckList ()
TheCheckListwidget displays a list of items to be selected by the user. CheckList acts similarly to the Tk
checkbutton or radiobutton widgets, except it is capable of handling many more items than checkbuttons or
radiobuttons.

598 Chapter 16. Graphical User Interfaces with Tk

classTree ()
TheTreewidget can be used to display hierachical data in a tree form. The user can adjust the view of the
tree by opening or closing parts of the tree.

Tabular ListBox

classTList ()
TheTList widget can be used to display data in a tabular format. The list entries of aTList widget are
similar to the entries in the Tk listbox widget. The main differences are (1) theTList widget can display
the list entries in a two dimensional format and (2) you can use graphical images as well as multiple colors
and fonts for the list entries.

Manager Widgets

classPanedWindow ()
ThePanedWindowwidget allows the user to interactively manipulate the sizes of several panes. The panes
can be arranged either vertically or horizontally. The user changes the sizes of the panes by dragging the
resize handle between two panes.

classListNoteBook ()
The ListNoteBookwidget is very similar to theTixNoteBook widget: it can be used to display many
windows in a limited space using a notebook metaphor. The notebook is divided into a stack of pages
(windows). At one time only one of these pages can be shown. The user can navigate through these pages
by choosing the name of the desired page in thehlist subwidget.

classNoteBook ()
TheNoteBookwidget can be used to display many windows in a limited space using a notebook metaphor.
The notebook is divided into a stack of pages. At one time only one of these pages can be shown. The user
can navigate through these pages by choosing the visual “tabs” at the top of the NoteBook widget.

Image Types

TheTix module adds:

• pixmapcapabilities to allTix andTkinter widgets to create color images from XPM files.

• Compoundimage types can be used to create images that consists of multiple horizontal lines; each line is
composed of a series of items (texts, bitmaps, images or spaces) arranged from left to right. For example, a
compound image can be used to display a bitmap and a text string simutaneously in a TkButton widget.

Miscellaneous Widgets

classInputOnly ()
The InputOnly widgets are to accept inputs from the user, which can be done with thebind command
(UNIX only).

Form Geometry Manager

In addition,Tix augmentsTkinter by providing:

classForm()
TheFormgeometry manager based on attachment rules for all Tk widgets.

16.2.3 Tix Commands

classtixCommand ()
Thetix commandsprovide access to miscellaneous elements ofTix ’s internal state and theTix application

16.2. Tix — Extension widgets for Tk 599

context. Most of the information manipulated by these methods pertains to the application as a whole, or to
a screen or display, rather than to a particular window.

To view the current settings, the common usage is:

import Tix
root = Tix.Tk()
print root.tix_configure()

tix configure ([cnf,] **kw)
Query or modify the configuration options of the Tix application context. If no option is specified, returns
a dictionary all of the available options. If option is specified with no value, then the method returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value returned
if no option is specified). If one or more option-value pairs are specified, then the method modifies the given
option(s) to have the given value(s); in this case the method returns an empty string. Option may be any of
the configuration options.

tix cget (option)
Returns the current value of the configuration option given byoption. Option may be any of the configura-
tion options.

tix getbitmap (name)
Locates a bitmap file of the namename.xpm or name in one of the bitmap directories (see the
tix addbitmapdir() method). By usingtix getbitmap() , you can avoid hard coding the path-
names of the bitmap files in your application. When successful, it returns the complete pathname of the
bitmap file, prefixed with the character ‘@’. The returned value can be used to configure thebitmap option
of the Tk and Tix widgets.

tix addbitmapdir (directory)
Tix maintains a list of directories under which thetix getimage() andtix getbitmap() meth-
ods will search for image files. The standard bitmap directory is ‘$TIX LIBRARY/bitmaps’. The
tix addbitmapdir() method addsdirectory into this list. By using this method, the image files of
an applications can also be located using thetix getimage() or tix getbitmap() method.

tix filedialog ([dlgclass])
Returns the file selection dialog that may be shared among different calls from this application. This
method will create a file selection dialog widget when it is called the first time. This dialog will be re-
turned by all subsequent calls totix filedialog() . An optional dlgclass parameter can be passed
as a string to specified what type of file selection dialog widget is desired. Possible options aretix ,
FileSelectDialog or tixExFileSelectDialog .

tix getimage (self, name)
Locates an image file of the name ‘name.xpm’, ‘ name.xbm’ or ‘ name.ppm’ in one of the bitmap directories
(see thetix addbitmapdir() method above). If more than one file with the same name (but different
extensions) exist, then the image type is chosen according to the depth of the X display: xbm images are cho-
sen on monochrome displays and color images are chosen on color displays. By usingtix getimage() ,
you can avoid hard coding the pathnames of the image files in your application. When successful, this
method returns the name of the newly created image, which can be used to configure theimage option of
the Tk and Tix widgets.

tix option get (name)
Gets the options manitained by the Tix scheme mechanism.

tix resetoptions (newScheme, newFontSet[, newScmPrio])
Resets the scheme and fontset of the Tix application tonewSchemeand newFontSet, respectively. This
affects only those widgets created after this call. Therefore, it is best to call the resetoptions method before
the creation of any widgets in a Tix application.

The optional parameternewScmPriocan be given to reset the priority level of the Tk options set by the Tix
schemes.

Because of the way Tk handles the X option database, after Tix has been has imported and inited, it is
not possible to reset the color schemes and font sets using thetix config() method. Instead, the
tix resetoptions() method must be used.

600 Chapter 16. Graphical User Interfaces with Tk

16.3 ScrolledText — Scrolled Text Widget

TheScrolledText module provides a class of the same name which implements a basic text widget which has
a vertical scroll bar configured to do the “right thing.” Using theScrolledText class is a lot easier than setting
up a text widget and scroll bar directly. The constructor is the same as that of theTkinter.Text class.

The text widget and scrollbar are packed together in aFrame , and the methods of theGrid andPack geometry
managers are acquired from theFrame object. This allows theScrolledText widget to be used directly to
achieve most normal geometry management behavior.

Should more specific control be necessary, the following attributes are available:

frame
The frame which surrounds the text and scroll bar widgets.

vbar
The scroll bar widget.

16.4 turtle — Turtle graphics for Tk

Theturtle module provides turtle graphics primitives, in both an object-oriented and procedure-oriented ways.
Because it usesTkinter for the underlying graphics, it needs a version of python installed with Tk support.

The procedural interface uses a pen and a canvas which are automagically created when any of the functions are
called.

Theturtle module defines the following functions:

degrees ()
Set angle measurement units to degrees.

radians ()
Set angle measurement units to radians.

reset ()
Clear the screen, re-center the pen, and set variables to the default values.

clear ()
Clear the screen.

tracer (flag)
Set tracing on/off (according to whether flag is true or not). Tracing means line are drawn more slowly, with
an animation of an arrow along the line.

forward (distance)
Go forwarddistancesteps.

backward (distance)
Go backwarddistancesteps.

left (angle)
Turn left angleunits. Units are by default degrees, but can be set via thedegrees() andradians()
functions.

right (angle)
Turn rightangleunits. Units are by default degrees, but can be set via thedegrees() andradians()
functions.

up()
Move the pen up — stop drawing.

down()
Move the pen down — draw when moving.

width (width)
Set the line width towidth.

16.3. ScrolledText — Scrolled Text Widget 601

color (s)
color ((r, g, b))
color (r, g, b)

Set the pen color. In the first form, the color is specified as a Tk color specification as a string. The second
form specifies the color as a tuple of the RGB values, each in the range [0..1]. For the third form, the color
is specified giving the RGB values as three separate parameters (each in the range [0..1]).

write (text[, move])
Write text at the current pen position. Ifmoveis true, the pen is moved to the bottom-right corner of the
text. By default,moveis false.

fill (flag)
The complete specifications are rather complex, but the recommended usage is: callfill(1) before
drawing a path you want to fill, and callfill(0) when you finish to draw the path.

circle (radius[, extent])
Draw a circle with radiusradiuswhose center-point isradiusunits left of the turtle.extentdetermines which
part of a circle is drawn: if not given it defaults to a full circle.

If extentis not a full circle, one endpoint of the arc is the current pen position. The arc is drawn in a counter
clockwise direction ifradius is positive, otherwise in a clockwise direction. In the process, the direction of
the turtle is changed by the amount of theextent.

goto (x, y)
goto ((x, y))

Go to co-ordinatesx, y. The co-ordinates may be specified either as two separate arguments or as a 2-tuple.

This module also doesfrom math import * , so see the documentation for themath module for additional
constants and functions useful for turtle graphics.

demo()
Exercise the module a bit.

exceptionError
Exception raised on any error caught by this module.

For examples, see the code of thedemo() function.

This module defines the following classes:

classPen()
Define a pen. All above functions can be called as a methods on the given pen. The constructor automatically
creates a canvas do be drawn on.

classRawPen(canvas)
Define a pen which draws on a canvascanvas. This is useful if you want to use the module to create graphics
in a “real” program.

16.4.1 Pen and RawPen Objects

Pen andRawPenobjects have all the global functions described above, except fordemo() as methods, which
manipulate the given pen.

The only method which is more powerful as a method isdegrees() .

degrees ([fullcircle])
fullcircle is by default 360. This can cause the pen to have any angular units whatever: givefullcircle 2*π
for radians, or 400 for gradians.

16.5 Idle

Idle is the Python IDE built with theTkinter GUI toolkit.

IDLE has the following features:

602 Chapter 16. Graphical User Interfaces with Tk

• coded in 100% pure Python, using theTkinter GUI toolkit

• cross-platform: works on Windows and UNIX (on Mac OS, there are currently problems with Tcl/Tk)

• multi-window text editor with multiple undo, Python colorizing and many other features, e.g. smart indent
and call tips

• Python shell window (a.k.a. interactive interpreter)

• debugger (not complete, but you can set breakpoints, view and step)

16.5.1 Menus

File menu

New window create a new editing window

Open... open an existing file

Open module... open an existing module (searches sys.path)

Class browser show classes and methods in current file

Path browser show sys.path directories, modules, classes and methods

Save save current window to the associated file (unsaved windows have a * before and after the window title)

Save As...save current window to new file, which becomes the associated file

Save Copy As...save current window to different file without changing the associated file

Close close current window (asks to save if unsaved)

Exit close all windows and quit IDLE (asks to save if unsaved)

Edit menu

Undo Undo last change to current window (max 1000 changes)

Redo Redo last undone change to current window

Cut Copy selection into system-wide clipboard; then delete selection

Copy Copy selection into system-wide clipboard

Paste Insert system-wide clipboard into window

Select All Select the entire contents of the edit buffer

Find... Open a search dialog box with many options

Find again Repeat last search

Find selection Search for the string in the selection

Find in Files... Open a search dialog box for searching files

Replace...Open a search-and-replace dialog box

Go to line Ask for a line number and show that line

Indent region Shift selected lines right 4 spaces

16.5. Idle 603

Dedent region Shift selected lines left 4 spaces

Comment out region Insert ## in front of selected lines

Uncomment region Remove leading # or ## from selected lines

Tabify region Turnsleadingstretches of spaces into tabs

Untabify region Turnall tabs into the right number of spaces

Expand word Expand the word you have typed to match another word in the same buffer; repeat to get a different
expansion

Format Paragraph Reformat the current blank-line-separated paragraph

Import module Import or reload the current module

Run script Execute the current file in the main namespace

Windows menu

Zoom Height toggles the window between normal size (24x80) and maximum height.

The rest of this menu lists the names of all open windows; select one to bring it to the foreground (deiconifying it
if necessary).

Debug menu (in the Python Shell window only)

Go to file/line look around the insert point for a filename and linenumber, open the file, and show the line.

Open stack viewer show the stack traceback of the last exception

Debugger toggleRun commands in the shell under the debugger

JIT Stack viewer toggle Open stack viewer on traceback

16.5.2 Basic editing and navigation

• Backspace deletes to the left;Del deletes to the right

• Arrow keys andPage Up/Page Down to move around

• Home/End go to begin/end of line

• C-Home/C-End go to begin/end of file

• SomeEmacsbindings may also work, includingC-B, C-P, C-A, C-E, C-D, C-L

Automatic indentation

After a block-opening statement, the next line is indented by 4 spaces (in the Python Shell window by one tab).
After certain keywords (break, return etc.) the next line is dedented. In leading indentation,Backspace deletes
up to 4 spaces if they are there.Tab inserts 1-4 spaces (in the Python Shell window one tab). See also the
indent/dedent region commands in the edit menu.

604 Chapter 16. Graphical User Interfaces with Tk

Python Shell window

• C-C interrupts executing command

• C-D sends end-of-file; closes window if typed at a ‘>>> ’ prompt

• Alt-p retrieves previous command matching what you have typed

• Alt-n retrieves next

• Return while on any previous command retrieves that command

• Alt-/ (Expand word) is also useful here

16.5.3 Syntax colors

The coloring is applied in a background “thread,” so you may occasionally see uncolorized text. To change the
color scheme, edit the[Colors] section in ‘config.txt’.

Python syntax colors: Keywords orange

Strings green

Comments red

Definitions blue

Shell colors: Console outputbrown

stdout blue

stderr dark green

stdin black

Command line usage

idle.py [-c command] [-d] [-e] [-s] [-t title] [arg] ...

-c command run this command
-d enable debugger
-e edit mode; arguments are files to be edited
-s run $IDLESTARTUP or $PYTHONSTARTUP first
-t title set title of shell window

If there are arguments:

1. If -e is used, arguments are files opened for editing andsys.argv reflects the arguments passed to IDLE
itself.

2. Otherwise, if-c is used, all arguments are placed insys.argv[1:...] , with sys.argv[0] set to
’-c’ .

3. Otherwise, if neither-e nor -c is used, the first argument is a script which is executed with the remaining
arguments insys.argv[1:...] andsys.argv[0] set to the script name. If the script name is ’-’, no
script is executed but an interactive Python session is started; the arguments are still available insys.argv .

16.5. Idle 605

16.6 Other Graphical User Interface Packages

There are an number of extension widget sets toTkinter .

Python megawidgets
(http://pmw.sourceforge.net/)

is a toolkit for building high-level compound widgets in Python using theTkinter module. It consists of
a set of base classes and a library of flexible and extensible megawidgets built on this foundation. These
megawidgets include notebooks, comboboxes, selection widgets, paned widgets, scrolled widgets, dialog
windows, etc. Also, with the Pmw.Blt interface to BLT, the busy, graph, stripchart, tabset and vector com-
mands are be available.

The initial ideas for Pmw were taken from the Tkitcl extensions[incr Tk] by Michael McLennan
and[incr Widgets] by Mark Ulferts. Several of the megawidgets are direct translations from the itcl
to Python. It offers most of the range of widgets that[incr Widgets] does, and is almost as complete
as Tix, lacking however Tix’s fastHList widget for drawing trees.

Tkinter3000 Widget Construction Kit (WCK)
(http://tkinter.effbot.org/)

is a library that allows you to write new Tkinter widgets in pure Python. The WCK framework gives you
full control over widget creation, configuration, screen appearance, and event handling. WCK widgets can
be very fast and light-weight, since they can operate directly on Python data structures, without having to
transfer data through the Tk/Tcl layer.

Tk is not the only GUI for Python, but is however the most commonly used one.

wxWindows
(http://www.wxwindows.org)

is a GUI toolkit that combines the most attractive attributes of Qt, Tk, Motif, and GTK+ in one powerful and
efficient package. It is implemented in C++. wxWindows supports two flavors of UNIX implementation:
GTK+ and Motif, and under Windows, it has a standard Microsoft Foundation Classes (MFC) appearance,
because it uses Win32 widgets. There is a Python class wrapper, independent of Tkinter.

wxWindows is much richer in widgets thanTkinter , with its help system, sophisticated HTML and image
viewers, and other specialized widgets, extensive documentation, and printing capabilities.

PyQt
PyQt is a sip-wrapped binding to the Qt toolkit. Qt is an extensive C++ GUI toolkit that is
available for UNIX , Windows and Mac OS X.sip is a tool for generating bindings for C++ li-
braries as Python classes, and is specifically designed for Python. An online manual is available at
http://www.opendocspublishing.com/pyqt/ (errata are located athttp://www.valdyas.org/python/book.html).

PyKDE
(http://www.riverbankcomputing.co.uk/pykde/index.php)

PyKDE is asip-wrapped interface to the KDE desktop libraries. KDE is a desktop environment for UNIX

computers; the graphical components are based on Qt.

FXPy
(http://fxpy.sourceforge.net/)

is a Python extension module which provides an interface to theFOX GUI. FOX is a C++ based Toolkit
for developing Graphical User Interfaces easily and effectively. It offers a wide, and growing, collection of
Controls, and provides state of the art facilities such as drag and drop, selection, as well as OpenGL widgets
for 3D graphical manipulation. FOX also implements icons, images, and user-convenience features such as
status line help, and tooltips.

Even though FOX offers a large collection of controls already, FOX leverages C++ to allow programmers
to easily build additional Controls and GUI elements, simply by taking existing controls, and creating a
derived class which simply adds or redefines the desired behavior.

PyGTK
(http://www.daa.com.au/˜james/software/pygtk/)

is a set of bindings for theGTK widget set. It provides an object oriented interface that is slightly higher
level than the C one. It automatically does all the type casting and reference counting that you would have
to do normally with the C API. There are alsobindingsto GNOME, and atutorial is available.

606 Chapter 16. Graphical User Interfaces with Tk

CHAPTER

SEVENTEEN

Restricted Execution

Warning: In Python 2.3 these modules have been disabled due to various known and not readily fixable
security holes. The modules are still documented here to help in reading old code that uses therexec and
Bastion modules.

Restricted executionis the basic framework in Python that allows for the segregation of trusted and untrusted
code. The framework is based on the notion that trusted Python code (asupervisor) can create a “padded cell’
(or environment) with limited permissions, and run the untrusted code within this cell. The untrusted code cannot
break out of its cell, and can only interact with sensitive system resources through interfaces defined and managed
by the trusted code. The term “restricted execution” is favored over “safe-Python” since true safety is hard to
define, and is determined by the way the restricted environment is created. Note that the restricted environments
can be nested, with inner cells creating subcells of lesser, but never greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted code
usually have the same names as those presented to trusted code. Therefore no special interfaces need to be learned
to write code designed to run in a restricted environment. And because the exact nature of the padded cell is
determined by the supervisor, different restrictions can be imposed, depending on the application. For example, it
might be deemed “safe” for untrusted code to read any file within a specified directory, but never to write a file.
In this case, the supervisor may redefine the built-inopen() function so that it raises an exception whenever
themodeparameter is’w’ . It might also perform achroot() -like operation on thefilenameparameter, such
that root is always relative to some safe “sandbox” area of the filesystem. In this case, the untrusted code would
still see an built-inopen() function in its environment, with the same calling interface. The semantics would
be identical too, withIOError s being raised when the supervisor determined that an unallowable parameter is
being used.

The Python run-time determines whether a particular code block is executing in restricted execution mode based
on the identity of the builtins object in its global variables: if this is (the dictionary of) the standard

builtin module, the code is deemed to be unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it from escap-
ing from the padded cell. For instance, the function object attributefunc globals and the class and instance
object attribute dict are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec Basic restricted execution framework.
Bastion Providing restricted access to objects.

See Also:

Grail Home Page
(http://grail.sourceforge.net/)

Grail, an Internet browser written in Python, uses these modules to support Python applets. More informa-
tion on the use of Python’s restricted execution mode in Grail is available on the Web site.

17.1 rexec — Restricted execution framework

607

Changed in version 2.3: Disabled module.

Warning: The documentation has been left in place to help in reading old code that uses the module.

This module contains theRExec class, which supportsr eval() , r execfile() , r exec() , and
r import() methods, which are restricted versions of the standard Python functionseval() , execfile()
and theexec and import statements. Code executed in this restricted environment will only have access to
modules and functions that are deemed safe; you can subclassRExec to add or remove capabilities as desired.

Warning: While therexec module is designed to perform as described below, it does have a few known
vulnerabilities which could be exploited by carefully written code. Thus it should not be relied upon in situ-
ations requiring “production ready” security. In such situations, execution via sub-processes or very careful
“cleansing” of both code and data to be processed may be necessary. Alternatively, help in patching known
rexec vulnerabilities would be welcomed.

Note: The RExec class can prevent code from performing unsafe operations like reading or writing disk files,
or using TCP/IP sockets. However, it does not protect against code using extremely large amounts of memory or
processor time.

classRExec([hooks[, verbose]])
Returns an instance of theRExec class.

hooksis an instance of theRHooks class or a subclass of it. If it is omitted orNone, the defaultRHooks
class is instantiated. Whenever therexec module searches for a module (even a built-in one) or reads a
module’s code, it doesn’t actually go out to the file system itself. Rather, it calls methods of anRHooks
instance that was passed to or created by its constructor. (Actually, theRExec object doesn’t make these
calls — they are made by a module loader object that’s part of theRExec object. This allows another
level of flexibility, which can be useful when changing the mechanics ofimport within the restricted
environment.)

By providing an alternateRHooks object, we can control the file system accesses made to import a module,
without changing the actual algorithm that controls the order in which those accesses are made. For instance,
we could substitute anRHooks object that passes all filesystem requests to a file server elsewhere, via some
RPC mechanism such as ILU. Grail’s applet loader uses this to support importing applets from a URL for a
directory.

If verboseis true, additional debugging output may be sent to standard output.

It is important to be aware that code running in a restricted environment can still call thesys.exit() function.
To disallow restricted code from exiting the interpreter, always protect calls that cause restricted code to run
with a try /except statement that catches theSystemExit exception. Removing thesys.exit() function
from the restricted environment is not sufficient — the restricted code could still useraise SystemExit .
RemovingSystemExit is not a reasonable option; some library code makes use of this and would break were
it not available.

See Also:

Grail Home Page
(http://grail.sourceforge.net/)

Grail is a Web browser written entirely in Python. It uses therexec module as a foundation for supporting
Python applets, and can be used as an example usage of this module.

17.1.1 RExec Objects

RExec instances support the following methods:

r eval (code)
codemust either be a string containing a Python expression, or a compiled code object, which will be
evaluated in the restricted environment’smain module. The value of the expression or code object
will be returned.

r exec (code)

608 Chapter 17. Restricted Execution

codemust either be a string containing one or more lines of Python code, or a compiled code object, which
will be executed in the restricted environment’smain module.

r execfile (filename)
Execute the Python code contained in the filefilenamein the restricted environment’s main module.

Methods whose names begin with ‘s ’ are similar to the functions beginning with ‘r ’, but the code will be
granted access to restricted versions of the standard I/O streamssys.stdin , sys.stderr , andsys.stdout .

s eval (code)
codemust be a string containing a Python expression, which will be evaluated in the restricted environment.

s exec (code)
codemust be a string containing one or more lines of Python code, which will be executed in the restricted
environment.

s execfile (code)
Execute the Python code contained in the filefilenamein the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the re-
stricted environment. Overriding these methods in a subclass is used to change the policies enforced by a restricted
environment.

r import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

r open (filename[, mode[, bufsize]])
Method called whenopen() is called in the restricted environment. The arguments are identical to those
of open() , and a file object (or a class instance compatible with file objects) should be returned.RExec’s
default behaviour is allow opening any file for reading, but forbidding any attempt to write a file. See the
example below for an implementation of a less restrictiver open() .

r reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

r unload (module)
Unload the module objectmodule(remove it from the restricted environment’ssys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

s import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

s reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

s unload (module)
Unload the module objectmodule.

17.1.2 Defining restricted environments

TheRExec class has the following class attributes, which are used by theinit () method. Changing them
on an existing instance won’t have any effect; instead, create a subclass ofRExec and assign them new values in
the class definition. Instances of the new class will then use those new values. All these attributes are tuples of
strings.

nok builtin names
Contains the names of built-in functions which willnot be available to programs running in the restricted
environment. The value forRExec is (’open’, ’reload’, ’ import ’) . (This gives the
exceptions, because by far the majority of built-in functions are harmless. A subclass that wants to override
this variable should probably start with the value from the base class and concatenate additional forbidden
functions — when new dangerous built-in functions are added to Python, they will also be added to this
module.)

ok builtin modules
Contains the names of built-in modules which can be safely imported. The value forRExec

17.1. rexec — Restricted execution framework 609

is (’audioop’, ’array’, ’binascii’, ’cmath’, ’errno’, ’imageop’,
’marshal’, ’math’, ’md5’, ’operator’, ’parser’, ’regex’, ’rotor’,
’select’, ’sha’, ’ sre’, ’strop’, ’struct’, ’time’) . A similar remark about
overriding this variable applies — use the value from the base class as a starting point.

ok path
Contains the directories which will be searched when animport is performed in the restricted environ-
ment. The value forRExec is the same assys.path (at the time the module is loaded) for unrestricted
code.

ok posix names
Contains the names of the functions in theos module which will be available to programs running in the
restricted environment. The value forRExec is (’error’, ’fstat’, ’listdir’, ’lstat’,
’readlink’, ’stat’, ’times’, ’uname’, ’getpid’, ’getppid’, ’getcwd’,
’getuid’, ’getgid’, ’geteuid’, ’getegid’) .

ok sys names
Contains the names of the functions and variables in thesys module which will be available to programs
running in the restricted environment. The value forRExec is (’ps1’, ’ps2’, ’copyright’,
’version’, ’platform’, ’exit’, ’maxint’) .

ok file types
Contains the file types from which modules are allowed to be loaded. Each file type is an integer constant de-
fined in theimp module. The meaningful values arePY SOURCE, PY COMPILED, andC EXTENSION.
The value forRExec is (C EXTENSION, PY SOURCE). Adding PY COMPILEDin subclasses is not
recommended; an attacker could exit the restricted execution mode by putting a forged byte-compiled file
(‘ .pyc’) anywhere in your file system, for example by writing it to ‘/tmp’ or uploading it to the ‘/incoming’
directory of your public FTP server.

17.1.3 An example

Let us say that we want a slightly more relaxed policy than the standardRExec class. For example, if we’re
willing to allow files in ‘/tmp’ to be written, we can subclass theRExec class:

class TmpWriterRExec(rexec.RExec):
def r_open(self, file, mode=’r’, buf=-1):

if mode in (’r’, ’rb’):
pass

elif mode in (’w’, ’wb’, ’a’, ’ab’):
check filename : must begin with /tmp/
if file[:5]!=’/tmp/’:

raise IOError, "can’t write outside /tmp"
elif (string.find(file, ’/../’) >= 0 or

file[:3] == ’../’ or file[-3:] == ’/..’):
raise IOError, "’..’ in filename forbidden"

else: raise IOError, "Illegal open() mode"
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the restricted
environment won’t be able to open a file called ‘/tmp/foo/../bar’. To fix this, ther open() method would have
to simplify the filename to ‘/tmp/bar’, which would require splitting apart the filename and performing various
operations on it. In cases where security is at stake, it may be preferable to write simple code which is sometimes
overly restrictive, instead of more general code that is also more complex and may harbor a subtle security hole.

17.2 Bastion — Restricting access to objects

Changed in version 2.3: Disabled module.

610 Chapter 17. Restricted Execution

Warning: The documentation has been left in place to help in reading old code that uses the module.

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered a
stronghold.” It’s a suitable name for this module, which provides a way to forbid access to certain attributes
of an object. It must always be used with therexec module, in order to allow restricted-mode programs access
to certain safe attributes of an object, while denying access to other, unsafe attributes.

Bastion (object[, filter[, name[, class]]])
Protect the objectobject, returning a bastion for the object. Any attempt to access one of the object’s
attributes will have to be approved by thefilter function; if the access is denied anAttributeError
exception will be raised.

If present,filter must be a function that accepts a string containing an attribute name, and returns true
if access to that attribute will be permitted; iffilter returns false, the access is denied. The default filter
denies access to any function beginning with an underscore (‘’). The bastion’s string representation will
be ‘<Bastion for name>’ if a value fornameis provided; otherwise, ‘repr(object) ’ will be used.

class, if present, should be a subclass ofBastionClass ; see the code in ‘bastion.py’ for the details.
Overriding the defaultBastionClass will rarely be required.

classBastionClass (getfunc, name)
Class which actually implements bastion objects. This is the default class used byBastion() . The
getfuncparameter is a function which returns the value of an attribute which should be exposed to the
restricted execution environment when called with the name of the attribute as the only parameter.nameis
used to construct therepr() of theBastionClass instance.

17.2. Bastion — Restricting access to objects 611

612

CHAPTER

EIGHTEEN

Python Language Services

Python provides a number of modules to assist in working with the Python language. These module support
tokenizing, parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:

parser Access parse trees for Python source code.
symbol Constants representing internal nodes of the parse tree.
token Constants representing terminal nodes of the parse tree.
keyword Test whether a string is a keyword in Python.
tokenize Lexical scanner for Python source code.
tabnanny Tool for detecting white space related problems in Python source files in a directory tree.
pyclbr Supports information extraction for a Python class browser.
py compile Compile Python source files to byte-code files.
compileall Tools for byte-compiling all Python source files in a directory tree.
dis Disassembler for Python byte code.
distutils Support for building and installing Python modules into an existing Python installation.

18.1 parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and byte-code compiler. The primary
purpose for this interface is to allow Python code to edit the parse tree of a Python expression and create executable
code from this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because
parsing is performed in a manner identical to the code forming the application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of using theparser module
are presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to thePython Language Reference. The parser itself is created from a
grammar specification defined in the file ‘Grammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by the
expr() or suite() functions, described below. The AST objects created bysequence2ast() faithfully
simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from
one version of Python to another as the formal grammar for the language is revised. However, transporting code
from one Python version to another as source text will always allow correct parse trees to be created in the target
version, with the only restriction being that migrating to an older version of the interpreter will not support more
recent language constructs. The parse trees are not typically compatible from one version to another, whereas
source code has always been forward-compatible.

Each element of the sequences returned byast2list() or ast2tuple() has a simple form. Sequences
representing non-terminal elements in the grammar always have a length greater than one. The first element is an
integer which identifies a production in the grammar. These integers are given symbolic names in the C header
file ‘ Include/graminit.h’ and the Python modulesymbol . Each additional element of the sequence represents a
component of the production as recognized in the input string: these are always sequences which have the same

613

form as the parent. An important aspect of this structure which should be noted is that keywords used to identify
the parent node type, such as the keywordif in an if stmt , are included in the node tree without any special
treatment. For example, theif keyword is represented by the tuple(1, ’if’) , where1 is the numeric value
associated with allNAMEtokens, including variable and function names defined by the user. In an alternate form
returned when line number information is requested, the same token might be represented as(1, ’if’, 12) ,
where the12 represents the line number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of theif keyword above is representative. The various types of
terminal symbols are defined in the C header file ‘Include/token.h’ and the Python moduletoken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation
of additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to
hide the use of AST objects.

The parser module defines functions for a few distinct purposes. The most important purposes are to create
AST objects and to convert AST objects to other representations such as parse trees and compiled code objects,
but there are also functions which serve to query the type of parse tree represented by an AST object.

See Also:

Modulesymbol (section 18.2):
Useful constants representing internal nodes of the parse tree.

Moduletoken (section 18.3):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

18.1.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create the’eval’ and’exec’ forms.

expr (source)
The expr() function parses the parametersource as if it were an input to ‘compile(source,
’file.py’, ’eval’) ’. If the parse succeeds, an AST object is created to hold the internal parse
tree representation, otherwise an appropriate exception is thrown.

suite (source)
The suite() function parses the parametersource as if it were an input to ‘compile(source,
’file.py’, ’exec’) ’. If the parse succeeds, an AST object is created to hold the internal parse
tree representation, otherwise an appropriate exception is thrown.

sequence2ast (sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If
there is a problem creating the internal representation, or if the tree cannot be validated, aParserError
exception is thrown. An AST object created this way should not be assumed to compile correctly; normal
exceptions thrown by compilation may still be initiated when the AST object is passed tocompileast() .
This may indicate problems not related to syntax (such as aMemoryError exception), but may also be
due to constructs such as the result of parsingdel f(0) , which escapes the Python parser but is checked
by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form(1,
’name’) or as three-element lists of the form(1, ’name’, 56) . If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols
in the input tree.

tuple2ast (sequence)
This is the same function assequence2ast() . This entry point is maintained for backward compatibil-
ity.

614 Chapter 18. Python Language Services

18.1.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or
tuple- trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line
numbering information.

ast2list (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python list representing the equiv-
alent parse tree. The resulting list representation can be used for inspection or the creation of a new parse
tree in list form. This function does not fail so long as memory is available to build the list representation.
If the parse tree will only be used for inspection,ast2tuple() should be used instead to reduce memory
consumption and fragmentation. When the list representation is required, this function is significantly faster
than retrieving a tuple representation and converting that to nested lists.

If line info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which the tokenends.
This information is omitted if the flag is false or omitted.

ast2tuple (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python tuple representing the equiv-
alent parse tree. Other than returning a tuple instead of a list, this function is identical toast2list() .

If line info is true, line number information will be included for all terminal tokens as a third element of
the list representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, filename = ’<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-ineval() function. This function provides the interface to
the compiler, passing the internal parse tree fromast to the parser, using the source file name specified by
thefilenameparameter. The default value supplied forfilenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be a
SyntaxError caused by the parse tree fordel f(0) : this statement is considered legal within the
formal grammar for Python but is not a legal language construct. TheSyntaxError raised for this con-
dition is actually generated by the Python byte-compiler normally, which is why it can be raised at this
point by theparser module. Most causes of compilation failure can be diagnosed programmatically by
inspection of the parse tree.

18.1.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a
suite. Neither of these functions can be used to determine if an AST was created from source code viaexpr()
or suite() or from a parse tree viasequence2ast() .

isexpr (ast)
Whenast represents an’eval’ form, this function returns true, otherwise it returns false. This is useful,
since code objects normally cannot be queried for this information using existing built-in functions. Note
that the code objects created bycompileast() cannot be queried like this either, and are identical to
those created by the built-incompile() function.

issuite (ast)
This function mirrors isexpr() in that it reports whether an AST object represents an’exec’
form, commonly known as a “suite.” It is not safe to assume that this function is equivalent to ‘not
isexpr(ast) ’, as additional syntactic fragments may be supported in the future.

18.1.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of
the Python runtime environment. See each function for information about the exceptions it can raise.

exceptionParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation

18.1. parser — Access Python parse trees 615

failures rather than the built inSyntaxError thrown during normal parsing. The exception argument is
either a string describing the reason of the failure or a tuple containing a sequence causing the failure from
a parse tree passed tosequence2ast() and an explanatory string. Calls tosequence2ast() need to
be able to handle either type of exception, while calls to other functions in the module will only need to be
aware of the simple string values.

Note that the functionscompileast() , expr() , and suite() may throw exceptions which are nor-
mally thrown by the parsing and compilation process. These include the built in exceptionsMemoryError ,
OverflowError , SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning
normally associated with them. Refer to the descriptions of each function for detailed information.

18.1.5 AST Objects

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (using the
pickle module) is also supported.

ASTType
The type of the objects returned byexpr() , suite() andsequence2ast() .

AST objects have the following methods:

compile ([filename])
Same ascompileast(ast, filename) .

isexpr ()
Same asisexpr(ast) .

issuite ()
Same asissuite(ast) .

tolist ([line info])
Same asast2list(ast, line info) .

totuple ([line info])
Same asast2tuple(ast, line info) .

18.1.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulation of thecompile() built-in function and the complex
example shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is
to do nothing. For this purpose, using theparser module to produce an intermediate data structure is equivalent
to the code

>>> code = compile(’a + 5’, ’file.py’, ’eval’)
>>> a = 5
>>> eval(code)
10

The equivalent operation using theparser module is somewhat longer, and allows the intermediate internal
parse tree to be retained as an AST object:

616 Chapter 18. Python Language Services

>>> import parser
>>> ast = parser.expr(’a + 5’)
>>> code = ast.compile(’file.py’)
>>> a = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
return ast, ast.compile()

def load_expression(source_string):
ast = parser.expr(source_string)
return ast, ast.compile()

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being
examined be loaded into a running interpreter viaimport . This can be very useful for performing analyses of
untrusted code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and
the other function defines a high-level interface to the classes by handling file operations on behalf of the caller.
All source files mentioned here which are not part of the Python installation are located in the ‘Demo/parser/’
directory of the distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a
limited measure of this when defining classes, functions, and methods. In this example, the only definitions that
will be considered are those which are defined in the top level of their context, e.g., a function defined by adef
statement at column zero of a module, but not a function defined within a branch of anif ... else construct,
though there are some good reasons for doing so in some situations. Nesting of definitions will be handled by the
code developed in the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large
number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the file ‘Grammar/Grammar’ in the distribution. Consider the simplest case of interest when searching
for docstrings: a module consisting of a docstring and nothing else. (See file ‘docstring.py’.)

"""Some documentation.
"""

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with
the documentation buried deep in nested tuples.

18.1. parser — Access Python parse trees 617

>>> import parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = ast.totuple()
>>> pprint.pprint(tup)
(257,

(264,
(265,

(266,
(267,

(307,
(287,

(288,
(289,

(290,
(292,

(293,
(294,

(295,
(296,

(297,
(298,

(299,
(300, (3, ’"""Some documentation.\n"""’))))))))))))))))),

(4, ’’))),
(4, ’’),
(0, ’’))

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation,
and the Python structures generated do not change that. However, thesymbol and token modules provide
symbolic names for the node types and dictionaries which map from the integers to the symbolic names for the
node types.

In the output presented above, the outermost tuple contains four elements: the integer257 and three additional
tuples. Node type257 has the symbolic namefile input . Each of these inner tuples contains an integer as
the first element; these integers,264 , 4, and0, represent the node typesstmt , NEWLINE, andENDMARKER,
respectively. Note that these values may change depending on the version of Python you are using; consult
‘symbol.py’ and ‘token.py’ for details of the mapping. It should be fairly clear that the outermost node is related
primarily to the input source rather than the contents of the file, and may be disregarded for the moment. The
stmt node is much more interesting. In particular, all docstrings are found in subtrees which are formed exactly
as this node is formed, with the only difference being the string itself. The association between the docstring in
a similar tree and the defined entity (class, function, or module) which it describes is given by the position of the
docstring subtree within the tree defining the described structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple
pattern matching approach to check any given subtree for equivalence to the general pattern for docstrings. Since
the example demonstrates information extraction, we can safely require that the tree be in tuple form rather than
list form, allowing a simple variable representation to be[’variable name’] . A simple recursive function
can implement the pattern matching, returning a Boolean and a dictionary of variable name to value mappings.
(See file ‘example.py’.)

618 Chapter 18. Python Language Services

from types import ListType, TupleType

def match(pattern, data, vars=None):
if vars is None:

vars = {}
if type(pattern) is ListType:

vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (See file ‘example.py’.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,

(symbol.small_stmt,
(symbol.expr_stmt,

(symbol.testlist,
(symbol.test,

(symbol.and_test,
(symbol.not_test,

(symbol.comparison,
(symbol.expr,

(symbol.xor_expr,
(symbol.and_expr,

(symbol.shift_expr,
(symbol.arith_expr,

(symbol.term,
(symbol.factor,

(symbol.power,
(symbol.atom,

(token.STRING, [’docstring’])
)))))))))))))))),

(token.NEWLINE, ’’)
))

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previ-
ously is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found
1
>>> vars
{’docstring’: ’"""Some documentation.\n"""’}

Once specific data can be extracted from a location where it is expected, the question of where information can
be expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring

18.1. parser — Access Python parse trees 619

is the firststmt node in a code block (file input or suite node types). A module consists of a single
file input node, and class and function definitions each contain exactly onesuite node. Classes and
functions are readily identified as subtrees of code block nodes which start with(stmt, (compound stmt,
(classdef, ... or (stmt, (compound stmt, (funcdef, Note that these subtrees cannot
be matched bymatch() since it does not support multiple sibling nodes to match without regard to number. A
more elaborate matching function could be used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the
statement, some work needs to be performed to walk the parse tree for an entire module and extract information
about the names defined in each context of the module and associate any docstrings with the names. The code to
perform this work is not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each
“major” block of the module is described by an object providing several methods for inquiry and a constructor
which accepts at least the subtree of the complete parse tree which it represents. TheModuleInfo constructor
accepts an optionalnameparameter since it cannot otherwise determine the name of the module.

The public classes includeClassInfo , FunctionInfo , and ModuleInfo . All objects provide the
methodsget name() , get docstring() , get class names() , and get class info() . The
ClassInfo objects supportget method names() and get method info() while the other classes
provideget function names() andget function info() .

Within each of the forms of code block that the public classes represent, most of the required information is in
the same form and is accessed in the same way, with classes having the distinction that functions defined at the
top level are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction
from functions defined outside of a class, the implementation needs to maintain the distinction. Hence, most
of the functionality of the public classes can be implemented in a common base class,SuiteInfoBase , with
the accessors for function and method information provided elsewhere. Note that there is only one class which
represents function and method information; this parallels the use of thedef statement to define both types of
elements.

Most of the accessor functions are declared inSuiteInfoBase and do not need to be overridden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuiteInfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is
the relevant part of theSuiteInfoBase definition from ‘example.py’:

620 Chapter 18. Python Language Services

class SuiteInfoBase:
_docstring = ’’
_name = ’’

def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:

self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])
else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:

self._docstring = eval(vars[’docstring’])
discover inner definitions
for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)
if found:

cstmt = vars[’compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]
self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:
name = cstmt[2][1]
self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls theextract info() method. This method per-
forms the bulk of the information extraction which takes place in the entire example. The extraction has two
distinct phases: the location of the docstring for the parse tree passed in, and the discovery of additional defini-
tions within the code block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form
is used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):

return x ** y
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only,small stmt
element. The extraction of such a docstring is slightly different and requires only a portion of the complete
pattern used in the more common case. As implemented, the docstring will only be found if there is only
onesmall stmt node in thesimple stmt node. Since most functions and methods which use the short
form do not provide a docstring, this may be considered sufficient. The extraction of the docstring proceeds
using thematch() function as described above, and the value of the docstring is stored as an attribute of the
SuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on thestmt nodes of thesuite

18.1. parser — Access Python parse trees 621

node. The special case of the short form is not tested; since there are nostmt nodes in the short form, the
algorithm will silently skip the singlesimple stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something
else. For the definition statements, the name of the element defined is extracted and a representation object
appropriate to the definition is created with the defining subtree passed as an argument to the constructor. The
representation objects are stored in instance variables and may be retrieved by name using the appropriate accessor
methods.

The public classes provide any accessors required which are more specific than those provided by the
SuiteInfoBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-
level function can be used to extract the complete set of information from a source file. (See file ‘example.py’.)

def get_docs(fileName):
import os
import parser

source = open(fileName).read()
basename = os.path.basename(os.path.splitext(fileName)[0])
ast = parser.suite(source)
return ModuleInfo(ast.totuple(), basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional
capabilities.

18.2 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to the file ‘Grammar/Grammar’ in the Python distribution
for the definitions of the names in the context of the language grammar. The specific numeric values which the
names map to may change between Python versions.

This module also provides one additional data object:

sym name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allow-
ing more human-readable representation of parse trees to be generated.

See Also:

Moduleparser (section 18.1):
The second example for theparser module shows how to use thesymbol module.

18.3 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal
tokens). Refer to the file ‘Grammar/Grammar’ in the Python distribution for the definitions of the names in the
context of the language grammar. The specific numeric values which the names map to may change between
Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the Python C
header files.

tok name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allow-
ing more human-readable representation of parse trees to be generated.

ISTERMINAL(x)

622 Chapter 18. Python Language Services

Return true for terminal token values.

ISNONTERMINAL(x)
Return true for non-terminal token values.

ISEOF(x)
Return true ifx is the marker indicating the end of input.

See Also:

Moduleparser (section 18.1):
The second example for theparser module shows how to use thesymbol module.

18.4 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword.

iskeyword (s)
Return true ifs is a Python keyword.

kwlist
Sequence containing all the keywords defined for the interpreter. If any keywords are defined to only be
active when particular future statements are in effect, these will be included as well.

18.5 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The primary entry point is a generator:

generate tokens (readline)
The generate tokens() generator requires one argment,readline, which must be a callable object
which provides the same interface as thereadline() method of built-in file objects (see section 2.3.8).
Each call to the function should return one line of input as a string.

The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple(srow,
scol) of ints specifying the row and column where the token begins in the source; a 2-tuple(erow, ecol)
of ints specifying the row and column where the token ends in the source; and the line on which the token
was found. The line passed is thelogical line; continuation lines are included. New in version 2.2.

An older entry point is retained for backward compatibility:

tokenize (readline[, tokeneater])
The tokenize() function accepts two parameters: one representing the input stream, and one providing
an output mechanism fortokenize() .

The first parameter,readline, must be a callable object which provides the same interface as the
readline() method of built-in file objects (see section 2.3.8). Each call to the function should return one
line of input as a string.

The second parameter,tokeneater, must also be a callable object. It is called once for each token, with five
arguments, corresponding to the tuples generated bygenerate tokens() .

All constants from thetoken module are also exported fromtokenize , as are two additional token type values
that might be passed to thetokeneaterfunction bytokenize() :

COMMENT
Token value used to indicate a comment.

NL
Token value used to indicate a non-terminating newline. The NEWLINE token indicates the end of a logical

18.4. keyword — Testing for Python keywords 623

line of Python code; NL tokens are generated when a logical line of code is continued over multiple physical
lines.

18.6 tabnanny — Detection of ambiguous indentation

For the time being this module is intended to be called as a script. However it is possible to import it into an IDE
and use the functioncheck() described below.

Warning: The API provided by this module is likely to change in future releases; such changes may not be
backward compatible.

check (file or dir)
If file or dir is a directory and not a symbolic link, then recursively descend the directory tree named by
file or dir, checking all ‘.py’ files along the way. Iffile or dir is an ordinary Python source file, it is
checked for whitespace related problems. The diagnostic messages are written to standard output using the
print statement.

verbose
Flag indicating whether to print verbose messages. This is incremented by the-v option if called as a script.

filename only
Flag indicating whether to print only the filenames of files containing whitespace related problems. This is
set to true by the-q option if called as a script.

exceptionNannyNag
Raised bytokeneater() if detecting an ambiguous indent. Captured and handled incheck() .

tokeneater (type, token, start, end, line)
This function is used bycheck() as a callback parameter to the functiontokenize.tokenize() .

See Also:

Moduletokenize (section 18.5):
Lexical scanner for Python source code.

18.7 pyclbr — Python class browser support

Thepyclbr can be used to determine some limited information about the classes, methods and top-level func-
tions defined in a module. The information provided is sufficient to implement a traditional three-pane class
browser. The information is extracted from the source code rather than by importing the module, so this module is
safe to use with untrusted source code. This restriction makes it impossible to use this module with modules not
implemented in Python, including many standard and optional extension modules.

readmodule (module[, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The parameter
moduleshould be the name of a module as a string; it may be the name of a module within a package. The
path parameter should be a sequence, and is used to augment the value ofsys.path , which is used to
locate module source code.

readmodule ex (module[, path])
Like readmodule() , but the returned dictionary, in addition to mapping class names to class descriptor
objects, also maps top-level function names to function descriptor objects. Moreover, if the module being
read is a package, the key’ path ’ in the returned dictionary has as its value a list which contains the
package search path.

18.7.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returned byreadmodule() and
readmodule ex() provide the following data members:

624 Chapter 18. Python Language Services

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described. Classes
which are named as superclasses but which are not discoverable byreadmodule() are listed as a string
with the class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing theclass statement defining the class.

lineno
The line number of theclass statement within the file named byfile .

18.7.2 Function Descriptor Objects

The function descriptor objects used as values in the dictionary returned byreadmodule ex() provide the
following data members:

module
The name of the module defining the function described by the function descriptor.

name
The name of the function.

file
Name of the file containing thedef statement defining the function.

lineno
The line number of thedef statement within the file named byfile .

18.8 py compile — Compile Python source files

Thepy compile module provides a function to generate a byte-code file from a source file, and another function
used when the module source file is invoked as a script.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of
the users may not have permission to write the byte-code cache files in the directory containing the source code.

exceptionPyCompileError
Exception raised when an error occurs while attempting to compile the file.

compile (file[, cfile[, dfile[, doraise]]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from
the file namefile. The byte-code is written tocfile, which defaults tofile + ’c’ (’o’ if optimization is
enabled in the current interpreter). Ifdfile is specified, it is used as the name of the source file in error
messages instead offile. If doraise= True, a PyCompileError is raised when an error is encountered while
compiling file. If doraise= False (the default), an error string is written to sys.stderr, but no exception is
raised.

main ([args])
Compile several source files. The files named inargs (or on the command line, ifargs is not specified)
are compiled and the resulting bytecode is cached in the normal manner. This function does not search a
directory structure to locate source files; it only compiles files named explicitly.

When this module is run as a script, themain() is used to compile all the files named on the command line.

See Also:

18.8. py compile — Compile Python source files 625

Modulecompileall (section 18.9):
Utilities to compile all Python source files in a directory tree.

18.9 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree, allowing users without permission to write to the libraries to take advantage of
cached byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories named on the
command line or insys.path .

compile dir (dir[, maxlevels[, ddir[, force[, rx[, quiet]]]]])
Recursively descend the directory tree named bydir, compiling all ‘.py’ files along the way. Themaxlevels
parameter is used to limit the depth of the recursion; it defaults to10 . If ddir is given, it is used as the
base path from which the filenames used in error messages will be generated. Ifforce is true, modules are
re-compiled even if the timestamps are up to date.

If rx is given, it specifies a regular expression of file names to exclude from the search; that expression is
searched for in the full path.

If quiet is true, nothing is printed to the standard output in normal operation.

compile path ([skip curdir[, maxlevels[, force]]])
Byte-compile all the ‘.py’ files found alongsys.path . If skip curdir is true (the default), the current
directory is not included in the search. Themaxlevelsandforceparameters default to0 and are passed to
thecompile dir() function.

See Also:

Modulepy compile (section 18.8):
Byte-compile a single source file.

18.10 dis — Disassembler for Python byte code

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assem-
bler, this module defines the Python assembly language. The Python byte code which this module takes as an
input is defined in the file ‘Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functionmyfunc :

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembly ofmyfunc() :

>>> dis.dis(myfunc)
2 0 LOAD_GLOBAL 0 (len)

3 LOAD_FAST 0 (alist)
6 CALL_FUNCTION 1
9 RETURN_VALUE

10 LOAD_CONST 0 (None)
13 RETURN_VALUE

(The “2” is a line number).

Thedis module defines the following functions and constants:

626 Chapter 18. Python Language Services

dis ([bytesource])
Disassemble thebytesourceobject.bytesourcecan denote either a module, a class, a method, a function, or
a code object. For a module, it disassembles all functions. For a class, it disassembles all methods. For a
single code sequence, it prints one line per byte code instruction. If no object is provided, it disassembles
the last traceback.

distb ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The
instruction causing the exception is indicated.

disassemble (code[, lasti])
Disassembles a code object, indicating the last instruction iflasti was provided. The output is divided in the
following columns:

1.the line number, for the first instruction of each line

2.the current instruction, indicated as ‘--> ’,

3.a labelled instruction, indicated with ‘>>’,

4.the address of the instruction,

5.the operation code name,

6.operation parameters, and

7.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets,
and compare operators.

disco (code[, lasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of operation names, indexable using the byte code.

cmp op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasfree
Sequence of byte codes that access a free variable.

hasname
Sequence of byte codes that access an attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a local variable.

hascompare
Sequence of byte codes of Boolean operations.

18.10.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP CODE
Indicates end-of-code to the compiler, not used by the interpreter.

18.10. dis — Disassembler for Python byte code 627

POP TOP
Removes the top-of-stack (TOS) item.

ROT TWO
Swaps the two top-most stack items.

ROT THREE
Lifts second and third stack item one position up, moves top down to position three.

ROT FOUR
Lifts second, third and forth stack item one position up, moves top down to position four.

DUP TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARYPOSITIVE
ImplementsTOS = +TOS.

UNARYNEGATIVE
ImplementsTOS = -TOS.

UNARYNOT
ImplementsTOS = not TOS.

UNARYCONVERT
ImplementsTOS = ‘TOS‘ .

UNARYINVERT
ImplementsTOS = ˜TOS.

GET ITER
ImplementsTOS = iter(TOS) .

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack.
They perform the operation, and put the result back on the stack.

BINARY POWER
ImplementsTOS = TOS1 ** TOS.

BINARY MULTIPLY
ImplementsTOS = TOS1 * TOS.

BINARY DIVIDE
ImplementsTOS = TOS1 / TOSwhenfrom future import division is not in effect.

BINARY FLOOR DIVIDE
ImplementsTOS = TOS1 // TOS.

BINARY TRUE DIVIDE
ImplementsTOS = TOS1 / TOSwhenfrom future import division is in effect.

BINARY MODULO
ImplementsTOS = TOS1 % TOS.

BINARY ADD
ImplementsTOS = TOS1 + TOS.

BINARY SUBTRACT
ImplementsTOS = TOS1 - TOS.

BINARY SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY LSHIFT
ImplementsTOS = TOS1 << TOS.

BINARY RSHIFT
ImplementsTOS = TOS1 >> TOS.

628 Chapter 18. Python Language Services

BINARY AND
ImplementsTOS = TOS1 & TOS.

BINARY XOR
ImplementsTOS = TOS1 ˆ TOS.

BINARY OR
ImplementsTOS = TOS1 | TOS.

In-place operations are like binary operations, in that they remove TOS and TOS1, and push the result back on the
stack, but the operation is done in-place when TOS1 supports it, and the resulting TOS may be (but does not have
to be) the original TOS1.

INPLACE POWER
Implements in-placeTOS = TOS1 ** TOS.

INPLACE MULTIPLY
Implements in-placeTOS = TOS1 * TOS.

INPLACE DIVIDE
Implements in-placeTOS = TOS1 / TOSwhenfrom future import division is not in
effect.

INPLACE FLOOR DIVIDE
Implements in-placeTOS = TOS1 // TOS.

INPLACE TRUE DIVIDE
Implements in-placeTOS = TOS1 / TOSwhenfrom future import division is in ef-
fect.

INPLACE MODULO
Implements in-placeTOS = TOS1 % TOS.

INPLACE ADD
Implements in-placeTOS = TOS1 + TOS.

INPLACE SUBTRACT
Implements in-placeTOS = TOS1 - TOS.

INPLACE LSHIFT
Implements in-placeTOS = TOS1 << TOS.

INPLACE RSHIFT
Implements in-placeTOS = TOS1 >> TOS.

INPLACE AND
Implements in-placeTOS = TOS1 & TOS.

INPLACE XOR
Implements in-placeTOS = TOS1 ˆ TOS.

INPLACE OR
Implements in-placeTOS = TOS1 | TOS.

The slice opcodes take up to three parameters.

SLICE+0
ImplementsTOS = TOS[:] .

SLICE+1
ImplementsTOS = TOS1[TOS:] .

SLICE+2
ImplementsTOS = TOS1[:TOS] .

SLICE+3
ImplementsTOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

18.10. dis — Disassembler for Python byte code 629

STORE SLICE+0
ImplementsTOS[:] = TOS1 .

STORE SLICE+1
ImplementsTOS1[TOS:] = TOS2 .

STORE SLICE+2
ImplementsTOS1[:TOS] = TOS2 .

STORE SLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3 .

DELETE SLICE+0
Implementsdel TOS[:] .

DELETE SLICE+1
Implementsdel TOS1[TOS:] .

DELETE SLICE+2
Implementsdel TOS1[:TOS] .

DELETE SLICE+3
Implementsdel TOS2[TOS1:TOS] .

STORE SUBSCR
ImplementsTOS1[TOS] = TOS2.

DELETE SUBSCR
Implementsdel TOS1[TOS] .

Miscellaneous opcodes.

PRINT EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and printed.
In non-interactive mode, an expression statement is terminated withPOP STACK.

PRINT ITEM
Prints TOS to the file-like object bound tosys.stdout . There is one such instruction for each item in the
print statement.

PRINT ITEM TO
Like PRINT ITEM, but prints the item second from TOS to the file-like object at TOS. This is used by the
extended print statement.

PRINT NEWLINE
Prints a new line onsys.stdout . This is generated as the last operation of aprint statement, unless
the statement ends with a comma.

PRINT NEWLINE TO
Like PRINT NEWLINE, but prints the new line on the file-like object on the TOS. This is used by the
extended print statement.

BREAK LOOP
Terminates a loop due to abreak statement.

CONTINUE LOOP target
Continues a loop due to acontinue statement. target is the address to jump to (which should be a
FOR ITER instruction).

LOAD LOCALS
Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class
definition: After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

YIELD VALUE
PopsTOSand yields it from a generator.

630 Chapter 18. Python Language Services

IMPORT STAR
Loads all symbols not starting with ‘’ directly from the module TOS to the local namespace. The module
is popped after loading all names. This opcode implementsfrom module import * .

EXEC STMT
Implementsexec TOS2,TOS1,TOS . The compiler fills missing optional parameters withNone.

POP BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END FINALLY
Terminates afinally clause. The interpreter recalls whether the exception has to be re-raised, or whether
the function returns, and continues with the outer-next block.

BUILD CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes,
and TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORE NAME namei
Implementsname = TOS. nameiis the index ofnamein the attributeco names of the code object. The
compiler tries to useSTORE LOCALor STORE GLOBALif possible.

DELETE NAME namei
Implementsdel name , wherenameiis the index intoco names attribute of the code object.

UNPACKSEQUENCE count
Unpacks TOS intocountindividual values, which are put onto the stack right-to-left.

DUP TOPX count
Duplicatecount items, keeping them in the same order. Due to implementation limits,count should be
between 1 and 5 inclusive.

STORE ATTR namei
ImplementsTOS.name = TOS1, wherenameiis the index of name inco names.

DELETE ATTR namei
Implementsdel TOS.name , usingnameias index intoco names.

STORE GLOBAL namei
Works asSTORE NAME, but stores the name as a global.

DELETE GLOBAL namei
Works asDELETE NAME, but deletes a global name.

LOAD CONST consti
Pushes ‘co consts[consti] ’ onto the stack.

LOAD NAME namei
Pushes the value associated with ‘co names[namei] ’ onto the stack.

BUILD TUPLE count
Creates a tuple consumingcountitems from the stack, and pushes the resulting tuple onto the stack.

BUILD LIST count
Works asBUILD TUPLE, but creates a list.

BUILD MAP zero
Pushes a new empty dictionary object onto the stack. The argument is ignored and set to zero by the
compiler.

LOAD ATTR namei
Replaces TOS withgetattr(TOS, co names[namei]) .

COMPAREOP opname
Performs a Boolean operation. The operation name can be found incmp op[opname] .

18.10. dis — Disassembler for Python byte code 631

IMPORT NAME namei
Imports the moduleco names[namei] . The module object is pushed onto the stack. The current names-
pace is not affected: for a proper import statement, a subsequentSTORE FAST instruction modifies the
namespace.

IMPORT FROM namei
Loads the attributeco names[namei] from the module found in TOS. The resulting object is pushed onto
the stack, to be subsequently stored by aSTORE FAST instruction.

JUMP FORWARDdelta
Increments byte code counter bydelta.

JUMP IF TRUE delta
If TOS is true, increment the byte code counter bydelta. TOS is left on the stack.

JUMP IF FALSE delta
If TOS is false, increment the byte code counter bydelta. TOS is not changed.

JUMP ABSOLUTE target
Set byte code counter totarget.

FOR ITER delta
TOS is an iterator. Call itsnext() method. If this yields a new value, push it on the stack (leaving
the iterator below it). If the iterator indicates it is exhaustedTOSis popped, and the byte code counter is
incremented bydelta.

LOAD GLOBAL namei
Loads the global namedco names[namei] onto the stack.

SETUP LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with a size of
deltabytes.

SETUP EXCEPT delta
Pushes a try block from a try-except clause onto the block stack.deltapoints to the first except block.

SETUP FINALLY delta
Pushes a try block from a try-except clause onto the block stack.deltapoints to the finally block.

LOAD FAST var num
Pushes a reference to the localco varnames[var num] onto the stack.

STORE FAST var num
Stores TOS into the localco varnames[var num] .

DELETE FAST var num
Deletes localco varnames[var num] .

LOAD CLOSURE i
Pushes a reference to the cell contained in sloti of the cell and free variable storage. The name of the
variable isco cellvars[i] if i is less than the length ofco cellvars. Otherwise it isco freevars[i
- len(co cellvars)] .

LOAD DEREF i
Loads the cell contained in sloti of the cell and free variable storage. Pushes a reference to the object the
cell contains on the stack.

STORE DEREF i
Stores TOS into the cell contained in sloti of the cell and free variable storage.

SET LINENO lineno
This opcode is obsolete.

RAISE VARARGS argc
Raises an exception.argc indicates the number of parameters to the raise statement, ranging from 0 to 3.
The handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL FUNCTION argc

632 Chapter 18. Python Language Services

Calls a function. The low byte ofargc indicates the number of positional parameters, the high byte the
number of keyword parameters. On the stack, the opcode finds the keyword parameters first. For each
keyword argument, the value is on top of the key. Below the keyword parameters, the positional parameters
are on the stack, with the right-most parameter on top. Below the parameters, the function object to call is
on the stack.

MAKE FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function
object is defined to haveargcdefault parameters, which are found below TOS.

MAKE CLOSURE argc
Creates a new function object, sets itsfunc closureslot, and pushes it on the stack. TOS is the code
associated with the function. If the code object has N free variables, the next N items on the stack are the
cells for these variables. The function also hasargcdefault parameters, where are found before the cells.

BUILD SLICE argc
Pushes a slice object on the stack.argc must be 2 or 3. If it is 2,slice(TOS1, TOS) is pushed; if it is
3, slice(TOS2, TOS1, TOS) is pushed. See theslice() built-in function for more information.

EXTENDEDARG ext
Prefixes any opcode which has an argument too big to fit into the default two bytes.extholds two additional
bytes which, taken together with the subsequent opcode’s argument, comprise a four-byte argument,ext
being the two most-significant bytes.

CALL FUNCTION VAR argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the
variable argument list, followed by keyword and positional arguments.

CALL FUNCTION KW argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the
keyword arguments dictionary, followed by explicit keyword and positional arguments.

CALL FUNCTION VAR KW argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the
keyword arguments dictionary, followed by the variable-arguments tuple, followed by explicit keyword and
positional arguments.

18.11 distutils — Building and installing Python modules

Thedistutils package provides support for building and installing additional modules into a Python installa-
tion. The new modules may be either 100%-pure Python, or may be extension modules written in C, or may be
collections of Python packages which include modules coded in both Python and C.

This package is discussed in two separate documents which are included in the Python documentation package.
To learn about distributing new modules using thedistutils facilities, readDistributing Python Modules. To
learn about installing Python modules, whether or not the author made use of thedistutils package, read
Installing Python Modules.

See Also:

Distributing Python Modules
(../dist/dist.html)

The manual for developers and packagers of Python modules. This describes how to preparedistutils -
based packages so that they may be easily installed into an existing Python installaion.

Installing Python Modules
(../inst/inst.html)

An “administrators” manual which includes information on installing modules into an existing Python in-
stallation. You do not need to be a Python programmer to read this manual.

18.11. distutils — Building and installing Python modules 633

634

CHAPTER

NINETEEN

Python compiler package

The Python compiler package is a tool for analyzing Python source code and generating Python bytecode. The
compiler contains libraries to generate an abstract syntax tree from Python source code and to generate Python
bytecode from the tree.

Thecompiler package is a Python source to bytecode translator written in Python. It uses the built-in parser
and standardparser module to generated a concrete syntax tree. This tree is used to generate an abstract syntax
tree (AST) and then Python bytecode.

The full functionality of the package duplicates the builtin compiler provided with the Python interpreter. It is
intended to match its behavior almost exactly. Why implement another compiler that does the same thing? The
package is useful for a variety of purposes. It can be modified more easily than the builtin compiler. The AST it
generates is useful for analyzing Python source code.

This chapter explains how the various components of thecompiler package work. It blends reference material
with a tutorial.

The following modules are part of thecompiler package:

19.1 The basic interface

The top-level of the package defines four functions. If you importcompiler , you will get these functions and a
collection of modules contained in the package.

parse (buf)
Returns an abstract syntax tree for the Python source code inbuf. The function raises SyntaxError if there
is an error in the source code. The return value is acompiler.ast.Module instance that contains the
tree.

parseFile (path)
Return an abstract syntax tree for the Python source code in the file specified bypath. It is equivalent to
parse(open(path).read()) .

walk (ast, visitor[, verbose])
Do a pre-order walk over the abstract syntax treeast. Call the appropriate method on thevisitor instance for
each node encountered.

compile (source, filename, mode, flags=None, dontinherit=None)
Compile the stringsource, a Python module, statement or expression, into a code object that can be executed
by the exec statement oreval() . This function is a replacement for the built-incompile() function.

Thefilenamewill be used for run-time error messages.

Themodemust be ’exec’ to compile a module, ’single’ to compile a single (interactive) statement, or ’eval’
to compile an expression.

Theflagsanddont inherit arguments affect future-related statements, but are not supported yet.

compileFile (source)

635

Compiles the filesourceand generates a .pyc file.

The compiler package contains the following modules:ast , consts , future , misc , pyassem ,
pycodegen , symbols , transformer , andvisitor .

19.2 Limitations

There are some problems with the error checking of the compiler package. The interpreter detects syntax errors
in two distinct phases. One set of errors is detected by the interpreter’s parser, the other set by the compiler.
The compiler package relies on the interpreter’s parser, so it get the first phases of error checking for free. It
implements the second phase itself, and that implement is incomplete. For example, the compiler package does
not raise an error if a name appears more than once in an argument list:def f(x, x): ...

A future version of the compiler should fix these problems.

19.3 Python Abstract Syntax

Thecompiler.ast module defines an abstract syntax for Python. In the abstract syntax tree, each node repre-
sents a syntactic construct. The root of the tree isModule object.

The abstract syntax offers a higher level interface to parsed Python source code. Theparser module and the
compiler written in C for the Python interpreter use a concrete syntax tree. The concrete syntax is tied closely to
the grammar description used for the Python parser. Instead of a single node for a construct, there are often several
levels of nested nodes that are introduced by Python’s precedence rules.

The abstract syntax tree is created by thecompiler.transformer module. The transformer relies on the
builtin Python parser to generate a concrete syntax tree. It generates an abstract syntax tree from the concrete tree.

The transformer module was created by Greg Stein and Bill Tutt for an experimental Python-to-C compiler.
The current version contains a number of modifications and improvements, but the basic form of the abstract
syntax and of the transformer are due to Stein and Tutt.

19.3.1 AST Nodes

Thecompiler.ast module is generated from a text file that describes each node type and its elements. Each
node type is represented as a class that inherits from the abstract base classcompiler.ast.Node and defines
a set of named attributes for child nodes.

classNode()
The Node instances are created automatically by the parser generator. The recommended interface for
specificNode instances is to use the public attributes to access child nodes. A public attribute may be
bound to a single node or to a sequence of nodes, depending on theNode type. For example, thebases
attribute of theClass node, is bound to a list of base class nodes, and thedoc attribute is bound to a single
node.

EachNode instance has alineno attribute which may beNone. XXX Not sure what the rules are for
which nodes will have a useful lineno.

All Node objects offer the following methods:

getChildren ()
Returns a flattened list of the child nodes and objects in the order they occur. Specifically, the order of the
nodes is the order in which they appear in the Python grammar. Not all of the children areNode instances.
The names of functions and classes, for example, are plain strings.

getChildNodes ()
Returns a flattened list of the child nodes in the order they occur. This method is likegetChildren() ,
except that it only returns those children that areNode instances.

636 Chapter 19. Python compiler package

Two examples illustrate the general structure ofNode classes. Thewhile statement is defined by the following
grammar production:

while_stmt: "while" expression ":" suite
["else" ":" suite]

The While node has three attributes:test , body , andelse . (If the natural name for an attribute is also a
Python reserved word, it can’t be used as an attribute name. An underscore is appended to the word to make it a
legal identifier, henceelse instead ofelse .)

The if statement is more complicated because it can include several tests.

if_stmt: ’if’ test ’:’ suite (’elif’ test ’:’ suite)* [’else’ ’:’ suite]

The If node only defines two attributes:tests andelse . Thetests attribute is a sequence of test expres-
sion, consequent body pairs. There is one pair for eachif /elif clause. The first element of the pair is the test
expression. The second elements is aStmt node that contains the code to execute if the test is true.

ThegetChildren() method ofIf returns a flat list of child nodes. If there are threeif /elif clauses and no
else clause, thengetChildren() will return a list of six elements: the first test expression, the firstStmt ,
the second text expression, etc.

The following table lists each of theNode subclasses defined incompiler.ast and each of the public attributes
available on their instances. The values of most of the attributes are themselvesNode instances or sequences of
instances. When the value is something other than an instance, the type is noted in the comment. The attributes
are listed in the order in which they are returned bygetChildren() andgetChildNodes() .

Node type Attribute Value
Add left left operand

right right operand
And nodes list of operands
AssAttr attribute as target of assignment

expr expression on the left-hand side of the dot
attrname the attribute name, a string
flags XXX

AssList nodes list of list elements being assigned to
AssName name name being assigned to

flags XXX
AssTuple nodes list of tuple elements being assigned to
Assert test the expression to be tested

fail the value of theAssertionError
Assign nodes a list of assignment targets, one per equal sign

expr the value being assigned
AugAssign node

op
expr

Backquote expr
Bitand nodes
Bitor nodes
Bitxor nodes
Break
CallFunc node expression for the callee

args a list of arguments
star args the extended *-arg value
dstar args the extended **-arg value

Class name the name of the class, a string

19.3. Python Abstract Syntax 637

Node type Attribute Value
bases a list of base classes
doc doc string, a string orNone
code the body of the class statement

Compare expr
ops

Const value
Continue
Dict items
Discard expr
Div left

right
Ellipsis
Exec expr

locals
globals

For assign
list
body
else

From modname
names

Function name name used in def, a string
argnames list of argument names, as strings
defaults list of default values
flags xxx
doc doc string, a string orNone
code the body of the function

Getattr expr
attrname

Global names
If tests

else
Import names
Invert expr
Keyword name

expr
Lambda argnames

defaults
flags
code

LeftShift left
right

List nodes
ListComp expr

quals
ListCompFor assign

list
ifs

ListCompIf test
Mod left

right
Module doc doc string, a string orNone

node body of the module, aStmt
Mul left

right
Name name

638 Chapter 19. Python compiler package

Node type Attribute Value
Not expr
Or nodes
Pass
Power left

right
Print nodes

dest
Printnl nodes

dest
Raise expr1

expr2
expr3

Return value
RightShift left

right
Slice expr

flags
lower
upper

Sliceobj nodes list of statements
Stmt nodes
Sub left

right
Subscript expr

flags
subs

TryExcept body
handlers
else

TryFinally body
final

Tuple nodes
UnaryAdd expr
UnarySub expr
While test

body
else

Yield value

19.3.2 Assignment nodes

There is a collection of nodes used to represent assignments. Each assignment statement in the source code
becomes a singleAssign node in the AST. Thenodes attribute is a list that contains a node for each assignment
target. This is necessary because assignment can be chained, e.g.a = b = 2 . EachNode in the list will be one
of the following classes:AssAttr , AssList , AssName, or AssTuple .

Each target assignment node will describe the kind of object being assigned to:AssName for a simple name,
e.g. a = 1 . AssAttr for an attribute assigned, e.g.a.x = 1 . AssList andAssTuple for list and tuple
expansion respectively, e.g.a, b, c = a tuple .

The target assignment nodes also have aflags attribute that indicates whether the node is being used for assign-
ment or in a delete statement. TheAssName is also used to represent a delete statement, e.g.del x .

When an expression contains several attribute references, an assignment or delete statement will contain only one
AssAttr node – for the final attribute reference. The other attribute references will be represented asGetattr

19.3. Python Abstract Syntax 639

nodes in theexpr attribute of theAssAttr instance.

19.3.3 Examples

This section shows several simple examples of ASTs for Python source code. The examples demonstrate how to
use theparse() function, what the repr of an AST looks like, and how to access attributes of an AST node.

The first module defines a single function. Assume it is stored in ‘/tmp/doublelib.py’.

"""This is an example module.

This is the docstring.
"""

def double(x):
"Return twice the argument"
return x * 2

In the interactive interpreter session below, I have reformatted the long AST reprs for readability. The AST reprs
use unqualified class names. If you want to create an instance from a repr, you must import the class names from
thecompiler.ast module.

>>> import compiler
>>> mod = compiler.parseFile("/tmp/doublelib.py")
>>> mod
Module(’This is an example module.\n\nThis is the docstring.\n’,

Stmt([Function(’double’, [’x’], [], 0, ’Return twice the argument’,
Stmt([Return(Mul((Name(’x’), Const(2))))]))]))

>>> from compiler.ast import *
>>> Module(’This is an example module.\n\nThis is the docstring.\n’,
... Stmt([Function(’double’, [’x’], [], 0, ’Return twice the argument’,
... Stmt([Return(Mul((Name(’x’), Const(2))))]))]))
Module(’This is an example module.\n\nThis is the docstring.\n’,

Stmt([Function(’double’, [’x’], [], 0, ’Return twice the argument’,
Stmt([Return(Mul((Name(’x’), Const(2))))]))]))

>>> mod.doc
’This is an example module.\n\nThis is the docstring.\n’
>>> for node in mod.node.nodes:
... print node
...
Function(’double’, [’x’], [], 0, ’Return twice the argument’,

Stmt([Return(Mul((Name(’x’), Const(2))))]))
>>> func = mod.node.nodes[0]
>>> func.code
Stmt([Return(Mul((Name(’x’), Const(2))))])

19.4 Using Visitors to Walk ASTs

The visitor pattern is ... Thecompiler package uses a variant on the visitor pattern that takes advantage of
Python’s introspection features to elminiate the need for much of the visitor’s infrastructure.

The classes being visited do not need to be programmed to accept visitors. The visitor need only define visit
methods for classes it is specifically interested in; a default visit method can handle the rest.

XXX The magicvisit() method for visitors.

walk (tree, visitor[, verbose])

640 Chapter 19. Python compiler package

classASTVisitor ()
TheASTVisitor is responsible for walking over the tree in the correct order. A walk begins with a call to
preorder() . For each node, it checks thevisitor argument topreorder() for a method named ‘vis-
itNodeType,’ where NodeType is the name of the node’s class, e.g. for aWhile node avisitWhile()
would be called. If the method exists, it is called with the node as its first argument.

The visitor method for a particular node type can control how child nodes are visited during the walk. The
ASTVisitor modifies the visitor argument by adding a visit method to the visitor; this method can be used
to visit a particular child node. If no visitor is found for a particular node type, thedefault() method is
called.

ASTVisitor objects have the following methods:

XXX describe extra arguments

default (node[, ...])

dispatch (node[, ...])

preorder (tree, visitor)

19.5 Bytecode Generation

The code generator is a visitor that emits bytecodes. Each visit method can call theemit() method to emit a
new bytecode. The basic code generator is specialized for modules, classes, and functions. An assembler converts
that emitted instructions to the low-level bytecode format. It handles things like generator of constant lists of code
objects and calculation of jump offsets.

19.5. Bytecode Generation 641

642

CHAPTER

TWENTY

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI’s IRIX operating system
(versions 4 and 5).

al Audio functions on the SGI.
AL Constants used with theal module.
cd Interface to the CD-ROM on Silicon Graphics systems.
fl FORMS library for applications with graphical user interfaces.
FL Constants used with thefl module.
flp Functions for loading stored FORMS designs.
fm Font Managerinterface for SGI workstations.
gl Functions from the Silicon GraphicsGraphics Library.
DEVICE Constants used with thegl module.
GL Constants used with thegl module.
imgfile Support for SGI imglib files.
jpeg Read and write image files in compressed JPEG format.

20.1 al — Audio functions on the SGI

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section 3A of the
IRIX man pages for details. You’ll need to read those man pages to understand what these functions do! Some of
the functions are not available in IRIX releases before 4.0.5. Again, see the manual to check whether a specific
function is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with ‘AL’ prefixed to their
name.

Symbolic constants from the C header file<audio.h> are defined in the standard moduleAL, see below.

Warning: The current version of the audio library may dump core when bad argument values are passed rather
than returning an error status. Unfortunately, since the precise circumstances under which this may happen are
undocumented and hard to check, the Python interface can provide no protection against this kind of problems.
(One example is specifying an excessive queue size — there is no documented upper limit.)

The module defines the following functions:

openport (name, direction[, config])
The name and direction arguments are strings. The optionalconfigargument is a configuration object as
returned bynewconfig() . The return value is anaudio port object; methods of audio port objects are
described below.

newconfig ()
The return value is a newaudio configuration object; methods of audio configuration objects are described
below.

queryparams (device)
The device argument is an integer. The return value is a list of integers containing the data returned by
ALqueryparams() .

643

getparams (device, list)
Thedeviceargument is an integer. The list argument is a list such as returned byqueryparams() ; it is
modified in place (!).

setparams (device, list)
Thedeviceargument is an integer. Thelist argument is a list such as returned byqueryparams() .

20.1.1 Configuration Objects

Configuration objects returned bynewconfig() have the following methods:

getqueuesize ()
Return the queue size.

setqueuesize (size)
Set the queue size.

getwidth ()
Get the sample width.

setwidth (width)
Set the sample width.

getchannels ()
Get the channel count.

setchannels (nchannels)
Set the channel count.

getsampfmt ()
Get the sample format.

setsampfmt (sampfmt)
Set the sample format.

getfloatmax ()
Get the maximum value for floating sample formats.

setfloatmax (floatmax)
Set the maximum value for floating sample formats.

20.1.2 Port Objects

Port objects, as returned byopenport() , have the following methods:

closeport ()
Close the port.

getfd ()
Return the file descriptor as an int.

getfilled ()
Return the number of filled samples.

getfillable ()
Return the number of fillable samples.

readsamps (nsamples)
Read a number of samples from the queue, blocking if necessary. Return the data as a string containing the
raw data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if you have set the sample
width to 2 bytes).

writesamps (samples)
Write samples into the queue, blocking if necessary. The samples are encoded as described for the
readsamps() return value.

644 Chapter 20. SGI IRIX Specific Services

getfillpoint ()
Return the ‘fill point’.

setfillpoint (fillpoint)
Set the ‘fill point’.

getconfig ()
Return a configuration object containing the current configuration of the port.

setconfig (config)
Set the configuration from the argument, a configuration object.

getstatus (list)
Get status information on last error.

20.2 AL — Constants used with the al module

This module defines symbolic constants needed to use the built-in moduleal (see above); they are equivalent to
those defined in the C header file<audio.h> except that the name prefix ‘AL ’ is omitted. Read the module
source for a complete list of the defined names. Suggested use:

import al
from AL import *

20.3 cd — CD-ROM access on SGI systems

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon Graphics
systems.

The way the library works is as follows. A program opens the CD-ROM device withopen() and creates a parser
to parse the data from the CD withcreateparser() . The object returned byopen() can be used to read
data from the CD, but also to get status information for the CD-ROM device, and to get information about the CD,
such as the table of contents. Data from the CD is passed to the parser, which parses the frames, and calls any
callback functions that have previously been added.

An audio CD is divided intotracksor programs(the terms are used interchangeably). Tracks can be subdivided
into indices. An audio CD contains atable of contentswhich gives the starts of the tracks on the CD. Index 0 is
usually the pause before the start of a track. The start of the track as given by the table of contents is normally the
start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values, minutes,
seconds and frames. Most functions use the latter representation. Positions can be both relative to the beginning
of the CD, and to the beginning of the track.

Modulecd defines the following functions and constants:

createparser ()
Create and return an opaque parser object. The methods of the parser object are described below.

msftoframe (minutes, seconds, frames)
Converts a(minutes, seconds, frames) triple representing time in absolute time code into the corre-
sponding CD frame number.

open ([device[, mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of the player object are
described below. The device is the name of the SCSI device file, e.g.’/dev/scsi/sc0d4l0’ , or
None. If omitted orNone, the hardware inventory is consulted to locate a CD-ROM drive. Themode, if
not omited, should be the string’r’ .

20.2. AL — Constants used with the al module 645

The module defines the following variables:

exceptionerror
Exception raised on various errors.

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the callback of
typeaudio .

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned bygetstatus() :

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR
An error occurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent ofPAUSEDon older (non 3301) model Toshiba CD-ROM drives. Such drives have never
been shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by theaddcallback()
method of CD parser objects (see below).

20.3.1 Player Objects

Player objects (returned byopen()) have the following methods:

allowremoval ()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize ()
Returns the best value to use for thenum framesparameter of thereadda() method. Best is defined as
the value that permits a continuous flow of data from the CD-ROM drive.

close ()
Frees the resources associated with the player object. After callingclose() , the methods of the object
should no longer be used.

eject ()
Ejects the caddy from the CD-ROM drive.

getstatus ()

646 Chapter 20. SGI IRIX Specific Services

Returns information pertaining to the current state of the CD-ROM drive. The returned information is a
tuple with the following values:state, track, rtime, atime, ttime, first, last, scsi audio, cur block. rtime
is the time relative to the start of the current track;atime is the time relative to the beginning of the disc;
ttime is the total time on the disc. For more information on the meaning of the values, see the man page
CDgetstatus(3dm). The value ofstate is one of the following: ERROR, NODISC, READY, PLAYING,
PAUSED, STILL , or CDROM.

gettrackinfo (track)
Returns information about the specified track. The returned information is a tuple consisting of two ele-
ments, the start time of the track and the duration of the track.

msftoblock (min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time code into the correspond-
ing logical block number for the given CD-ROM drive. You should usemsftoframe() rather than
msftoblock() for comparing times. The logical block number differs from the frame number by an
offset required by certain CD-ROM drives.

play (start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output appears on
the CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of the disc.start is the
number of the track at which to start playing the CD; ifplay is 0, the CD will be set to an initial paused
state. The methodtogglepause() can then be used to commence play.

playabs (minutes, seconds, frames, play)
Like play() , except that the start is given in minutes, seconds, and frames instead of a track number.

playtrack (start, play)
Like play() , except that playing stops at the end of the track.

playtrackabs (track, minutes, seconds, frames, play)
Like play() , except that playing begins at the specified absolute time and ends at the end of the specified
track.

preventremoval ()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting the caddy.

readda (num frames)
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return value is
a string representing the audio frames. This string can be passed unaltered to theparseframe() method
of the parser object.

seek (minutes, seconds, frames)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to an absolute time code location specified inminutes, seconds, andframes. The return value
is the logical block number to which the pointer has been set.

seekblock (block)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified logical block number. The return value is the logical block number to which
the pointer has been set.

seektrack (track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified track. The return value is the logical block number to which the pointer has
been set.

stop ()
Stops the current playing operation.

togglepause ()
Pauses the CD if it is playing, and makes it play if it is paused.

20.3.2 Parser Objects

20.3. cd — CD-ROM access on SGI systems 647

Parser objects (returned bycreateparser()) have the following methods:

addcallback (type, func, arg)
Adds a callback for the parser. The parser has callbacks for eight different types of data in the digital audio
data stream. Constants for these types are defined at thecd module level (see above). The callback is called
as follows:func(arg, type, data) , wherearg is the user supplied argument,typeis the particular type
of callback, anddata is the data returned for thistypeof callback. The type of the data depends on thetype
of callback as follows:

Type Value
audio String which can be passed unmodified toal.writesamps() .
pnum Integer giving the program (track) number.
index Integer giving the index number.
ptime Tuple consisting of the program time in minutes, seconds, and frames.
atime Tuple consisting of the absolute time in minutes, seconds, and frames.
catalog String of 13 characters, giving the catalog number of the CD.
ident String of 12 characters, giving the ISRC identification number of the

recording. The string consists of two characters country code, three char-
acters owner code, two characters giving the year, and five characters
giving a serial number.

control Integer giving the control bits from the CD subcode data

deleteparser ()
Deletes the parser and frees the memory it was using. The object should not be used after this call. This call
is done automatically when the last reference to the object is removed.

parseframe (frame)
Parses one or more frames of digital audio data from a CD such as returned byreadda() . It deter-
mines which subcodes are present in the data. If these subcodes have changed since the last frame, then
parseframe() executes a callback of the appropriate type passing to it the subcode data found in the
frame. Unlike the C function, more than one frame of digital audio data can be passed to this method.

removecallback (type)
Removes the callback for the giventype.

resetparser ()
Resets the fields of the parser used for tracking subcodes to an initial state.resetparser() should be
called after the disc has been changed.

20.4 fl — FORMS library for graphical user interfaces

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library can
be retrieved by anonymous ftp from host ‘ftp.cs.ruu.nl ’, directory ‘SGI/FORMS’. It was last tested with
version 2.0b.

Most functions are literal translations of their C equivalents, dropping the initial ‘fl ’ from their name. Constants
used by the library are defined in moduleFL described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained by
the library to which new FORMS objects are added, all functions that add a FORMS object to a form are
methods of the Python object representing the form. Consequently, there are no Python equivalents for the
C functionsfl addto form() and fl end form() , and the equivalent offl bgn form() is called
fl.make form() .

Watch out for the somewhat confusing terminology: FORMS uses the wordobject for the buttons, sliders etc.
that you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS introduces
two new Python object types: form objects (representing an entire form) and FORMS objects (representing one
button, slider etc.). Hopefully this isn’t too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object classes
written in Python. The FORMS interface to GL event handling is available, though, so you can mix FORMS with
pure GL windows.

648 Chapter 20. SGI IRIX Specific Services

Please note: importing fl implies a call to the GL functionforeground() and to the FORMS routine
fl init() .

20.4.1 Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description of the
equivalent C function in the FORMS documentation:

make form (type, width, height)
Create a form with given type, width and height. This returns aform object, whose methods are described
below.

do forms ()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing interac-
tion, or the special valueFL.EVENT.

check forms ()
Check for FORMS events. Returns whatdo forms() above returns, orNone if there is no event that
immediately needs interaction.

set event call back (function)
Set the event callback function.

set graphics mode(rgbmode, doublebuffering)
Set the graphics modes.

get rgbmode ()
Return the current rgb mode. This is the value of the C global variablefl rgbmode .

show message (str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

show question (str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns1 if the user pressed YES,
0 if NO.

show choice (str1, str2, str3, but1[, but2[, but3]])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the button
clicked by the user (1, 2 or 3).

show input (prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user can enter a string. The
second argument is the default input string. It returns the string value as edited by the user.

show file selector (message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename selected by the user,
or None if the user presses Cancel.

get directory ()
get pattern ()
get filename ()

These functions return the directory, pattern and filename (the tail part only) selected by the user in the last
show file selector() call.

qdevice (dev)
unqdevice (dev)
isqueued (dev)
qtest ()
qread ()
qreset ()
qenter (dev, val)
get mouse()
tie (button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you want to han-

20.4. fl — FORMS library for graphical user interfaces 649

dle some GL events yourself when usingfl.do events() . When a GL event is detected that FORMS
cannot handle,fl.do forms() returns the special valueFL.EVENT and you should callfl.qread()
to read the event from the queue. Don’t use the equivalent GL functions!

color ()
mapcolor ()
getmcolor ()

See the description in the FORMS documentation offl color() , fl mapcolor() and
fl getmcolor() .

20.4.2 Form Objects

Form objects (returned bymake form() above) have the following methods. Each method corresponds to a
C function whose name is prefixed with ‘fl ’; and whose first argument is a form pointer; please refer to the
official FORMS documentation for descriptions.

All the add *() methods return a Python object representing the FORMS object. Methods of FORMS objects
are described below. Most kinds of FORMS object also have some methods specific to that kind; these methods
are listed here.

show form (placement, bordertype, name)
Show the form.

hide form ()
Hide the form.

redraw form ()
Redraw the form.

set form position (x, y)
Set the form’s position.

freeze form ()
Freeze the form.

unfreeze form ()
Unfreeze the form.

activate form ()
Activate the form.

deactivate form ()
Deactivate the form.

bgn group ()
Begin a new group of objects; return a group object.

end group ()
End the current group of objects.

find first ()
Find the first object in the form.

find last ()
Find the last object in the form.

add box (type, x, y, w, h, name)
Add a box object to the form. No extra methods.

add text (type, x, y, w, h, name)
Add a text object to the form. No extra methods.

add clock (type, x, y, w, h, name)
Add a clock object to the form.
Method:get clock() .

650 Chapter 20. SGI IRIX Specific Services

add button (type, x, y, w, h, name)
Add a button object to the form.
Methods:get button() , set button() .

add lightbutton (type, x, y, w, h, name)
Add a lightbutton object to the form.
Methods:get button() , set button() .

add roundbutton (type, x, y, w, h, name)
Add a roundbutton object to the form.
Methods:get button() , set button() .

add slider (type, x, y, w, h, name)
Add a slider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add valslider (type, x, y, w, h, name)
Add a valslider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add dial (type, x, y, w, h, name)
Add a dial object to the form.
Methods:set dial value() , get dial value() , set dial bounds() ,
get dial bounds() .

add positioner (type, x, y, w, h, name)
Add a positioner object to the form.
Methods:set positioner xvalue() , set positioner yvalue() ,
set positioner xbounds() , set positioner ybounds() ,
get positioner xvalue() , get positioner yvalue() ,
get positioner xbounds() , get positioner ybounds() .

add counter (type, x, y, w, h, name)
Add a counter object to the form.
Methods:set counter value() , get counter value() , set counter bounds() ,
set counter step() , set counter precision() , set counter return() .

add input (type, x, y, w, h, name)
Add a input object to the form.
Methods:set input() , get input() , set input color() , set input return() .

add menu(type, x, y, w, h, name)
Add a menu object to the form.
Methods:set menu() , get menu() , addto menu() .

add choice (type, x, y, w, h, name)
Add a choice object to the form.
Methods:set choice() , get choice() , clear choice() , addto choice() ,
replace choice() , delete choice() , get choice text() ,
set choice fontsize() , set choice fontstyle() .

add browser (type, x, y, w, h, name)
Add a browser object to the form.
Methods:set browser topline() , clear browser() , add browser line() ,
addto browser() , insert browser line() , delete browser line() ,
replace browser line() , get browser line() , load browser() ,
get browser maxline() , select browser line() , deselect browser line() ,
deselect browser() , isselected browser line() , get browser() ,
set browser fontsize() , set browser fontstyle() , set browser specialkey() .

20.4. fl — FORMS library for graphical user interfaces 651

add timer (type, x, y, w, h, name)
Add a timer object to the form.
Methods:set timer() , get timer() .

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

20.4.3 FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the following
methods:

set call back (function, argument)
Set the object’s callback function and argument. When the object needs interaction, the callback function
will be called with two arguments: the object, and the callback argument. (FORMS objects without a call-
back function are returned byfl.do forms() or fl.check forms() when they need interaction.)
Call this method without arguments to remove the callback function.

delete object ()
Delete the object.

show object ()
Show the object.

hide object ()
Hide the object.

redraw object ()
Redraw the object.

freeze object ()
Freeze the object.

unfreeze object ()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

652 Chapter 20. SGI IRIX Specific Services

Name C Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

20.5 FL — Constants used with the fl module

This module defines symbolic constants needed to use the built-in modulefl (see above); they are equivalent to
those defined in the C header file<forms.h> except that the name prefix ‘FL ’ is omitted. Read the module
source for a complete list of the defined names. Suggested use:

import fl
from FL import *

20.6 flp — Functions for loading stored FORMS designs

This module defines functions that can read form definitions created by the ‘form designer’ (fdesign) program
that comes with the FORMS library (see modulefl above).

For now, see the file ‘flp.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted here!

20.7 fm — Font Manager interface

This module provides access to the IRISFont Managerlibrary. It is available only on Silicon Graphics machines.
See also:4Sight User’s Guide, section 1, chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix operations;
cache operations; character operations (use string operations instead); some details of font info; individual glyph
metrics; and printer matching.

It supports the following operations:

20.5. FL — Constants used with the fl module 653

init ()
Initialization function. Callsfminit() . It is normally not necessary to call this function, since it is called
automatically the first time thefm module is imported.

findfont (fontname)
Return a font handle object. Callsfmfindfont(fontname) .

enumerate ()
Returns a list of available font names. This is an interface tofmenumerate() .

prstr (string)
Render a string using the current font (see thesetfont() font handle method below). Calls
fmprstr(string) .

setpath (string)
Sets the font search path. Callsfmsetpath(string) . (XXX Does not work!?!)

fontpath ()
Returns the current font search path.

Font handle objects support the following operations:

scalefont (factor)
Returns a handle for a scaled version of this font. Callsfmscalefont(fh, factor) .

setfont ()
Makes this font the current font. Note: the effect is undone silently when the font handle object is deleted.
Callsfmsetfont(fh) .

getfontname ()
Returns this font’s name. Callsfmgetfontname(fh) .

getcomment ()
Returns the comment string associated with this font. Raises an exception if there is none. Calls
fmgetcomment(fh) .

getfontinfo ()
Returns a tuple giving some pertinent data about this font. This is an interface tofmgetfontinfo() .
The returned tuple contains the following numbers:(printermatched, fixed width, xorig, yorig, xsize, ysize,
height, nglyphs) .

getstrwidth (string)
Returns the width, in pixels, ofstringwhen drawn in this font. Callsfmgetstrwidth(fh, string) .

20.8 gl — Graphics Library interface

This module provides access to the Silicon GraphicsGraphics Library. It is available only on Silicon Graphics
machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular, the use of
most GL calls is unsafe before the first window is opened.

The module is too large to document here in its entirety, but the following should help you to get started. The
parameter conventions for the C functions are translated to Python as follows:

• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point numbers. In most cases, Python integers
are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

• All string and character arguments are represented by Python strings, for instance,winopen(’Hi
There!’) androtate(900, ’z’) .

654 Chapter 20. SGI IRIX Specific Services

• All (short, long, unsigned) integer arguments or return values that are only used to specify the length of an
array argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted as function return values instead.
If more than one value must be returned, the return value is a tuple. If the C function has both a regular
return value (that is not omitted because of the previous rule) and an output argument, the return value
comes first in the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray (argument)
Equivalent to but faster than a number ofv3d() calls. Theargumentis a list (or tuple) of points. Each point
must be a tuple of coordinates(x, y, z) or (x, y) . The points may be 2- or 3-dimensional but must all
have the same dimension. Float and int values may be mixed however. The points are always converted to
3D double precision points by assumingz = 0.0 if necessary (as indicated in the man page), and for each
pointv3d() is called.

nvarray ()
Equivalent to but faster than a number ofn3f andv3f calls. The argument is an array (list or tuple) of
pairs of normals and points. Each pair is a tuple of a point and a normal for that point. Each point or normal
must be a tuple of coordinates(x, y, z) . Three coordinates must be given. Float and int values may be
mixed. For each pair,n3f() is called for the normal, and thenv3f() is called for the point.

vnarray ()
Similar tonvarray() but the pairs have the point first and the normal second.

nurbssurface (s k, t k, ctl, s ord, t ord, type)
Defines a nurbs surface. The dimensions ofctl[][] are computed as follows:[len(s k) - s ord] ,
[len(t k) - t ord] .

nurbscurve (knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints islen(knots) - order.

pwlcurve (points, type)
Defines a piecewise-linear curve.pointsis a list of points.typemust beN ST.

pick (n)
select (n)

The only argument to these functions specifies the desired size of the pick or select buffer.

endpick ()
endselect ()

These functions have no arguments. They return a list of integers representing the used part of the pick/select
buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:

20.8. gl — Graphics Library interface 655

import gl, GL, time

def main():
gl.foreground()
gl.prefposition(500, 900, 500, 900)
w = gl.winopen(’CrissCross’)
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color(GL.WHITE)
gl.clear()
gl.color(GL.RED)
gl.bgnline()
gl.v2f(0.0, 0.0)
gl.v2f(400.0, 400.0)
gl.endline()
gl.bgnline()
gl.v2f(400.0, 0.0)
gl.v2f(0.0, 400.0)
gl.endline()
time.sleep(5)

main()

See Also:

PyOpenGL: The Python OpenGL Binding
(http://pyopengl.sourceforge.net/)

An interface to OpenGL is also available; see information about thePyOpenGL project online at
http://pyopengl.sourceforge.net/. This may be a better option if support for SGI hardware from before about
1996 is not required.

20.9 DEVICE — Constants used with the gl module

This modules defines the constants used by the Silicon GraphicsGraphics Librarythat C programmers find in the
header file<gl/device.h> . Read the module source file for details.

20.10 GL — Constants used with the gl module

This module contains constants used by the Silicon GraphicsGraphics Library from the C header file
<gl/gl.h> . Read the module source file for details.

20.11 imgfile — Support for SGI imglib files

The imgfile module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unsupported file type, etc.

getsizes (file)
This function returns a tuple(x, y, z) wherex andy are the size of the image in pixels andz is the
number of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently supported.

656 Chapter 20. SGI IRIX Specific Services

read (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string
has either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first in the string. This
format is suitable to pass togl.lrectwrite() , for instance.

readscaled (file, x, y, filter[, blur])
This function is identical to read but it returns an image that is scaled to the givenx andy sizes. If thefilter
andblur parameters are omitted scaling is done by simply dropping or duplicating pixels, so the result will
be less than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms supported
are’impulse’ , ’box’ , ’triangle’ , ’quadratic’ and’gaussian’ . If a filter is specifiedblur
is an optional parameter specifying the blurriness of the filter. It defaults to1.0 .

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from
bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X).
The default is zero.

write (file, data, x, y, z)
This function writes the RGB or greyscale data indata to image filefile. x andy give the size of the image,
z is 1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values of which only the
lower three bytes are used). These are the formats returned bygl.lrectread() .

20.12 jpeg — Read and write JPEG files

The modulejpeg provides access to the jpeg compressor and decompressor written by the Independent JPEG
Group (IJG). JPEG is a standard for compressing pictures; it is defined in ISO 10918. For details on JPEG or the
Independent JPEG Group software refer to the JPEG standard or the documentation provided with the software.

A portable interface to JPEG image files is available with the Python Imaging Library (PIL) by Fredrik Lundh.
Information on PIL is available athttp://www.pythonware.com/products/pil/.

The jpeg module defines an exception and some functions.

exceptionerror
Exception raised bycompress() anddecompress() in case of errors.

compress (data, w, h, b)
Treat data as a pixmap of widthw and heighth, with b bytes per pixel. The data is in SGI GL order, so the
first pixel is in the lower-left corner. This means thatgl.lrectread() return data can immediately be
passed tocompress() . Currently only 1 byte and 4 byte pixels are allowed, the former being treated as
greyscale and the latter as RGB color.compress() returns a string that contains the compressed picture,
in JFIF format.

decompress (data)
Data is a string containing a picture in JFIF format. It returns a tuple(data, width, height, bytesper-
pixel) . Again, the data is suitable to pass togl.lrectwrite() .

setoption (name, value)
Set various options. Subsequentcompress() anddecompress() calls will use these options. The
following options are available:

20.12. jpeg — Read and write JPEG files 657

Option Effect
’forcegray’ Force output to be grayscale, even if input is RGB.
’quality’ Set the quality of the compressed image to a value be-

tween0 and 100 (default is75). This only affects
compression.

’optimize’ Perform Huffman table optimization. Takes longer,
but results in smaller compressed image. This only
affects compression.

’smooth’ Perform inter-block smoothing on uncompressed im-
age. Only useful for low-quality images. This only
affects decompression.

See Also:

JPEG Still Image Data Compression Standard
The canonical reference for the JPEG image format, by Pennebaker and Mitchell.

Information Technology - Digital Compression and Coding of Continuous-tone Still Images - Requirements and Guidelines
(http://www.w3.org/Graphics/JPEG/itu-t81.pdf)

The ISO standard for JPEG is also published as ITU T.81. This is available online in PDF form.

658 Chapter 20. SGI IRIX Specific Services

CHAPTER

TWENTYONE

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS operating system
(versions 4 and 5; the latter is also known as Solaris version 2).

21.1 sunaudiodev — Access to Sun audio hardware

This module allows you to access the Sun audio interface. The Sun audio hardware is capable of recording and
playing back audio data in u-LAW format with a sample rate of 8K per second. A full description can be found in
theaudio(7I) manual page.

The moduleSUNAUDIODEVdefines constants which may be used with this module.

This module defines the following variables and functions:

exceptionerror
This exception is raised on all errors. The argument is a string describing what went wrong.

open (mode)
This function opens the audio device and returns a Sun audio device object. This object can then be used
to do I/O on. Themodeparameter is one of’r’ for record-only access,’w’ for play-only access,’rw’
for both and’control’ for access to the control device. Since only one process is allowed to have the
recorder or player open at the same time it is a good idea to open the device only for the activity needed.
Seeaudio(7I) for details.

As per the manpage, this module first looks in the environment variableAUDIODEVfor the base audio
device filename. If not found, it falls back to ‘/dev/audio’. The control device is calculated by appending
“ctl” to the base audio device.

21.1.1 Audio Device Objects

The audio device objects are returned byopen() define the following methods (exceptcontrol objects which
only providegetinfo() , setinfo() , fileno() , anddrain()):

close ()
This method explicitly closes the device. It is useful in situations where deleting the object does not imme-
diately close it since there are other references to it. A closed device should not be used again.

fileno ()
Returns the file descriptor associated with the device. This can be used to set upSIGPOLL notification, as
described below.

drain ()
This method waits until all pending output is processed and then returns. Calling this method is often not
necessary: destroying the object will automatically close the audio device and this will do an implicit drain.

flush ()
This method discards all pending output. It can be used avoid the slow response to a user’s stop request (due
to buffering of up to one second of sound).

659

getinfo ()
This method retrieves status information like input and output volume, etc. and returns it in the form of
an audio status object. This object has no methods but it contains a number of attributes describing the
current device status. The names and meanings of the attributes are described in<sun/audioio.h>
and in theaudio(7I) manual page. Member names are slightly different from their C counterparts: a status
object is only a single structure. Members of theplay substructure have ‘o ’ prepended to their name
and members of therecord structure have ‘i ’. So, the C memberplay.sample rate is accessed
aso sample rate , record.gain asi gain andmonitor gain plainly asmonitor gain .

ibufcount ()
This method returns the number of samples that are buffered on the recording side, i.e. the program will not
block on aread() call of so many samples.

obufcount ()
This method returns the number of samples buffered on the playback side. Unfortunately, this number
cannot be used to determine a number of samples that can be written without blocking since the kernel
output queue length seems to be variable.

read (size)
This method readssizesamples from the audio input and returns them as a Python string. The function
blocks until enough data is available.

setinfo (status)
This method sets the audio device status parameters. Thestatusparameter is an device status object as
returned bygetinfo() and possibly modified by the program.

write (samples)
Write is passed a Python string containing audio samples to be played. If there is enough buffer space free
it will immediately return, otherwise it will block.

The audio device supports asynchronous notification of various events, through the SIGPOLL signal. Here’s an
example of how you might enable this in Python:

def handle_sigpoll(signum, frame):
print ’I got a SIGPOLL update’

import fcntl, signal, STROPTS

signal.signal(signal.SIGPOLL, handle_sigpoll)
fcntl.ioctl(audio_obj.fileno(), STROPTS.I_SETSIG, STROPTS.S_MSG)

21.2 SUNAUDIODEV— Constants used with sunaudiodev

This is a companion module tosunaudiodev which defines useful symbolic constants likeMIN GAIN,
MAX GAIN, SPEAKER, etc. The names of the constants are the same names as used in the C include file
<sun/audioio.h> , with the leading string ‘AUDIO ’ stripped.

660 Chapter 21. SunOS Specific Services

CHAPTER

TWENTYTWO

MS Windows Specific Services

This chapter describes modules that are only available on MS Windows platforms.

msvcrt Miscellaneous useful routines from the MS VC++ runtime.
winreg Routines and objects for manipulating the Windows registry.

winsound Access to the sound-playing machinery for Windows.

22.1 msvcrt – Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms. Some higher-level modules
use these functions to build the Windows implementations of their services. For example, thegetpass module
uses this in the implementation of thegetpass() function.

Further documentation on these functions can be found in the Platform API documentation.

22.1.1 File Operations

locking (fd, mode, nbytes)
Lock part of a file based on file descriptorfd from the C runtime. RaisesIOError on failure. The locked
region of the file extends from the current file position fornbytesbytes, and may continue beyond the end
of the file.modemust be one of theLK * constants listed below. Multiple regions in a file may be locked at
the same time, but may not overlap. Adjacent regions are not merged; they must be unlocked individually.

LK LOCK
LK RLCK

Locks the specified bytes. If the bytes cannot be locked, the program immediately tries again after 1 second.
If, after 10 attempts, the bytes cannot be locked,IOError is raised.

LK NBLCK
LK NBRLCK

Locks the specified bytes. If the bytes cannot be locked,IOError is raised.

LK UNLCK
Unlocks the specified bytes, which must have been previously locked.

setmode (fd, flags)
Set the line-end translation mode for the file descriptorfd. To set it to text mode,flags should be
os.O TEXT; for binary, it should beos.O BINARY.

open osfhandle (handle, flags)
Create a C runtime file descriptor from the file handlehandle. Theflagsparameter should be a bit-wise
OR of os.O APPEND, os.O RDONLY, andos.O TEXT. The returned file descriptor may be used as a
parameter toos.fdopen() to create a file object.

get osfhandle (fd)
Return the file handle for the file descriptorfd. RaisesIOError if fd is not recognized.

661

22.1.2 Console I/O

kbhit ()
Return true if a keypress is waiting to be read.

getch ()
Read a keypress and return the resulting character. Nothing is echoed to the console. This call will block if a
keypress is not already available, but will not wait forEnter to be pressed. If the pressed key was a special
function key, this will return’\000’ or ’\xe0’ ; the next call will return the keycode. TheControl-C
keypress cannot be read with this function.

getche ()
Similar togetch() , but the keypress will be echoed if it represents a printable character.

putch (char)
Print the characterchar to the console without buffering.

ungetch (char)
Cause the characterchar to be “pushed back” into the console buffer; it will be the next character read by
getch() or getche() .

22.1.3 Other Functions

heapmin ()
Force themalloc() heap to clean itself up and return unused blocks to the operating system. This only
works on Windows NT. On failure, this raisesIOError .

22.2 winreg – Windows registry access

New in version 2.0.

These functions expose the Windows registry API to Python. Instead of using an integer as the registry handle, a
handle object is used to ensure that the handles are closed correctly, even if the programmer neglects to explicitly
close them.

This module exposes a very low-level interface to the Windows registry; it is expected that in the future a new
winreg module will be created offering a higher-level interface to the registry API.

This module offers the following functions:

CloseKey (hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note that ifhkeyis not closed using this method, (or thehandle.Close() closed when thehkeyobject
is destroyed by Python.

ConnectRegistry (computer name, key)
Establishes a connection to a predefined registry handle on another computer, and returns ahandle object

computer nameis the name of the remote computer, of the formr"\\computername" . If None, the
local computer is used.

keyis the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, anEnvironmentError exception
is raised.

CreateKey (key, subkey)
Creates or opens the specified key, returning ahandle object

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the key this method opens or creates.

If keyis one of the predefined keys,sub keymay beNone. In that case, the handle returned is the same key
handle passed in to the function.

662 Chapter 22. MS Windows Specific Services

If the key already exists, this function opens the existing key

The return value is the handle of the opened key. If the function fails, anEnvironmentError exception
is raised.

DeleteKey (key, subkey)
Deletes the specified key.

keyis an already open key, or any one of the predefinedHKEY * constants.

sub keyis a string that must be a subkey of the key identified by thekeyparameter. This value must not be
None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, an
EnvironmentError exception is raised.

DeleteValue (key, value)
Removes a named value from a registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

valueis a string that identifies the value to remove.

EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

keyis an already open key, or any one of the predefinedHKEY * constants.

indexis an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly until
anEnvironmentError exception is raised, indicating, no more values are available.

EnumValue (key, index)
Enumerates values of an open registry key, returning a tuple.

keyis an already open key, or any one of the predefinedHKEY * constants.

indexis an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly, until
anEnvironmentError exception is raised, indicating no more values.

The result is a tuple of 3 items:

Index Meaning
0 A string that identifies the value name
1 An object that holds the value data, and whose type

depends on the underlying registry type
2 An integer that identifies the type of the value data

FlushKey (key)
Writes all the attributes of a key to the registry.

keyis an already open key, or one of the predefinedHKEY * constants.

It is not necessary to call RegFlushKey to change a key. Registry changes are flushed to disk by the registry
using its lazy flusher. Registry changes are also flushed to disk at system shutdown. UnlikeCloseKey() ,
theFlushKey() method returns only when all the data has been written to the registry. An application
should only callFlushKey() if it requires absolute certainty that registry changes are on disk.

If you don’t know whether aFlushKey() call is required, it probably isn’t.

RegLoadKey (key, subkey, file name)
Creates a subkey under the specified key and stores registration information from a specified file into that
subkey.

keyis an already open key, or any of the predefinedHKEY * constants.

sub keyis a string that identifies the subkey to load

file nameis the name of the file to load registry data from. This file must have been created with the
SaveKey() function. Under the file allocation table (FAT) file system, the filename may not have an
extension.

22.2. winreg – Windows registry access 663

A call to LoadKey() fails if the calling process does not have theSE RESTOREPRIVILEGE privilege.
Note that privileges are different than permissions - see the Win32 documentation for more details.

If keyis a handle returned byConnectRegistry() , then the path specified infileNameis relative to the
remote computer.

The Win32 documentation implieskeymust be in theHKEY USERor HKEY LOCAL MACHINEtree. This
may or may not be true.

OpenKey(key, subkey[, res = 0][, sam = KEY READ])
Opens the specified key, returning ahandle object

keyis an already open key, or any one of the predefinedHKEY * constants.

sub keyis a string that identifies the subkey to open

res is a reserved integer, and must be zero. The default is zero.

samis an integer that specifies an access mask that describes the desired security access for the key. Default
is KEY READ

The result is a new handle to the specified key

If the function fails,EnvironmentError is raised.

OpenKeyEx()
The functionality ofOpenKeyEx() is provided viaOpenKey() , by the use of default arguments.

QueryInfoKey (key)
Returns information about a key, as a tuple.

keyis an already open key, or one of the predefinedHKEY * constants.

The result is a tuple of 3 items:

Index Meaning
0 An integer giving the number of sub keys this key has.
1 An integer giving the number of values this key has.
2 A long integer giving when the key was last modi-

fied (if available) as 100’s of nanoseconds since Jan
1, 1600.

QueryValue (key, subkey)
Retrieves the unnamed value for a key, as a string

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that holds the name of the subkey with which the value is associated. If this parameter is
None or empty, the function retrieves the value set by theSetValue() method for the key identified by
key.

Values in the registry have name, type, and data components. This method retrieves the data for a key’s first
value that has a NULL name. But the underlying API call doesn’t return the type, Lame Lame Lame, DO
NOT USE THIS!!!

QueryValueEx (key, valuename)
Retrieves the type and data for a specified value name associated with an open registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

value nameis a string indicating the value to query.

The result is a tuple of 2 items:

Index Meaning
0 The value of the registry item.
1 An integer giving the registry type for this value.

SaveKey (key, file name)
Saves the specified key, and all its subkeys to the specified file.

keyis an already open key, or one of the predefinedHKEY * constants.

file nameis the name of the file to save registry data to. This file cannot already exist. If this filename
includes an extension, it cannot be used on file allocation table (FAT) file systems by theLoadKey() ,
ReplaceKey() or RestoreKey() methods.

664 Chapter 22. MS Windows Specific Services

If key represents a key on a remote computer, the path described byfile nameis relative to the remote
computer. The caller of this method must possess theSeBackupPrivilege security privilege. Note that
privileges are different than permissions - see the Win32 documentation for more details.

This function passes NULL forsecurity attributesto the API.

SetValue (key, subkey, type, value)
Associates a value with a specified key.

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the subkey with which the value is associated.

typeis an integer that specifies the type of the data. Currently this must beREG SZ, meaning only strings
are supported. Use theSetValueEx() function for support for other data types.

valueis a string that specifies the new value.

If the key specified by thesub keyparameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as
files with the filenames stored in the configuration registry. This helps the registry perform efficiently.

The key identified by thekeyparameter must have been opened withKEY SET VALUEaccess.

SetValueEx (key, valuename, reserved, type, value)
Stores data in the value field of an open registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the subkey with which the value is associated.

typeis an integer that specifies the type of the data. This should be one of the following constants defined
in this module:

Constant Meaning
REG BINARY Binary data in any form.
REG DWORD A 32-bit number.
REG DWORDLITTLE ENDIAN A 32-bit number in little-endian format.
REG DWORDBIG ENDIAN A 32-bit number in big-endian format.
REG EXPANDSZ Null-terminated string containing references to envi-

ronment variables (‘%PATH%’).
REG LINK A Unicode symbolic link.
REG MULTI SZ A sequence of null-terminated strings, terminated by

two null characters. (Python handles this termination
automatically.)

REG NONE No defined value type.
REG RESOURCELIST A device-driver resource list.
REG SZ A null-terminated string.

reservedcan be anything - zero is always passed to the API.

valueis a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key identified by
the key parameter must have been opened withKEY SET VALUEaccess.

To open the key, use theCreateKeyEx() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as
files with the filenames stored in the configuration registry. This helps the registry perform efficiently.

22.2.1 Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To guarantee
cleanup, you can call either theClose() method on the object, or theCloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use of the
handle object is encouraged.

22.2. winreg – Windows registry access 665

Handle objects provide semantics fornonzero () - thus

if handle:
print "Yes"

will print Yes if the handle is currently valid (has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference the same
underlying Windows handle value.

Handle objects can be converted to an integer (eg, using the builtinint() function, in which case the underlying
Windows handle value is returned. You can also use theDetach() method to return the integer handle, and also
disconnect the Windows handle from the handle object.

Close ()
Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

Detach ()
Detaches the Windows handle from the handle object.

The result is an integer (or long on 64 bit Windows) that holds the value of the handle before it is detached.
If the handle is already detached or closed, this will return zero.

After calling this function, the handle is effectively invalidated, but the handle is not closed. You would call
this function when you need the underlying Win32 handle to exist beyond the lifetime of the handle object.

22.3 winsound — Sound-playing interface for Windows

New in version 1.5.2.

Thewinsound module provides access to the basic sound-playing machinery provided by Windows platforms.
It includes functions and several constants.

Beep(frequency, duration)
Beep the PC’s speaker. Thefrequencyparameter specifies frequency, in hertz, of the sound, and must be in
the range 37 through 32,767. Thedurationparameter specifies the number of milliseconds the sound should
last. If the system is not able to beep the speaker,RuntimeError is raised.Note: Under Windows 95
and 98, the WindowsBeep() function exists but is useless (it ignores its arguments). In that case Python
simulates it via direct port manipulation (added in version 2.1). It’s unknown whether that will work on all
systems. New in version 1.6.

PlaySound (sound, flags)
Call the underlyingPlaySound() function from the Platform API. Thesoundparameter may be a file-
name, audio data as a string, orNone. Its interpretation depends on the value offlags, which can be a bit-
wise ORed combination of the constants described below. If the system indicates an error,RuntimeError
is raised.

MessageBeep ([type=MB OK])
Call the underlyingMessageBeep() function from the Platform API. This plays a sound as spec-
ified in the registry. Thetype argument specifies which sound to play; possible values are-1 ,
MB ICONASTERISK, MB ICONEXCLAMATION, MB ICONHAND, MB ICONQUESTION, andMB OK,
all described below. The value-1 produces a “simple beep”; this is the final fallback if a sound cannot be
played otherwise. New in version 2.3.

SND FILENAME
Thesoundparameter is the name of a WAV file. Do not use withSND ALIAS .

SND ALIAS
Thesoundparameter is a sound association name from the registry. If the registry contains no such name,
play the system default sound unlessSND NODEFAULTis also specified. If no default sound is registered,
raiseRuntimeError . Do not use withSND FILENAME.

666 Chapter 22. MS Windows Specific Services

All Win32 systems support at least the following; most systems support many more:

PlaySound() name Corresponding Control Panel Sound name
’SystemAsterisk’ Asterisk
’SystemExclamation’ Exclamation
’SystemExit’ Exit Windows
’SystemHand’ Critical Stop
’SystemQuestion’ Question

For example:

import winsound
Play Windows exit sound.
winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

Probably play Windows default sound, if any is registered (because
"*" probably isn’t the registered name of any sound).
winsound.PlaySound("*", winsound.SND_ALIAS)

SND LOOP
Play the sound repeatedly. TheSND ASYNCflag must also be used to avoid blocking. Cannot be used with
SND MEMORY.

SND MEMORY
Thesoundparameter toPlaySound() is a memory image of a WAV file, as a string.

Note: This module does not support playing from a memory image asynchronously, so a combination of
this flag andSND ASYNCwill raiseRuntimeError .

SND PURGE
Stop playing all instances of the specified sound.

SND ASYNC
Return immediately, allowing sounds to play asynchronously.

SND NODEFAULT
If the specified sound cannot be found, do not play the system default sound.

SND NOSTOP
Do not interrupt sounds currently playing.

SND NOWAIT
Return immediately if the sound driver is busy.

MB ICONASTERISK
Play theSystemDefault sound.

MB ICONEXCLAMATION
Play theSystemExclamation sound.

MB ICONHAND
Play theSystemHand sound.

MB ICONQUESTION
Play theSystemQuestion sound.

MB OK
Play theSystemDefault sound.

22.3. winsound — Sound-playing interface for Windows 667

668

APPENDIX

A

Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel free to
contribute documentation for them! (Send via email todocs@python.org.)

The idea and original contents for this chapter were taken from a posting by Fredrik Lundh; the specific contents
of this chapter have been substantially revised.

A.1 Frameworks

Frameworks tend to be harder to document, but are well worth the effort spent.

test — Regression testing framework. This is used for the Python regression test, but is useful for other Python
libraries as well. This is a package rather than a single module.

A.2 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm.”

bdb — A generic Python debugger base class (used by pdb).

ihooks — Import hook support (forrexec ; may become obsolete).

platform — This module tries to retrieve as much platform identifying data as possible. It makes this infor-
mation available via function APIs. If called from the command line, it prints the platform information
concatenated as single string tosys.stdout . The output format is useable as part of a filename. New in
version 2.3.

smtpd — An SMTP daemon implementation which meets the minimum requirements for RFC 821 confor-
mance.

A.3 Platform specific modules

These modules are used to implement theos.path module, and are not documented beyond this mention.
There’s little need to document these.

ntpath — Implementation ofos.path on Win32, Win64, WinCE, and OS/2 platforms.

posixpath — Implementation ofos.path on POSIX.

bsddb185 — Backwards compatibility module for systems which still use the Berkeley DB 1.85 module. It is
normally only available on certain BSD Unix-based systems. It should never be used directly.

669

A.4 Multimedia

audiodev — Platform-independent API for playing audio data.

linuxaudiodev — Play audio data on the Linux audio device. Replaced in Python 2.3 by theossaudiodev
module.

sunaudio — Interpret Sun audio headers (may become obsolete or a tool/demo).

toaiff — Convert ”arbitrary” sound files to AIFF files; should probably become a tool or demo. Requires the
external programsox.

ossaudiodev — Play audio data via the Open Sound System API. This is usable on Linux, some flavors of
BSD, and some commercial UNIX platforms.

A.5 Obsolete

These modules are not normally available for import; additional work must be done to make them available.

Those which are written in Python will be installed into the directory ‘lib-old/’ installed as part of the standard
library. To use these, the directory must be added tosys.path , possibly using PYTHONPATH.

Obsolete extension modules written in C are not built by default. Under UNIX , these must be enabled by uncom-
menting the appropriate lines in ‘Modules/Setup’ in the build tree and either rebuilding Python if the modules are
statically linked, or building and installing the shared object if using dynamically-loaded extensions.

addpack — Alternate approach to packages. Use the built-in package support instead.

cmp — File comparison function. Use the newerfilecmp instead.

cmpcache — Caching version of the obsoletecmp module. Use the newerfilecmp instead.

codehack — Extract function name or line number from a function code object (these are now accessible as
attributes:co.co name, func.func name, co.co firstlineno).

dircmp — Class to build directory diff tools on (may become a demo or tool).Deprecated since release 2.0.
Thefilecmp module replacesdircmp .

dump — Print python code that reconstructs a variable.

fmt — Text formatting abstractions (too slow).

lockfile — Wrapper around FCNTL file locking (usefcntl.lockf() /flock() instead; seefcntl).

newdir — Newdir() function (the standarddir() is now just as good).

Para — Helper forfmt .

poly — Polynomials.

regex — Emacs-style regular expression support; may still be used in some old code (extension module). Refer
to thePython 1.6 Documentationfor documentation.

regsub — Regular expression based string replacement utilities, for use withregex (extension module). Refer
to thePython 1.6 Documentationfor documentation.

tb — Print tracebacks, with a dump of local variables (usepdb.pm() or traceback instead).

timing — Measure time intervals to high resolution (usetime.clock() instead). (This is an extension
module.)

tzparse — Parse a timezone specification (unfinished; may disappear in the future, and does not work when
the TZ environment variable is not set).

670 Appendix A. Undocumented Modules

util — Useful functions that don’t fit elsewhere.

whatsound — Recognize sound files; usesndhdr instead.

zmod — Compute properties of mathematical “fields.”

The following modules are obsolete, but are likely to re-surface as tools or scripts:

find — Find files matching pattern in directory tree.

grep — grep implementation in Python.

packmail — Create a self-unpacking UNIX shell archive.

The following modules were documented in previous versions of this manual, but are now considered obsolete.
The source for the documentation is still available as part of the documentation source archive.

ni — Import modules in “packages.” Basic package support is now built in. The built-in support is very similar
to what is provided in this module.

rand — Old interface to the random number generator.

soundex — Algorithm for collapsing names which sound similar to a shared key. The specific algorithm doesn’t
seem to match any published algorithm. (This is an extension module.)

A.6 SGI-specific Extension modules

The following are SGI specific, and may be out of touch with the current version of reality.

cl — Interface to the SGI compression library.

sv — Interface to the “simple video” board on SGI Indigo (obsolete hardware).

A.6. SGI-specific Extension modules 671

672

APPENDIX

B

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to maintain
this reputation, the developers would like to know of any deficiencies you find in Python or its documentation.

Before submitting a report, you will be required to log into SourceForge; this will make it possible for the devel-
opers to contact you for additional information if needed. It is not possible to submit a bug report anonymously.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group id=5470). The bug tracker offers a Web form which allows pertinent
information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in
doing so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the
problem has already been fixed for the next release, or additional information is needed (in which case you are
welcome to provide it if you can!). To do this, search the bug database using the search box on the left side of the
page.

If the problem you’re reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group id=5470). Select the “Submit a Bug” link at the top of the page to open the
bug reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and “Details”
fields. For the summary, enter averyshort description of the problem; less than ten words is good. In the Details
field, describe the problem in detail, including what you expected to happen and what did happen. Be sure to
include the version of Python you used, whether any extension modules were involved, and what hardware and
software platform you were using (including version information as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug report into
a broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem.
You will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

673

674

APPENDIX

C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.com/). In 2001, the Python Software Foundation (PSF, seehttp://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (seehttp://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes

2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

675

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.3.5

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.3.5 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.3.5 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyrightc© 2001-2003 Python Soft-
ware Foundation; All Rights Reserved” are retained in Python 2.3.5 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.3.5 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.3.5.

4. PSF is making Python 2.3.5 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.3.5 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.3.5 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3.5, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.3.5, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

676 Appendix C. History and License

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyrightc© 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

C.2. Terms and conditions for accessing or otherwise using Python 677

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

678 Appendix C. History and License

MODULE INDEX

Symbols
builtin , 95
future , 95
main , 95

winreg , 662

A
aifc , 565
AL, 645
al , 643
anydbm, 342
array , 165
asynchat , 460
asyncore , 458
atexit , 50
audioop , 561

B
base64 , 509
BaseHTTPServer , 445
Bastion , 610
binascii , 509
binhex , 511
bisect , 162
bsddb , 344
bz2 , 350

C
calendar , 180
cd , 645
cgi , 401
CGIHTTPServer , 448
cgitb , 408
chunk , 571
cmath , 157
cmd, 182
code , 86
codecs , 122
codeop , 88
colorsys , 572
commands, 379
compileall , 626
compiler , 635
compiler.ast , 636
compiler.visitor , 640

ConfigParser , 176
Cookie , 448
copy , 77
copy reg , 74
cPickle , 74
crypt , 365
cStringIO , 120
csv , 517
curses , 237
curses.ascii , 252
curses.panel , 254
curses.textpad , 251
curses.wrapper , 252

D
datetime , 214
dbhash , 343
dbm, 367
DEVICE, 656
difflib , 112
dircache , 206
dis , 626
distutils , 633
dl , 366
doctest , 134
DocXMLRPCServer , 457
dumbdbm, 346
dummy thread , 339
dummy threading , 339

E
email , 469
email.Charset , 482
email.Encoders , 484
email.Errors , 484
email.Generator , 477
email.Header , 480
email.Iterators , 486
email.Message , 469
email.Parser , 475
email.Utils , 485
encodings.idna , 129
errno , 282
exceptions , 31

679

F
fcntl , 371
filecmp , 210
fileinput , 178
FL, 653
fl , 648
flp , 653
fm , 653
fnmatch , 288
formatter , 465
fpectl , 49
fpformat , 119
ftplib , 423

G
gc , 43
gdbm, 368
getopt , 255
getpass , 237
gettext , 295
GL, 656
gl , 654
glob , 288
gopherlib , 426
grp , 365
gzip , 349

H
heapq , 163
hmac, 579
hotshot , 394
hotshot.stats , 395
htmlentitydefs , 527
htmllib , 525
HTMLParser , 521
httplib , 420

I
imageop , 564
imaplib , 428
imgfile , 656
imghdr , 573
imp , 81
inspect , 59
itertools , 170

J
jpeg , 657

K
keyword , 623

L
linecache , 65
locale , 290
logging , 303

M
mailbox , 495
mailcap , 494
marshal , 78
math , 155
md5, 579
mhlib , 497
mimetools , 498
mimetypes , 500
MimeWriter , 502
mimify , 502
mmap, 341
mpz, 581
msvcrt , 661
multifile , 504
mutex , 236

N
netrc , 515
new, 93
nis , 378
nntplib , 432

O
operator , 55
optparse , 257
os , 187
os.path , 204
ossaudiodev , 574

P
parser , 613
pdb , 381
pickle , 66
pipes , 373
pkgutil , 86
popen2 , 212
poplib , 426
posix , 363
posixfile , 374
pprint , 89
profile , 390
pstats , 391
pty , 370
pwd, 364
py compile , 625
pyclbr , 624
pydoc , 133

Q
Queue, 340
quopri , 512

R
random , 158
re , 100
readline , 360
repr , 91

680 Module Index

resource , 376
rexec , 607
rfc822 , 505
rgbimg , 573
rlcompleter , 361
robotparser , 516
rotor , 582

S
sched , 235
ScrolledText , 601
select , 330
sets , 167
sgmllib , 523
sha , 580
shelve , 75
shlex , 184
shutil , 289
signal , 319
SimpleHTTPServer , 447
SimpleXMLRPCServer , 455
site , 93
smtplib , 436
sndhdr , 574
socket , 321
SocketServer , 443
stat , 207
statcache , 209
statvfs , 210
string , 97
StringIO , 119
stringprep , 131
struct , 110
sunau , 567
SUNAUDIODEV, 660
sunaudiodev , 659
symbol , 622
sys , 37
syslog , 378

T
tabnanny , 624
tarfile , 355
telnetlib , 439
tempfile , 281
TERMIOS, 370
termios , 369
test , 152
test.test support , 154
textwrap , 120
thread , 331
threading , 332
time , 230
timeit , 396
Tix , 596
Tkinter , 585
token , 622
tokenize , 623

traceback , 63
tty , 370
turtle , 601
types , 51

U
unicodedata , 130
unittest , 141
urllib , 408
urllib2 , 413
urlparse , 441
user , 94
UserDict , 53
UserList , 54
UserString , 54
uu , 512

W
warnings , 79
wave, 569
weakref , 45
webbrowser , 399
whichdb , 344
whrandom , 161
winsound , 666

X
xdrlib , 513
xml.dom , 534
xml.dom.minidom , 543
xml.dom.pulldom , 547
xml.parsers.expat , 527
xml.sax , 548
xml.sax.handler , 549
xml.sax.saxutils , 553
xml.sax.xmlreader , 554
xmllib , 558
xmlrpclib , 452
xreadlines , 180

Z
zipfile , 352
zipimport , 84
zlib , 347

Module Index 681

682

INDEX

Symbols
.ini

file, 176
.pdbrc

file, 382
.pythonrc.py

file, 94
==

operator, 15
abs () (in module operator), 56
add () (AddressList method), 509
add () (in module operator), 56
and () (in module operator), 56
bases (class attribute), 30
builtin (built-in module),95
call () (Generator method), 478
class (instance attribute), 30
cmp () (instance method), 15
concat () (in module operator), 57
contains () (Message method), 471
contains () (in module operator), 57
copy () (copy protocol), 78
deepcopy () (copy protocol), 78
delitem () (Message method), 471
delitem () (in module operator), 57
delslice () (in module operator), 57
dict (instance attribute), 70
dict (object attribute), 30
displayhook (data in sys), 38
div () (in module operator), 56
eq () (Charset method), 483
eq () (Header method), 481
eq () (in module operator), 55
excepthook (data in sys), 38
floordiv () (in module operator), 56
future (standard module),95
ge () (in module operator), 55
getinitargs () (copy protocol), 70
getitem () (Message method), 471
getitem () (in module operator), 57
getnewargs () (copy protocol), 70
getslice () (in module operator), 57
getstate () (copy protocol), 70
gt () (in module operator), 55
iadd () (AddressList method), 509

import () (in module), 3
init () (NullTranslations method), 297
init () (method), 307
init () (instance constructor), 70
inv () (in module operator), 56
invert () (in module operator), 56
isub () (AddressList method), 509
iter () (container method), 17
iter () (iterator method), 17
le () (in module operator), 55
len () (AddressList method), 508
len () (Message method), 471
lshift () (in module operator), 56
lt () (in module operator), 55
main (built-in module),95
members (object attribute), 30
methods (object attribute), 30
mod () (in module operator), 56
mul () (in module operator), 56
name (class attribute), 31
ne () (Header method), 481, 483
ne () (in module operator), 55
neg () (in module operator), 56
not () (in module operator), 56
or () (in module operator), 56
pos () (in module operator), 56
pow () (in module operator), 57
repeat () (in module operator), 57
repr () (netrc method), 516
rshift () (in module operator), 57
setitem () (Message method), 471
setitem () (in module operator), 57
setslice () (in module operator), 58
setstate () (copy protocol), 70
stderr (data in sys), 42
stdin (data in sys), 42
stdout (data in sys), 42
str () (AddressList method), 508
str () (Charset method), 483
str () (Header method), 481
str () (Message method), 470
str () (date method), 218
str () (datetime method), 223
str () (time method), 224
sub () (AddressList method), 509
sub () (in module operator), 57

683

truediv () (in module operator), 57
unicode () (Header method), 481
xor () (in module operator), 57

exit() (in module os), 199
getframe() (in module sys), 40
locale (built-in module), 290
parse() (NullTranslations method), 297
structure() (in module email.Iterators), 487
urlopener (data in urllib), 410
winreg (extension module),662

% formatting, 22
% interpolation, 22

A
A-LAW, 566, 574
a2b base64() (in module binascii), 510
a2b hex() (in module binascii), 511
a2b hqx() (in module binascii), 510
a2b qp() (in module binascii), 510
a2b uu() (in module binascii), 510
ABDAY 1 ... ABDAY 7 (data in locale), 293
ABMON1 ... ABMON 12 (data in locale), 293
abort()

FTP method, 424
in module os, 198

above() (method), 255
abs()

in module , 4
in module operator, 56

abspath() (in module os.path), 204
AbstractBasicAuthHandler (class in url-

lib2), 414
AbstractDigestAuthHandler (class in url-

lib2), 414
AbstractFormatter (class in formatter), 467
AbstractWriter (class in formatter), 468
ac in buffer size (data in asyncore), 458
ac out buffer size (data in asyncore), 458
accept()

dispatcher method, 460
socket method, 325

accept2dyear (data in time), 231
access() (in module os), 193
acos()

in module cmath, 157
in module math, 155

acosh() (in module cmath), 157
acquire()

method, 307
Condition method, 335
lock method, 332
Semaphore method, 336
Timer method, 334

acquire lock() (in module imp), 82
ACTIONS(attribute), 278
activate form() (form method), 650
activeCount() (in module threading), 332
add()

in module audioop, 561
in module operator, 56
Stats method, 391
TarFile method, 357

add alias() (in module email.Charset), 484
add box() (form method), 650
add browser() (form method), 651
add button() (form method), 651
add charset() (in module email.Charset), 483
add choice() (form method), 651
add clock() (form method), 650
add codec() (in module email.Charset), 484
add counter() (form method), 651
add data() (Request method), 415
add dial() (form method), 651
add fallback() (NullTranslations method),

298
add flowing data() (formatter method), 466
add handler() (OpenerDirector method), 415
add header()

Message method, 472
Request method, 415

add history() (in module readline), 361
add hor rule() (formatter method), 466
add input() (form method), 651
add label data() (formatter method), 466
add lightbutton() (form method), 651
add line break() (formatter method), 466
add literal data() (formatter method), 466
add menu() (form method), 651
add parent() (BaseHandler method), 416
add password() (HTTPPasswordMgr method),

417
add payload() (Message method), 475
add positioner() (form method), 651
add roundbutton() (form method), 651
add section() (SafeConfigParser method), 177
add slider() (form method), 651
add text() (form method), 650
add timer() (form method), 651
add type() (in module mimetypes), 500
add valslider() (form method), 651
addcallback() (CD parser method), 648
addch() (window method), 243
addError() (TestResult method), 151
addFailure() (TestResult method), 151
addfile() (TarFile method), 357
addFilter() (method), 306, 307
addHandler() (method), 306
addheader() (MimeWriter method), 502
addinfo() (Profile method), 395
addLevelName() (in module logging), 305
addnstr() (window method), 243
address family (data in SocketServer), 443
address string() (BaseHTTPRequestHand-

ler method), 447
AddressList (class in rfc822), 506
addresslist (AddressList attribute), 509

684 Index

addstr() (window method), 243
addSuccess() (TestResult method), 151
addTest() (TestSuite method), 150
addTests() (TestSuite method), 150
adler32() (in module zlib), 347
ADPCM, Intel/DVI, 561
adpcm2lin() (in module audioop), 561
adpcm32lin() (in module audioop), 561
AF INET (data in socket), 322
AF INET6 (data in socket), 322
AF UNIX (data in socket), 322
AI * (data in socket), 323
aifc() (aifc method), 566
aifc (standard module),565
AIFF, 565, 571
aiff() (aifc method), 566
AIFF-C, 565, 571
AL (standard module), 643,645
al (built-in module),643
alarm() (in module signal), 320
all errors (data in ftplib), 423
all features (data in xml.sax.handler), 550
all properties (data in xml.sax.handler), 551
allocate lock() (in module thread), 331
allow reuse address (data in SocketServer),

444
allowremoval() (CD player method), 646
alt() (in module curses.ascii), 254
ALT DIGITS (data in locale), 294
altsep (data in os), 204
altzone (data in time), 231
anchor bgn() (HTMLParser method), 526
anchor end() (HTMLParser method), 526
and

operator, 14, 15
and () (in module operator), 56
annotate() (in module dircache), 207
anydbm (standard module),342
api version (data in sys), 43
apop() (POP3 method), 427
append()

array method, 166
Header method, 481
IMAP4 stream method, 429
list method, 24
Template method, 373

appendChild() (Node method), 537
apply() (in module), 13
arbitrary precision integers, 581
aRepr (data in repr), 91
argv (data in sys), 37
arithmetic, 16
ArithmeticError (exception in exceptions), 31
array() (in module array), 165
array (built-in module),165
arrays, 165
ArrayType (data in array), 165
article() (NNTPDataError method), 435

AS IS (data in formatter), 466
as string() (Message method), 470
ascii() (in module curses.ascii), 254
ascii letters (data in string), 97
ascii lowercase (data in string), 97
ascii uppercase (data in string), 97
asctime() (in module time), 231
asin()

in module cmath, 157
in module math, 155

asinh() (in module cmath), 157
assert

statement, 32
assert () (TestCase method), 149
assert line data() (formatter method), 467
assertAlmostEqual() (TestCase method),

149
assertEqual() (TestCase method), 149
AssertionError (exception in exceptions), 32
assertNotAlmostEqual() (TestCase

method), 149
assertNotEqual() (TestCase method), 149
assertRaises() (TestCase method), 149
assignment

extended slice, 24
slice, 24
subscript, 24

ast2list() (in module parser), 615
ast2tuple() (in module parser), 615
astimezone() (datetime method), 221
ASTType (data in parser), 616
ASTVisitor (class in compiler.visitor), 641
async chat (class in asynchat), 461
asynchat (standard module),460
asyncore (built-in module),458
atan()

in module cmath, 157
in module math, 156

atan2() (in module math), 156
atanh() (in module cmath), 157
atexit (standard module),50
atime (data in cd), 646
atof()

in module locale, 292
in module string, 98

atoi()
in module locale, 292
in module string, 98

atol() (in module string), 98
attach() (Message method), 470
AttlistDeclHandler() (xmlparser method),

530
AttributeError (exception in exceptions), 32
attributes

Node attribute, 536
XMLParser attribute, 558

AttributesImpl (class in xml.sax.xmlreader),
555

Index 685

AttributesNSImpl (class in
xml.sax.xmlreader), 555

attroff() (window method), 243
attron() (window method), 243
attrset() (window method), 243
audio (data in cd), 646
Audio Interchange File Format, 565, 571
AUDIO FILE ENCODINGADPCMG721 (data

in sunau), 568
AUDIO FILE ENCODINGADPCMG722 (data

in sunau), 568
AUDIO FILE ENCODINGADPCMG723 3

(data in sunau), 568
AUDIO FILE ENCODINGADPCMG723 5

(data in sunau), 568
AUDIO FILE ENCODINGALAW 8 (data in

sunau), 567
AUDIO FILE ENCODINGDOUBLE (data in

sunau), 567
AUDIO FILE ENCODINGFLOAT (data in

sunau), 567
AUDIO FILE ENCODINGLINEAR 16 (data in

sunau), 567
AUDIO FILE ENCODINGLINEAR 24 (data in

sunau), 567
AUDIO FILE ENCODINGLINEAR 32 (data in

sunau), 567
AUDIO FILE ENCODINGLINEAR 8 (data in

sunau), 567
AUDIO FILE ENCODINGMULAW8 (data in

sunau), 567
AUDIO FILE MAGIC(data in sunau), 567
AUDIODEV, 575
audioop (built-in module),561
authenticate() (IMAP4 stream method), 429
authenticators() (netrc method), 516
avg() (in module audioop), 561
avgpp() (in module audioop), 561

B
b2a base64() (in module binascii), 510
b2a hex() (in module binascii), 511
b2a hqx() (in module binascii), 510
b2a qp() (in module binascii), 510
b2a uu() (in module binascii), 510
BabylMailbox (class in mailbox), 496
backslashreplace errors errors() (in

module codecs), 123
backward() (in module turtle), 601
BadStatusLine (exception in httplib), 421
Balloon (class in Tix), 597
base64

encoding, 509
base64 (standard module),509
BaseCookie (class in Cookie), 449
BaseHandler (class in urllib2), 414
BaseHTTPRequestHandler (class in Base-

HTTPServer), 445

BaseHTTPServer (standard module),445
basename() (in module os.path), 204
basestring() (in module), 4
basicConfig() (in module logging), 305
Bastion() (in module Bastion), 611
Bastion (standard module),610
BastionClass (class in Bastion), 611
baudrate() (in module curses), 238
bdb (standard module), 381
Beep() (in module winsound), 666
beep() (in module curses), 238
below() (method), 255
Benchmarking, 396
benchmarking, 232
bestreadsize() (CD player method), 646
betavariate() (in module random), 160
bgn group() (form method), 650
bias() (in module audioop), 562
bidirectional() (in module unicodedata), 130
binary

data, packing, 110
binary()

in module xmlrpclib, 454
mpz method, 582

binary semaphores, 331
binascii (built-in module),509
bind()

dispatcher method, 460
socket method, 325

bind (widgets), 594
bindtextdomain() (in module gettext), 296
binhex() (in module binhex), 511
binhex (standard module), 510,511
bisect() (in module bisect), 162
bisect (standard module),162
bisect left() (in module bisect), 162
bisect right() (in module bisect), 162
bit-string

operations, 17
bkgd() (window method), 243
bkgdset() (window method), 243
BLOCKSIZE(data in cd), 646
blocksize (data in sha), 581
body() (NNTPDataError method), 435
body encode() (Charset method), 483
body encoding (data in email.Charset), 482
body line iterator() (in module

email.Iterators), 486
BOM(data in codecs), 124
BOMBE (data in codecs), 124
BOMLE (data in codecs), 124
BOMUTF16 (data in codecs), 124
BOMUTF16 BE (data in codecs), 124
BOMUTF16 LE (data in codecs), 124
BOMUTF32 (data in codecs), 124
BOMUTF32 BE (data in codecs), 124
BOMUTF32 LE (data in codecs), 124
BOMUTF8 (data in codecs), 124

686 Index

bool() (in module), 4
Boolean

object, 16
operations, 14, 15
type, 4
values, 30

boolean() (in module xmlrpclib), 454
BooleanType (data in types), 52
border() (window method), 243
bottom() (method), 255
bottom panel() (in module curses.panel), 255
BoundaryError (exception in email.Errors), 485
BoundedSemaphore() (in module threading),

333
box() (window method), 243
break long words (TextWrapper attribute),

122
BROWSER, 399, 400
bsddb

built-in module, 75, 342, 343
extension module,344

BsdDbShelf (class in shelve), 76
btopen() (in module bsddb), 345
buffer

object, 18
buffer()

built-in function, 18, 53
in module , 14

buffer size, I/O, 7
buffer info() (array method), 166
buffer size (xmlparser attribute), 528
buffer text (xmlparser attribute), 528
buffer used (xmlparser attribute), 529
BufferingHandler (class in logging), 311
BufferType (data in types), 53
bufsize() (audio device method), 577
build opener() (in module urllib2), 413
built-in

constants, 3
exceptions, 3
functions, 3
types, 3, 14

builtin module names (data in sys), 38
BuiltinFunctionType (data in types), 53
BuiltinMethodType (data in types), 53
ButtonBox (class in Tix), 597
byte-code

file, 81, 83, 625
byteorder (data in sys), 38
byteswap() (array method), 166
bz2 (built-in module),350
BZ2Compressor (class in bz2), 351
BZ2Decompressor (class in bz2), 351
BZ2File (class in bz2), 350

C
C

language, 16

structures, 110
C BUILTIN (data in imp), 82
C EXTENSION(data in imp), 82
CacheFTPHandler (class in urllib2), 415
calcsize() (in module struct), 110
calendar() (in module calendar), 181
calendar (standard module),180
call() (method), 367
callable() (in module), 4
CallableProxyType (data in weakref), 46
can change color() (in module curses), 238
can fetch() (RobotFileParser method), 516
cancel()

scheduler method, 236
Timer method, 339

CannotSendHeader (exception in httplib), 421
CannotSendRequest (exception in httplib), 421
capitalize()

in module string, 98
string method, 19

capwords() (in module string), 98
cat() (in module nis), 378
catalog (data in cd), 646
category() (in module unicodedata), 130
cbreak() (in module curses), 238
cd (built-in module),645
CDROM(data in cd), 646
ceil()

in module math, 156
in module math, 16

center()
in module string, 100
string method, 19

CGI
debugging, 406
exceptions, 408
protocol, 401
security, 405
tracebacks, 408

cgi (standard module),401
cgi directories (CGIHTTPRequestHandler

attribute), 448
CGIHTTPRequestHandler (class in CGI-

HTTPServer), 448
CGIHTTPServer (standard module), 445,448
cgitb (standard module),408
CGIXMLRPCRequestHandler (class in Sim-

pleXMLRPCServer), 455
chain() (in module itertools), 171
chaining

comparisons, 15
channels() (audio device method), 576
CHAR MAX(data in locale), 293
character, 130
CharacterDataHandler() (xmlparser

method), 530
characters() (ContentHandler method), 552
CHARSET(data in mimify), 503

Index 687

Charset (class in email.Charset), 482
charset() (NullTranslations method), 298
chdir() (in module os), 193
check()

IMAP4 stream method, 429
in module tabnanny, 624

check forms() (in module fl), 649
checkcache() (in module linecache), 65
CheckList (class in Tix), 598
checksum

Cyclic Redundancy Check, 348
MD5, 580
SHA, 581

childerr (Popen4 attribute), 213
childNodes (Node attribute), 536
chmod() (in module os), 193
choice()

in module random, 159
in module whrandom, 161

choose boundary() (in module mimetools),
499

chown() (in module os), 194
chr() (in module), 4
chroot() (in module os), 193
Chunk (class in chunk), 571
chunk (standard module),571
cipher

DES, 365, 579
Enigma, 583
IDEA, 579

circle() (in module turtle), 602
Class browser, 603
classmethod() (in module), 4
classobj() (in module new), 93
ClassType (data in types), 52
clear()

dictionary method, 25
Event method, 337
in module turtle, 601
window method, 244

clear memo() (Pickler method), 68
clearcache() (in module linecache), 65
clearok() (window method), 244
client address (BaseHTTPRequestHandler

attribute), 445
clock() (in module time), 232
clone()

Generator method, 477
Template method, 373

cloneNode() (Node method), 537, 545
Close() (method), 666
close()

method, 307, 342, 345, 367
aifc method, 566, 567
AU read method, 568
AU write method, 569
audio device method, 575, 659
BaseHandler method, 416

BZ2File method, 350
CD player method, 646
Chunk method, 572
dispatcher method, 460
file method, 26
FileHandler method, 308
FTP method, 425
HTMLParser method, 522
HTTPResponse method, 421
IMAP4 stream method, 429
in module fileinput, 179
in module os, 191
IncrementalParser method, 556
MemoryHandler method, 311
mixer device method, 577
NTEventLogHandler method, 310
OpenerDirector method, 416
Profile method, 395
SGMLParser method, 524
socket method, 326
SocketHandler method, 309
StringIO method, 120
SysLogHandler method, 310
TarFile method, 357
Telnet method, 440
Wave read method, 570
Wave write method, 570
XMLParser method, 558
ZipFile method, 353

close when done() (async chat method), 461
closed (file attribute), 28
CloseKey() (in module winreg), 662
closelog() (in module syslog), 379
closeport() (audio port method), 644
clrtobot() (window method), 244
clrtoeol() (window method), 244
cmath (built-in module),157
Cmd(class in cmd), 182
cmd (standard module),182, 381
cmdloop() (Cmd method), 182
cmp()

built-in function, 292
in module , 4
in module filecmp, 210

cmp op (data in dis), 627
cmpfiles() (in module filecmp), 210
code

object, 29, 78
code() (in module new), 93
code

ExpatError attribute, 531
standard module,86

Codecs, 122
decode, 122
encode, 122

codecs (standard module),122
coded value (Morsel attribute), 450
codeop (standard module),88

688 Index

codepoint2name (data in htmlentitydefs), 527
CODESET(data in locale), 293
CodeType (data in types), 52
coerce() (in module), 14
collect() (in module gc), 43
collect incoming data() (async chat

method), 461
color()

in module fl, 650
in module turtle, 602

color content() (in module curses), 238
color pair() (in module curses), 238
colorsys (standard module),572
COLUMNS, 243
combine() (datetime method), 220
combining() (in module unicodedata), 130
ComboBox (class in Tix), 597
command (BaseHTTPRequestHandler attribute),

445
CommandCompiler (class in codeop), 88
commands (standard module),379
COMMENT(data in tokenize), 623
comment (ZipInfo attribute), 354
commenters (shlex attribute), 185
CommentHandler() (xmlparser method), 530
common(dircmp attribute), 211
Common Gateway Interface, 401
common dirs (dircmp attribute), 211
common files (dircmp attribute), 211
common funny (dircmp attribute), 211
common types (data in mimetypes), 501
commonprefix() (in module os.path), 204
compare() (Differ method), 117
comparing

objects, 15
comparison

operator, 15
comparisons

chaining, 15
Compile (class in codeop), 88
compile()

AST method, 616
built-in function, 29, 52, 615, 616
in module , 4
in module compiler, 635
in module py compile, 625
in module re, 104

compile command()
in module code, 86
in module codeop, 88

compile dir() (in module compileall), 626
compile path() (in module compileall), 626
compileall (standard module),626
compileast() (in module parser), 615
compileFile() (in module compiler), 635
compiler (module),635
compiler.ast (module),636
compiler.visitor (module),640

complete() (Completer method), 362
completedefault() (Cmd method), 183
complex()

built-in function, 16
in module , 5

complex number
literals, 16
object, 16

ComplexType (data in types), 52
compress()

BZ2Compressor method, 351
Compress method, 348
in module bz2, 351
in module jpeg, 657
in module zlib, 348

compress size (ZipInfo attribute), 355
compress type (ZipInfo attribute), 354
CompressionError (exception in tarfile), 356
compressobj() (in module zlib), 348
COMSPEC, 202
concat() (in module operator), 57
concatenation

operation, 18
Condition() (in module threading), 332
Condition (class in threading), 335
ConfigParser

class in ConfigParser, 176
standard module,176

configuration
file, 176
file, debugger, 382
file, path, 94
file, user, 94

confstr() (in module os), 203
confstr names (data in os), 203
conjugate() (complex number method), 16
connect()

dispatcher method, 459
FTP method, 424
HTTPResponse method, 421
SMTP method, 437
socket method, 326

connect ex() (socket method), 326
ConnectRegistry() (in module winreg), 662
constants

built-in, 3
constructor() (in module copy reg), 75
container

iteration over, 17
contains() (in module operator), 57
content type

MIME, 500
ContentHandler (class in xml.sax.handler), 549
context diff() (in module difflib), 112
Control (class in Tix), 597
control (data in cd), 646
controlnames (data in curses.ascii), 254
controls() (mixer device method), 577

Index 689

ConversionError (exception in xdrlib), 515
conversions

numeric, 16
convert() (Charset method), 482
Cookie (standard module),448
CookieError (exception in Cookie), 449
Coordinated Universal Time, 231
copy()

hmac method, 579
IMAP4 stream method, 429
in module shutil, 289
md5 method, 580
sha method, 581
Template method, 374

copy (standard module), 75,77
copy()

dictionary method, 25
in copy, 77

copy2() (in module shutil), 289
copy reg (standard module),74
copybinary() (in module mimetools), 499
copyfile() (in module shutil), 289
copyfileobj() (in module shutil), 289
copying files, 289
copyliteral() (in module mimetools), 499
copymessage() (Folder method), 498
copymode() (in module shutil), 289
copyright (data in sys), 38
copystat() (in module shutil), 289
copytree() (in module shutil), 289
cos()

in module cmath, 157
in module math, 156

cosh()
in module cmath, 158
in module math, 156

count()
array method, 166
in module itertools, 171
in module string, 99
list method, 24
string method, 19

countOf() (in module operator), 57
countTestCases() (TestCase method), 149
cPickle (built-in module),74, 75
CPU time, 232
CRC(ZipInfo attribute), 355
crc32()

in module binascii, 510
in module zlib, 348

crc hqx() (in module binascii), 510
create() (IMAP4 stream method), 429
create socket() (dispatcher method), 459
create system (ZipInfo attribute), 354
create version (ZipInfo attribute), 354
createAttribute() (Document method), 539
createAttributeNS() (Document method),

539

createComment() (Document method), 539
createElement() (Document method), 538
createElementNS() (Document method), 538
CreateKey() (in module winreg), 662
createLock() (method), 307
createparser() (in module cd), 645
createProcessingInstruction() (Docu-

ment method), 539
createTextNode() (Document method), 538
critical()

method, 306
in module logging, 305

CRNCYSTR(data in locale), 294
crop() (in module imageop), 564
cross() (in module audioop), 562
crypt() (in module crypt), 365
crypt (built-in module), 364,365
crypt(3), 365, 366
cryptography, 579
cStringIO (built-in module),120
csv, 517
csv (standard module),517
ctermid() (in module os), 188
ctime()

date method, 218
datetime method, 223
in module time, 232

ctrl() (in module curses.ascii), 254
cunifvariate() (in module random), 160
curdir (data in os), 203
currentframe() (in module inspect), 63
currentThread() (in module threading), 332
curs set() (in module curses), 238
curses (standard module),237
curses.ascii (standard module),252
curses.panel (standard module),254
curses.textpad (standard module),251
curses.wrapper (standard module),252
cursyncup() (window method), 244
cwd() (FTP method), 425
cycle() (in module itertools), 171
Cyclic Redundancy Check, 348

D
D FMT(data in locale), 293
D T FMT(data in locale), 293
data

packing binary, 110
tabular, 517

data
Binary attribute, 454
Comment attribute, 540
MutableString attribute, 55
ProcessingInstruction attribute, 541
Text attribute, 540
UserDict attribute, 54
UserList attribute, 54

database

690 Index

Unicode, 130
databases, 346
DatagramHandler (class in logging), 309
DATASIZE (data in cd), 646
date()

datetime method, 221
NNTPDataError method, 435

date (class in datetime), 214, 217
date time (ZipInfo attribute), 354
date time string() (BaseHTTPRequest-

Handler method), 447
datetime

built-in module,214
class in datetime, 214, 219

day
date attribute, 217
datetime attribute, 220

DAY 1 ... DAY 7 (data in locale), 293
daylight (data in time), 232
Daylight Saving Time, 231
DbfilenameShelf (class in shelve), 76
dbhash (standard module), 342,343
dbm (built-in module), 75, 342,367, 368
deactivate form() (form method), 650
debug()

method, 306
in module doctest, 138
in module logging, 305
Template method, 373
TestCase method, 148

debug
IMAP4 stream attribute, 432
shlex attribute, 186
ZipFile attribute, 353

debug=0 (TarFile attribute), 357
DEBUGCOLLECTABLE(data in gc), 44
DEBUGINSTANCES(data in gc), 45
DEBUGLEAK(data in gc), 45
DEBUGOBJECTS(data in gc), 45
DEBUGSAVEALL(data in gc), 45
DEBUGSTATS(data in gc), 44
DEBUGUNCOLLECTABLE(data in gc), 44
debugger, 42, 604

configuration file, 382
debugging, 381

CGI, 406
decimal() (in module unicodedata), 130
decode

Codecs, 122
decode()

method, 125
Binary method, 454
in module base64, 509
in module email.Utils, 486
in module mimetools, 499
in module quopri, 512
in module uu, 513
ServerProxy method, 453

string method, 19
decode header() (in module email.Header),

481
decode params() (in module email.Utils), 486
decode rfc2231() (in module email.Utils),

486
DecodedGenerator (class in email.Generator),

478
decodestring()

in module base64, 509
in module quopri, 512

decomposition() (in module unicodedata), 131
decompress()

BZ2Decompressor method, 351
Decompress method, 349
in module bz2, 352
in module jpeg, 657
in module zlib, 348

decompressobj() (in module zlib), 348
decrypt() (rotor method), 583
decryptmore() (rotor method), 583
dedent() (in module textwrap), 121
deepcopy() (in copy), 77
def prog mode() (in module curses), 238
def shell mode() (in module curses), 238
default()

ASTVisitor method, 641
Cmd method, 183

default bufsize (data in xml.dom.pulldom),
547

default open() (BaseHandler method), 416
DefaultHandler() (xmlparser method), 530
DefaultHandlerExpand() (xmlparser

method), 531
defaults() (SafeConfigParser method), 177
defaultTestLoader (data in unittest), 148
defaultTestResult() (TestCase method),

149
defpath (data in os), 204
degrees()

in module math, 156
in module turtle, 601
RawPen method, 602

del
statement, 24, 25

del param() (Message method), 473
delattr() (in module), 5
delay output() (in module curses), 239
delch() (window method), 244
dele() (POP3 method), 427
delete()

FTP method, 425
IMAP4 stream method, 429

delete object() (FORMS object method),
652

deletefolder() (MH method), 497
DeleteKey() (in module winreg), 663
deleteln() (window method), 244

Index 691

deleteparser() (CD parser method), 648
DeleteValue() (in module winreg), 663
delimiter (Dialect attribute), 519
delitem() (in module operator), 57
delslice() (in module operator), 57
demo() (in module turtle), 602
DeprecationWarning (exception in excep-

tions), 34
dereference=False (TarFile attribute), 357
derwin() (window method), 244
DES

cipher, 365, 579
descriptor, file, 26
Detach() (method), 666
deterministic profiling, 387
DEVICE (standard module),656
device

Enigma, 582
dgettext() (in module gettext), 296
Dialect (class in csv), 518
dict() (in module), 5
dictionary

object, 25
type, operations on, 25

DictionaryType (data in types), 52
DictMixin (class in UserDict), 54
DictReader (class in csv), 518
DictType (data in types), 52
DictWriter (class in csv), 518
diff files (dircmp attribute), 212
Differ (class in difflib), 112, 117
difflib (standard module),112
digest()

hmac method, 579
md5 method, 580
sha method, 581

digest size
data in md5, 580
data in sha, 581

digit() (in module unicodedata), 130
digits (data in string), 97
dir()

FTP method, 425
in module , 5

dircache (standard module),206
dircmp (class in filecmp), 211
directory

changing, 193
creating, 195
deleting, 195, 289
site-packages, 94
site-python, 94
traversal, 197
walking, 197

DirList (class in Tix), 598
dirname() (in module os.path), 204
DirSelectBox (class in Tix), 598
DirSelectDialog (class in Tix), 598

DirTree (class in Tix), 598
dis() (in module dis), 627
dis (standard module),626
disable()

in module gc, 43
in module logging, 305

disassemble() (in module dis), 627
discard buffers() (async chat method), 461
disco() (in module dis), 627
dispatch() (ASTVisitor method), 641
dispatcher (class in asyncore), 458
displayhook() (in module sys), 38
distb() (in module dis), 627
distutils (standard module),633
dither2grey2() (in module imageop), 564
dither2mono() (in module imageop), 564
div() (in module operator), 56
division

integer, 16
long integer, 16

divm() (in module mpz), 582
divmod() (in module), 6
dl (extension module),366
dllhandle (data in sys), 38
dngettext() (in module gettext), 296
do command() (Textbox method), 251
do forms() (in module fl), 649
do GET() (SimpleHTTPRequestHandler method),

447
do HEAD() (SimpleHTTPRequestHandler

method), 447
do POST() (CGIHTTPRequestHandler method),

448
doc header (Cmd attribute), 183
DocCGIXMLRPCRequestHandler (class in

DocXMLRPCServer), 457
docmd() (SMTP method), 437
docstrings, 617
doctest (standard module),134
DocTestSuite() (in module doctest), 139
DOCTYPE declaration, 559
documentation

generation, 133
online, 133

documentElement (Document attribute), 538
DocXMLRPCRequestHandler (class in

DocXMLRPCServer), 457
DocXMLRPCServer

class in DocXMLRPCServer, 457
standard module,457

DOMEventStream (class in xml.dom.pulldom),
547

DOMException (exception in xml.dom), 541
DomstringSizeErr (exception in xml.dom),

541
done() (Unpacker method), 514
doRollover() (RotatingFileHandler method),

308

692 Index

DOTALL(data in re), 105
doublequote (Dialect attribute), 519
doupdate() (in module curses), 239
down() (in module turtle), 601
drain() (audio device method), 659
dropwhile() (in module itertools), 171
dst()

datetime method, 222
time method, 224, 225

DTDHandler (class in xml.sax.handler), 549
dumbdbm(standard module), 342,346
DumbWriter (class in formatter), 468
dummy thread (standard module),339
dummy threading (standard module),339
dump()

in module marshal, 78
in module pickle, 67
Pickler method, 68

dump address pair()
in module email.Utils, 486
in module rfc822, 506

dump stats() (Stats method), 391
dumps()

in module marshal, 79
in module pickle, 68

dup()
in module os, 191
in module posixfile, 374

dup2()
in module os, 191
in module posixfile, 374

DuplicateSectionError (exception in Con-
figParser), 176

E
e

data in cmath, 158
data in math, 157

E2BIG (data in errno), 283
EACCES(data in errno), 283
EADDRINUSE(data in errno), 287
EADDRNOTAVAIL(data in errno), 287
EADV(data in errno), 285
EAFNOSUPPORT(data in errno), 287
EAGAIN(data in errno), 283
EAI * (data in socket), 323
EALREADY(data in errno), 287
EBADE(data in errno), 285
EBADF(data in errno), 283
EBADFD(data in errno), 286
EBADMSG(data in errno), 286
EBADR(data in errno), 285
EBADRQC(data in errno), 285
EBADSLT(data in errno), 285
EBFONT(data in errno), 285
EBUSY(data in errno), 283
ECHILD (data in errno), 283
echo() (in module curses), 239

echochar() (window method), 244
ECHRNG(data in errno), 284
ECOMM(data in errno), 285
ECONNABORTED(data in errno), 287
ECONNREFUSED(data in errno), 287
ECONNRESET(data in errno), 287
EDEADLK(data in errno), 284
EDEADLOCK(data in errno), 285
EDESTADDRREQ(data in errno), 286
edit() (Textbox method), 251
EDOM(data in errno), 284
EDOTDOT(data in errno), 286
EDQUOT(data in errno), 288
EEXIST (data in errno), 283
EFAULT(data in errno), 283
EFBIG (data in errno), 284
ehlo() (SMTP method), 437
EHOSTDOWN(data in errno), 287
EHOSTUNREACH(data in errno), 287
EIDRM(data in errno), 284
EILSEQ (data in errno), 286
EINPROGRESS(data in errno), 287
EINTR (data in errno), 283
EINVAL (data in errno), 283
EIO (data in errno), 283
EISCONN(data in errno), 287
EISDIR (data in errno), 283
EISNAM(data in errno), 288
eject() (CD player method), 646
EL2HLT (data in errno), 285
EL2NSYNC(data in errno), 284
EL3HLT (data in errno), 284
EL3RST(data in errno), 284
ElementDeclHandler() (xmlparser method),

529
elements (XMLParser attribute), 558
ELIBACC (data in errno), 286
ELIBBAD (data in errno), 286
ELIBEXEC (data in errno), 286
ELIBMAX (data in errno), 286
ELIBSCN (data in errno), 286
Ellinghouse, Lance, 512, 582
Ellipsis (data in), 36
EllipsisType (data in types), 53
ELNRNG(data in errno), 284
ELOOP(data in errno), 284
email (standard module),469
email.Charset (standard module),482
email.Encoders (standard module),484
email.Errors (standard module),484
email.Generator (standard module),477
email.Header (standard module),480
email.Iterators (standard module),486
email.Message (standard module),469
email.Parser (standard module),475
email.Utils (standard module),485
EMFILE (data in errno), 283
emit()

Index 693

method, 308
BufferingHandler method, 311
DatagramHandler method, 309
FileHandler method, 308
HTTPHandler method, 311
NTEventLogHandler method, 310
RotatingFileHandler method, 309
SMTPHandler method, 311
SocketHandler method, 309
StreamHandler method, 308
SysLogHandler method, 310

EMLINK (data in errno), 284
Empty (exception in Queue), 340
empty()

Queue method, 340
scheduler method, 236

EMPTY NAMESPACE(data in xml.dom), 535
emptyline() (Cmd method), 182
EMSGSIZE(data in errno), 286
EMULTIHOP(data in errno), 286
enable()

in module cgitb, 408
in module gc, 43

ENAMETOOLONG(data in errno), 284
ENAVAIL (data in errno), 288
enclose() (window method), 244
encode

Codecs, 122
encode()

method, 125
Binary method, 454
Header method, 481
in module base64, 509
in module email.Utils, 486
in module mimetools, 499
in module quopri, 512
in module uu, 512
ServerProxy method, 453
string method, 19

encode 7or8bit() (in module
email.Encoders), 484

encode base64() (in module email.Encoders),
484

encode noop() (in module email.Encoders),
484

encode quopri() (in module email.Encoders),
484

encode rfc2231() (in module email.Utils),
486

encoded header len() (Charset method),
483

EncodedFile() (in module codecs), 124
encodePriority() (SysLogHandler method),

310
encodestring()

in module base64, 509
in module quopri, 512

encoding

base64, 509
quoted-printable, 512

encoding (file attribute), 28
encodings.idna (standard module),129
encodings map (data in mimetypes), 501
encrypt() (rotor method), 583
encryptmore() (rotor method), 583
end() (MatchObject method), 108
end group() (form method), 650
end headers() (BaseHTTPRequestHandler

method), 446
end marker() (MultiFile method), 505
end paragraph() (formatter method), 466
EndCdataSectionHandler() (xmlparser

method), 530
EndDoctypeDeclHandler() (xmlparser

method), 529
endDocument() (ContentHandler method), 551
endElement() (ContentHandler method), 552
EndElementHandler() (xmlparser method),

530
endElementNS() (ContentHandler method), 552
endheaders() (HTTPResponse method), 421
EndNamespaceDeclHandler() (xmlparser

method), 530
endpick() (in module gl), 655
endpos (MatchObject attribute), 108
endPrefixMapping() (ContentHandler

method), 551
endselect() (in module gl), 655
endswith() (string method), 19
endwin() (in module curses), 239
ENETDOWN(data in errno), 287
ENETRESET(data in errno), 287
ENETUNREACH(data in errno), 287
ENFILE (data in errno), 283
Enigma

cipher, 583
device, 582

ENOANO(data in errno), 285
ENOBUFS(data in errno), 287
ENOCSI(data in errno), 285
ENODATA(data in errno), 285
ENODEV(data in errno), 283
ENOENT(data in errno), 283
ENOEXEC(data in errno), 283
ENOLCK(data in errno), 284
ENOLINK(data in errno), 285
ENOMEM(data in errno), 283
ENOMSG(data in errno), 284
ENONET(data in errno), 285
ENOPKG(data in errno), 285
ENOPROTOOPT(data in errno), 286
ENOSPC(data in errno), 284
ENOSR(data in errno), 285
ENOSTR(data in errno), 285
ENOSYS(data in errno), 284
ENOTBLK(data in errno), 283

694 Index

ENOTCONN(data in errno), 287
ENOTDIR(data in errno), 283
ENOTEMPTY(data in errno), 284
ENOTNAM(data in errno), 287
ENOTSOCK(data in errno), 286
ENOTTY(data in errno), 284
ENOTUNIQ(data in errno), 286
enter() (scheduler method), 236
enterabs() (scheduler method), 236
entities (DocumentType attribute), 538
ENTITY declaration, 559
EntityDeclHandler() (xmlparser method),

530
entitydefs

data in htmlentitydefs, 527
XMLParser attribute, 558

EntityResolver (class in xml.sax.handler), 549
enumerate()

in module , 6
in module fm, 654
in module threading, 332

EnumKey() (in module winreg), 663
EnumValue() (in module winreg), 663
environ

data in os, 188
data in posix, 364

environment variables
AUDIODEV, 575
BROWSER, 399, 400
COLUMNS, 243
COMSPEC, 202
HOME, 95, 204
KDEDIR, 400
LANGUAGE, 296, 297
LANG, 291, 292, 296, 297
LC ALL, 296, 297
LC MESSAGES, 296, 297
LINES, 243
LNAME, 237
LOGNAME, 189, 237
MIXERDEV, 575
PAGER, 382
PATH, 199, 201, 204, 406, 407
PYTHONPATH, 41, 406, 670
PYTHONSTARTUP, 94, 361
PYTHONY2K, 230, 231
PYTHON DOM, 535
TEMP, 282
TIX LIBRARY, 597
TMPDIR, 197, 282
TMP, 197, 282
TZ, 234, 235, 670
USERNAME, 237
USER, 237
Wimp$ScrapDir, 282
ftp proxy, 409
gopher proxy, 409
http proxy, 409

setting, 189
EnvironmentError (exception in exceptions),

31
ENXIO (data in errno), 283
eof (shlex attribute), 186
EOFError (exception in exceptions), 32
EOPNOTSUPP(data in errno), 286
EOVERFLOW(data in errno), 286
EPERM(data in errno), 283
EPFNOSUPPORT(data in errno), 287
epilogue (data in email.Message), 474
EPIPE (data in errno), 284
epoch, 230
EPROTO(data in errno), 285
EPROTONOSUPPORT(data in errno), 286
EPROTOTYPE(data in errno), 286
eq() (in module operator), 55
ERA(data in locale), 294
ERA D FMT(data in locale), 294
ERA D T FMT(data in locale), 294
ERA YEAR(data in locale), 294
ERANGE(data in errno), 284
erase() (window method), 244
erasechar() (in module curses), 239
EREMCHG(data in errno), 286
EREMOTE(data in errno), 285
EREMOTEIO(data in errno), 288
ERESTART(data in errno), 286
EROFS(data in errno), 284
ERR(data in curses), 247
errcode (ServerProxy attribute), 454
errmsg (ServerProxy attribute), 454
errno

built-in module, 188, 322
standard module,282

ERROR(data in cd), 646
Error

exception in binascii, 511
exception in binhex, 511
exception in csv, 519
exception in locale, 290
exception in shutil, 290
exception in sunau, 567
exception in turtle, 602
exception in uu, 513
exception in wave, 569
exception in webbrowser, 400
exception in xdrlib, 515

error()
method, 306
ErrorHandler method, 553
Folder method, 498
in module logging, 305
MH method, 497
OpenerDirector method, 416

error
exception in anydbm, 343
exception in audioop, 561

Index 695

exception in cd, 646
exception in curses, 238
exception in dbhash, 343
exception in dbm, 367
exception in dl, 366
exception in dumbdbm, 347
exception in gdbm, 368
exception in getopt, 256
exception in imageop, 564
exception in imgfile, 656
exception in jpeg, 657
exception in nis, 378
exception in os, 188
exception in re, 106
exception in resource, 376
exception in rgbimg, 573
exception in select, 330
exception in socket, 322
exception in struct, 110
exception in sunaudiodev, 659
exception in thread, 331
exception in xml.parsers.expat, 527
exception in zipfile, 352
exception in zlib, 347

error leader() (shlex method), 185
error message format (BaseHTTPRequest-

Handler attribute), 446
error perm (exception in ftplib), 423
error proto

exception in ftplib, 423
exception in poplib, 426

error reply (exception in ftplib), 423
error temp (exception in ftplib), 423
ErrorByteIndex (xmlparser attribute), 529
ErrorCode (xmlparser attribute), 529
errorcode (data in errno), 282
ErrorColumnNumber (xmlparser attribute), 529
ErrorHandler (class in xml.sax.handler), 549
errorlevel=0 (TarFile attribute), 358
ErrorLineNumber (xmlparser attribute), 529
Errors

logging, 303
errors (TestResult attribute), 150
ErrorString() (in module xml.parsers.expat),

527
escape()

in module cgi, 405
in module re, 106
in module xml.sax.saxutils, 553

escape (shlex attribute), 185
escapechar (Dialect attribute), 519
escapedquotes (shlex attribute), 185
ESHUTDOWN(data in errno), 287
ESOCKTNOSUPPORT(data in errno), 286
ESPIPE (data in errno), 284
ESRCH(data in errno), 283
ESRMNT(data in errno), 285
ESTALE(data in errno), 287

ESTRPIPE (data in errno), 286
ETIME (data in errno), 285
ETIMEDOUT(data in errno), 287
ETOOMANYREFS(data in errno), 287
ETXTBSY(data in errno), 284
EUCLEAN(data in errno), 287
EUNATCH(data in errno), 285
EUSERS(data in errno), 286
eval()

built-in function, 29, 90, 91, 98, 615
in module , 6

Event() (in module threading), 333
Event (class in threading), 337
event scheduling, 235
events (widgets), 594
EWOULDBLOCK(data in errno), 284
EX CANTCREAT(data in os), 199
EX CONFIG(data in os), 200
EX DATAERR(data in os), 199
EX IOERR(data in os), 199
EX NOHOST(data in os), 199
EX NOINPUT(data in os), 199
EX NOPERM(data in os), 200
EX NOTFOUND(data in os), 200
EX NOUSER(data in os), 199
EX OK(data in os), 199
EX OSERR(data in os), 199
EX OSFILE (data in os), 199
EX PROTOCOL(data in os), 200
EX SOFTWARE(data in os), 199
EX TEMPFAIL (data in os), 199
EX UNAVAILABLE(data in os), 199
EX USAGE(data in os), 199
exc clear() (in module sys), 39
exc info() (in module sys), 38
exc traceback (data in sys), 39
exc type (data in sys), 39
exc value (data in sys), 39
except

statement, 31
excepthook()

in module sys, 38
in module sys, 408

Exception (exception in exceptions), 31
exception()

method, 306
in module logging, 305

exceptions
built-in, 3
in CGI scripts, 408

exceptions (standard module),31
EXDEV(data in errno), 283
exec

statement, 29
exec prefix (data in sys), 39
execfile()

built-in function, 94
in module , 6

696 Index

execl() (in module os), 198
execle() (in module os), 198
execlp() (in module os), 198
execlpe() (in module os), 198
executable (data in sys), 39
execv() (in module os), 198
execve() (in module os), 198
execvp() (in module os), 198
execvpe() (in module os), 198
ExFileSelectBox (class in Tix), 598
EXFULL(data in errno), 285
exists() (in module os.path), 204
exit()

in module sys, 39
in module thread, 331

exitfunc
data in sys, 39
in sys, 50

exp()
in module cmath, 158
in module math, 156

expand() (MatchObject method), 107
expand tabs (TextWrapper attribute), 121
expandNode() (DOMEventStream method), 547
expandtabs()

in module string, 98
string method, 19

expanduser() (in module os.path), 204
expandvars() (in module os.path), 204
Expat, 527
ExpatError (exception in xml.parsers.expat), 527
expect() (Telnet method), 441
expovariate() (in module random), 160
expr() (in module parser), 614
expunge() (IMAP4 stream method), 429
extend()

array method, 166
list method, 24

extend path() (in module pkgutil), 86
extended slice

assignment, 24
operation, 18

Extensible Markup Language, 558
extensions map (SimpleHTTPRequestHandler

attribute), 447
External Data Representation, 67, 513
external attr (ZipInfo attribute), 354
ExternalEntityParserCreate() (xml-

parser method), 528
ExternalEntityRefHandler() (xmlparser

method), 531
extra (ZipInfo attribute), 354
extract() (TarFile method), 357
extract stack() (in module traceback), 64
extract tb() (in module traceback), 64
extract version (ZipInfo attribute), 354
ExtractError (exception in tarfile), 356
extractfile() (TarFile method), 357

extsep (data in os), 204

F
F BAVAIL (data in statvfs), 210
F BFREE(data in statvfs), 210
F BLOCKS(data in statvfs), 210
F BSIZE (data in statvfs), 210
F FAVAIL (data in statvfs), 210
F FFREE(data in statvfs), 210
F FILES (data in statvfs), 210
F FLAG(data in statvfs), 210
F FRSIZE (data in statvfs), 210
F NAMEMAX(data in statvfs), 210
F OK(data in os), 193
fabs() (in module math), 156
fail() (TestCase method), 149
failIf() (TestCase method), 149
failIfAlmostEqual() (TestCase method),

149
failIfEqual() (TestCase method), 149
failUnless() (TestCase method), 149
failUnlessAlmostEqual() (TestCase

method), 149
failUnlessEqual() (TestCase method), 149
failUnlessRaises() (TestCase method), 149
failureException (TestCase attribute), 149
failures (TestResult attribute), 150
False, 14, 30
False

Built-in object, 14
data in , 35

false, 14
FancyURLopener (class in urllib), 411
fatalError() (ErrorHandler method), 553
faultCode (ServerProxy attribute), 454
faultString (ServerProxy attribute), 454
fchdir() (in module os), 193
fcntl() (in module fcntl), 371
fcntl (built-in module), 26,371
fcntl() (in module fcntl), 374
fdatasync() (in module os), 191
fdopen() (in module os), 190
feature external ges (data in

xml.sax.handler), 550
feature external pes (data in

xml.sax.handler), 550
feature namespace prefixes (data in

xml.sax.handler), 550
feature namespaces (data in

xml.sax.handler), 549
feature string interning (data in

xml.sax.handler), 550
feature validation (data in

xml.sax.handler), 550
feed()

HTMLParser method, 522
IncrementalParser method, 556
SGMLParser method, 523

Index 697

XMLParser method, 558
fetch() (IMAP4 stream method), 430
fifo (class in asynchat), 462
file

.ini, 176

.pdbrc, 382

.pythonrc.py, 94
byte-code, 81, 83, 625
configuration, 176
copying, 289
debugger configuration, 382
large files, 363
mime.types, 501
object, 26
path configuration, 94
temporary, 281
user configuration, 94

file()
built-in function, 26
in module , 6
in module posixfile, 375

file
class descriptor attribute, 625
function descriptor attribute, 625

file control
UNIX , 371

file descriptor, 26
file name

temporary, 281
file object

POSIX, 374
file offset (ZipInfo attribute), 354
file open() (FileHandler method), 419
file size (ZipInfo attribute), 355
filecmp (standard module),210
fileConfig() (in module logging), 313
FileEntry (class in Tix), 598
FileHandler

class in logging, 308
class in urllib2, 415

FileInput (class in fileinput), 179
fileinput (standard module),178
filelineno() (in module fileinput), 179
filename() (in module fileinput), 179
filename (ZipInfo attribute), 354
filename only (data in tabnanny), 624
filenames

pathname expansion, 288
wildcard expansion, 288

fileno()
audio device method, 575, 659
file method, 26
in module SocketServer, 443
mixer device method, 577
Profile method, 395
socket method, 326
Telnet method, 440

fileopen() (in module posixfile), 374

FileSelectBox (class in Tix), 598
FileType (data in types), 53
fill()

in module textwrap, 120
in module turtle, 602
TextWrapper method, 122

Filter (class in logging), 312
filter()

method, 306, 307
Filter method, 313
in module , 7
in module curses, 239
in module fnmatch, 289

filterwarnings() (in module warnings), 81
find()

method, 342
in module gettext, 297
in module string, 99
string method, 19

find first() (form method), 650
find last() (form method), 650
find longest match() (SequenceMatcher

method), 115
find module()

in module imp, 81
zipimporter method, 85

find prefix at end() (in module asynchat),
462

find user password() (HTTPPasswordMgr
method), 418

findall()
in module re, 106
RegexObject method, 107

findCaller() (method), 307
findfactor() (in module audioop), 562
findfile() (in module test.testsupport), 155
findfit() (in module audioop), 562
findfont() (in module fm), 654
finditer()

in module re, 106
RegexObject method, 107

findmatch() (in module mailcap), 494
findmax() (in module audioop), 562
finish() (in module SocketServer), 444
finish request() (in module SocketServer),

444
first()

method, 345
dbhash method, 344
fifo method, 462

firstChild (Node attribute), 536
firstkey() (in module gdbm), 368
firstweekday() (in module calendar), 181
fix() (in module fpformat), 119
fix sentence endings (TextWrapper at-

tribute), 121
FL (standard module),653
fl (built-in module),648

698 Index

flag bits (ZipInfo attribute), 354
flags() (in module posixfile), 374
flags (RegexObject attribute), 107
flash() (in module curses), 239
flatten() (Generator method), 477
flattening

objects, 66
float()

built-in function, 16, 98
in module , 7

floating point
literals, 16
object, 16

FloatingPointError
exception in exceptions, 32
exception in fpectl, 49

FloatType (data in types), 52
flock() (in module fcntl), 372
floor()

in module math, 156
in module math, 16

floordiv() (in module operator), 56
flp (standard module),653
flush()

method, 307, 342
audio device method, 659
BufferingHandler method, 311
BZ2Compressor method, 351
Compress method, 348
Decompress method, 349
file method, 26
MemoryHandler method, 311
StreamHandler method, 308
writer method, 467

flush softspace() (formatter method), 466
flushheaders() (MimeWriter method), 502
flushinp() (in module curses), 239
FlushKey() (in module winreg), 663
fm (built-in module),653
fmod() (in module math), 156
fnmatch() (in module fnmatch), 289
fnmatch (standard module),288
fnmatchcase() (in module fnmatch), 289
Folder (class in mhlib), 497
Font Manager, IRIS, 653
fontpath() (in module fm), 654
forget()

in module statcache, 209
in module test.testsupport, 155

forget dir() (in module statcache), 209
forget except prefix() (in module stat-

cache), 209
forget prefix() (in module statcache), 209
fork()

in module os, 200
in module pty, 371

forkpty() (in module os), 200
Form (class in Tix), 599

Formal Public Identifier, 559
format()

method, 308
Formatter method, 312
in module locale, 292
PrettyPrinter method, 91

format exception() (in module traceback),
64

format exception only() (in module trace-
back), 64

format list() (in module traceback), 64
format stack() (in module traceback), 64
format tb() (in module traceback), 64
formataddr() (in module email.Utils), 485
formatargspec() (in module inspect), 62
formatargvalues() (in module inspect), 62
formatdate() (in module email.Utils), 486
formatException() (Formatter method), 312
Formatter (class in logging), 312
formatter

HTMLParser attribute, 526
standard module,465, 525

formatTime() (Formatter method), 312
formatting, string (%), 22
formatwarning() (in module warnings), 81
FORMS Library, 648
forward() (in module turtle), 601
found terminator() (async chat method),

461
fp (AddressList attribute), 508
fpathconf() (in module os), 191
fpectl (extension module),49
fpformat (standard module),119
frame (ScrolledText attribute), 601
FrameType (data in types), 53
freeze form() (form method), 650
freeze object() (FORMS object method),

652
frexp() (in module math), 156
from splittable() (Charset method), 483
frombuf() (TarInfo method), 358
fromchild (Popen4 attribute), 213
fromfd() (in module socket), 324
fromfile() (array method), 166
fromkeys() (dictionary method), 25
fromlist() (array method), 166
fromordinal()

date method, 217
datetime method, 220

fromstring() (array method), 166
fromtimestamp()

date method, 217
datetime method, 219

fromunicode() (array method), 166
fromutc() (time method), 226
fstat() (in module os), 191
fstatvfs() (in module os), 191
fsync() (in module os), 191

Index 699

FTP
ftplib (standard module), 423
protocol, 411, 423

FTP (class in ftplib), 423
ftp open() (FTPHandler method), 419
ftp proxy, 409
FTPHandler (class in urllib2), 415
ftplib (standard module),423
ftpmirror.py, 423
ftruncate() (in module os), 191
Full (exception in Queue), 340
full() (Queue method), 340
func code (function object attribute), 29
function() (in module new), 93
functions

built-in, 3
FunctionTestCase (class in unittest), 147
FunctionType (data in types), 52
funny files (dircmp attribute), 212
FutureWarning (exception in exceptions), 34

G
G.722, 566
gaierror (exception in socket), 322
gammavariate() (in module random), 160
garbage (data in gc), 44
gather() (Textbox method), 252
gauss() (in module random), 160
gc (extension module),43
gcd() (in module mpz), 582
gcdext() (in module mpz), 582
gdbm (built-in module), 75, 342,368
ge() (in module operator), 55
generate tokens() (in module tokenize), 623
Generator (class in email.Generator), 477
GeneratorType (data in types), 52
get()

AddressList method, 507
dictionary method, 25
in module webbrowser, 400
Message method, 471
mixer device method, 577
Queue method, 341
SafeConfigParser method, 178

get all() (Message method), 471
get begidx() (in module readline), 360
get body encoding() (Charset method), 482
get boundary() (Message method), 473
get buffer()

Packer method, 513
Unpacker method, 514

get charset() (Message method), 471
get charsets() (Message method), 474
get close matches() (in module difflib), 113
get code() (zipimporter method), 85
get completer() (in module readline), 360
get completer delims() (in module read-

line), 361

get content charset() (Message method),
474

get content maintype() (Message
method), 472

get content subtype() (Message method),
472

get content type() (Message method), 472
get current history length() (in mod-

ule readline), 360
get data()

Request method, 415
zipimporter method, 85

get debug() (in module gc), 43
get default type() (Message method), 472
get dialect() (in module csv), 518
get directory() (in module fl), 649
get endidx() (in module readline), 360
get filename()

in module fl, 649
Message method, 473

get full url() (Request method), 415
get grouped opcodes() (SequenceMatcher

method), 116
get history item() (in module readline),

360
get history length() (in module readline),

360
get host() (Request method), 415
get ident() (in module thread), 331
get line buffer() (in module readline), 360
get magic() (in module imp), 81
get main type() (Message method), 475
get matching blocks() (SequenceMatcher

method), 115
get method() (Request method), 415
get mouse() (in module fl), 649
get nowait() (Queue method), 341
get objects() (in module gc), 43
get opcodes() (SequenceMatcher method),

115
get option() (method), 271
get osfhandle() (in module msvcrt), 661
get output charset() (Charset method),

483
get param() (Message method), 473
get params() (Message method), 472
get pattern() (in module fl), 649
get payload() (Message method), 470
get position() (Unpacker method), 514
get recsrc() (mixer device method), 578
get referents() (in module gc), 44
get referrers() (in module gc), 44
get request() (in module SocketServer), 444
get rgbmode() (in module fl), 649
get selector() (Request method), 415
get socket() (Telnet method), 440
get source() (zipimporter method), 85
get starttag text()

700 Index

HTMLParser method, 522
SGMLParser method, 524

get subtype() (Message method), 475
get suffixes() (in module imp), 81
get terminator() (async chat method), 461
get threshold() (in module gc), 44
get token() (shlex method), 184
get type()

Message method, 475
Request method, 415

get unixfrom() (Message method), 470
getacl() (IMAP4 stream method), 430
getaddr() (AddressList method), 508
getaddresses() (in module email.Utils), 485
getaddrinfo() (in module socket), 323
getaddrlist() (AddressList method), 508
getallmatchingheaders() (AddressList

method), 507
getargspec() (in module inspect), 62
getargvalues() (in module inspect), 62
getatime() (in module os.path), 205
getattr() (in module), 7
getAttribute() (Element method), 539
getAttributeNode() (Element method), 539
getAttributeNodeNS() (Element method),

539
getAttributeNS() (Element method), 539
GetBase() (xmlparser method), 528
getbegyx() (window method), 244
getboolean() (SafeConfigParser method), 178
getByteStream() (InputSource method), 557
getcaps() (in module mailcap), 495
getch()

in module msvcrt, 662
window method, 244

getchannels() (audio configuration method),
644

getCharacterStream() (InputSource
method), 557

getche() (in module msvcrt), 662
getcheckinterval() (in module sys), 39
getChildNodes() (Node method), 636
getChildren() (Node method), 636
getclasstree() (in module inspect), 62
getColumnNumber() (Locator method), 556
getcomment() (in module fm), 654
getcomments() (in module inspect), 61
getcompname()

aifc method, 565
AU read method, 568
Wave read method, 570

getcomptype()
aifc method, 565
AU read method, 568
Wave read method, 570

getconfig() (audio port method), 645
getContentHandler() (XMLReader method),

555

getcontext() (MH method), 497
getctime() (in module os.path), 205
getcurrent() (Folder method), 498
getcwd() (in module os), 193
getcwdu() (in module os), 193
getdate() (AddressList method), 508
getdate tz() (AddressList method), 508
getdecoder() (in module codecs), 123
getdefaultencoding() (in module sys), 39
getdefaultlocale() (in module locale), 291
getdefaulttimeout() (in module socket),

325
getdlopenflags() (in module sys), 39
getdoc() (in module inspect), 61
getDOMImplementation() (in module

xml.dom), 535
getDTDHandler() (XMLReader method), 555
getEffectiveLevel() (method), 306
getegid() (in module os), 188
getElementsByTagName()

Document method, 539
Element method, 539

getElementsByTagNameNS()
Document method, 539
Element method, 539

getencoder() (in module codecs), 123
getEncoding() (InputSource method), 557
getencoding() (Message method), 499
getEntityResolver() (XMLReader method),

555
getenv() (in module os), 189
getErrorHandler() (XMLReader method),

555
geteuid() (in module os), 188
getEvent() (DOMEventStream method), 547
getEventCategory() (NTEventLogHandler

method), 310
getEventType() (NTEventLogHandler

method), 310
getException() (SAXException method), 549
getfd() (audio port method), 644
getFeature() (XMLReader method), 555
getfile() (in module inspect), 62
getfilesystemencoding() (in module sys),

39
getfillable() (audio port method), 644
getfilled() (audio port method), 644
getfillpoint() (audio port method), 645
getfirst() (FieldStorage method), 404
getfirstmatchingheader() (AddressList

method), 507
getfloat() (SafeConfigParser method), 178
getfloatmax() (audio configuration method),

644
getfmts() (audio device method), 576
getfontinfo() (in module fm), 654
getfontname() (in module fm), 654
getfqdn() (in module socket), 323

Index 701

getframeinfo() (in module inspect), 63
getframerate()

aifc method, 565
AU read method, 568
Wave read method, 570

getfullname() (Folder method), 498
getgid() (in module os), 188
getgrall() (in module grp), 365
getgrgid() (in module grp), 365
getgrnam() (in module grp), 365
getgroups() (in module os), 188
getheader()

AddressList method, 507
HTTPResponse method, 422

gethostbyaddr()
in module socket, 190
in module socket, 323

gethostbyname() (in module socket), 323
gethostbyname ex() (in module socket), 323
gethostname()

in module socket, 190
in module socket, 323

getinfo()
audio device method, 660
ZipFile method, 353

getinnerframes() (in module inspect), 63
GetInputContext() (xmlparser method), 528
getint() (SafeConfigParser method), 178
getitem() (in module operator), 57
getkey() (window method), 244
getlast() (Folder method), 498
getLength() (Attributes method), 557
getLevelName() (in module logging), 305
getline() (in module linecache), 65
getLineNumber() (Locator method), 556
getlist() (FieldStorage method), 404
getloadavg() (in module os), 203
getlocale() (in module locale), 292
getLogger() (in module logging), 304
getlogin() (in module os), 188
getmaintype() (Message method), 500
getmark()

aifc method, 566
AU read method, 568
Wave read method, 570

getmarkers()
aifc method, 565
AU read method, 568
Wave read method, 570

getmaxyx() (window method), 244
getmcolor() (in module fl), 650
getmember() (TarFile method), 356
getmembers()

in module inspect, 60
TarFile method, 357

getMessage() (SAXException method), 549
getmessagefilename() (Folder method), 498

getMessageID() (NTEventLogHandler
method), 310

getmodule() (in module inspect), 62
getmoduleinfo() (in module inspect), 60
getmodulename() (in module inspect), 61
getmouse() (in module curses), 239
getmro() (in module inspect), 62
getmtime() (in module os.path), 205
getName() (Thread method), 338
getname() (Chunk method), 571
getNameByQName() (AttributesNS method), 557
getnameinfo() (in module socket), 324
getNames() (Attributes method), 557
getnames() (TarFile method), 357
getnamespace() (XMLParser method), 558
getnchannels()

aifc method, 565
AU read method, 568
Wave read method, 570

getnframes()
aifc method, 565
AU read method, 568
Wave read method, 570

getopt() (in module getopt), 256
getopt (standard module),255
GetoptError (exception in getopt), 256
getouterframes() (in module inspect), 63
getoutput() (in module commands), 379
getpagesize() (in module resource), 377
getparam() (Message method), 499
getparams()

aifc method, 565
AU read method, 568
in module al, 644
Wave read method, 570

getparyx() (window method), 244
getpass() (in module getpass), 237
getpass (standard module),237
getpath() (MH method), 497
getpeername() (socket method), 326
getpgid() (in module os), 189
getpgrp() (in module os), 189
getpid() (in module os), 189
getplist() (Message method), 499
getpos() (HTMLParser method), 522
getppid() (in module os), 189
getpreferredencoding() (in module locale),

292
getprofile() (MH method), 497
getProperty() (XMLReader method), 556
getprotobyname() (in module socket), 324
getPublicId()

InputSource method, 556
Locator method, 556

getpwall() (in module pwd), 365
getpwnam() (in module pwd), 365
getpwuid() (in module pwd), 365
getQNameByName() (AttributesNS method), 557

702 Index

getQNames() (AttributesNS method), 558
getqueuesize() (audio configuration method),

644
getquota() (IMAP4 stream method), 430
getquotaroot() (IMAP4 stream method), 430
getrawheader() (AddressList method), 507
getreader() (in module codecs), 123
getrecursionlimit() (in module sys), 40
getrefcount() (in module sys), 40
getresponse() (HTTPResponse method), 421
getrlimit() (in module resource), 376
getrusage() (in module resource), 377
getsampfmt() (audio configuration method),

644
getsample() (in module audioop), 562
getsampwidth()

aifc method, 565
AU read method, 568
Wave read method, 570

getsequences() (Folder method), 498
getsequencesfilename() (Folder method),

498
getservbyname() (in module socket), 324
getsignal() (in module signal), 320
getsize()

Chunk method, 571
in module os.path, 205

getsizes() (in module imgfile), 656
getslice() (in module operator), 57
getsockname() (socket method), 326
getsockopt() (socket method), 326
getsource() (in module inspect), 62
getsourcefile() (in module inspect), 62
getsourcelines() (in module inspect), 62
getstate() (in module random), 159
getstatus()

audio port method, 645
CD player method, 646
in module commands, 379

getstatusoutput() (in module commands),
379

getstr() (window method), 244
getstrwidth() (in module fm), 654
getSubject() (SMTPHandler method), 311
getsubtype() (Message method), 500
getSystemId()

InputSource method, 556
Locator method, 556

getsyx() (in module curses), 239
gettarinfo() (TarFile method), 357
gettempdir() (in module tempfile), 282
gettempprefix() (in module tempfile), 282
getTestCaseNames() (TestLoader method),

151
gettext()

GNUTranslations method, 299
in module gettext, 296
NullTranslations method, 298

gettext (standard module),295
gettimeout() (socket method), 327
gettrackinfo() (CD player method), 647
getType() (Attributes method), 557
gettype() (Message method), 499
getuid() (in module os), 189
getuser() (in module getpass), 237
getValue() (Attributes method), 557
getvalue() (StringIO method), 120
getValueByQName() (AttributesNS method),

557
getweakrefcount() (in module weakref), 46
getweakrefs() (in module weakref), 46
getwelcome()

FTP method, 424
NNTPDataError method, 434
POP3 method, 427

getwidth() (audio configuration method), 644
getwin() (in module curses), 239
getwindowsversion() (in module sys), 40
getwriter() (in module codecs), 123
getyx() (window method), 244
GL (standard module),656
gl (built-in module),654
glob() (in module glob), 288
glob (standard module), 288,288
globals() (in module), 7
gmtime() (in module time), 232
GNOME, 299
gnu getopt() (in module getopt), 256
Gopher

protocol, 411, 426
gopher open() (GopherHandler method), 419
gopher proxy, 409
GopherError (exception in urllib2), 414
GopherHandler (class in urllib2), 415
gopherlib (standard module),426
goto() (in module turtle), 602
Graphical User Interface, 585
Greenwich Mean Time, 231
grey22grey() (in module imageop), 565
grey2grey2() (in module imageop), 564
grey2grey4() (in module imageop), 564
grey2mono() (in module imageop), 564
grey42grey() (in module imageop), 565
group()

MatchObject method, 107
NNTPDataError method, 434

groupdict() (MatchObject method), 108
groupindex (RegexObject attribute), 107
groups() (MatchObject method), 108
grp (built-in module),365
gt() (in module operator), 55
guess all extensions() (in module mime-

types), 500
guess extension()

in module mimetypes, 500
MimeTypes method, 501

Index 703

guess type()
in module mimetypes, 500
MimeTypes method, 501

GUI, 585
gzip (standard module),349
GzipFile (class in gzip), 349

H
halfdelay() (in module curses), 240
handle()

method, 307
BaseHTTPRequestHandler method, 446
in module SocketServer, 444

handle accept() (dispatcher method), 459
handle authentication request() (Ab-

stractBasicAuthHandler method), 418
handle authentication request() (Ab-

stractDigestAuthHandler method), 418
handle cdata() (XMLParser method), 559
handle charref()

HTMLParser method, 522
SGMLParser method, 524
XMLParser method, 559

handle close()
async chat method, 461
dispatcher method, 459

handle comment()
HTMLParser method, 522
SGMLParser method, 524
XMLParser method, 559

handle connect() (dispatcher method), 459
handle data()

HTMLParser method, 522
SGMLParser method, 524
XMLParser method, 559

handle decl()
HTMLParser method, 522
SGMLParser method, 524

handle doctype() (XMLParser method), 559
handle endtag()

HTMLParser method, 522
SGMLParser method, 524
XMLParser method, 559

handle entityref()
HTMLParser method, 522
SGMLParser method, 524

handle error()
dispatcher method, 459
in module SocketServer, 444

handle expt() (dispatcher method), 459
handle image() (HTMLParser method), 526
handle one request() (BaseHTTPRequest-

Handler method), 446
handle pi() (HTMLParser method), 522
handle proc() (XMLParser method), 559
handle read()

async chat method, 461
dispatcher method, 459

handle request()
in module SocketServer, 443
SimpleXMLRPCRequestHandler method, 456

handle special() (XMLParser method), 559
handle startendtag() (HTMLParser

method), 522
handle starttag()

HTMLParser method, 522
SGMLParser method, 524
XMLParser method, 559

handle write()
async chat method, 461
dispatcher method, 459

handle xml() (XMLParser method), 559
handleError()

method, 307
SocketHandler method, 309

handler() (in module cgitb), 408
has colors() (in module curses), 239
has data() (Request method), 415
has extn() (SMTP method), 437
has header() (Sniffer method), 518
has ic() (in module curses), 239
has il() (in module curses), 239
has ipv6 (data in socket), 323
has key()

method, 345
dictionary method, 25
in module curses, 240
Message method, 471

has option()
method, 271
SafeConfigParser method, 177

has section() (SafeConfigParser method), 177
hasattr() (in module), 7
hasAttributes() (Node method), 537
hasChildNodes() (Node method), 537
hascompare (data in dis), 627
hasconst (data in dis), 627
hasFeature() (DOMImplementation method),

536
hasfree (data in dis), 627
hash() (in module), 7
hashopen() (in module bsddb), 345
hasjabs (data in dis), 627
hasjrel (data in dis), 627
haslocal (data in dis), 627
hasname (data in dis), 627
have unicode (data in test.testsupport), 155
head() (NNTPDataError method), 435
Header (class in email.Header), 480
header encode() (Charset method), 483
header encoding (data in email.Charset), 482
header offset (ZipInfo attribute), 354
HeaderParseError (exception in email.Errors),

484
headers

MIME, 401, 500

704 Index

headers
AddressList attribute, 508
BaseHTTPRequestHandler attribute, 445
ServerProxy attribute, 454

heapify() (in module heapq), 163
heapmin() (in module msvcrt), 662
heappop() (in module heapq), 163
heappush() (in module heapq), 163
heapq (standard module),163
heapreplace() (in module heapq), 163
helo() (SMTP method), 437
help

online, 133
help()

in module , 8
NNTPDataError method, 434

herror (exception in socket), 322
hex() (in module), 8
hexadecimal

literals, 16
hexbin() (in module binhex), 511
hexdigest()

hmac method, 579
md5 method, 580
sha method, 581

hexdigits (data in string), 97
hexlify() (in module binascii), 511
hexversion (data in sys), 40
hidden() (method), 255
hide() (method), 255
hide form() (form method), 650
hide object() (FORMS object method), 652
HierarchyRequestErr (exception in

xml.dom), 541
HIGHEST PROTOCOL(data in pickle), 67
hline() (window method), 244
HList (class in Tix), 598
hls to rgb() (in module colorsys), 572
hmac (standard module),579
HOME, 95, 204
hosts (netrc attribute), 516
hotshot (standard module),394
hotshot.stats (standard module),395
hour

datetime attribute, 220
time attribute, 224

hsv to rgb() (in module colorsys), 572
HTML, 411, 521, 525
htmlentitydefs (standard module),527
htmllib (standard module), 411,525
HTMLParser

class in htmllib, 465, 526
class in HTMLParser, 521
standard module,521

htonl() (in module socket), 324
htons() (in module socket), 324
HTTP

httplib (standard module), 420

protocol, 401, 411, 420, 445
http error 301() (HTTPRedirectHandler

method), 417
http error 302() (HTTPRedirectHandler

method), 417
http error 303() (HTTPRedirectHandler

method), 417
http error 307() (HTTPRedirectHandler

method), 417
http error 401() (HTTPBasicAuthHandler

method), 418
http error 401() (HTTPDigestAuthHandler

method), 418
http error 407() (ProxyBasicAuthHandler

method), 418
http error 407() (ProxyDigestAuthHandler

method), 418
http error default() (BaseHandler

method), 417
http open() (HTTPHandler method), 418
HTTP PORT(data in httplib), 420
http proxy, 409
HTTPBasicAuthHandler (class in urllib2), 414
HTTPConnection (class in httplib), 420
httpd, 445
HTTPDefaultErrorHandler (class in urllib2),

414
HTTPDigestAuthHandler (class in urllib2),

414
HTTPError (exception in urllib2), 414
HTTPException (exception in httplib), 420
HTTPHandler

class in logging, 311
class in urllib2, 414

httplib (standard module),420
HTTPPasswordMgr (class in urllib2), 414
HTTPPasswordMgrWithDefaultRealm

(class in urllib2), 414
HTTPRedirectHandler (class in urllib2), 414
HTTPResponse (class in httplib), 420
https open() (HTTPSHandler method), 418
HTTPS PORT(data in httplib), 420
HTTPSConnection (class in httplib), 420
HTTPServer (class in BaseHTTPServer), 445
HTTPSHandler (class in urllib2), 415
hypertext, 525
hypot() (in module math), 156

I
I (data in re), 105
I/O control

buffering, 7, 190, 326
POSIX, 369, 370
tty, 369, 370
UNIX , 371

ibufcount() (audio device method), 660
id()

in module , 8

Index 705

TestCase method, 149
idcok() (window method), 244
IDEA

cipher, 579
ident (data in cd), 646
identchars (Cmd attribute), 183
Idle, 602
idlok() (window method), 245
IEEE-754, 49
if

statement, 14
ifilter() (in module itertools), 172
ifilterfalse() (in module itertools), 172
ignorableWhitespace() (ContentHandler

method), 552
ignore() (Stats method), 392
ignore errors() (in module codecs), 123
ignore zeros=False (TarFile attribute), 357
IGNORECASE(data in re), 105
ihave() (NNTPDataError method), 435
ihooks (standard module), 3
imageop (built-in module),564
imap() (in module itertools), 172
IMAP4

protocol, 428
IMAP4 (class in imaplib), 428
IMAP4.abort (exception in imaplib), 428
IMAP4.error (exception in imaplib), 428
IMAP4.readonly (exception in imaplib), 428
IMAP4 SSL

protocol, 428
IMAP4 SSL (class in imaplib), 428
IMAP4 stream

protocol, 428
IMAP4 stream (class in imaplib), 428
imaplib (standard module),428
imgfile (built-in module),656
imghdr (standard module),573
immedok() (window method), 245
ImmutableSet (class in sets), 168
imp (built-in module), 3,81
import

statement, 3, 81
Import module, 604
ImportError (exception in exceptions), 32
ImproperConnectionState (exception in

httplib), 421
in

operator, 15, 18
in table a1() (in module stringprep), 131
in table b1() (in module stringprep), 132
in table c11() (in module stringprep), 132
in table c11 c12() (in module stringprep),

132
in table c12() (in module stringprep), 132
in table c21() (in module stringprep), 132
in table c21 c22() (in module stringprep),

132

in table c22() (in module stringprep), 132
in table c3() (in module stringprep), 132
in table c4() (in module stringprep), 132
in table c5() (in module stringprep), 132
in table c6() (in module stringprep), 132
in table c7() (in module stringprep), 132
in table c8() (in module stringprep), 132
in table c9() (in module stringprep), 132
in table d1() (in module stringprep), 132
in table d2() (in module stringprep), 132
INADDR * (data in socket), 323
inch() (window method), 245
Incomplete (exception in binascii), 511
IncompleteRead (exception in httplib), 421
IncrementalParser (class in

xml.sax.xmlreader), 554
indentation, 605
Independent JPEG Group, 657
index()

array method, 166
in module string, 99
string method, 20

index (data in cd), 646
index() (list method), 24
IndexError (exception in exceptions), 32
indexOf() (in module operator), 57
IndexSizeErr (exception in xml.dom), 541
inet aton() (in module socket), 324
inet ntoa() (in module socket), 325
inet ntop() (in module socket), 325
inet pton() (in module socket), 325
infile (shlex attribute), 185
Infinity, 7, 98
info()

method, 306
in module logging, 305
NullTranslations method, 298

infolist() (ZipFile method), 353
InfoSeek Corporation, 387
ini file, 176
init()

in module fm, 654
in module mimetypes, 500

init builtin() (in module imp), 82
init color() (in module curses), 240
init frozen() (in module imp), 82
init pair() (in module curses), 240
inited (data in mimetypes), 501
initial indent (TextWrapper attribute), 121
initscr() (in module curses), 240
input()

built-in function, 42
in module , 8
in module fileinput, 179

input charset (data in email.Charset), 482
input codec (data in email.Charset), 482
InputOnly (class in Tix), 599
InputSource (class in xml.sax.xmlreader), 554

706 Index

InputType (data in cStringIO), 120
insch() (window method), 245
insdelln() (window method), 245
insert()

array method, 166
list method, 24

insert text() (in module readline), 360
insertBefore() (Node method), 537
insertln() (window method), 245
insnstr() (window method), 245
insort() (in module bisect), 162
insort left() (in module bisect), 162
insort right() (in module bisect), 162
inspect (standard module),59
insstr() (window method), 245
install()

in module gettext, 297
NullTranslations method, 298

install opener() (in module urllib2), 413
instance() (in module new), 93
instancemethod() (in module new), 93
InstanceType (data in types), 53
instr() (window method), 245
instream (shlex attribute), 185
int()

built-in function, 16
in module , 8

Int2AP() (in module imaplib), 428
integer

arbitrary precision, 581
division, 16
division, long, 16
literals, 16
literals, long, 16
object, 16
types, operations on, 17

Integrated Developement Environment, 602
Intel/DVI ADPCM, 561
interact()

in module code, 86
InteractiveConsole method, 87
Telnet method, 441

InteractiveConsole (class in code), 86
InteractiveInterpreter (class in code), 86
intern() (in module), 14
internal attr (ZipInfo attribute), 354
Internaldate2tuple() (in module imaplib),

428
internalSubset (DocumentType attribute), 538
Internet, 399
Internet Config, 409
interpolation, string (%), 22
InterpolationDepthError (exception in

ConfigParser), 176
InterpolationError (exception in Config-

Parser), 176
InterpolationMissingOptionError (ex-

ception in ConfigParser), 177

InterpolationSyntaxError (exception in
ConfigParser), 177

interpreter prompts, 41
interrupt main() (in module thread), 331
intro (Cmd attribute), 183
IntType (data in types), 52
InuseAttributeErr (exception in xml.dom),

541
inv() (in module operator), 56
InvalidAccessErr (exception in xml.dom),

541
InvalidCharacterErr (exception in

xml.dom), 541
InvalidModificationErr (exception in

xml.dom), 541
InvalidStateErr (exception in xml.dom), 541
InvalidURL (exception in httplib), 420
invert() (in module operator), 56
ioctl() (in module fcntl), 371
IOError (exception in exceptions), 32
IP * (data in socket), 323
IPPORT * (data in socket), 323
IPPROTO * (data in socket), 322
IPV6 * (data in socket), 323
IRIS Font Manager, 653
IRIX

threads, 332
is

operator, 15
is not

operator, 15
is () (in module operator), 56
is builtin() (in module imp), 83
IS CHARACTERJUNK() (in module difflib), 114
is data() (MultiFile method), 504
is empty() (fifo method), 462
is frozen() (in module imp), 83
is jython (data in test.testsupport), 155
IS LINE JUNK() (in module difflib), 114
is linetouched() (window method), 245
is multipart() (Message method), 470
is not() (in module operator), 56
is package() (zipimporter method), 85
is resource enabled() (in module

test.test support), 155
is tarfile() (in module tarfile), 356
is wintouched() (window method), 245
is zipfile() (in module zipfile), 352
isabs() (in module os.path), 205
isAlive() (Thread method), 338
isalnum()

in module curses.ascii, 253
string method, 20

isalpha()
in module curses.ascii, 253
string method, 20

isascii() (in module curses.ascii), 253
isatty()

Index 707

Chunk method, 572
file method, 26
in module os, 191

isblank() (in module curses.ascii), 253
isblk() (TarInfo method), 359
isbuiltin() (in module inspect), 61
isCallable() (in module operator), 58
ischr() (TarInfo method), 358
isclass() (in module inspect), 61
iscntrl() (in module curses.ascii), 253
iscode() (in module inspect), 61
iscomment() (AddressList method), 507
isctrl() (in module curses.ascii), 254
isDaemon() (Thread method), 338
isdatadescriptor() (in module inspect), 61
isdev() (TarInfo method), 359
isdigit()

in module curses.ascii, 253
string method, 20

isdir()
in module os.path, 205
TarInfo method, 358

isenabled() (in module gc), 43
isEnabledFor() (method), 306
isendwin() (in module curses), 240
ISEOF() (in module token), 623
isexpr()

AST method, 616
in module parser, 615

isfifo() (TarInfo method), 359
isfile()

in module os.path, 205
TarInfo method, 358

isfirstline() (in module fileinput), 179
isframe() (in module inspect), 61
isfunction() (in module inspect), 61
isgraph() (in module curses.ascii), 253
isheader() (AddressList method), 507
isinstance() (in module), 8
iskeyword() (in module keyword), 623
islast() (AddressList method), 507
isleap() (in module calendar), 181
islice() (in module itertools), 172
islink() (in module os.path), 205
islnk() (TarInfo method), 358
islower()

in module curses.ascii, 254
string method, 20

isMappingType() (in module operator), 58
ismeta() (in module curses.ascii), 254
ismethod() (in module inspect), 61
ismethoddescriptor() (in module inspect),

61
ismodule() (in module inspect), 61
ismount() (in module os.path), 205
ISNONTERMINAL() (in module token), 623
isNumberType() (in module operator), 58
isocalendar()

date method, 218
datetime method, 222

isoformat()
date method, 218
datetime method, 223
time method, 224

isoweekday()
date method, 218
datetime method, 222

isprint() (in module curses.ascii), 254
ispunct() (in module curses.ascii), 254
isqueued() (in module fl), 649
isreadable()

in module pprint, 90
PrettyPrinter method, 91

isrecursive()
in module pprint, 90
PrettyPrinter method, 91

isreg() (TarInfo method), 358
isReservedKey() (Morsel method), 450
isroutine() (in module inspect), 61
isSameNode() (Node method), 537
isSequenceType() (in module operator), 58
isSet() (Event method), 337
isspace()

in module curses.ascii, 254
string method, 20

isstdin() (in module fileinput), 179
issubclass() (in module), 8
issuite()

AST method, 616
in module parser, 615

issym() (TarInfo method), 358
ISTERMINAL() (in module token), 622
istitle() (string method), 20
istraceback() (in module inspect), 61
isupper()

in module curses.ascii, 254
string method, 20

isxdigit() (in module curses.ascii), 254
item()

NamedNodeMap method, 540
NodeList method, 537

items()
dictionary method, 25
Message method, 471
SafeConfigParser method, 178

itemsize (array attribute), 166
iter() (in module), 8
iterator protocol, 17
iteritems() (dictionary method), 25
iterkeys() (dictionary method), 25
itertools (standard module),170
itervalues() (dictionary method), 25
izip() (in module itertools), 173

J
Jansen, Jack, 512

708 Index

JFIF, 657
join()

in module os.path, 205
in module string, 99
string method, 20
Thread method, 338

joinfields() (in module string), 99
jpeg (built-in module),657
js output()

BaseCookie method, 449
Morsel method, 450

jumpahead() (in module random), 159

K
kbhit() (in module msvcrt), 662
KDEDIR, 400
key (Morsel attribute), 450
KeyboardInterrupt (exception in exceptions),

32
KeyError (exception in exceptions), 32
keyname() (in module curses), 240
keypad() (window method), 245
keys()

method, 345
dictionary method, 25
Message method, 471

keyword (standard module),623
kill() (in module os), 200
killchar() (in module curses), 240
killpg() (in module os), 200
knee (module), 84
knownfiles (data in mimetypes), 501
Kuchling, Andrew, 579
kwlist (data in keyword), 623

L
L (data in re), 105
LabelEntry (class in Tix), 597
LabelFrame (class in Tix), 597
LambdaType (data in types), 52
LANG, 291, 292, 296, 297
LANGUAGE, 296, 297
language

C, 16
large files, 363
last()

method, 346
dbhash method, 344
NNTPDataError method, 435

last (MultiFile attribute), 505
last traceback (data in sys), 41
last type (data in sys), 40
last value (data in sys), 40
lastChild (Node attribute), 536
lastcmd (Cmd attribute), 183
lastgroup (MatchObject attribute), 108
lastindex (MatchObject attribute), 108
lastpart() (MimeWriter method), 502

LC ALL, 296, 297
LC ALL (data in locale), 293
LC COLLATE(data in locale), 293
LC CTYPE(data in locale), 292
LC MESSAGES, 296, 297
LC MESSAGES(data in locale), 293
LC MONETARY(data in locale), 293
LC NUMERIC(data in locale), 293
LC TIME (data in locale), 293
lchown() (in module os), 194
ldexp() (in module math), 156
le() (in module operator), 55
leapdays() (in module calendar), 181
leaveok() (window method), 245
left() (in module turtle), 601
left list (dircmp attribute), 211
left only (dircmp attribute), 211
len()

built-in function, 18, 25
in module , 9

length
NamedNodeMap attribute, 540
NodeList attribute, 538

letters (data in string), 97
level (MultiFile attribute), 505
library (data in dbm), 367
light-weight processes, 331
lin2adpcm() (in module audioop), 562
lin2adpcm3() (in module audioop), 562
lin2lin() (in module audioop), 562
lin2ulaw() (in module audioop), 562
line-buffered I/O, 7
linecache (standard module),65
lineno() (in module fileinput), 179
lineno

class descriptor attribute, 625
ExpatError attribute, 531
function descriptor attribute, 625
shlex attribute, 186

LINES, 243
linesep (data in os), 204
lineterminator (Dialect attribute), 519
link() (in module os), 194
linkname (TarInfo attribute), 358
list

object, 18, 23
type, operations on, 24

list()
IMAP4 stream method, 430
in module , 9
NNTPDataError method, 434
POP3 method, 427
TarFile method, 357

list dialects() (in module csv), 518
listallfolders() (MH method), 497
listallsubfolders() (MH method), 497
listdir()

in module dircache, 206

Index 709

in module os, 194
listen()

dispatcher method, 460
in module logging, 313
socket method, 326

listfolders() (MH method), 497
listmessages() (Folder method), 498
ListNoteBook (class in Tix), 599
listsubfolders() (MH method), 497
ListType (data in types), 52
literals

complex number, 16
floating point, 16
hexadecimal, 16
integer, 16
long integer, 16
numeric, 16
octal, 16

ljust()
in module string, 100
string method, 20

LK LOCK(data in msvcrt), 661
LK NBLCK(data in msvcrt), 661
LK NBRLCK(data in msvcrt), 661
LK RLCK(data in msvcrt), 661
LK UNLCK(data in msvcrt), 661
LNAME, 237
load()

BaseCookie method, 449
in module hotshot.stats, 395
in module marshal, 78
in module pickle, 67
Unpickler method, 69

load compiled() (in module imp), 83
load dynamic() (in module imp), 83
load module()

in module imp, 81
zipimporter method, 85

load source() (in module imp), 83
loads()

in module marshal, 79
in module pickle, 68

loadTestsFromModule() (TestLoader
method), 151

loadTestsFromName() (TestLoader method),
151

loadTestsFromNames() (TestLoader method),
151

loadTestsFromTestCase() (TestLoader
method), 151

LOCALE(data in re), 105
locale (standard module),290
localeconv() (in module locale), 291
localName

Attr attribute, 540
Node attribute, 536

locals() (in module), 9
localtime() (in module time), 232

Locator (class in xml.sax.xmlreader), 554
Lock() (in module threading), 333
lock()

in module posixfile, 374
mutex method, 237

lock held() (in module imp), 82
locked() (lock method), 332
lockf()

in module fcntl, 372
in module fcntl, 374

locking() (in module msvcrt), 661
LockType (data in thread), 331
log()

method, 306
in module cmath, 158
in module math, 156

log10()
in module cmath, 158
in module math, 156

log data time string() (BaseHTTPRe-
questHandler method), 447

log error() (BaseHTTPRequestHandler
method), 447

log message() (BaseHTTPRequestHandler
method), 447

log request() (BaseHTTPRequestHandler
method), 446

logging
Errors, 303

logging (standard module),303
login()

FTP method, 424
IMAP4 stream method, 430
SMTP method, 437

login cram md5() (IMAP4 stream method),
430

LOGNAME, 189, 237
lognormvariate() (in module random), 160
logout() (IMAP4 stream method), 430
LogRecord (class in logging), 313
long

integer division, 16
integer literals, 16

long()
built-in function, 16, 98
in module , 9

long integer
object, 16

longimagedata() (in module rgbimg), 573
longname() (in module curses), 240
longstoimage() (in module rgbimg), 573
LongType (data in types), 52
lookup()

in module codecs, 122
in module unicodedata, 130

lookup error() (in module codecs), 123
LookupError (exception in exceptions), 31
loop() (in module asyncore), 458

710 Index

lower()
in module string, 99
string method, 20

lowercase (data in string), 97
lseek() (in module os), 191
lshift() (in module operator), 56
lstat() (in module os), 194
lstrip()

in module string, 99
string method, 20

lsub() (IMAP4 stream method), 430
lt() (in module operator), 55
Lundh, Fredrik, 657

M
M(data in re), 105
macros (netrc attribute), 516
mailbox (standard module),495, 506
mailcap (standard module),494
Maildir (class in mailbox), 496
main()

in module py compile, 625
in module unittest, 148

major() (in module os), 194
make form() (in module fl), 649
make header() (in module email.Header), 481
make msgid() (in module email.Utils), 486
make parser() (in module xml.sax), 548
makedev() (in module os), 194
makedirs() (in module os), 195
makefile() (socket method), 326
makefolder() (MH method), 497
makeLogRecord() (in module logging), 305
makePickle() (SocketHandler method), 309
makeRecord() (method), 307
makeSocket()

DatagramHandler method, 309
SocketHandler method, 309

maketrans() (in module string), 99
map() (in module), 9
map table b2() (in module stringprep), 132
map table b3() (in module stringprep), 132
mapcolor() (in module fl), 650
mapping

object, 25
types, operations on, 25

maps() (in module nis), 378
marshal (built-in module),78
marshalling

objects, 66
masking

operations, 17
match()

in module nis, 378
in module re, 105
RegexObject method, 107

math (built-in module), 16,155, 158
max()

built-in function, 18
in module , 9
in module audioop, 562

max
date attribute, 217
datetime attribute, 220
time attribute, 223
timedelta attribute, 216

MAX INTERPOLATION DEPTH(data in Config-
Parser), 177

maxdict (Repr attribute), 92
maxint (data in sys), 41
MAXLEN(data in mimify), 503
maxlevel (Repr attribute), 92
maxlist (Repr attribute), 92
maxlong (Repr attribute), 92
maxother (Repr attribute), 92
maxpp() (in module audioop), 562
maxstring (Repr attribute), 92
maxtuple (Repr attribute), 92
maxunicode (data in sys), 41
MAXYEAR(data in datetime), 214
MB ICONASTERISK(data in winsound), 667
MB ICONEXCLAMATION(data in winsound), 667
MB ICONHAND(data in winsound), 667
MB ICONQUESTION(data in winsound), 667
MB OK(data in winsound), 667
md5() (in module md5), 580
md5 (built-in module),579
MemoryError (exception in exceptions), 32
MemoryHandler (class in logging), 311
Message

class in email.Message, 469
class in mhlib, 497
class in mimetools, 499
class in rfc822, 506
in module mimetools, 446

message digest, MD5, 580
message from file() (in module

email.Parser), 476
message from string() (in module

email.Parser), 476
MessageBeep() (in module winsound), 666
MessageClass (BaseHTTPRequestHandler at-

tribute), 446
MessageError (exception in email.Errors), 484
MessageParseError (exception in

email.Errors), 484
meta() (in module curses), 240
Meter (class in Tix), 598
method

object, 29
methods (class descriptor attribute), 625
MethodType (data in types), 53
MH(class in mhlib), 497
mhlib (standard module),497
MHMailbox (class in mailbox), 495
microsecond

Index 711

datetime attribute, 220
time attribute, 224

MIME
base64 encoding, 509
content type, 500
headers, 401, 500
quoted-printable encoding, 512

mime decode header() (in module mimify),
503

mime encode header() (in module mimify),
503

MIMEAudio (class in email.Generator), 479
MIMEBase (class in email.Generator), 479
MIMEImage (class in email.Generator), 479
MIMEMessage (class in email.Generator), 479
MIMEMultipart (class in email.Generator), 479
MIMENonMultipart (class in email.Generator),

479
MIMEText (class in email.Generator), 480
mimetools (standard module), 409,498
MimeTypes (class in mimetypes), 501
mimetypes (standard module),500
MimeWriter

class in MimeWriter, 502
standard module,502

mimify() (in module mimify), 503
mimify (standard module),502
min()

built-in function, 18
in module , 9

min
date attribute, 217
datetime attribute, 220
time attribute, 223
timedelta attribute, 215

minmax() (in module audioop), 562
minor() (in module os), 194
minute

datetime attribute, 220
time attribute, 224

MINYEAR(data in datetime), 214
mirrored() (in module unicodedata), 131
misc header (Cmd attribute), 183
MissingSectionHeaderError (exception in

ConfigParser), 177
MIXERDEV, 575
mkd() (FTP method), 425
mkdir() (in module os), 195
mkdtemp() (in module tempfile), 281
mkfifo() (in module os), 194
mknod() (in module os), 194
mkstemp() (in module tempfile), 281
mktemp() (in module tempfile), 282
mktime() (in module time), 232
mktime tz()

in module email.Utils, 486
in module rfc822, 507

mmap() (in module mmap), 341

mmap(built-in module),341
MmdfMailbox (class in mailbox), 495
mod() (in module operator), 56
mode

file attribute, 28
TarInfo attribute, 358

modf() (in module math), 156
modified() (RobotFileParser method), 517
module

search path, 41, 65, 93
module() (in module new), 93
module

class descriptor attribute, 625
function descriptor attribute, 625

modules (data in sys), 41
ModuleType (data in types), 53
MON1 ... MON 12 (data in locale), 293
mono2grey() (in module imageop), 564
month() (in module calendar), 181
month

date attribute, 217
datetime attribute, 220

monthcalendar() (in module calendar), 181
monthrange() (in module calendar), 181
more() (simple producer method), 462
Morsel (class in Cookie), 450
mouseinterval() (in module curses), 240
mousemask() (in module curses), 240
move()

method, 255, 342
in module shutil, 290
window method, 245

movemessage() (Folder method), 498
MP, GNU library, 581
mpz() (in module mpz), 582
mpz (built-in module),581
MPZType (data in mpz), 582
msftoblock() (CD player method), 647
msftoframe() (in module cd), 645
msg() (Telnet method), 440
msg (data in httplib), 422
MSG* (data in socket), 322
msvcrt (built-in module),661
mt interact() (Telnet method), 441
mtime() (RobotFileParser method), 516
mtime (TarInfo attribute), 358
mul()

in module audioop, 562
in module operator, 56

MultiFile (class in multifile), 504
multifile (standard module),504
MULTILINE (data in re), 105
MultipartConversionError (exception in

email.Errors), 485
mutable

sequence types, 23
sequence types, operations on, 24

MutableString (class in UserString), 55

712 Index

mutex
class in mutex, 237
standard module,236

mvderwin() (window method), 245
mvwin() (window method), 246

N
name() (in module unicodedata), 130
name

Attr attribute, 540
class descriptor attribute, 625
data in os, 188
DocumentType attribute, 538
file attribute, 28
function descriptor attribute, 625
TarInfo attribute, 358

name2codepoint (data in htmlentitydefs), 527
NamedTemporaryFile() (in module tempfile),

281
NameError (exception in exceptions), 32
namelist() (ZipFile method), 353
nameprep() (in module encodings.idna), 130
NamespaceErr (exception in xml.dom), 541
namespaces

XML, 560
namespaceURI (Node attribute), 537
NaN, 7, 98
NannyNag (exception in tabnanny), 624
napms() (in module curses), 240
National Security Agency, 583
ndiff() (in module difflib), 113
ne() (in module operator), 55
neg() (in module operator), 56
netrc

class in netrc, 515
standard module,515

NetrcParseError (exception in netrc), 516
Network News Transfer Protocol, 432
new()

in module hmac, 579
in module md5, 580
in module sha, 581

new (built-in module),93
new alignment() (writer method), 467
new font() (writer method), 467
new margin() (writer method), 468
new module() (in module imp), 82
new panel() (in module curses.panel), 255
new spacing() (writer method), 468
new styles() (writer method), 468
newconfig() (in module al), 643
newgroups() (NNTPDataError method), 434
newlines (file attribute), 28
newnews() (NNTPDataError method), 434
newpad() (in module curses), 240
newrotor() (in module rotor), 583
newwin() (in module curses), 241
next()

method, 346
csv reader method, 519
dbhash method, 344
file method, 26
iterator method, 17
mailbox method, 497
MultiFile method, 504
NNTPDataError method, 435
TarFile method, 357

nextfile() (in module fileinput), 179
nextkey() (in module gdbm), 368
nextpart() (MimeWriter method), 502
nextSibling (Node attribute), 536
ngettext()

GNUTranslations method, 299
in module gettext, 296
NullTranslations method, 298

NI * (data in socket), 323
nice() (in module os), 200
nis (extension module),378
NIST, 580
NL (data in tokenize), 623
nl() (in module curses), 241
nl langinfo() (in module locale), 291
nlst() (FTP method), 425
NNTP

protocol, 432
NNTP(class in nntplib), 433
NNTPDataError (class in nntplib), 433
NNTPError (class in nntplib), 433
nntplib (standard module),432
NNTPPermanentError (class in nntplib), 433
NNTPProtocolError (class in nntplib), 433
NNTPReplyError (class in nntplib), 433
NNTPTemporaryError (class in nntplib), 433
nocbreak() (in module curses), 241
NoDataAllowedErr (exception in xml.dom),

542
Node (class in compiler.ast), 636
nodelay() (window method), 246
nodeName (Node attribute), 537
nodeType (Node attribute), 536
nodeValue (Node attribute), 537
NODISC(data in cd), 646
noecho() (in module curses), 241
NOEXPR(data in locale), 294
nofill (HTMLParser attribute), 526
nok builtin names (RExec attribute), 609
noload() (Unpickler method), 69
NoModificationAllowedErr (exception in

xml.dom), 542
nonblock() (audio device method), 576
None

Built-in object, 14
data in , 35

NoneType (data in types), 52
nonl() (in module curses), 241
noop()

Index 713

IMAP4 stream method, 430
POP3 method, 427

NoOptionError (exception in ConfigParser), 176
noqiflush() (in module curses), 241
noraw() (in module curses), 241
normalize()

in module locale, 292
in module unicodedata, 131
Node method, 537

normalvariate() (in module random), 160
normcase() (in module os.path), 205
normpath() (in module os.path), 205
NoSectionError (exception in ConfigParser),

176
not

operator, 15
not in

operator, 15, 18
not () (in module operator), 56
NotANumber (exception in fpformat), 119
notationDecl() (DTDHandler method), 553
NotationDeclHandler() (xmlparser method),

530
notations (DocumentType attribute), 538
NotConnected (exception in httplib), 420
NoteBook (class in Tix), 599
NotFoundErr (exception in xml.dom), 541
notify() (Condition method), 336
notifyAll() (Condition method), 336
notimeout() (window method), 246
NotImplemented (data in), 36
NotImplementedError (exception in excep-

tions), 32
NotStandaloneHandler() (xmlparser

method), 531
NotSupportedErr (exception in xml.dom), 541
noutrefresh() (window method), 246
now(tz=None)() (datetime method), 219
NSA, 583
NSIG (data in signal), 320
NTEventLogHandler (class in logging), 310
ntohl() (in module socket), 324
ntohs() (in module socket), 324
ntransfercmd() (FTP method), 425
NullFormatter (class in formatter), 467
NullWriter (class in formatter), 468
numeric

conversions, 16
literals, 16
object, 15, 16
types, operations on, 16

numeric() (in module unicodedata), 130
Numerical Python, 11
nurbscurve() (in module gl), 655
nurbssurface() (in module gl), 655
nvarray() (in module gl), 655

O
O APPEND(data in os), 192
O BINARY (data in os), 193
O CREAT(data in os), 192
O DSYNC(data in os), 192
O EXCL(data in os), 192
O NDELAY(data in os), 192
O NOCTTY(data in os), 192
O NOINHERIT (data in os), 193
O NONBLOCK(data in os), 192
O RANDOM(data in os), 193
O RDONLY(data in os), 192
O RDWR(data in os), 192
O RSYNC(data in os), 192
O SEQUENTIAL(data in os), 193
O SHORTLIVED (data in os), 193
O SYNC(data in os), 192
O TEMPORARY(data in os), 193
O TEXT(data in os), 193
O TRUNC(data in os), 192
O WRONLY(data in os), 192
object

Boolean, 16
buffer, 18
code, 29, 78
complex number, 16
dictionary, 25
file, 26
floating point, 16
integer, 16
list, 18, 23
long integer, 16
mapping, 25
method, 29
numeric, 15, 16
sequence, 18
socket, 321
string, 18
traceback, 38, 63
tuple, 18
type, 12
Unicode, 18
xrange, 18, 23

object() (in module), 9
objects

comparing, 15
flattening, 66
marshalling, 66
persistent, 66
pickling, 66
serializing, 66

obufcount() (audio device method), 577, 660
obuffree() (audio device method), 577
oct() (in module), 9
octal

literals, 16
octdigits (data in string), 98
offset (ExpatError attribute), 531

714 Index

OK(data in curses), 247
ok builtin modules (RExec attribute), 609
ok file types (RExec attribute), 610
ok path (RExec attribute), 610
ok posix names (RExec attribute), 610
ok sys names (RExec attribute), 610
onecmd() (Cmd method), 182
open()

IMAP4 stream method, 430
in module , 9
in module aifc, 565
in module anydbm, 342
in module cd, 645
in module codecs, 123
in module dbhash, 343
in module dbm, 367
in module dl, 366
in module dumbdbm, 347
in module gdbm, 368
in module gzip, 350
in module os, 192
in module ossaudiodev, 575
in module posixfile, 374
in module shelve, 75
in module sunau, 567
in module sunaudiodev, 659
in module tarfile, 355
in module wave, 569
in module webbrowser, 400, 401
OpenerDirector method, 416
TarFile method, 356
Telnet method, 440
Template method, 374
URLopener method, 412

open new() (in module webbrowser), 400, 401
open osfhandle() (in module msvcrt), 661
open unknown() (URLopener method), 412
opendir() (in module dircache), 206
OpenerDirector (class in urllib2), 414
openfolder() (MH method), 497
openfp()

in module sunau, 567
in module wave, 569

OpenGL, 656
OpenKey() (in module winreg), 664
OpenKeyEx() (in module winreg), 664
openlog() (in module syslog), 378
openmessage() (Message method), 498
openmixer() (in module ossaudiodev), 575
openport() (in module al), 643
openpty()

in module os, 192
in module pty, 371

operation
concatenation, 18
extended slice, 18
repetition, 18
slice, 18

subscript, 18
operations

bit-string, 17
Boolean, 14, 15
masking, 17
shifting, 17

operations on
dictionary type, 25
integer types, 17
list type, 24
mapping types, 25
mutable sequence types, 24
numeric types, 16
sequence types, 18, 24

operator
==, 15
and , 14, 15
comparison, 15
in , 15, 18
is , 15
is not , 15
not , 15
not in , 15, 18
or , 14, 15

operator (built-in module),55
opname (data in dis), 627
OptionMenu (class in Tix), 598
options() (SafeConfigParser method), 177
optionxform() (SafeConfigParser method), 178
optparse (standard module),257
or

operator, 14, 15
or () (in module operator), 56
ord() (in module), 9
ordered attributes (xmlparser attribute),

529
os (standard module), 26,187, 363
os.path (standard module),204
OSError (exception in exceptions), 33
ossaudiodev (built-in module),574
OSSAudioError (exception in ossaudiodev), 574
output()

BaseCookie method, 449
Morsel method, 450

output charset (data in email.Charset), 482
output codec (data in email.Charset), 482
OutputString() (Morsel method), 450
OutputType (data in cStringIO), 120
OverflowError (exception in exceptions), 33
overlay() (window method), 246
Overmars, Mark, 648
overwrite() (window method), 246

P
P DETACH(data in os), 201
P NOWAIT(data in os), 201
P NOWAITO(data in os), 201
P OVERLAY(data in os), 201

Index 715

P WAIT (data in os), 201
pack() (in module struct), 110
pack array() (Packer method), 514
pack bytes() (Packer method), 514
pack double() (Packer method), 513
pack farray() (Packer method), 514
pack float() (Packer method), 513
pack fopaque() (Packer method), 514
pack fstring() (Packer method), 513
pack list() (Packer method), 514
pack opaque() (Packer method), 514
pack string() (Packer method), 514
package, 94
Packer (class in xdrlib), 513
packing

binary data, 110
packing (widgets), 591
PAGER, 382
pair content() (in module curses), 241
pair number() (in module curses), 241
PanedWindow (class in Tix), 599
pardir (data in os), 203
parent (BaseHandler attribute), 416
parentNode (Node attribute), 536
paretovariate() (in module random), 160
Parse() (xmlparser method), 528
parse()

in module cgi, 404
in module compiler, 635
in module xml.dom.minidom, 543
in module xml.dom.pulldom, 547
in module xml.sax, 548
Parser method, 476
RobotFileParser method, 516
XMLReader method, 555

parse and bind() (in module readline), 360
parse header() (in module cgi), 405
parse multipart() (in module cgi), 405
parse qs() (in module cgi), 404
parse qsl() (in module cgi), 405
parseaddr()

in module email.Utils, 485
in module rfc822, 506

parsedate()
in module email.Utils, 485
in module rfc822, 506

parsedate tz()
in module email.Utils, 486
in module rfc822, 506

ParseFile() (xmlparser method), 528
parseFile() (in module compiler), 635
ParseFlags() (in module imaplib), 429
parseframe() (CD parser method), 648
Parser (class in email.Parser), 476
parser (built-in module),613
ParserCreate() (in module xml.parsers.expat),

527
ParserError (exception in parser), 615

parsesequence() (Folder method), 498
parsestr() (Parser method), 476
parseString()

in module xml.dom.minidom, 543
in module xml.dom.pulldom, 547
in module xml.sax, 548

parsing
Python source code, 613
URL, 441

ParsingError (exception in ConfigParser), 177
partial() (IMAP4 stream method), 430
pass () (POP3 method), 427
PATH, 199, 201, 204, 406, 407
path

configuration file, 94
module search, 41, 65, 93
operations, 204

path
BaseHTTPRequestHandler attribute, 445
data in os, 188
data in sys, 41

Path browser, 603
pathconf() (in module os), 195
pathconf names (data in os), 195
pathname2url() (in module urllib), 410
pathsep (data in os), 204
pattern (RegexObject attribute), 107
pause() (in module signal), 320
PAUSED(data in cd), 646
Pdb (class in pdb), 381
pdb (standard module),381
Pen (class in turtle), 602
PendingDeprecationWarning (exception in

exceptions), 34
Performance, 396
persistence, 66
persistent

objects, 66
pformat()

in module pprint, 90
PrettyPrinter method, 91

PGP, 579
pi

data in cmath, 158
data in math, 157

pick() (in module gl), 655
pickle() (in module copy reg), 75
pickle (standard module),66, 74, 75, 78
PickleError (exception in pickle), 68
Pickler (class in pickle), 68
pickling

objects, 66
PicklingError (exception in pickle), 68
pid (Popen4 attribute), 213
PIL (the Python Imaging Library), 657
pipe() (in module os), 192
pipes (standard module),373
PKG DIRECTORY(data in imp), 82

716 Index

pkgutil (standard module),86
platform (data in sys), 41
play() (CD player method), 647
playabs() (CD player method), 647
PLAYING (data in cd), 646
PlaySound() (in module winsound), 666
playtrack() (CD player method), 647
playtrackabs() (CD player method), 647
plock() (in module os), 200
pm() (in module pdb), 382
pnum (data in cd), 646
poll()

method, 331
in module select, 330
Popen4 method, 212

pop()
array method, 166
dictionary method, 25
fifo method, 462
list method, 24
MultiFile method, 505

POP3
protocol, 426

POP3(class in poplib), 426
pop alignment() (formatter method), 466
pop font() (formatter method), 467
pop margin() (formatter method), 467
pop source() (shlex method), 185
pop style() (formatter method), 467
popen()

in module os, 190
in module os, 330

popen2()
in module os, 190
in module popen2, 212

popen2 (standard module),212
Popen3 (class in popen2), 212
popen3()

in module os, 190
in module popen2, 212

Popen4 (class in popen2), 212
popen4()

in module os, 190
in module popen2, 212

popitem() (dictionary method), 25
poplib (standard module),426
PopupMenu (class in Tix), 598
PortableUnixMailbox (class in mailbox), 495
pos() (in module operator), 56
pos (MatchObject attribute), 108
POSIX

file object, 374
I/O control, 369, 370
threads, 331

posix (built-in module),363
posix=True (TarFile attribute), 357
posixfile (built-in module),374
post()

audio device method, 576
NNTPDataError method, 435

post mortem() (in module pdb), 382
postcmd() (Cmd method), 183
postloop() (Cmd method), 183
pow()

in module , 9
in module math, 156
in module operator, 57

powm() (in module mpz), 582
pprint()

in module pprint, 90
PrettyPrinter method, 91

pprint (standard module),89
prcal() (in module calendar), 181
preamble (data in email.Message), 474
precmd() (Cmd method), 183
prefix

Attr attribute, 540
data in sys, 41
Node attribute, 537

preloop() (Cmd method), 183
preorder() (ASTVisitor method), 641
prepare input source() (in module

xml.sax.saxutils), 554
prepend() (Template method), 374
Pretty Good Privacy, 579
PrettyPrinter (class in pprint), 89
preventremoval() (CD player method), 647
previous()

method, 346
dbhash method, 344

previousSibling (Node attribute), 536
print

statement, 14
print callees() (Stats method), 392
print callers() (Stats method), 392
print directory() (in module cgi), 405
print environ() (in module cgi), 405
print environ usage() (in module cgi), 405
print exc()

in module traceback, 64
Timer method, 396

print exception() (in module traceback), 64
print form() (in module cgi), 405
print last() (in module traceback), 64
print stack() (in module traceback), 64
print stats() (Stats method), 392
print tb() (in module traceback), 64
printable (data in string), 98
printdir() (ZipFile method), 353
printf-style formatting, 22
Priority Queue, 162
prmonth() (in module calendar), 181
process

group, 188, 189
id, 189
id of parent, 189

Index 717

killing, 200
signalling, 200

process request() (in module SocketServer),
444

processes, light-weight, 331
processingInstruction() (ContentHandler

method), 552
ProcessingInstructionHandler() (xml-

parser method), 530
processor time, 232
Profile (class in hotshot), 394
profile (standard module),390
profile function, 42, 333
profiler, 42
profiling, deterministic, 387
prompt (Cmd attribute), 183
prompt user passwd() (FancyURLopener

method), 412
prompts, interpreter, 41
propagate (data in logging), 306
property() (in module), 10
property declaration handler (data in

xml.sax.handler), 550
property dom node (data in xml.sax.handler),

550
property lexical handler (data in

xml.sax.handler), 550
property xml string (data in

xml.sax.handler), 550
protocol

CGI, 401
FTP, 411, 423
Gopher, 411, 426
HTTP, 401, 411, 420, 445
IMAP4, 428
IMAP4 SSL, 428
IMAP4 stream, 428
iterator, 17
NNTP, 432
POP3, 426
SMTP, 436
Telnet, 439

PROTOCOLVERSION(IMAP4 stream attribute),
432

protocol version (BaseHTTPRequestHand-
ler attribute), 446

proxy() (in module weakref), 46
proxyauth() (IMAP4 stream method), 430
ProxyBasicAuthHandler (class in urllib2),

414
ProxyDigestAuthHandler (class in urllib2),

414
ProxyHandler (class in urllib2), 414
ProxyType (data in weakref), 46
ProxyTypes (data in weakref), 46
prstr() (in module fm), 654
ps1 (data in sys), 41
ps2 (data in sys), 41

pstats (standard module),391
pthreads, 331
ptime (data in cd), 646
pty (standard module), 192,370
publicId (DocumentType attribute), 538
PullDOM (class in xml.dom.pulldom), 547
punctuation (data in string), 98
push()

async chat method, 461
fifo method, 462
InteractiveConsole method, 87
MultiFile method, 504

push alignment() (formatter method), 466
push font() (formatter method), 467
push margin() (formatter method), 467
push source() (shlex method), 185
push style() (formatter method), 467
push token() (shlex method), 184
push with producer() (async chat method),

462
put() (Queue method), 340
put nowait() (Queue method), 340
putch() (in module msvcrt), 662
putenv() (in module os), 189
putheader() (HTTPResponse method), 421
putp() (in module curses), 241
putrequest() (HTTPResponse method), 421
putsequences() (Folder method), 498
putwin() (window method), 246
pwd() (FTP method), 425
pwd (built-in module), 204,364
pwlcurve() (in module gl), 655
py compile (standard module),625
PY COMPILED(data in imp), 82
PY FROZEN(data in imp), 82
PY RESOURCE(data in imp), 82
PY SOURCE(data in imp), 82
pyclbr (standard module),624
PyCompileError (exception in py compile),

625
pydoc (standard module),133
pyexpat (built-in module), 527
PyOpenGL, 656
Python Editor, 602
Python Enhancement Proposals

PEP 0205, 46
PEP 0273, 85
PEP 0302, 85
PEP 236, 4
PEP 282, 305
PEP 305, 517

Python Imaging Library, 657
PYTHON DOM, 535
PYTHONPATH, 41, 406, 670
PYTHONSTARTUP, 94, 361
PYTHONY2K, 230, 231
PyZipFile (class in zipfile), 352

718 Index

Q
qdevice() (in module fl), 649
qenter() (in module fl), 649
qiflush() (in module curses), 241
qread() (in module fl), 649
qreset() (in module fl), 649
qsize() (Queue method), 340
qtest() (in module fl), 649
QueryInfoKey() (in module winreg), 664
queryparams() (in module al), 643
QueryValue() (in module winreg), 664
QueryValueEx() (in module winreg), 664
Queue

class in Queue, 340
standard module,340

quick ratio() (SequenceMatcher method),
116

quit()
FTP method, 425
NNTPDataError method, 436
POP3 method, 427
SMTP method, 438

quopri (standard module),512
quote()

in module email.Utils, 485
in module rfc822, 506
in module urllib, 410

QUOTEALL (data in csv), 519
QUOTEMINIMAL (data in csv), 519
QUOTENONE(data in csv), 519
QUOTENONNUMERIC(data in csv), 519
quote plus() (in module urllib), 410
quoteattr() (in module xml.sax.saxutils), 553
quotechar (Dialect attribute), 519
quoted-printable

encoding, 512
quotes (shlex attribute), 185
quoting (Dialect attribute), 519

R
r eval() (RExec method), 608
r exec() (RExec method), 608
r execfile() (RExec method), 609
r import() (RExec method), 609
R OK(data in os), 193
r open() (RExec method), 609
r reload() (RExec method), 609
r unload() (RExec method), 609
radians()

in module math, 156
in module turtle, 601

RADIXCHAR(data in locale), 293
raise

statement, 31
randint()

in module random, 159
in module whrandom, 161

random()

in module random, 160
in module whrandom, 161

random (standard module),158
randrange() (in module random), 159
range() (in module), 10
Rat (demo module), 581
ratecv() (in module audioop), 562
ratio() (SequenceMatcher method), 116
rational numbers, 581
raw() (in module curses), 241
raw input()

built-in function, 42
in module , 10
InteractiveConsole method, 88

RawConfigParser (class in ConfigParser), 176
RawPen(class in turtle), 602
re

MatchObject attribute, 108
standard module, 23, 97,100, 288

read()
method, 327, 342
array method, 167
audio device method, 575, 660
BZ2File method, 350
Chunk method, 572
file method, 27
HTTPResponse method, 422
IMAP4 stream method, 430
in module imgfile, 657
in module os, 192
MimeTypes method, 502
MultiFile method, 504
RobotFileParser method, 516
SafeConfigParser method, 177
StreamReader method, 126
ZipFile method, 353

read all() (Telnet method), 440
read byte() (method), 342
read eager() (Telnet method), 440
read history file() (in module readline),

360
read init file() (in module readline), 360
read lazy() (Telnet method), 440
read mime types() (in module mimetypes),

500
read sb data() (Telnet method), 440
read some() (Telnet method), 440
read token() (shlex method), 184
read until() (Telnet method), 440
read very eager() (Telnet method), 440
read very lazy() (Telnet method), 440
readable()

async chat method, 462
dispatcher method, 459

readda() (CD player method), 647
reader() (in module csv), 517
ReadError (exception in tarfile), 356
readfp()

Index 719

MimeTypes method, 502
SafeConfigParser method, 177

readframes()
aifc method, 566
AU read method, 568
Wave read method, 570

readline()
method, 342
BZ2File method, 350
file method, 27
IMAP4 stream method, 430
MultiFile method, 504
StreamReader method, 126

readline (built-in module),360
readlines()

BZ2File method, 351
file method, 27
MultiFile method, 504
StreamReader method, 126

readlink() (in module os), 195
readmodule() (in module pyclbr), 624
readmodule ex() (in module pyclbr), 624
readsamps() (audio port method), 644
readscaled() (in module imgfile), 657
READY(data in cd), 646
Real Media File Format, 571
real quick ratio() (SequenceMatcher

method), 116
realpath() (in module os.path), 205
reason (data in httplib), 422
reccontrols() (mixer device method), 577
recent() (IMAP4 stream method), 430
rectangle() (in module curses.textpad), 251
recv()

dispatcher method, 460
socket method, 326

recvfrom() (socket method), 326
redirect request() (HTTPRedirectHandler

method), 417
redisplay() (in module readline), 360
redraw form() (form method), 650
redraw object() (FORMS object method),

652
redrawln() (window method), 246
redrawwin() (window method), 246
reduce() (in module), 10
ref() (in module weakref), 45
ReferenceError

exception in exceptions, 33
exception in weakref, 46

ReferenceType (data in weakref), 46
refilemessages() (Folder method), 498
refill buffer() (async chat method), 462
refresh() (window method), 246
register()

method, 330
in module atexit, 50
in module codecs, 122

in module webbrowser, 400
register dialect() (in module csv), 518
register error() (in module codecs), 123
register function()

SimpleXMLRPCRequestHandler method, 456
SimpleXMLRPCServer method, 455

register instance()
SimpleXMLRPCRequestHandler method, 456
SimpleXMLRPCServer method, 455

register introspection functions()
(SimpleXMLRPCRequestHandler
method), 456

register multicall functions() (Sim-
pleXMLRPCRequestHandler method),
456

registerDOMImplementation() (in module
xml.dom), 535

RegLoadKey() (in module winreg), 663
relative

URL, 441
release()

method, 307
Condition method, 335
lock method, 332
Semaphore method, 336
Timer method, 334

release lock() (in module imp), 82
reload()

built-in function, 41, 81, 84
in module , 11

remove()
array method, 167
in module os, 195
list method, 24

remove option()
method, 271
SafeConfigParser method, 178

remove section() (SafeConfigParser method),
178

removeAttribute() (Element method), 539
removeAttributeNode() (Element method),

539
removeAttributeNS() (Element method), 539
removecallback() (CD parser method), 648
removeChild() (Node method), 537
removedirs() (in module os), 195
removeFilter() (method), 306, 307
removeHandler() (method), 307
removemessages() (Folder method), 498
rename()

FTP method, 425
IMAP4 stream method, 430
in module os, 195

renames() (in module os), 195
reorganize() (in module gdbm), 368
repeat()

in module itertools, 173
in module operator, 57

720 Index

Timer method, 396
repetition

operation, 18
replace()

method, 255
date method, 218
datetime method, 221
in module string, 100
string method, 20
time method, 224

replace errors() (in module codecs), 123
replace header() (Message method), 472
replace whitespace (TextWrapper attribute),

121
replaceChild() (Node method), 537
report() (dircmp method), 211
report full closure() (dircmp method),

211
report partial closure() (dircmp

method), 211
report unbalanced() (SGMLParser

method), 524
Repr (class in repr), 91
repr()

in module , 11
in module repr, 92
Repr method, 92

repr (standard module),91
repr1() (Repr method), 92
Request (class in urllib2), 414
request() (HTTPResponse method), 421
request queue size (data in SocketServer),

444
request version (BaseHTTPRequestHandler

attribute), 445
RequestHandlerClass (data in SocketServer),

443
requires() (in module test.testsupport), 155
reserved (ZipInfo attribute), 354
reset()

audio device method, 576
DOMEventStream method, 548
HTMLParser method, 522
in module statcache, 209
in module turtle, 601
IncrementalParser method, 556
Packer method, 513
SGMLParser method, 523
StreamReader method, 127
StreamWriter method, 126
Template method, 373
Unpacker method, 514
XMLParser method, 558

reset prog mode() (in module curses), 241
reset shell mode() (in module curses), 241
resetbuffer() (InteractiveConsole method), 88
resetlocale() (in module locale), 292
resetparser() (CD parser method), 648

resetwarnings() (in module warnings), 81
resize() (method), 342
resolution

date attribute, 217
datetime attribute, 220
time attribute, 223
timedelta attribute, 216

resolveEntity() (EntityResolver method),
553

resource (built-in module),376
ResourceDenied (exception in

test.test support), 154
response() (IMAP4 stream method), 430
ResponseNotReady (exception in httplib), 421
responses (BaseHTTPRequestHandler attribute),

446
restore() (in module difflib), 113
retr() (POP3 method), 427
retrbinary() (FTP method), 424
retrieve() (URLopener method), 412
retrlines() (FTP method), 424
returns unicode (xmlparser attribute), 529
reverse()

array method, 167
in module audioop, 563
list method, 24

reverse order() (Stats method), 392
rewind()

aifc method, 566
AU read method, 568
Wave read method, 570

rewindbody() (AddressList method), 507
RExec (class in rexec), 608
rexec (standard module), 3,607
RFC

RFC 1014, 513
RFC 1321, 580
RFC 1521, 509, 512
RFC 1522, 512
RFC 1524, 494
RFC 1725, 426
RFC 1730, 428
RFC 1738, 443
RFC 1766, 292
RFC 1808, 443
RFC 1832, 513
RFC 1866, 525, 526
RFC 1869, 436
RFC 1894, 489
RFC 2045, 469, 472, 473, 480
RFC 2046, 480
RFC 2047, 469, 480, 481
RFC 2060, 428, 431
RFC 2068, 449
RFC 2104, 579
RFC 2109, 449, 450
RFC 2231, 469, 473, 480, 486
RFC 2396, 442, 443

Index 721

RFC 2553, 321
RFC 2616, 411, 417
RFC 2821, 469
RFC 2822, 233, 469, 471, 476, 477, 480, 481,

484–486, 506, 507
RFC 3454, 131
RFC 3490, 129, 130
RFC 3492, 129
RFC 821, 436, 669
RFC 822, 176, 233, 298, 421, 437, 438, 480,

506
RFC 854, 439
RFC 959, 423
RFC 977, 432

rfc822 (standard module), 499,505
rfile (BaseHTTPRequestHandler attribute), 445
rfind()

in module string, 99
string method, 20

rgb to hls() (in module colorsys), 572
rgb to hsv() (in module colorsys), 572
rgb to yiq() (in module colorsys), 572
rgbimg (built-in module),573
right() (in module turtle), 601
right list (dircmp attribute), 211
right only (dircmp attribute), 211
rindex()

in module string, 99
string method, 20

rjust()
in module string, 100
string method, 21

rlcompleter (standard module),361
rlecode hqx() (in module binascii), 510
rledecode hqx() (in module binascii), 510
RLIMIT AS (data in resource), 377
RLIMIT CORE(data in resource), 376
RLIMIT CPU(data in resource), 376
RLIMIT DATA(data in resource), 376
RLIMIT FSIZE (data in resource), 376
RLIMIT MEMLOCK(data in resource), 377
RLIMIT NOFILE (data in resource), 377
RLIMIT NPROC(data in resource), 377
RLIMIT OFILE (data in resource), 377
RLIMIT RSS(data in resource), 376
RLIMIT STACK(data in resource), 376
RLIMIT VMEM(data in resource), 377
RLock() (in module threading), 333
rmd() (FTP method), 425
rmdir() (in module os), 196
RMFF, 571
rms() (in module audioop), 563
rmtree() (in module shutil), 289
rnopen() (in module bsddb), 345
RobotFileParser (class in robotparser), 516
robotparser (standard module),516
robots.txt, 516
RotatingFileHandler (class in logging), 308

rotor (built-in module),582
round() (in module), 11
rpop() (POP3 method), 427
rset() (POP3 method), 427
rshift() (in module operator), 57
rstrip()

in module string, 99
string method, 21

RTLD LAZY (data in dl), 366
RTLD NOW(data in dl), 366
ruler (Cmd attribute), 183
run()

in module pdb, 381
in module profile, 390
Profile method, 395
scheduler method, 236
TestCase method, 148
TestSuite method, 150
Thread method, 338

Run script, 604
run suite() (in module test.testsupport), 155
run unittest() (in module test.testsupport),

155
runcall()

in module pdb, 382
Profile method, 395

runcode() (InteractiveConsole method), 87
runctx() (Profile method), 395
runeval() (in module pdb), 382
runsource() (InteractiveConsole method), 87
RuntimeError (exception in exceptions), 33
RuntimeWarning (exception in exceptions), 34
RUSAGEBOTH(data in resource), 378
RUSAGECHILDREN(data in resource), 378
RUSAGESELF (data in resource), 378

S
S (data in re), 105
s eval() (RExec method), 609
s exec() (RExec method), 609
s execfile() (RExec method), 609
S IFMT() (in module stat), 207
S IMODE() (in module stat), 207
s import() (RExec method), 609
S ISBLK() (in module stat), 207
S ISCHR() (in module stat), 207
S ISDIR() (in module stat), 207
S ISFIFO() (in module stat), 207
S ISLNK() (in module stat), 207
S ISREG() (in module stat), 207
S ISSOCK() (in module stat), 207
s reload() (RExec method), 609
s unload() (RExec method), 609
SafeConfigParser (class in ConfigParser), 176
saferepr() (in module pprint), 90
same files (dircmp attribute), 212
samefile() (in module os.path), 205
sameopenfile() (in module os.path), 206

722 Index

samestat() (in module os.path), 206
sample() (in module random), 159
save bgn() (HTMLParser method), 526
save end() (HTMLParser method), 526
SaveKey() (in module winreg), 664
SAX2DOM(class in xml.dom.pulldom), 547
SAXException (exception in xml.sax), 548
SAXNotRecognizedException (exception in

xml.sax), 548
SAXNotSupportedException (exception in

xml.sax), 549
SAXParseException (exception in xml.sax),

548
scale() (in module imageop), 564
scalefont() (in module fm), 654
scanf() (in module re), 109
sched (standard module),235
scheduler (class in sched), 235
sci() (in module fpformat), 119
scroll() (window method), 246
ScrolledText (standard module),601
scrollok() (window method), 246
search

path, module, 41, 65, 93
search()

IMAP4 stream method, 430
in module re, 105
RegexObject method, 107

SEARCHERROR(data in imp), 82
second

datetime attribute, 220
time attribute, 224

section divider() (MultiFile method), 505
sections() (SafeConfigParser method), 177
Secure Hash Algorithm, 580
security

CGI, 405
seed()

in module random, 159
in module whrandom, 161
whrandom method, 161

seek()
method, 342
BZ2File method, 351
CD player method, 647
Chunk method, 572
file method, 27
MultiFile method, 504

SEEK CUR(data in posixfile), 374
SEEK END(data in posixfile), 374
SEEK SET (data in posixfile), 374
seekblock() (CD player method), 647
seektrack() (CD player method), 647
Select (class in Tix), 598
select()

IMAP4 stream method, 431
in module gl, 655
in module select, 330

select (built-in module),330
Semaphore() (in module threading), 333
Semaphore (class in threading), 336
semaphores, binary, 331
send()

DatagramHandler method, 309
dispatcher method, 460
HTTPResponse method, 421
IMAP4 stream method, 431
socket method, 326
SocketHandler method, 309

send error() (BaseHTTPRequestHandler
method), 446

send flowing data() (writer method), 468
send header() (BaseHTTPRequestHandler

method), 446
send hor rule() (writer method), 468
send label data() (writer method), 468
send line break() (writer method), 468
send literal data() (writer method), 468
send paragraph() (writer method), 468
send query() (in module gopherlib), 426
send response() (BaseHTTPRequestHandler

method), 446
send selector() (in module gopherlib), 426
sendall() (socket method), 326
sendcmd() (FTP method), 424
sendmail() (SMTP method), 438
sendto() (socket method), 327
sep (data in os), 203
sequence

iteration, 17
object, 18
types, mutable, 23
types, operations on, 18, 24
types, operations on mutable, 24

sequence2ast() (in module parser), 614
sequenceIncludes() (in module operator), 57
SequenceMatcher (class in difflib), 112, 114
SerialCookie (class in Cookie), 449
serializing

objects, 66
serve forever() (in module SocketServer),

443
server

WWW, 401, 445
server activate() (in module SocketServer),

444
server address (data in SocketServer), 443
server bind() (in module SocketServer), 444
server version

BaseHTTPRequestHandler attribute, 446
SimpleHTTPRequestHandler attribute, 447

ServerProxy (class in xmlrpclib), 452
Set (class in sets), 168
set()

Event method, 337
mixer device method, 578

Index 723

Morsel method, 450
SafeConfigParser method, 178

set boundary() (Message method), 474
set call back() (FORMS object method),

652
set charset() (Message method), 470
set completer() (in module readline), 360
set completer delims() (in module read-

line), 360
set debug() (in module gc), 43
set debuglevel()

FTP method, 424
HTTPResponse method, 421
NNTPDataError method, 434
POP3 method, 426
SMTP method, 437
Telnet method, 440

set default type() (Message method), 472
set event call back() (in module fl), 649
set form position() (form method), 650
set graphics mode() (in module fl), 649
set history length() (in module readline),

360
set location() (method), 345
set option negotiation callback()

(Telnet method), 441
set param() (Message method), 473
set pasv() (FTP method), 424
set payload() (Message method), 470
set position() (Unpacker method), 514
set pre input hook() (in module readline),

360
set proxy() (Request method), 415
set recsrc() (mixer device method), 578
set seq1() (SequenceMatcher method), 115
set seq2() (SequenceMatcher method), 115
set seqs() (SequenceMatcher method), 115
set server documentation() (DocXML-

RPCRequestHandler method), 457, 458
set server name() (DocXMLRPCRe-

questHandler method), 457, 458
set server title() (DocXMLRPCRe-

questHandler method), 457, 458
set spacing() (formatter method), 467
set startup hook() (in module readline),

360
set terminator() (async chat method), 462
set threshold() (in module gc), 43
set trace() (in module pdb), 382
set type() (Message method), 473
set unixfrom() (Message method), 470
set url() (RobotFileParser method), 516
set userptr() (method), 255
setacl() (IMAP4 stream method), 431
setattr() (in module), 11
setAttribute() (Element method), 539
setAttributeNode() (Element method), 539

setAttributeNodeNS() (Element method),
540

setAttributeNS() (Element method), 540
SetBase() (xmlparser method), 528
setblocking() (socket method), 327
setByteStream() (InputSource method), 557
setcbreak() (in module tty), 370
setchannels() (audio configuration method),

644
setCharacterStream() (InputSource

method), 557
setcheckinterval() (in module sys), 41
setcomptype()

aifc method, 566
AU write method, 569
Wave write method, 570

setconfig() (audio port method), 645
setContentHandler() (XMLReader method),

555
setcontext() (MH method), 497
setcurrent() (Folder method), 498
setDaemon() (Thread method), 338
setdefault() (dictionary method), 25
setdefaultencoding() (in module sys), 41
setdefaulttimeout() (in module socket),

325
setdlopenflags() (in module sys), 42
setDocumentLocator() (ContentHandler

method), 551
setDTDHandler() (XMLReader method), 555
setegid() (in module os), 189
setEncoding() (InputSource method), 556
setEntityResolver() (XMLReader method),

555
setErrorHandler() (XMLReader method),

555
seteuid() (in module os), 189
setFeature() (XMLReader method), 556
setfillpoint() (audio port method), 645
setfirstweekday() (in module calendar), 181
setfloatmax() (audio configuration method),

644
setfmt() (audio device method), 576
setfont() (in module fm), 654
setFormatter() (method), 307
setframerate()

aifc method, 566
AU write method, 569
Wave write method, 570

setgid() (in module os), 189
setgroups() (in module os), 189
setinfo() (audio device method), 660
setitem() (in module operator), 57
setkey() (rotor method), 583
setlast() (Folder method), 498
setLevel() (method), 306, 307
setliteral()

SGMLParser method, 523

724 Index

XMLParser method, 558
setLocale() (XMLReader method), 555
setlocale() (in module locale), 290
setLoggerClass() (in module logging), 305
setlogmask() (in module syslog), 379
setmark() (aifc method), 566
setMaxConns() (CacheFTPHandler method),

419
setmode() (in module msvcrt), 661
setName() (Thread method), 338
setnchannels()

aifc method, 566
AU write method, 569
Wave write method, 570

setnframes()
aifc method, 566
AU write method, 569
Wave write method, 570

setnomoretags()
SGMLParser method, 523
XMLParser method, 558

setoption() (in module jpeg), 657
setparameters() (audio device method), 576
setparams()

aifc method, 566
AU write method, 569
in module al, 644
Wave write method, 571

setpath() (in module fm), 654
setpgid() (in module os), 189
setpgrp() (in module os), 189
setpos()

aifc method, 566
AU read method, 568
Wave read method, 570

setprofile()
in module sys, 42
in module threading, 333

setProperty() (XMLReader method), 556
setPublicId() (InputSource method), 556
setqueuesize() (audio configuration method),

644
setquota() (IMAP4 stream method), 431
setraw() (in module tty), 370
setrecursionlimit() (in module sys), 42
setregid() (in module os), 189
setreuid() (in module os), 189
setrlimit() (in module resource), 376
sets (standard module),167
setsampfmt() (audio configuration method),

644
setsampwidth()

aifc method, 566
AU write method, 569
Wave write method, 570

setscrreg() (window method), 247
setsid() (in module os), 189
setslice() (in module operator), 58

setsockopt() (socket method), 327
setstate() (in module random), 159
setSystemId() (InputSource method), 556
setsyx() (in module curses), 242
setTarget() (MemoryHandler method), 311
setTimeout() (CacheFTPHandler method), 419
settimeout() (socket method), 327
settrace()

in module sys, 42
in module threading, 333

setuid() (in module os), 190
setUp() (TestCase method), 148
setup() (in module SocketServer), 445
setupterm() (in module curses), 242
SetValue() (in module winreg), 665
SetValueEx() (in module winreg), 665
setwidth() (audio configuration method), 644
SGML, 523
sgmllib (standard module),523, 525
SGMLParser

class in sgmllib, 523
in module sgmllib, 525

sha (built-in module),580
Shelf (class in shelve), 76
shelve (standard module),75, 78
shifting

operations, 17
shlex

class in shlex, 184
standard module,184

shortDescription() (TestCase method), 150
shouldFlush()

BufferingHandler method, 311
MemoryHandler method, 311

show() (method), 255
show choice() (in module fl), 649
show file selector() (in module fl), 649
show form() (form method), 650
show input() (in module fl), 649
show message() (in module fl), 649
show object() (FORMS object method), 652
show question() (in module fl), 649
showsyntaxerror() (InteractiveConsole

method), 87
showtraceback() (InteractiveConsole method),

87
showwarning() (in module warnings), 81
shuffle() (in module random), 159
shutdown()

IMAP4 stream method, 431
in module logging, 305
socket method, 327

shutil (standard module),289
SIG* (data in signal), 320
SIG DFL (data in signal), 320
SIG IGN (data in signal), 320
signal() (in module signal), 320
signal (built-in module),319, 332

Index 725

Simple Mail Transfer Protocol, 436
simple producer (class in asynchat), 462
SimpleCookie (class in Cookie), 449
SimpleHTTPRequestHandler (class in Sim-

pleHTTPServer), 447
SimpleHTTPServer (standard module), 445,

447
SimpleXMLRPCRequestHandler (class in

SimpleXMLRPCServer), 455
SimpleXMLRPCServer

class in SimpleXMLRPCServer, 455
standard module,455

sin()
in module cmath, 158
in module math, 156

sinh()
in module cmath, 158
in module math, 156

site (standard module),93
site-packages

directory, 94
site-python

directory, 94
sitecustomize (module), 94
size()

method, 342
FTP method, 425

size (TarInfo attribute), 358
sizeofimage() (in module rgbimg), 573
skip() (Chunk method), 572
skipinitialspace (Dialect attribute), 519
skippedEntity() (ContentHandler method),

552
slave() (NNTPDataError method), 435
sleep() (in module time), 232
slice

assignment, 24
operation, 18

slice()
built-in function, 53, 633
in module , 11

SliceType (data in types), 53
SmartCookie (class in Cookie), 449
SMTP

protocol, 436
SMTP(class in smtplib), 436
SMTPConnectError (exception in smtplib), 436
SMTPDataError (exception in smtplib), 436
SMTPException (exception in smtplib), 436
SMTPHandler (class in logging), 310
SMTPHeloError (exception in smtplib), 436
smtplib (standard module),436
SMTPRecipientsRefused (exception in smt-

plib), 436
SMTPResponseException (exception in smt-

plib), 436
SMTPSenderRefused (exception in smtplib),

436

SMTPServerDisconnected (exception in smt-
plib), 436

SND ALIAS (data in winsound), 666
SND ASYNC(data in winsound), 667
SND FILENAME(data in winsound), 666
SND LOOP(data in winsound), 667
SND MEMORY(data in winsound), 667
SND NODEFAULT(data in winsound), 667
SND NOSTOP(data in winsound), 667
SND NOWAIT(data in winsound), 667
SND PURGE(data in winsound), 667
sndhdr (standard module),574
sniff() (Sniffer method), 518
Sniffer (class in csv), 518
SO * (data in socket), 322
SOCK DGRAM(data in socket), 322
SOCK RAW(data in socket), 322
SOCK RDM(data in socket), 322
SOCK SEQPACKET(data in socket), 322
SOCK STREAM(data in socket), 322
socket

object, 321
socket()

IMAP4 stream method, 431
in module socket, 324

socket
built-in module, 26,321, 399
data in SocketServer, 444

socket() (in module socket), 330
socket type (data in SocketServer), 444
SocketHandler (class in logging), 309
SocketServer (standard module),443
SocketType (data in socket), 325
softspace (file attribute), 28
SOL * (data in socket), 322
SOMAXCONN(data in socket), 322
sort()

IMAP4 stream method, 431
list method, 24

sort stats() (Stats method), 391
sortTestMethodsUsing (TestLoader at-

tribute), 152
source (shlex attribute), 185
sourcehook() (shlex method), 184
span() (MatchObject method), 108
spawn() (in module pty), 371
spawnl() (in module os), 200
spawnle() (in module os), 200
spawnlp() (in module os), 200
spawnlpe() (in module os), 200
spawnv() (in module os), 200
spawnve() (in module os), 200
spawnvp() (in module os), 200
spawnvpe() (in module os), 200
specified attributes (xmlparser attribute),

529
speed() (audio device method), 576
split()

726 Index

in module os.path, 206
in module re, 105
in module shlex, 184
in module string, 99
RegexObject method, 107
string method, 21

splitdrive() (in module os.path), 206
splitext() (in module os.path), 206
splitfields() (in module string), 99
splitlines() (string method), 21
sprintf-style formatting, 22
sqrt()

in module cmath, 158
in module math, 156
in module mpz, 582

sqrtrem() (in module mpz), 582
ssl()

IMAP4 stream method, 432
in module socket, 324

ST ATIME (data in stat), 208
ST CTIME (data in stat), 208
ST DEV(data in stat), 208
ST GID (data in stat), 208
ST INO (data in stat), 208
ST MODE(data in stat), 208
ST MTIME(data in stat), 208
ST NLINK (data in stat), 208
ST SIZE (data in stat), 208
ST UID (data in stat), 208
stack() (in module inspect), 63
stack viewer, 604
stackable

streams, 122
StandardError (exception in exceptions), 31
standend() (window method), 247
standout() (window method), 247
starmap() (in module itertools), 173
start()

MatchObject method, 108
Profile method, 395
Thread method, 338

start color() (in module curses), 242
start new thread() (in module thread), 331
startbody() (MimeWriter method), 502
StartCdataSectionHandler() (xmlparser

method), 530
StartDoctypeDeclHandler() (xmlparser

method), 529
startDocument() (ContentHandler method),

551
startElement() (ContentHandler method), 551
StartElementHandler() (xmlparser method),

530
startElementNS() (ContentHandler method),

552
startfile() (in module os), 201
startmultipartbody() (MimeWriter

method), 502

StartNamespaceDeclHandler() (xmlparser
method), 530

startPrefixMapping() (ContentHandler
method), 551

startswith() (string method), 21
startTest() (TestResult method), 151
starttls() (SMTP method), 438
stat()

in module os, 196
in module statcache, 209
NNTPDataError method, 434
POP3 method, 427

stat (standard module), 196,207
stat float times() (in module os), 196
statcache (standard module),209
statement

assert , 32
del , 24, 25
except , 31
exec , 29
if , 14
import , 3, 81
print , 14
raise , 31
try , 31
while , 14

staticmethod() (in module), 11
Stats (class in pstats), 391
status() (IMAP4 stream method), 431
status (data in httplib), 422
statvfs() (in module os), 196
statvfs (standard module), 196,210
StdButtonBox (class in Tix), 598
stderr (data in sys), 42
stdin (data in sys), 42
stdout (data in sys), 42
Stein, Greg, 636
stereocontrols() (mixer device method), 577
STILL (data in cd), 646
stop()

CD player method, 647
Profile method, 395
TestResult method, 151

StopIteration (exception in exceptions), 33
stopListening() (in module logging), 313
stopTest() (TestResult method), 151
storbinary() (FTP method), 424
store() (IMAP4 stream method), 431
STORE ACTIONS(attribute), 278
storlines() (FTP method), 424
str()

in module , 12
in module locale, 292

strcoll() (in module locale), 292
StreamError (exception in tarfile), 356
StreamHandler (class in logging), 308
StreamReader (class in codecs), 126
StreamReaderWriter (class in codecs), 127

Index 727

StreamRecoder (class in codecs), 127
streams, 122

stackable, 122
StreamWriter (class in codecs), 125
strerror() (in module os), 190
strftime()

date method, 218
datetime method, 223
in module time, 232
time method, 224

strict errors() (in module codecs), 123
string

documentation, 617
formatting, 22
interpolation, 22
object, 18

string
MatchObject attribute, 109
standard module, 23,97, 292, 295

StringIO
class in StringIO, 119
standard module,119

stringprep (standard module),131
StringType (data in types), 52
StringTypes (data in types), 53
strip()

in module string, 99
string method, 21

strip dirs() (Stats method), 391
stripspaces (Textbox attribute), 252
strptime() (in module time), 233
struct (built-in module),110, 327
struct time (data in time), 234
structures

C, 110
strxfrm() (in module locale), 292
sub()

in module operator, 57
in module re, 106
RegexObject method, 107

subdirs (dircmp attribute), 212
subn()

in module re, 106
RegexObject method, 107

subpad() (window method), 247
subscribe() (IMAP4 stream method), 431
subscript

assignment, 24
operation, 18

subsequent indent (TextWrapper attribute),
121

subwin() (window method), 247
suffix map (data in mimetypes), 501
suite() (in module parser), 614
suiteClass (TestLoader attribute), 152
sum() (in module), 12
sunau (standard module),567
SUNAUDIODEV(standard module), 659,660

sunaudiodev (built-in module),659, 660
super() (in module), 12
super (class descriptor attribute), 625
supports unicode filenames (data in

os.path), 206
swapcase()

in module string, 100
string method, 21

sym() (method), 367
sym name (data in symbol), 622
symbol (standard module),622
symbol table, 3
symlink() (in module os), 196
sync()

method, 346, 347
audio device method, 576
dbhash method, 344
in module gdbm, 369

syncdown() (window method), 247
syncok() (window method), 247
syncup() (window method), 247
syntax error() (XMLParser method), 560
SyntaxErr (exception in xml.dom), 542
SyntaxError (exception in exceptions), 33
SyntaxWarning (exception in exceptions), 34
sys (built-in module),37
sys version (BaseHTTPRequestHandler

attribute), 446
sysconf() (in module os), 203
sysconf names (data in os), 203
syslog() (in module syslog), 378
syslog (built-in module),378
SysLogHandler (class in logging), 310
system() (in module os), 201
system.listMethods() (ServerProxy

method), 453
system.methodHelp() (ServerProxy method),

453
system.methodSignature() (ServerProxy

method), 453
SystemError (exception in exceptions), 33
SystemExit (exception in exceptions), 33
systemId (DocumentType attribute), 538

T
T FMT(data in locale), 293
T FMT AMPM(data in locale), 293
tabnanny (standard module),624
tabular

data, 517
tagName (Element attribute), 539
takewhile() (in module itertools), 173
tan()

in module cmath, 158
in module math, 156

tanh()
in module cmath, 158
in module math, 157

728 Index

TAR GZIPPED(data in tarfile), 356
TAR PLAIN (data in tarfile), 356
TarError (exception in tarfile), 356
TarFile (class in tarfile), 356
tarfile (standard module),355
TarFileCompat (class in tarfile), 356
target (ProcessingInstruction attribute), 541
TarInfo (class in tarfile), 358
tb lineno() (in module traceback), 64
tcdrain() (in module termios), 369
tcflow() (in module termios), 369
tcflush() (in module termios), 369
tcgetattr() (in module termios), 369
tcgetpgrp() (in module os), 192
TCP * (data in socket), 323
tcsendbreak() (in module termios), 369
tcsetattr() (in module termios), 369
tcsetpgrp() (in module os), 192
tearDown() (TestCase method), 148
tell()

method, 342
aifc method, 566
AU read method, 568
AU write method, 569
BZ2File method, 351
Chunk method, 572
file method, 27
MultiFile method, 504
Wave read method, 570
Wave write method, 571

Telnet (class in telnetlib), 439
telnetlib (standard module),439
TEMP, 282
tempdir (data in tempfile), 282
tempfile (standard module),281
Template (class in pipes), 373
template (data in tempfile), 282
tempnam() (in module os), 197
temporary

file, 281
file name, 281

TemporaryFile() (in module tempfile), 281
termattrs() (in module curses), 242
TERMIOS(standard module),370
termios (built-in module),369, 370
termname() (in module curses), 242
test()

in module cgi, 405
mutex method, 237

test (standard module),152
test.test support (standard module),154
testandset() (mutex method), 237
TestCase (class in unittest), 147
TestFailed (exception in test.testsupport), 154
TESTFN(data in test.testsupport), 155
TestLoader (class in unittest), 148
testMethodPrefix (TestLoader attribute), 152
testmod() (in module doctest), 138

tests (data in imghdr), 574
TestSkipped (exception in test.testsupport),

154
testsource() (in module doctest), 139
testsRun (TestResult attribute), 150
TestSuite (class in unittest), 148
testzip() (ZipFile method), 353
Textbox (class in curses.textpad), 251
textdomain() (in module gettext), 296
TextTestRunner (class in unittest), 148
textwrap (standard module),120
TextWrapper (class in textwrap), 121
THOUSEP(data in locale), 293
Thread (class in threading), 333, 338
thread (built-in module),331
threading (standard module),332
threads

IRIX, 332
POSIX, 331

tie() (in module fl), 649
tigetflag() (in module curses), 242
tigetnum() (in module curses), 242
tigetstr() (in module curses), 242
time()

datetime method, 221
in module time, 234

time
built-in module,230
class in datetime, 214, 223

Time2Internaldate() (in module imaplib),
429

timedelta (class in datetime), 214, 215
timegm() (in module calendar), 181
timeit() (Timer method), 397
timeit (standard module),396
timeout() (window method), 247
timeout (exception in socket), 322
Timer

class in threading, 333, 339
class in timeit, 396

times() (in module os), 202
timetuple()

date method, 218
datetime method, 222

timetz() (datetime method), 221
timezone (data in time), 234
title() (string method), 21
Tix, 596
Tix

class in Tix, 596
standard module,596

tix addbitmapdir() (tixCommand method),
600

tix cget() (tixCommand method), 600
tix configure() (tixCommand method), 600
tix filedialog() (tixCommand method), 600
tix getbitmap() (tixCommand method), 600
tix getimage() (tixCommand method), 600

Index 729

TIX LIBRARY, 597
tix option get() (tixCommand method), 600
tix resetoptions() (tixCommand method),

600
tixCommand (class in Tix), 599
Tk, 585
Tk (class in Tkinter), 586
Tk Option Data Types, 594
Tkinter, 585
Tkinter (standard module),585
TList (class in Tix), 599
TMP, 197, 282
TMP MAX(data in os), 197
TMPDIR, 197, 282
tmpfile() (in module os), 190
tmpnam() (in module os), 197
to splittable() (Charset method), 483
ToASCII() (in module encodings.idna), 130
tobuf() (TarInfo method), 358
tochild (Popen4 attribute), 213
today()

date method, 217
datetime method, 219

tofile() (array method), 167
togglepause() (CD player method), 647
tok name (data in token), 622
token

shlex attribute, 186
standard module,622

tokeneater() (in module tabnanny), 624
tokenize() (in module tokenize), 623
tokenize (standard module),623
tolist()

array method, 167
AST method, 616

tomono() (in module audioop), 563
toordinal()

date method, 218
datetime method, 222

top()
method, 255
POP3 method, 427

top panel() (in module curses.panel), 255
toprettyxml() (Node method), 545
tostereo() (in module audioop), 563
tostring() (array method), 167
totuple() (AST method), 616
touchline() (window method), 247
touchwin() (window method), 247
ToUnicode() (in module encodings.idna), 130
tounicode() (array method), 167
tovideo() (in module imageop), 564
toxml() (Node method), 545
tparm() (in module curses), 242
trace() (in module inspect), 63
trace function, 42, 333
traceback

object, 38, 63

traceback (standard module),63
tracebacklimit (data in sys), 42
tracebacks

in CGI scripts, 408
TracebackType (data in types), 53
tracer() (in module turtle), 601
transfercmd() (FTP method), 424
translate()

in module string, 100
string method, 21

translate references() (XMLParser
method), 558

translation() (in module gettext), 297
Tree (class in Tix), 599
True, 14, 30
True (data in), 35
true, 14
truediv() (in module operator), 57
truncate() (file method), 27
truth

value, 14
truth() (in module operator), 56
try

statement, 31
ttob()

in module imgfile, 657
in module rgbimg, 573

tty
I/O control, 369, 370

tty (standard module),370
ttyname() (in module os), 192
tuple

object, 18
tuple() (in module), 12
tuple2ast() (in module parser), 614
TupleType (data in types), 52
turnoff sigfpe() (in module fpectl), 49
turnon sigfpe() (in module fpectl), 49
turtle (standard module),601
Tutt, Bill, 636
type

Boolean, 4
object, 12
operations on dictionary, 25
operations on list, 24

type()
built-in function, 30, 52
in module , 12

type (TarInfo attribute), 358
typeahead() (in module curses), 242
typecode (array attribute), 166
TYPED ACTIONS(attribute), 278
typed subpart iterator() (in module

email.Iterators), 487
TypeError (exception in exceptions), 33
types

built-in, 3, 14
mutable sequence, 23

730 Index

operations on integer, 17
operations on mapping, 25
operations on mutable sequence, 24
operations on numeric, 16
operations on sequence, 18, 24

types (standard module), 12, 30,51
types map (data in mimetypes), 501
TypeType (data in types), 52
TZ, 234, 235, 670
tzinfo

class in datetime, 214
datetime attribute, 220
time attribute, 224

tzname()
datetime method, 222
time method, 224, 226

tzname (data in time), 234
tzset() (in module time), 234

U
U (data in re), 105
u-LAW, 561, 566, 574, 659
ugettext()

GNUTranslations method, 299
NullTranslations method, 298

uid() (IMAP4 stream method), 431
uid, gid (TarInfo attribute), 358
uidl() (POP3 method), 427
ulaw2lin() (in module audioop), 563
umask() (in module os), 190
uname() (in module os), 190
uname, gname (TarInfo attribute), 358
UnboundLocalError (exception in exceptions),

34
UnboundMethodType (data in types), 53
unbuffered I/O, 7
UNC paths

andos.makedirs() , 195
unconsumed tail (attribute), 349
unctrl()

in module curses, 242
in module curses.ascii, 254

undoc header (Cmd attribute), 183
unescape() (in module xml.sax.saxutils), 553
unfreeze form() (form method), 650
unfreeze object() (FORMS object method),

652
ungetch()

in module curses, 242
in module msvcrt, 662

ungetmouse() (in module curses), 242
ungettext()

GNUTranslations method, 299
NullTranslations method, 298

unhexlify() (in module binascii), 511
unichr() (in module), 12
UNICODE(data in re), 105
Unicode, 122, 130

database, 130
object, 18

unicode() (in module), 13
unicodedata (standard module),130
UnicodeDecodeError (exception in excep-

tions), 34
UnicodeEncodeError (exception in excep-

tions), 34
UnicodeError (exception in exceptions), 34
UnicodeTranslateError (exception in excep-

tions), 34
UnicodeType (data in types), 52
unidata version (data in unicodedata), 131
unified diff() (in module difflib), 114
uniform()

in module random, 160
in module whrandom, 161

UnimplementedFileMode (exception in
httplib), 421

unittest (standard module),141
UNIX

file control, 371
I/O control, 371

unixfrom (AddressList attribute), 508
UnixMailbox (class in mailbox), 495
unknown charref()

SGMLParser method, 525
XMLParser method, 560

unknown endtag()
SGMLParser method, 524
XMLParser method, 560

unknown entityref()
SGMLParser method, 525
XMLParser method, 560

unknown open()
BaseHandler method, 416
UnknownHandler method, 419

unknown starttag()
SGMLParser method, 524
XMLParser method, 560

UnknownHandler (class in urllib2), 415
UnknownProtocol (exception in httplib), 420
UnknownTransferEncoding (exception in

httplib), 421
unlink()

in module os, 197
Node method, 544

unlock() (mutex method), 237
unmimify() (in module mimify), 503
unpack() (in module struct), 110
unpack array() (Unpacker method), 515
unpack bytes() (Unpacker method), 515
unpack double() (Unpacker method), 514
unpack farray() (Unpacker method), 515
unpack float() (Unpacker method), 514
unpack fopaque() (Unpacker method), 515
unpack fstring() (Unpacker method), 515
unpack list() (Unpacker method), 515

Index 731

unpack opaque() (Unpacker method), 515
unpack string() (Unpacker method), 515
Unpacker (class in xdrlib), 513
unparsedEntityDecl() (DTDHandler

method), 553
UnparsedEntityDeclHandler() (xmlparser

method), 530
Unpickler (class in pickle), 69
UnpicklingError (exception in pickle), 68
unqdevice() (in module fl), 649
unquote()

in module email.Utils, 485
in module rfc822, 506
in module urllib, 410

unquote plus() (in module urllib), 410
unregister() (method), 331
unregister dialect() (in module csv), 518
unsubscribe() (IMAP4 stream method), 431
untouchwin() (window method), 247
unused data (attribute), 348
up() (in module turtle), 601
update()

dictionary method, 25
hmac method, 579
md5 method, 580
sha method, 581

update panels() (in module curses.panel), 255
upper()

in module string, 100
string method, 21

uppercase (data in string), 98
URL, 401, 408, 441, 445, 516

parsing, 441
relative, 441

url (ServerProxy attribute), 454
url2pathname() (in module urllib), 411
urlcleanup() (in module urllib), 410
urldefrag() (in module urlparse), 442
urlencode() (in module urllib), 410
URLError (exception in urllib2), 413
urljoin() (in module urlparse), 442
urllib (standard module),408, 420
urllib2 (standard module),413
urlopen()

in module urllib, 408
in module urllib2, 413

URLopener (class in urllib), 411
urlparse() (in module urlparse), 442
urlparse (standard module), 412,441
urlretrieve() (in module urllib), 409
urlsplit() (in module urlparse), 442
urlunparse() (in module urlparse), 442
urlunsplit() (in module urlparse), 442
use env() (in module curses), 242
use rawinput (Cmd attribute), 183
USER, 237
user

configuration file, 94

effective id, 188
id, 189
id, setting, 190

user() (POP3 method), 427
user (standard module),94
UserDict

class in UserDict, 53
standard module,53

UserList
class in UserList, 54
standard module,54

USERNAME, 237
userptr() (method), 255
UserString

class in UserString, 55
standard module,54

UserWarning (exception in exceptions), 34
UTC, 231
utcfromtimestamp() (datetime method), 220
utcnow() (datetime method), 219
utcoffset()

datetime method, 222
time method, 224, 225

utctimetuple() (datetime method), 222
utime() (in module os), 197
uu (standard module), 510,512

V
value

truth, 14
value (Morsel attribute), 450
value decode() (BaseCookie method), 449
value encode() (BaseCookie method), 449
ValueError (exception in exceptions), 34
values

Boolean, 30
values()

dictionary method, 25
Message method, 471

varray() (in module gl), 655
vars() (in module), 13
vbar (ScrolledText attribute), 601
VERBOSE(data in re), 105
verbose

data in tabnanny, 624
data in test.testsupport, 155

verify() (SMTP method), 437
verify request() (in module SocketServer),

444
version

data in curses, 247
data in httplib, 422
data in sys, 42
URLopener attribute, 412

version info (data in sys), 43
version string() (BaseHTTPRequestHand-

ler method), 447
vline() (window method), 247

732 Index

vnarray() (in module gl), 655
voidcmd() (FTP method), 424
volume (ZipInfo attribute), 354
vonmisesvariate() (in module random), 160

W
W OK(data in os), 193
wait()

Condition method, 335
Event method, 337
in module os, 202
Popen4 method, 213

waitpid() (in module os), 202
walk()

in module compiler, 635
in module compiler.visitor, 640
in module os, 197
in module os.path, 206
Message method, 474

warn() (in module warnings), 80
warn explicit() (in module warnings), 80
Warning (exception in exceptions), 34
warning()

method, 306
ErrorHandler method, 553
in module logging, 305

warnings, 79
warnings (standard module),79
warnoptions (data in sys), 43
wasSuccessful() (TestResult method), 150
wave (standard module),569
WCONTINUED(data in os), 202
WCOREDUMP()(in module os), 202
WeakKeyDictionary (class in weakref), 46
weakref (extension module),45
WeakValueDictionary (class in weakref), 46
webbrowser (standard module),399
weekday()

date method, 218
datetime method, 222
in module calendar, 181

weekheader() (in module calendar), 181
weibullvariate() (in module random), 160
WEXITSTATUS() (in module os), 203
wfile (BaseHTTPRequestHandler attribute), 445
what()

in module imghdr, 573
in module sndhdr, 574

whathdr() (in module sndhdr), 574
whichdb() (in module whichdb), 344
whichdb (standard module),344
while

statement, 14
whitespace

data in string, 98
shlex attribute, 185

whitespace split (shlex attribute), 185
whrandom (standard module),161

whseed() (in module random), 161
WichmannHill (class in random), 160
width() (in module turtle), 601
width (TextWrapper attribute), 121
WIFCONTINUED() (in module os), 202
WIFEXITED() (in module os), 203
WIFSIGNALED() (in module os), 202
WIFSTOPPED() (in module os), 202
Wimp$ScrapDir, 282
window() (method), 255
window manager (widgets), 593
Windows ini file, 176
WindowsError (exception in exceptions), 34
WinSock, 330
winsound (built-in module),666
winver (data in sys), 43
WNOHANG(data in os), 202
wordchars (shlex attribute), 185
World Wide Web, 399, 408, 441, 516
wrap()

in module textwrap, 120
TextWrapper method, 122

wrapper() (in module curses.wrapper), 252
writable()

async chat method, 462
dispatcher method, 459

write()
method, 327, 342
array method, 167
audio device method, 575, 660
BZ2File method, 351
file method, 27
Generator method, 477
in module imgfile, 657
in module os, 192
in module turtle, 602
InteractiveConsole method, 87
SafeConfigParser method, 178
StreamWriter method, 126
Telnet method, 440
ZipFile method, 353

write byte() (method), 342
write history file() (in module readline),

360
writeall() (audio device method), 575
writeframes()

aifc method, 566
AU write method, 569
Wave write method, 571

writeframesraw()
aifc method, 566
AU write method, 569
Wave write method, 571

writelines()
BZ2File method, 351
file method, 27
StreamWriter method, 126

writepy() (PyZipFile method), 353

Index 733

writer() (in module csv), 517
writer (formatter attribute), 466
writerow() (csv writer method), 520
writerows() (csv writer method), 520
writesamps() (audio port method), 644
writestr() (ZipFile method), 353
writexml() (Node method), 544
WrongDocumentErr (exception in xml.dom),

542
WSTOPSIG() (in module os), 203
WTERMSIG()(in module os), 203
WUNTRACED(data in os), 202
WWW, 399, 408, 441, 516

server, 401, 445

X
X (data in re), 105
X OK(data in os), 193
xatom() (IMAP4 stream method), 432
XDR, 67, 513
xdrlib (standard module),513
xgtitle() (NNTPDataError method), 435
xhdr() (NNTPDataError method), 435
XHTML, 521
XHTML NAMESPACE(data in xml.dom), 535
XML, 558

namespaces, 560
xml.dom (standard module),534
xml.dom.minidom (standard module),543
xml.dom.pulldom (standard module),547
xml.parsers.expat (standard module),527
xml.sax (standard module),548
xml.sax.handler (standard module),549
xml.sax.saxutils (standard module),553
xml.sax.xmlreader (standard module),554
XML NAMESPACE(data in xml.dom), 535
xmlcharrefreplace errors errors()

(in module codecs), 123
XmlDeclHandler() (xmlparser method), 529
XMLFilterBase (class in xml.sax.saxutils), 554
XMLGenerator (class in xml.sax.saxutils), 554
xmllib (standard module),558
XMLNS NAMESPACE(data in xml.dom), 535
XMLParser (class in xmllib), 558
XMLParserType (data in xml.parsers.expat), 527
XMLReader (class in xml.sax.xmlreader), 554
xmlrpclib (standard module),452
xor() (in module operator), 57
xover() (NNTPDataError method), 435
xpath() (NNTPDataError method), 436
xrange

object, 18, 23
xrange()

built-in function, 18, 53
in module , 13

XRangeType (data in types), 53
xreadlines()

BZ2File method, 351

file method, 27
in module xreadlines, 180

xreadlines (extension module),180

Y
Y2K, 230
year

date attribute, 217
datetime attribute, 220

Year 2000, 230
Year 2038, 230
YESEXPR(data in locale), 293
yiq to rgb() (in module colorsys), 572

Z
ZeroDivisionError (exception in exceptions),

34
zfill()

in module string, 100
string method, 21

zip() (in module), 13
ZIP DEFLATED(data in zipfile), 352
ZIP STORED(data in zipfile), 352
ZipFile (class in zipfile), 352
zipfile (standard module),352
zipimport (standard module),84
zipimporter (class in zipimport), 84, 85
ZipImporterError (exception in zipimport), 84
ZipInfo (class in zipfile), 352
zlib (built-in module),347

734 Index

	1 Introduction
	2 Built-In Objects
	2.1 Built-in Functions
	2.2 Non-essential Built-in Functions
	2.3 Built-in Types
	2.3.1 Truth Value Testing
	2.3.2 Boolean Operations
	2.3.3 Comparisons
	2.3.4 Numeric Types
	Bit-string Operations on Integer Types

	2.3.5 Iterator Types
	2.3.6 Sequence Types
	String Methods
	String Formatting Operations
	XRange Type
	Mutable Sequence Types

	2.3.7 Mapping Types
	2.3.8 File Objects
	2.3.9 Other Built-in Types
	Modules
	Classes and Class Instances
	Functions
	Methods
	Code Objects
	Type Objects
	The Null Object
	The Ellipsis Object
	Boolean Values
	Internal Objects

	2.3.10 Special Attributes

	2.4 Built-in Exceptions
	2.5 Built-in Constants

	3 Python Runtime Services
	3.1 sys --- System-specific parameters and functions
	3.2 gc --- Garbage Collector interface
	3.3 weakref --- Weak references
	3.3.1 Weak Reference Objects
	3.3.2 Example
	3.3.3 Weak References in Extension Types

	3.4 fpectl --- Floating point exception control
	3.4.1 Example
	3.4.2 Limitations and other considerations

	3.5 atexit --- Exit handlers
	3.5.1 atexit Example

	3.6 types --- Names for built-in types
	3.7 UserDict --- Class wrapper for dictionary objects
	3.8 UserList --- Class wrapper for list objects
	3.9 UserString --- Class wrapper for string objects
	3.10 operator --- Standard operators as functions.
	3.10.1 Mapping Operators to Functions

	3.11 inspect --- Inspect live objects
	3.11.1 Types and members
	3.11.2 Retrieving source code
	3.11.3 Classes and functions
	3.11.4 The interpreter stack

	3.12 traceback --- Print or retrieve a stack traceback
	3.12.1 Traceback Example

	3.13 linecache --- Random access to text lines
	3.14 pickle --- Python object serialization
	3.14.1 Relationship to other Python modules
	3.14.2 Data stream format
	3.14.3 Usage
	3.14.4 What can be pickled and unpickled?
	3.14.5 The pickle protocol
	Pickling and unpickling normal class instances
	Pickling and unpickling extension types
	Pickling and unpickling external objects

	3.14.6 Subclassing Unpicklers
	3.14.7 Example

	3.15 cPickle --- A faster pickle
	3.16 copy_reg --- Register pickle support functions
	3.17 shelve --- Python object persistence
	3.17.1 Restrictions
	3.17.2 Example

	3.18 copy --- Shallow and deep copy operations
	3.19 marshal --- Internal Python object serialization
	3.20 warnings --- Warning control
	3.20.1 Warning Categories
	3.20.2 The Warnings Filter
	3.20.3 Available Functions

	3.21 imp --- Access the import internals
	3.21.1 Examples

	3.22 zipimport --- Import modules from Zip archives
	3.22.1 zipimporter Objects
	3.22.2 Examples

	3.23 pkgutil --- Package extension utility
	3.24 code --- Interpreter base classes
	3.24.1 Interactive Interpreter Objects
	3.24.2 Interactive Console Objects

	3.25 codeop --- Compile Python code
	3.26 pprint --- Data pretty printer
	3.26.1 PrettyPrinter Objects

	3.27 repr --- Alternate repr() implementation
	3.27.1 Repr Objects
	3.27.2 Subclassing Repr Objects

	3.28 new --- Creation of runtime internal objects
	3.29 site --- Site-specific configuration hook
	3.30 user --- User-specific configuration hook
	3.31 __builtin__ --- Built-in functions
	3.32 __main__ --- Top-level script environment
	3.33 __future__ --- Future statement definitions

	4 String Services
	4.1 string --- Common string operations
	4.2 re --- Regular expression operations
	4.2.1 Regular Expression Syntax
	4.2.2 Matching vs Searching
	4.2.3 Module Contents
	4.2.4 Regular Expression Objects
	4.2.5 Match Objects
	4.2.6 Examples

	4.3 struct --- Interpret strings as packed binary data
	4.4 difflib --- Helpers for computing deltas
	4.4.1 SequenceMatcher Objects
	4.4.2 SequenceMatcher Examples
	4.4.3 Differ Objects
	4.4.4 Differ Example

	4.5 fpformat --- Floating point conversions
	4.6 StringIO --- Read and write strings as files
	4.7 cStringIO --- Faster version of StringIO
	4.8 textwrap --- Text wrapping and filling
	4.9 codecs --- Codec registry and base classes
	4.9.1 Codec Base Classes
	Codec Objects
	StreamWriter Objects
	StreamReader Objects
	StreamReaderWriter Objects
	StreamRecoder Objects

	4.9.2 Standard Encodings
	4.9.3 encodings.idna --- Internationalized Domain Names in Applications

	4.10 unicodedata --- Unicode Database
	4.11 stringprep --- Internet String Preparation

	5 Miscellaneous Services
	5.1 pydoc --- Documentation generator and online help system
	5.2 doctest --- Test docstrings represent reality
	5.2.1 Normal Usage
	5.2.2 Which Docstrings Are Examined?
	5.2.3 What's the Execution Context?
	5.2.4 What About Exceptions?
	5.2.5 Advanced Usage
	5.2.6 How are Docstring Examples Recognized?
	5.2.7 Warnings
	5.2.8 Soapbox

	5.3 unittest --- Unit testing framework
	5.3.1 Basic example
	5.3.2 Organizing test code
	5.3.3 Re-using old test code
	5.3.4 Classes and functions
	5.3.5 TestCase Objects
	5.3.6 TestSuite Objects
	5.3.7 TestResult Objects
	5.3.8 TestLoader Objects

	5.4 test --- Regression tests package for Python
	5.4.1 Writing Unit Tests for the test package
	5.4.2 Running tests Using test.regrtest

	5.5 test.test_support --- Utility functions for tests
	5.6 math --- Mathematical functions
	5.7 cmath --- Mathematical functions for complex numbers
	5.8 random --- Generate pseudo-random numbers
	5.9 whrandom --- Pseudo-random number generator
	5.10 bisect --- Array bisection algorithm
	5.10.1 Examples

	5.11 heapq --- Heap queue algorithm
	5.11.1 Theory

	5.12 array --- Efficient arrays of numeric values
	5.13 sets --- Unordered collections of unique elements
	5.13.1 Set Objects
	5.13.2 Example
	5.13.3 Protocol for automatic conversion to immutable

	5.14 itertools --- Functions creating iterators for efficient looping
	5.14.1 Itertool functions
	5.14.2 Examples

	5.15 ConfigParser --- Configuration file parser
	5.15.1 RawConfigParser Objects
	5.15.2 ConfigParser Objects

	5.16 fileinput --- Iterate over lines from multiple input streams
	5.17 xreadlines --- Efficient iteration over a file
	5.18 calendar --- General calendar-related functions
	5.19 cmd --- Support for line-oriented command interpreters
	5.19.1 Cmd Objects

	5.20 shlex --- Simple lexical analysis
	5.20.1 Module Contents
	5.20.2 shlex Objects
	5.20.3 Parsing Rules

	6 Generic Operating System Services
	6.1 os --- Miscellaneous operating system interfaces
	6.1.1 Process Parameters
	6.1.2 File Object Creation
	6.1.3 File Descriptor Operations
	6.1.4 Files and Directories
	6.1.5 Process Management
	6.1.6 Miscellaneous System Information

	6.2 os.path --- Common pathname manipulations
	6.3 dircache --- Cached directory listings
	6.4 stat --- Interpreting stat() results
	6.5 statcache --- An optimization of os.stat()
	6.6 statvfs --- Constants used with os.statvfs()
	6.7 filecmp --- File and Directory Comparisons
	6.7.1 The dircmp class

	6.8 popen2 --- Subprocesses with accessible I/O streams
	6.8.1 Popen3 and Popen4 Objects
	6.8.2 Flow Control Issues

	6.9 datetime --- Basic date and time types
	6.9.1 Available Types
	6.9.2 timedelta Objects
	6.9.3 date Objects
	6.9.4 datetime Objects
	6.9.5 time Objects
	6.9.6 tzinfo Objects
	6.9.7 strftime() Behavior

	6.10 time --- Time access and conversions
	6.11 sched --- Event scheduler
	6.11.1 Scheduler Objects

	6.12 mutex --- Mutual exclusion support
	6.12.1 Mutex Objects

	6.13 getpass --- Portable password input
	6.14 curses --- Terminal handling for character-cell displays
	6.14.1 Functions
	6.14.2 Window Objects
	6.14.3 Constants

	6.15 curses.textpad --- Text input widget for curses programs
	6.15.1 Textbox objects

	6.16 curses.wrapper --- Terminal handler for curses programs
	6.17 curses.ascii --- Utilities for ASCII characters
	6.18 curses.panel --- A panel stack extension for curses.
	6.18.1 Functions
	6.18.2 Panel Objects

	6.19 getopt --- Parser for command line options
	6.20 optparse --- Powerful parser for command line options.
	6.20.1 Philosophy
	Terminology
	What are options for?
	What are positional arguments for?

	6.20.2 Basic Usage
	The store action
	Other store_* actions
	Setting default values
	Generating help
	Print a version number
	Error-handling
	Putting it all together

	6.20.3 Advanced Usage
	Creating and populating the parser
	Defining options
	Option actions
	Option types
	Querying and manipulating your option parser
	Conflicts between options

	6.20.4 Callback Options
	Defining a callback option
	How callbacks are called
	Error handling
	Examples

	6.20.5 Extending optparse
	Adding new types
	Adding new actions
	Other reasons to extend optparse
	Examples

	6.21 tempfile --- Generate temporary files and directories
	6.22 errno --- Standard errno system symbols
	6.23 glob --- Unix style pathname pattern expansion
	6.24 fnmatch --- Unix filename pattern matching
	6.25 shutil --- High-level file operations
	6.25.1 Example

	6.26 locale --- Internationalization services
	6.26.1 Background, details, hints, tips and caveats
	6.26.2 For extension writers and programs that embed Python
	6.26.3 Access to message catalogs

	6.27 gettext --- Multilingual internationalization services
	6.27.1 GNU gettext API
	6.27.2 Class-based API
	The NullTranslations class
	The GNUTranslations class
	Solaris message catalog support
	The Catalog constructor

	6.27.3 Internationalizing your programs and modules
	Localizing your module
	Localizing your application
	Changing languages on the fly
	Deferred translations

	6.27.4 Acknowledgements

	6.28 logging --- Logging facility for Python
	6.28.1 Logger Objects
	6.28.2 Handler Objects
	StreamHandler
	FileHandler
	RotatingFileHandler
	SocketHandler
	DatagramHandler
	SysLogHandler
	NTEventLogHandler
	SMTPHandler
	MemoryHandler
	HTTPHandler

	6.28.3 Formatter Objects
	6.28.4 Filter Objects
	6.28.5 LogRecord Objects
	6.28.6 Thread Safety
	6.28.7 Configuration
	Configuration functions
	Configuration file format

	6.28.8 Using the logging package
	Basic example - log to a file

	7 Optional Operating System Services
	7.1 signal --- Set handlers for asynchronous events
	7.1.1 Example

	7.2 socket --- Low-level networking interface
	7.2.1 Socket Objects
	7.2.2 SSL Objects
	7.2.3 Example

	7.3 select --- Waiting for I/O completion
	7.3.1 Polling Objects

	7.4 thread --- Multiple threads of control
	7.5 threading --- Higher-level threading interface
	7.5.1 Lock Objects
	7.5.2 RLock Objects
	7.5.3 Condition Objects
	7.5.4 Semaphore Objects
	Semaphore Example

	7.5.5 Event Objects
	7.5.6 Thread Objects
	7.5.7 Timer Objects

	7.6 dummy_thread --- Drop-in replacement for the thread module
	7.7 dummy_threading --- Drop-in replacement for the threading module
	7.8 Queue --- A synchronized queue class
	7.8.1 Queue Objects

	7.9 mmap --- Memory-mapped file support
	7.10 anydbm --- Generic access to DBM-style databases
	7.11 dbhash --- DBM-style interface to the BSD database library
	7.11.1 Database Objects

	7.12 whichdb --- Guess which DBM module created a database
	7.13 bsddb --- Interface to Berkeley DB library
	7.13.1 Hash, BTree and Record Objects

	7.14 dumbdbm --- Portable DBM implementation
	7.14.1 Dumbdbm Objects

	7.15 zlib --- Compression compatible with gzip
	7.16 gzip --- Support for gzip files
	7.17 bz2 --- Compression compatible with bzip2
	7.17.1 (De)compression of files
	7.17.2 Sequential (de)compression
	7.17.3 One-shot (de)compression

	7.18 zipfile --- Work with ZIP archives
	7.18.1 ZipFile Objects
	7.18.2 PyZipFile Objects
	7.18.3 ZipInfo Objects

	7.19 tarfile --- Read and write tar archive files
	7.19.1 TarFile Objects
	7.19.2 TarInfo Objects
	7.19.3 Examples

	7.20 readline --- GNU readline interface
	7.20.1 Example

	7.21 rlcompleter --- Completion function for GNU readline
	7.21.1 Completer Objects

	8 Unix Specific Services
	8.1 posix --- The most common POSIX system calls
	8.1.1 Large File Support
	8.1.2 Module Contents

	8.2 pwd --- The password database
	8.3 grp --- The group database
	8.4 crypt --- Function to check Unix passwords
	8.5 dl --- Call C functions in shared objects
	8.5.1 Dl Objects

	8.6 dbm --- Simple ``database'' interface
	8.7 gdbm --- GNU's reinterpretation of dbm
	8.8 termios --- POSIX style tty control
	8.8.1 Example

	8.9 TERMIOS --- Constants used with the termios module
	8.10 tty --- Terminal control functions
	8.11 pty --- Pseudo-terminal utilities
	8.12 fcntl --- The fcntl() and ioctl() system calls
	8.13 pipes --- Interface to shell pipelines
	8.13.1 Template Objects

	8.14 posixfile --- File-like objects with locking support
	8.15 resource --- Resource usage information
	8.15.1 Resource Limits
	8.15.2 Resource Usage

	8.16 nis --- Interface to Sun's NIS (Yellow Pages)
	8.17 syslog --- Unix syslog library routines
	8.18 commands --- Utilities for running commands

	9 The Python Debugger
	9.1 Debugger Commands
	9.2 How It Works

	10 The Python Profiler
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	10.5.1 The Stats Class

	10.6 Limitations
	10.7 Calibration
	10.8 Extensions --- Deriving Better Profilers
	10.9 hotshot --- High performance logging profiler
	10.9.1 Profile Objects
	10.9.2 Using hotshot data
	10.9.3 Example Usage

	10.10 timeit --- Measure execution time of small code snippets
	10.10.1 Command Line Interface
	10.10.2 Examples

	11 Internet Protocols and Support
	11.1 webbrowser --- Convenient Web-browser controller
	11.1.1 Browser Controller Objects

	11.2 cgi --- Common Gateway Interface support.
	11.2.1 Introduction
	11.2.2 Using the cgi module
	11.2.3 Higher Level Interface
	11.2.4 Old classes
	11.2.5 Functions
	11.2.6 Caring about security
	11.2.7 Installing your CGI script on a Unix system
	11.2.8 Testing your CGI script
	11.2.9 Debugging CGI scripts
	11.2.10 Common problems and solutions

	11.3 cgitb --- Traceback manager for CGI scripts
	11.4 urllib --- Open arbitrary resources by URL
	11.4.1 URLopener Objects
	11.4.2 Examples

	11.5 urllib2 --- extensible library for opening URLs
	11.5.1 Request Objects
	11.5.2 OpenerDirector Objects
	11.5.3 BaseHandler Objects
	11.5.4 HTTPRedirectHandler Objects
	11.5.5 ProxyHandler Objects
	11.5.6 HTTPPasswordMgr Objects
	11.5.7 AbstractBasicAuthHandler Objects
	11.5.8 HTTPBasicAuthHandler Objects
	11.5.9 ProxyBasicAuthHandler Objects
	11.5.10 AbstractDigestAuthHandler Objects
	11.5.11 HTTPDigestAuthHandler Objects
	11.5.12 ProxyDigestAuthHandler Objects
	11.5.13 HTTPHandler Objects
	11.5.14 HTTPSHandler Objects
	11.5.15 FileHandler Objects
	11.5.16 FTPHandler Objects
	11.5.17 CacheFTPHandler Objects
	11.5.18 GopherHandler Objects
	11.5.19 UnknownHandler Objects
	11.5.20 Examples

	11.6 httplib --- HTTP protocol client
	11.6.1 HTTPConnection Objects
	11.6.2 HTTPResponse Objects
	11.6.3 Examples

	11.7 ftplib --- FTP protocol client
	11.7.1 FTP Objects

	11.8 gopherlib --- Gopher protocol client
	11.9 poplib --- POP3 protocol client
	11.9.1 POP3 Objects
	11.9.2 POP3 Example

	11.10 imaplib --- IMAP4 protocol client
	11.10.1 IMAP4 Objects
	11.10.2 IMAP4 Example

	11.11 nntplib --- NNTP protocol client
	11.11.1 NNTP Objects

	11.12 smtplib --- SMTP protocol client
	11.12.1 SMTP Objects
	11.12.2 SMTP Example

	11.13 telnetlib --- Telnet client
	11.13.1 Telnet Objects
	11.13.2 Telnet Example

	11.14 urlparse --- Parse URLs into components
	11.15 SocketServer --- A framework for network servers
	11.16 BaseHTTPServer --- Basic HTTP server
	11.17 SimpleHTTPServer --- Simple HTTP request handler
	11.18 CGIHTTPServer --- CGI-capable HTTP request handler
	11.19 Cookie --- HTTP state management
	11.19.1 Cookie Objects
	11.19.2 Morsel Objects
	11.19.3 Example

	11.20 xmlrpclib --- XML-RPC client access
	11.20.1 ServerProxy Objects
	11.20.2 Boolean Objects
	11.20.3 DateTime Objects
	11.20.4 Binary Objects
	11.20.5 Fault Objects
	11.20.6 ProtocolError Objects
	11.20.7 Convenience Functions
	11.20.8 Example of Client Usage

	11.21 SimpleXMLRPCServer --- Basic XML-RPC server
	11.21.1 SimpleXMLRPCServer Objects
	11.21.2 CGIXMLRPCRequestHandler

	11.22 DocXMLRPCServer --- Self-documenting XML-RPC server
	11.22.1 DocXMLRPCServer Objects
	11.22.2 DocCGIXMLRPCRequestHandler

	11.23 asyncore --- Asynchronous socket handler
	11.23.1 asyncore Example basic HTTP client

	11.24 asynchat --- Asynchronous socket command/response handler
	11.24.1 asynchat - Auxiliary Classes and Functions
	11.24.2 asynchat Example

	12 Internet Data Handling
	12.1 formatter --- Generic output formatting
	12.1.1 The Formatter Interface
	12.1.2 Formatter Implementations
	12.1.3 The Writer Interface
	12.1.4 Writer Implementations

	12.2 email --- An email and MIME handling package
	12.2.1 Representing an email message
	Deprecated methods

	12.2.2 Parsing email messages
	Parser class API
	Additional notes

	12.2.3 Generating MIME documents
	Deprecated methods

	12.2.4 Creating email and MIME objects from scratch
	12.2.5 Internationalized headers
	12.2.6 Representing character sets
	12.2.7 Encoders
	12.2.8 Exception classes
	12.2.9 Miscellaneous utilities
	12.2.10 Iterators
	12.2.11 Differences from email v1 (up to Python 2.2.1)
	12.2.12 Differences from mimelib
	12.2.13 Examples

	12.3 mailcap --- Mailcap file handling.
	12.4 mailbox --- Read various mailbox formats
	12.4.1 Mailbox Objects

	12.5 mhlib --- Access to MH mailboxes
	12.5.1 MH Objects
	12.5.2 Folder Objects
	12.5.3 Message Objects

	12.6 mimetools --- Tools for parsing MIME messages
	12.6.1 Additional Methods of Message Objects

	12.7 mimetypes --- Map filenames to MIME types
	12.7.1 MimeTypes Objects

	12.8 MimeWriter --- Generic MIME file writer
	12.8.1 MimeWriter Objects

	12.9 mimify --- MIME processing of mail messages
	12.10 multifile --- Support for files containing distinct parts
	12.10.1 MultiFile Objects
	12.10.2 MultiFile Example

	12.11 rfc822 --- Parse RFC 2822 mail headers
	12.11.1 Message Objects
	12.11.2 AddressList Objects

	12.12 base64 --- Encode and decode MIME base64 data
	12.13 binascii --- Convert between binary and ascii
	12.14 binhex --- Encode and decode binhex4 files
	12.14.1 Notes

	12.15 quopri --- Encode and decode MIME quoted-printable data
	12.16 uu --- Encode and decode uuencode files
	12.17 xdrlib --- Encode and decode XDR data
	12.17.1 Packer Objects
	12.17.2 Unpacker Objects
	12.17.3 Exceptions

	12.18 netrc --- netrc file processing
	12.18.1 netrc Objects

	12.19 robotparser --- Parser for robots.txt
	12.20 csv --- CSV File Reading and Writing
	12.20.1 Module Contents
	12.20.2 Dialects and Formatting Parameters
	12.20.3 Reader Objects
	12.20.4 Writer Objects
	12.20.5 Examples

	13 Structured Markup Processing Tools
	13.1 HTMLParser --- Simple HTML and XHTML parser
	13.1.1 Example HTML Parser Application

	13.2 sgmllib --- Simple SGML parser
	13.3 htmllib --- A parser for HTML documents
	13.3.1 HTMLParser Objects

	13.4 htmlentitydefs --- Definitions of HTML general entities
	13.5 xml.parsers.expat --- Fast XML parsing using Expat
	13.5.1 XMLParser Objects
	13.5.2 ExpatError Exceptions
	13.5.3 Example
	13.5.4 Content Model Descriptions
	13.5.5 Expat error constants

	13.6 xml.dom --- The Document Object Model API
	13.6.1 Module Contents
	13.6.2 Objects in the DOM
	DOMImplementation Objects
	Node Objects
	NodeList Objects
	DocumentType Objects
	Document Objects
	Element Objects
	Attr Objects
	NamedNodeMap Objects
	Comment Objects
	Text and CDATASection Objects
	ProcessingInstruction Objects
	Exceptions

	13.6.3 Conformance
	Type Mapping
	Accessor Methods

	13.7 xml.dom.minidom --- Lightweight DOM implementation
	13.7.1 DOM Objects
	13.7.2 DOM Example
	13.7.3 minidom and the DOM standard

	13.8 xml.dom.pulldom --- Support for building partial DOM trees
	13.8.1 DOMEventStream Objects

	13.9 xml.sax --- Support for SAX2 parsers
	13.9.1 SAXException Objects

	13.10 xml.sax.handler --- Base classes for SAX handlers
	13.10.1 ContentHandler Objects
	13.10.2 DTDHandler Objects
	13.10.3 EntityResolver Objects
	13.10.4 ErrorHandler Objects

	13.11 xml.sax.saxutils --- SAX Utilities
	13.12 xml.sax.xmlreader --- Interface for XML parsers
	13.12.1 XMLReader Objects
	13.12.2 IncrementalParser Objects
	13.12.3 Locator Objects
	13.12.4 InputSource Objects
	13.12.5 The Attributes Interface
	13.12.6 The AttributesNS Interface

	13.13 xmllib --- A parser for XML documents
	13.13.1 XML Namespaces

	14 Multimedia Services
	14.1 audioop --- Manipulate raw audio data
	14.2 imageop --- Manipulate raw image data
	14.3 aifc --- Read and write AIFF and AIFC files
	14.4 sunau --- Read and write Sun AU files
	14.4.1 AU_read Objects
	14.4.2 AU_write Objects

	14.5 wave --- Read and write WAV files
	14.5.1 Wave_read Objects
	14.5.2 Wave_write Objects

	14.6 chunk --- Read IFF chunked data
	14.7 colorsys --- Conversions between color systems
	14.8 rgbimg --- Read and write ``SGI RGB'' files
	14.9 imghdr --- Determine the type of an image
	14.10 sndhdr --- Determine type of sound file
	14.11 ossaudiodev --- Access to OSS-compatible audio devices
	14.11.1 Audio Device Objects
	14.11.2 Mixer Device Objects

	15 Cryptographic Services
	15.1 hmac --- Keyed-Hashing for Message Authentication
	15.2 md5 --- MD5 message digest algorithm
	15.3 sha --- SHA-1 message digest algorithm
	15.4 mpz --- GNU arbitrary magnitude integers
	15.5 rotor --- Enigma-like encryption and decryption

	16 Graphical User Interfaces with Tk
	16.1 Tkinter --- Python interface to Tcl/Tk
	16.1.1 Tkinter Modules
	16.1.2 Tkinter Life Preserver
	How To Use This Section
	A Simple Hello World Program

	16.1.3 A (Very) Quick Look at Tcl/Tk
	16.1.4 Mapping Basic Tk into Tkinter
	16.1.5 How Tk and Tkinter are Related
	16.1.6 Handy Reference
	Setting Options
	The Packer
	Packer Options
	Coupling Widget Variables
	The Window Manager
	Tk Option Data Types
	Bindings and Events
	The index Parameter
	Images

	16.2 Tix --- Extension widgets for Tk
	16.2.1 Using Tix
	16.2.2 Tix Widgets
	Basic Widgets
	File Selectors
	Hierachical ListBox
	Tabular ListBox
	Manager Widgets
	Image Types
	Miscellaneous Widgets
	Form Geometry Manager

	16.2.3 Tix Commands

	16.3 ScrolledText --- Scrolled Text Widget
	16.4 turtle --- Turtle graphics for Tk
	16.4.1 Pen and RawPen Objects

	16.5 Idle
	16.5.1 Menus
	File menu
	Edit menu
	Windows menu
	Debug menu (in the Python Shell window only)

	16.5.2 Basic editing and navigation
	Automatic indentation
	Python Shell window

	16.5.3 Syntax colors
	Command line usage

	16.6 Other Graphical User Interface Packages

	17 Restricted Execution
	17.1 rexec --- Restricted execution framework
	17.1.1 RExec Objects
	17.1.2 Defining restricted environments
	17.1.3 An example

	17.2 Bastion --- Restricting access to objects

	18 Python Language Services
	18.1 parser --- Access Python parse trees
	18.1.1 Creating AST Objects
	18.1.2 Converting AST Objects
	18.1.3 Queries on AST Objects
	18.1.4 Exceptions and Error Handling
	18.1.5 AST Objects
	18.1.6 Examples
	Emulation of compile()
	Information Discovery

	18.2 symbol --- Constants used with Python parse trees
	18.3 token --- Constants used with Python parse trees
	18.4 keyword --- Testing for Python keywords
	18.5 tokenize --- Tokenizer for Python source
	18.6 tabnanny --- Detection of ambiguous indentation
	18.7 pyclbr --- Python class browser support
	18.7.1 Class Descriptor Objects
	18.7.2 Function Descriptor Objects

	18.8 py_compile --- Compile Python source files
	18.9 compileall --- Byte-compile Python libraries
	18.10 dis --- Disassembler for Python byte code
	18.10.1 Python Byte Code Instructions

	18.11 distutils --- Building and installing Python modules

	19 Python compiler package
	19.1 The basic interface
	19.2 Limitations
	19.3 Python Abstract Syntax
	19.3.1 AST Nodes
	19.3.2 Assignment nodes
	19.3.3 Examples

	19.4 Using Visitors to Walk ASTs
	19.5 Bytecode Generation

	20 SGI IRIX Specific Services
	20.1 al --- Audio functions on the SGI
	20.1.1 Configuration Objects
	20.1.2 Port Objects

	20.2 AL --- Constants used with the al module
	20.3 cd --- CD-ROM access on SGI systems
	20.3.1 Player Objects
	20.3.2 Parser Objects

	20.4 fl --- FORMS library for graphical user interfaces
	20.4.1 Functions Defined in Module fl
	20.4.2 Form Objects
	20.4.3 FORMS Objects

	20.5 FL --- Constants used with the fl module
	20.6 flp --- Functions for loading stored FORMS designs
	20.7 fm --- Font Manager interface
	20.8 gl --- Graphics Library interface
	20.9 DEVICE --- Constants used with the gl module
	20.10 GL --- Constants used with the gl module
	20.11 imgfile --- Support for SGI imglib files
	20.12 jpeg --- Read and write JPEG files

	21 SunOS Specific Services
	21.1 sunaudiodev --- Access to Sun audio hardware
	21.1.1 Audio Device Objects

	21.2 SUNAUDIODEV --- Constants used with sunaudiodev

	22 MS Windows Specific Services
	22.1 msvcrt -- Useful routines from the MS VC++ runtime
	22.1.1 File Operations
	22.1.2 Console I/O
	22.1.3 Other Functions

	22.2 _winreg -- Windows registry access
	22.2.1 Registry Handle Objects

	22.3 winsound --- Sound-playing interface for Windows

	A Undocumented Modules
	A.1 Frameworks
	A.2 Miscellaneous useful utilities
	A.3 Platform specific modules
	A.4 Multimedia
	A.5 Obsolete
	A.6 SGI-specific Extension modules

	B Reporting Bugs
	C History and License
	C.1 History of the software
	C.2 Terms and conditions for accessing or otherwise using Python

	Module Index
	Index

