Python Library Reference
Release 2.3.5

Guido van Rossum
Fred L. Drake, Jr., editor

February 8, 2005

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While thePython Reference Manudéscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file 1/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuemains the highest authority on syntactic and semantic questions.
Finally, the manual entitleExtending and Embedding the Python Interpretescribes how to add new extensions

to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCLioNS L e e e 3
2.2 Non-essential Built-in Functions. 13
2.3 BUIlt-iNTypes e e 14
2.4 BUIlt-INEXCEPLIONS o o e e e e e e e 31
25 Built-inConstants. 35

3 Python Runtime Services 37
3.1 sys — System-specific parameters and functions. 37
3.2 gc — Garbage Collectorinterface. e 43
3.3 weakref —Weakreferences. 45
3.4 fpectl — Floating pointexceptioncontrol 49
3.5 atexit —Exithandlers. 50
3.6 types — Namesforbuilt-intypes. e 51
3.7 UserDict — Class wrapper for dictionaryobjects 53
3.8 UserList — Classwrapperforlistobjects 54
3.9 UserString — Class wrapper forstringobjects. 54
3.10 operator — Standard operatorsasfunctions. Lo 55
3.11 inspect —Inspectliveobjects. 59
3.12 traceback — Printorretrieve astacktraceback. L. 63
3.13 linecache —Randomaccesstotextlines. 65
3.14 pickle — Python object serialization oL 66
3.15 cPickle — Afasterpickle 74
3.16 copy _reg — Registempickle supportfunctions. 74
3.17 shelve — Python objectpersistence. e 75
3.18 copy — Shallow anddeep copyoperations e 77
3.19 marshal — Internal Python object serialization. 78
3.20 warnings —Warningcontrol. e 79
3.21 imp — Accessthemport internals. 81
3.22 zipimport — Import modules from Ziparchives. 84
3.23 pkgutii — Package extension utility 86
3.24 code — Interpreterbaseclasses 86
3.25 codeop — Compile Pythoncode 88
3.26 pprint —Dataprettyprinter 89
3.27 repr — Alternaterepr() implementation. 91
3.28 new — Creation of runtime internalobjects. 93
3.29 site — Site-specific configurationhook L o 93
3.30 user — User-specific configurationhook 94
3.31 __builtin __—Built-infunctions. 95
3.32 __main __—Top-level scriptenvironment., 95
3.33 __future __—Future statementdefinitions o L. 95

4 String Services 97

4.1 string —Commonstringoperations e e 97
4.2 re —Regularexpression operations. 100
4.3 struct — Interpretstrings as packed binarydata L. 110
4.4 difflib — Helpers for computingdeltas 112
4,5 fpformat — Floating pointconversions. i e 119
46 StringlO — Read and write stringsasfiles. o o oL 119
4.7 cStringlO — Faster version oBtringlOo 120
4.8 textwrap — Textwrappingandfiling. L 120
4.9 codecs — Codecregistryand baseclasses. 0. 122
4.10 unicodedata —Unicode Database. 130
411 stringprep — Internet String Preparation. 131
Miscellaneous Services 133
5.1 pydoc — Documentation generator and online helpsystem. 133
5.2 doctest — Testdocstringsrepresentreality, 134
5.3 unittest —Unittestingframework. 141
5.4 test — Regression tests package forPython. 152
5.5 test.test _support — Utility functionsfortests. 154
5.6 math — Mathematical functions. 155
5.7 cmath — Mathematical functions for complexnumbers 157
5.8 random — Generate pseudo-randomnumbers. oL 158
5.9 whrandom — Pseudo-random number generator. 161
5.10 bisect — Array bisectionalgorithm L o 162
5.11 heapq — Heap queue algorithm. 163
5.12 array — Efficientarraysofnumericvalues., 165
5.13 sets — Unordered collections of uniqueelements. 167
5.14 itertools — Functions creating iterators for efficient looping. 170
5.15 ConfigParser = — Configurationfileparser. 176
5.16 fileinput — lterate over lines from multiple inputstreams 178
5.17 xreadlines — Efficientiterationoverafile. 180
5.18 calendar — General calendar-related functions., 180
5.19 cmd— Support for line-oriented command interpreters. 182
5.20 shlex — Simplelexicalanalysis 184
Generic Operating System Services 187
6.1 o0s — Miscellaneous operating systeminterfaces. 187
6.2 os.path — Common pathname manipulations. 204
6.3 dircache — Cacheddirectorylistings. 206
6.4 stat — Interpretingstat() results. e 207
6.5 statcache — Anoptimizationofos.stat(), 209
6.6 statvfs — Constants used withs.statvfs() L 210
6.7 filecmp — File and Directory Comparisons i it 210
6.8 popen2 — Subprocesses with accessible /O streams. 212
6.9 datetime —Basicdateandtimetypes. 214
6.10 time — Timeaccessand CoNVErSIONS v v v v v v i i e e e e 230
6.11 sched —Eventscheduler. e 235
6.12 mutex — Mutual exclusion Support. oL 236
6.13 getpass — Portable passwordinput. 237
6.14 curses — Terminal handling for character-celldisplays. 237
6.15 curses.textpad — Text input widget for curses programs 251
6.16 curses.wrapper — Terminal handler for curses programs 252
6.17 curses.ascii — Utilities for ASCllcharacters 252
6.18 curses.panel — A panel stack extensionforcurses.. L. 254
6.19 getopt — Parserforcommand lineoptions., 255
6.20 optparse — Powerful parser for command lineoptions. 257
6.21 tempfile — Generate temporary files and directories. 281
6.22 errno — Standard errnosystemsymbols. o oL 282

10

6.23 glob — UNIX style pathname patternexpansion 288
6.24 fnmatch — UNIx filename patternmatching 288
6.25 shutil — High-levelfile operations 289
6.26 locale — Internationalizationservices L 290
6.27 gettext — Multilingual internationalizationservices. 295
6.28 logging — Logging facility forPython. 303
Optional Operating System Services 319
7.1 signal — Sethandlers for asynchronousevents. 319
7.2 socket — Low-level networkinginterface. 321
7.3 select — Waiting for I/O completion. 330
7.4 thread — Multiple threadsofcontrol. 331
7.5 threading — Higher-level threadinginterface. 332
7.6 dummy_thread — Drop-inreplacementforthéhread module 339
7.7 dummy_threading — Drop-in replacement for théareading module 339
7.8 Queue —Asynchronizedqueueclass. e 340
7.9 mmap— Memory-mapped file support 341
7.10 anydbm — Generic access to DBM-style databases 342
7.11 dbhash — DBM-style interface to the BSD database libraty. 343
7.12 whichdb — Guess which DBM module created adatabase. 344
7.13 bsddb — Interface to Berkeley DB library 344
7.14 dumbdbm— Portable DBM implementation o oo 346
7.15 zlib — Compression compatible widzip oo 347
7.16 gzip — Support forgzipfiles L 349
7.17 bz2 — Compression compatible witbzip2 Lo 350
7.18 zipfile — Workwith ZIP archives. e 352
7.19 tarfile — Read and write tar archivefiles. o oL 355
7.20 readline — GNUreadlineinterface. 360
7.21 rlcompleter — Completion function for GNU readline. 361
Unix Specific Services 363
8.1 posix — The mostcommon POSIXsystemecalls. 363
8.2 pwd—Thepassworddatabase. 364
8.3 grp —Thegroupdatabase 365
8.4 crypt —Functiontocheck Mix passwords. 365
8.5 dl —CallCfunctionsinsharedobjects, 366
8.6 dbm— Simple “database”interface. 367
8.7 gdbm— GNU's reinterpretationofdbm. o 368
8.8 termios — POSIXstylettycontrol. 369
8.9 TERMIOS— Constants used with thermios module 370
8.10 tty — Terminalcontrolfunctions. 370
8.11 pty — Pseudo-terminal utilities 370
8.12 fentl — Thefentl() andioctl() systemecalls. 371
8.13 pipes — Interfacetoshell pipelines L L 373
8.14 posixfile — File-like objects with lockingsupport 374
8.15 resource — Resource usageinformation.o 376
8.16 nis — Interfaceto Sun's NIS (YellowPages), 378
8.17 syslog — UNix sysloglibraryroutines 378
8.18 commands — Utilities for runningcommands 379
The Python Debugger 381
9.1 DebuggerCommands e e 382
9.2 HowltWorks e 384
The Python Profiler 387
10.1 Introductiontothe profiler 387
10.2 How Is This Profiler Different From The Old Profiler?. 387
10.3 InstantUsers Manual. e 388
10.4 What Is Deterministic Profiling?. e 389

11

12

13

10.5 Reference Manual e e e 390

10.6 LimitationS. o o o e e 393
10.7 Calibration. e 393
10.8 Extensions — Deriving Better Profilers. 394
10.9 hotshot — High performance loggingprofiler 394
10.10timeit — Measure execution time of small code snippets 396
Internet Protocols and Support 399
11.1 webbrowser — Convenient Web-browser controller. 399
11.2 cgi — Common Gateway Interface support.. 401
11.3 cgitb — Traceback managerforCGlscripts. 408
11.4 urlib — Open arbitrary resourcesby URL o L. 408
11.5 urllib2 — extensible library foropeningURLS 413
11.6 httplib —HTTP protocolclient. e 420
11.7 ftplib —FTP protocolclient. e 423
11.8 gopherlib — Gopher protocolclient 426
11.9 poplib —POP3protocolclient. 426
11.10imaplib — IMAP4 protocol client 428
11.12nntplib — NNTP protocolclient. 432
11.12smtplib — SMTP protocolclient. e 436
11.13telnetlib —Telnetclient 439
11.14urlparse —Parse URLsintocomponents. vt 441
11.15SocketServer — A framework for network servers. oL 443
11.16BaseHTTPServer —BasicHTTP server it 445
11.17SimpleHTTPServer — Simple HTTP requesthandler 447
11.18CGIHTTPServer — CGl-capable HTTPrequesthandler 448
11.19Cookie — HTTP state management. i i i it ittt 448
11.20xmlrpclib — XML-RPCclientaccess o i i 452
11.21SimpleXMLRPCServer — Basic XML-RPCserver. 455
11.22DocXMLRPCServer — Self-documenting XML-RPC server. 457
11.23asyncore — Asynchronous sockethandler. 458
11.24asynchat — Asynchronous socket command/response handler. 460
Internet Data Handling 465
12.1 formatter = — Genericoutputformatting o o oo 465
12.2 email — An email and MIME handlingpackage, 469
12.3 mailcap — Mailcap file handling.. 494
12.4 mailbox — Read various mailboxformats o oo 495
12.5 mhlib — Accessto MH mailboxes 497
12.6 mimetools — Tools for parsingMIME messages v v v v i it v i i e 498
12.7 mimetypes — Map filenamesto MIME types. 500
12.8 MimeWriter — Generic MIME filewritero 502
12.9 mimify — MIME processingof mailmessages. 502
12.10multifile — Support for files containing distinctparts. 504
12.11rfc822 — Parse RFC 2822 mailheaders. 505
12.12base64 — Encode and decode MIME base64data. 509
12.13binascii — Convert between binaryamdscil o e 509
12.14binhex — Encode and decode binhex4files 511
12.15quopri — Encode and decode MIME quoted-printabledata 512
12.16uu — Encode and decode uuencodefiles L oL oo oo 512
12.17xdrlib — Encode and decode XDRdata. 513
12.18netrc —nnetrcfile processing. e 515
12.19robotparser — Parserforrobots.txt Lo 516
12.20csv — CSV File Readingand Writing. o o i i 517
Structured Markup Processing Tools 521
13.1 HTMLParser — Simple HTMLand XHTML parser. 521
13.2 sgmllib — Simple SGML parser. i i e 523
13.3 htmllib — AparserforHTML documents 525

14

15

16

17

18

19

13.4 htmlentitydefs — Definitions of HTML general entities 527

13.5 xml.parsers.expat — Fast XML parsingusingExpat 527
13.6 xml.dom — The Document Object Model API., 534
13.7 xml.dom.minidom — Lightweight DOM implementation. 543
13.8 xml.dom.pulldom — Support for building partial DOMtrees 547
13.9 xmlsax — Supportfor SAX2 parserS. . . . v v v v v i e e e e e e e 548
13.10xml.sax.handler —BaseclassesforSAXhandlers L. 549
13.11 xml.sax.saxutils — SAXUtilities L 553
13.12xml.sax.xmlreader — Interface for XML parsers. 554
13.13xmllib — A parser for XML documents. 558
Multimedia Services 561
14.1 audioop — Manipulateraw audiodata 561
14.2 imageop — Manipulaterawimagedata. 0. 564
14.3 aifc — Read and write AIFFand AIFCfiles. 565
14.4 sunau — Read and write Sun AUfiles L 567
14.5 wave — Read and write WAV files. e 569
14.6 chunk — Read IFF chunkeddata. 571
14.7 colorsys — Conversions betweencolorsystems. 572
14.8 rghimg — Read and write “SGIRGB”files 573
14.9 imghdr — Determinethetypeofanimage 573
14.10sndhdr — Determine type of soundfile oo oo 574
14.11o0ssaudiodev — Access to OSS-compatible audio devices. 574
Cryptographic Services 579
15.1 hmac — Keyed-Hashing for Message Authentication. 579
15.2 md5— MD5 message digestalgorithm. oo 579
15.3 sha — SHA-1 message digest algorithm. Lo 580
15.4 mpz— GNU arbitrary magnitude integers e 581
15.5 rotor — Enigma-like encryptionanddecryption. 582
Graphical User Interfaces with Tk 585
16.1 Tkinter — Pythoninterfaceto Tcl/Tk., 585
16.2 Tix —ExtensionwidgetsforTK. e 596
16.3 ScrolledText ~ — Scrolled TextWidget. 601
16.4 turtle —Turtle graphicsfor Tk o o 601
165 Idle e e 602
16.6 Other Graphical User Interface Packages 606
Restricted Execution 607
17.1 rexec — Restricted executionframework o oL 607
17.2 Bastion — Restrictingaccesstoobjects. 610
Python Language Services 613
18.1 parser — Access Pythonparsetrees. e 613
18.2 symbol — Constants used with Pythonparsetrees 622
18.3 token — Constants used with Pythonparsetrees 622
18.4 keyword — Testing for Pythonkeywords o oo 623
18.5 tokenize — Tokenizer for Pythonsource. oo 623
18.6 tabnanny — Detection of ambiguous indentation L L. 624
18.7 pyclbor — Python class browsersupport 624
18.8 py_compile — Compile Pythonsourcefiles. 625
18.9 compileall ~— Byte-compile Pythonlibraries 626
18.10dis — Disassembler for Python bytecode. o, 626
18.11 distutils — Building and installing Python modules. 633
Python compiler package 635
19.1 Thebasicinterface L 635
19.2 LimMitations. o o e 636

19.3 Python Abstract Syntax 0 e e e e

19.4 Using Visitorsto Walk ASTS e 640
19.5 Bytecode Generation. e e e 641
20 SGI IRIX Specific Services 643
20.1 al —AudiofunctionsontheSGI 643
20.2 AL —Constants used withthed module 645
20.3 cd — CD-ROM accesson SGIsystems oot ii it e 645
20.4 fl — FORMS library for graphical userinterfaces. 648
20.5 FL — Constantsused withtife module 653
20.6 flp — Functions for loading stored FORMS designs. 653
20.7 fm — Font Managetinterface. 653
20.8 gl — Graphics Libraryinterface 654
20.9 DEVICE— Constantsused withttgd module 656
20.10GL— Constants used withtlgg module, 656
20.11imgfile — Support for SGlimglibfiles o o 656
20.12jpeg —Read andwrite JPEGfiles. 657
21 SunOS Specific Services 659
21.1 sunaudiodev — Accessto Sunaudiohardware. 659
21.2 SUNAUDIODEW- Constants used witbunaudiodev 660
22 MS Windows Specific Services 661
22.1 msvert — Useful routines from the MS VE€rruntime 661
22.2 _winreg —WIiNdOWS regiStry 8CCESS+« v v v v i e e e e e 662
22.3 winsound — Sound-playing interface for Windows. 666
A Undocumented Modules 669
Al Frameworks e e e 669
A.2 Miscellaneous useful utilities. 669
A.3 Platform specificmodules 669
A4 Multimedia. 670
A5 Obsolete e 670
A.6 SGl-specific Extension modules. 671
B Reporting Bugs 673
C History and License 675
C.1 Historyofthesoftware 675
C.2 Terms and conditions for accessing or otherwise using Python 676
Module Index 679
Index 683

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as nhumbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of aimport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you dontaveto read it like a novel — you can also browse the table of contents (in front of

the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see randale) and read a section or

two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of thePython Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thamport statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semanticsiofgbe statement. For
examples of why and how you would do this, see the standard library motolelss andrexec . See
also the built-in modulémp, which defines some useful operations out of which you can build your own
__import __() function.

For example, the statemeritmport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) ". Note that even though

locals() and['eggs’] are passed in as arguments, themport __() function does not set the
local variable nameeggs ; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not uséoitals argument at all, and uses iggobalsonly to
determine the package context of ihgport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up
till the first dot) is returnedpotthe module named bhyame However, when a non-empfsomlistargument

is given, the module named mameis returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when usingpbrt spam.ham.eggs ', the top-level
packagespam must be placed in the importing namespace, but when uioig‘ spam.ham import

eggs’, the spam.ham subpackage must be used to find #ggs variable. As a workaround for this
behavior, usgetattr() to extract the desired components. For example, you could define the following
helper:

def my_import(name):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass$or andunicode . It cannot be called or instantiated, but it can be
used to test whether an object is an instancgof or unicode . isinstance(obj, basestring)
is equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing proceduis félise or omitted, this returns
False ; otherwise it returndrue . bool is also a class, which is a subclasgrdf . Classbool cannot
be subclassed further. Its only instanceskakse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function rétalses .

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they havesdl __() method.

chr (i)
Return a string of one character whesgcii code is the integar For examplechr(97) returns the string
'a’ . Thisis the inverse afrd() . The argument must be in the range [0..255], inclusikedueError
will be raised ifi is outside that range.

classmethod (function
Return a class method function

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
def f(cls, argl, arg2, ..): ...
f = classmethod(f)

It can be called either on the class (suctCaf§)) or on an instance (such &%).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, stticmethod() in
this section. New in version 2.2.
cmp(x,y)
Compare the two objecisandy and return an integer according to the outcome. The return value is negative
if X < vy, zeroifx == yand strictly positive ik > .

compile (string, filename, kin[i ﬂage[, donLinherit]])
Compile thestring into a code object. Code objects can be executed Bxan statement or evaluated by
a call toeval() . Thefilenameargument should give the file from which the code was read; pass some

recognizable value if it wasn't read from a file$tring>’ is commonly used). Thieind argument spec-
ifies what kind of code must be compiled; it can’egec’ if string consists of a sequence of statements,
‘eval’ if it consists of a single expression, @ingle’ if it consists of a single interactive statement

(in the latter case, expression statements that evaluate to something elSeteanill printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character\py’), and the input must be terminated by at least one newline character. If line
endings are represented fn’ , use the stringeplace() = method to change them intm’

The optional argumentifagsanddont_inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilatiorsting. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compileflabtergu-
ment is given andlont_inherit is not (or is zero) then the future statements specified bflahsargument
are used in addition to those that would be used anywalonf_inheritis a non-zero integer then tlflags
argument is it — the future statements in effect around the call to compile are ignored.

4 Chapter 2. Built-In Objects

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found acdnepiler _flag attribute on the
_Feature instance inthe _future __ module.

complex ([real[, imag]])
Create a complex number with the vakgal + imagFj or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). limagis omitted, it defaults to zero and the function serves as a

numeric conversion function likit() ,long() andfloat() . If both arguments are omitted, returns
0j .
delattr (object, namg
This is a relative oketattr() . The arguments are an object and a string. The string must be the name

of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
exampledelattr(%, ' foobar) is equivalenttalel x. foobar.

dict ([mapping—or—sequende)
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one™ 2, "two™ 3}

edict({'one’: 2, 'two’: 3}

edict({'one: 2, 'two: 3}.items())
edict({'one”: 2, 'two’. 3}.iteritems())
edict(zip((one’, two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([([one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the objectict __
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the objectis a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

>>> jmport struct

>>> dir()

[_builtins__’, ' _doc__’, '__name__’, 'struct]

>>> dir(struct)

[__doc_', '__name__’, ’calcsize’, ’error’, 'pack’, 'unpack’]

Note: Becausdlir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

2.1. Built-in Functions 5

divmod (a, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators

apply. For plain and long integers, the result is the sanfaas b, a % b) . For floating point numbers
the resultig g, a % b), whereqis usuallymath.floor(a / b) but may be 1 less than that. In any
caseg * b + a % bisverycloseta, if a % bis non-zero it has the same signtaand0 <= abs(a
% b) < abs(b).

Changed in version 2.3: Usirtivmod() with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate objedterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned ®numerate() returns a tuple containing a
count (from zero) and the corresponding value obtained from iteratingirable enumerate() is
useful for obtaining an indexed serig§, seq[0]) , (1, seq[1]) , (2, seq[2]) ,.... Newin
version 2.3.

eval (expressio[n, globals[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated
as a Python expression (technically speaking, a condition list) usingiéhalsandlocals dictionaries as
global and local name space. If tigdobals dictionary is present and lacks 'builtins__’, the current
globals are copied intglobalsbeforeexpressiors parsed. This means thetpressiomormally has full
access to the standard builtin -~ __ module and restricted environments are propagated. Ifoiteds
dictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the expression is
executed in the environment whexeal is called. The return value is the result of the evaluated expression.
Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creategi®()). In
this case pass a code object instead of a string. The code object must have been compiletepabksing
as thekind argument.

Hints: dynamic execution of statements is supported beiee statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around forexa®y or
execfile()

execfile (filenam{, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new moddle.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence

of Python statements (similarly to a module) using ghabalsandlocals dictionaries as global and local
namespace. If thivcalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wnezefile() is called. The return value is
None.

Warning: The defauliocalsact as described for functidacals() below: modifications to the default
locals dictionary should not be attempted. Pass an exgbcidls dictionary if you need to see effects of
the code orocalsafter functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

file (filenamg, modd, bufsizd])
Return a new file object (described in section 2.3Rle' Objects). The first two arguments are the same
as forstdio ’s fopen() : filenameis the file name to be openemhodeindicates how the file is to be
opened:r for reading,’'w’ for writing (truncating an existing file), an@é’ opens it for appending
(which onsomeUNIx systems means thatl writes append to the end of the file, regardless of the current
seek position).

2|t is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-In Objects

Modes'r+' ,’'w+’ and’a+’ open the file for updating (note that+ truncates the file). Appenty’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files (else
it is ignored). If the file cannot be opend@Error s raised.

In addition to the standarpen() valuesmodemay be’U’ or’rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any of

the Unix end-of-line conventioryr’ , the Macintosh convention dw\n’ , the Windows convention.

All of these external representations are seetras by the Python program. If Python is built without
universal newline suppomode’U’ is the same as normal text mode. Note that file objects so opened also
have an attribute calledewlines which has a value dflone (if no newlines have yet been seetw),
\r,\\n’ -, or a tuple containing all the newline types seen.

If modeis omitted, it defaults tor’ . When opening a binary file, you should appébd to themode

value for improved portability. (It's useful even on systems which don’t treat binary and text files differently,
where it serves as documentation.) The optidndsizeargument specifies the file’s desired buffer size:

0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negativbufsizemeans to use the system default, which is usually line buffered for tty devices
and fully buffered for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2. The previous spellofgen() , is retained for compatibil-
ity, and is an alias fofile()

filter (function, lis)
Construct a list from those elementslist for which functionreturns true list may be either a sequence,
a container which supports iteration, or an iteratolisifis a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementgsof
that are false (zero or empty) are removed.

Note that filter(function, listy is equivalent to [item for item in list if
function(item)] if function is not None and [item for item in list if item] if
function isNone.

float ([x])

Convert a string or a number to floating point. If the argument is a string, it must contain a possi-
bly sighed decimal or floating point number, possibly embedded in whitespace; this behaves identical to
string.atof(X) . Otherwise, the argument may be a plain or long integer or a floating point number,
and a floating point number with the same value (within Python’s floating point precision) is returned. If no
argument is given, returr0 .

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

getattr (object, nam[s, default])
Return the value of the named attributedobject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For exaguetketr(x, 'foobar’)
is equivalent toc.foobar . If the named attribute does not exidefaultis returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The restiluie if the string is the name of one of the object’s
attributes False if not. (This is implemented by callingetattr(object namg and seeing whether
it raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly

3Specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not
done using a method that calietvbuf() , because that may dump core when called after any I/O has been performed, and there’s no
reliable way to determine whether this is the case.

2.1. Built-in Functions 7

compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (X)

Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expres-
sion. Note: this always yields an unsigned literal. For example, on a 32-bit matigrel) yields

"Oxffffffff . When evaluated on a machine with the same word size, this literal is evaluated as -1; at
a different word size, it may turn up as a large positive number or rai€xvarflowError exception.
id (objec)

Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically vaigntaxError will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and
history features.

Consider using theaw _input() function for general input from users.

int ([x[radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaeéixlferameter
gives the base for the conversion and may be any integer in the range [2, 36], or zachx I§ zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified and is not a string;TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, return®.

isinstance (object, classinfp
Return true if theobjectargument is an instance of tledassinfoargument, or of a (direct or indirect)
subclass thereof. Also return truecifaissinfois a type object andbjectis an object of that type. Ibbject
is not a class instance or an object of the given type, the function always returns falassififois neither
a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted)asifinfois not a class, type, or tuple of classes,
types, and such tuples,TgpeError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfp
Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every enttiagsinfowill be checked. In any other
case, dlypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o[, sentine])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumemhust be a collection object which supports the iteration
protocol (the__iter __() method), or it must support the sequence protocol (thgetitem __()
method with integer arguments startingdat If it does not support either of those protocdigpeError
is raised. If the second argumesgntine] is given, thero must be a callable object. The iterator created in
this case will callo with no arguments for each call to itext() method; if the value returned is equal to

8 Chapter 2. Built-In Objects

sentine] Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequenc})
Return a list whose items are the same and in the same orderaence items. sequencenay be either
a sequence, a container that supports iteration, or an iterator objeegguéncés already a list, a copy is

made and returned, similar sequende] . For instancelist('abc’) returns'a’, 'b’, 'c’]
andlist((2, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty Ijt,
locals ()

Update and return a dictionary representing the current local symbol t&##ening: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace; this behaves idensitalgaatol(X) .
Theradix argument is interpreted in the same way adritf) , and may only be given whenis a string.
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with
the same value is returned. Conversion of floating point numbers to integers truncates (towards zero). If no
arguments are given, returik.

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioriat arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended Wtne items. If functionis None, the identity function
is assumed; if there are multiple list argumemsp() returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). li§harguments may be any kind of
sequence; the result is always a list.

max(s[, args...])
With a single argumers, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumers, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeobject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbatel) vyields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word
size, it may turn up as a large positive number or rais®earflowError exception.

open (filenam({, mode[, bufsizd])
An alias for thefile() function above.
ord (¢)
Return theascii value of a string of one character or a Unicode character. &rd(,a’) returns the

integer97, ord(u'\u2020") returns8224 . This is the inverse athr() for strings and ofinichr()
for Unicode characters.

Returnx to the powely; if zis present, retur to the powely, moduloz (computed more efficiently than
pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules

2.1. Built-in Functions 9

for binary arithmetic operators apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case, all arguments are converted
to float and a float result is delivered. For exampl@:*2 returns100, but10**-2 returns0.01 . (This

last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and
the second argument was negative, an exception was raised.) If the second argument is negative, the third
argument must be omitted. #is presentx andy must be of integer types, arydmust be non-negative.

(This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argpovef)t returned
platform-dependent results depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])

Return a property attribute for new-style classes (classes that derivobjeat).

fgetis a function for getting an attribute value, likewisetis a function for setting, anftlel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def getx(self): return self._ x
def setx(self, value): self._ x = value
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'X’ property.")

New in version 2.2.

range ([start,] stop{, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often fised in
loops. The arguments must be plain integers. Ifdtepargument is omitted, it defaults th If the start
argument is omitted, it defaults @ The full form returns a list of plain integefsstart, start + step
start + 2 * step ...] . If stepis positive, the last element is the largstdrt + i * stepless than
stop if stepis negative, the last element is the largeart + i * stepgreater tharstop stepmust not be
zero (or els&/alueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6,7, 8 9]
>>> range(1, 11)

1, 2, 3, 4, 5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

raw _input ([prompt])

If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns thatE&hen
is read,EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"

If thereadline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequent{einitializer])

Apply functionof two arguments cumulatively to the itemss#quencefrom left to right, so as to reduce

10

Chapter 2. Built-In Objects

the sequence to a single value. For examgléyuce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateg(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argument,
y, is the update value from theequencelf the optionalinitializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the sequence is @mtigyizér is not
given andsequenceontains only one item, the first item is returned.

reload (modulg
Re-parse and re-initialize an already importeddule The argument must be a module object, so it must
have been successfully imported before. This is useful if you have edited the module source file using an
external editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as theduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the fimport statement for it does not bind
its name locally, but does store a (partially initialized) module objecymamodules . To reload the
module you must firsimport it again (this will bind the name to the partially initialized module object)
before you cameload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for

sys, __main __and__builtin __. In many cases, however, extension modules are not designed to be
initialized more than once, and may falil in arbitrary ways when reloaded.
If a module imports objects from another module usirggn ... import ..., callingreload() for

the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to useport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed teval()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. I is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for examgalad(0.5)
is1.0 andround(-0.5) is-1.0).

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For exampgstattr(%, ' foobar, 123) is equivalent tx. foobar =
123.

slice ([start,] stod, step])
Return a slice object representing the set of indices specifieaye(start, stop step . Thestartand
steparguments default tone. Slice objects have read-only data attribugest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For exampgstart:stop:step] "or ‘a[start:stop, i] '

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

2.1. Built-in Functions 11

class C:
def f(argl, arg2, ..): ...
f = staticmethod(f)

It can be called either on the class (suctCa§)) or on an instance (such &%).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Javator. G-or a more advanced concept, see
classmethod() in this section. New in version 2.2.

str([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference wittrepr(objec) is thatstr(objec) does not always attempt to return a string
that is acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the
empty string,”

sum(sequenc[a start])
Sumsstartand the items of aequencefrom left to right, and returns the totadtart defaults to0. These-
quencés items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callifgoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New in version 2.3.

super (type{, object-or-typé)
Return the superclass tffpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objeidinstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

New in version 2.2.

tuple ([sequenc})
Return a tuple whose items are the same and in the same ordegasncs items. sequencenay be

a sequence, a container that supports iteration, or an iterator objesgquences already a tuple, it is
returned unchanged. For instantugle('abc’) returns(’a’, 'b’, 'c’) andtuple([1, 2,
3]) returns(l, 2, 3) . If noargumentis given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. The standard motjydes defines names
for all built-in types that don't already have built-in names. For instance:

>>> import types
>>> x = 'abc’
>>> if type(x) is str: print "lt's a string"

I's a string

>>> def f(): pass

>>> if type(f) is types.FunctionType: print "lt's a function"
It's a function

Theisinstance() built-in function is recommended for testing the type of an object.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intEgeexampleunichr(97)
returns the string'a’ . This is the inverse oérd() for Unicode strings. The argument must be in the
range [0..65535], inclusivd/alueError s raised otherwise. New in version 2.0.

12 Chapter 2. Built-In Objects

unicode ([objec{, encoding{, errors]]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are givenunicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding Theencodingparameter is a string giving the name of
an encoding; if the encoding is not knowlogokupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encodimgrons$ is
'strict’ (the default), a/alueError is raised on errors, while a value ‘@jnore’ causes errors to
be silently ignored, and a value ‘oéplace’ causes the official Unicode replacement charatteFEFFD

to be used to replace input characters which cannot be decoded. See alsdebe module.

If no optional parameters are givamicode() will mimic the behaviour oftr() except that it returns
Unicode strings instead of 8-bit strings. More preciselyohfectis a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encodistyict’ mode.

New in version 2.0. Changed in version 2.2: Support faunicode __() added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hadiet __ attribute), returns a dictionary
corresponding to the object’'s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefified.

xrange ([start,] sto;{, step])
This function is very similar taange() , but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage>asfinge() overrange() is minimal (sincexrange() still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

zip (seql,.)
This function returns a list of tuples, where tkih tuple contains theth element from each of the argument
sequences. At least one sequence is required, otherwisgeError is raised. The returned list is
truncated in length to the length of the shortest argument sequence. When there are multiple argument
sequences which are all of the same length() is similar tomap() with an initial argument oNone.
With a single sequence argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatability with programs written for older versions of
Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, arg{, keywordg)
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and thergsargument must be a sequence. Timectionis called withargsas the argument list; the
number of arguments is the length of the tuple. If the optidegivordsargument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.
Calling apply() s different from just callingunctiorn(args) , since in that case there is always exactly
one argument. The use apply() is equivalent tdunction(* args ** keyword}. Use ofapply() is
not necessary since the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.RIse the extended call syntax instead, as described above.

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

2.2. Non-essential Built-in Functions 13

buffer (objec{, offse[, size]])
The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which referencesabiectargument. The buffer object will
be a slice from the beginning abject (or from the specifiedffse). The slice will extend to the end of
object(or will have a length given by thgizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, TgigeError

intern (' string)
Enterstringin the table of “interned” strings and return the interned string — whislringitself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return valuargérn() around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-
in types have differed from user-defined types because it was not possible to use the built-in types as the basis
for object-oriented inheritance. With the 2.2 release this situation has started to change, although the intended
unification of user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth
value, and converted to a string (with the..* notation). The latter conversion is implicitly used when an object

is written by theprint ~ statement. (Information gmrint ~ statemenéand other language statements can be found

in the Python Reference Manuahd thePython Tutorial)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use inilanor while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl&,0OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesyvanzero __() or __len __() method, when

that method returns the integer zerdoool valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retarri-alse for false andl or True
for true, unless otherwise stated. (Important exception: the Boolean operatidrad ‘and’ always return one
of their operands.)

SAdditional information on these special methods may be found iPtlieon Reference Manual

14 Chapter 2. Built-In Objects

2.3.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therTrue , elseFalse (2

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operatorsnsd a
anda not bis a syntax error.

bis interpreted agot (a b),

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for examgley <= zis equivalent tox <

y and y <= z except thay is evaluated only once (but in both cases not evaluated at all whex < yis

found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
<> not equal)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently<¥he and

>= operators will raise &ypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrtipe () method. Refer to
the Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in
(below).

’, are supported only by sequence types

2.3.4 Numeric Types

There are four distinct numeric typgdain integerslong integersfloating point numbersandcomplex numbers
In addition, Booleans are a subtype of plain integers. Plain integers (also justicédigerd are implemented

2.3. Built-in Types 15

usinglong in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating
point numbers are implemented usihguble in C. All bets on their precision are off unless you happen to know
the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementediosblg in C. To extract
these parts from a complex numleusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex and octal numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer. Integer literals vitloar * suffix yield

long integers (L’ is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal
point or an exponent sign yield floating point numbers. Appendingr ‘ J’ to a numeric literal yields a complex
number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than
long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed
type use the same rufeThe constructorgit() ,long() ,float() , andcomplex() can be used to produce
numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
X/ y guotient ofx andy Q)
X %y remainderok / vy 4)
-X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(x) x converted to long integer 2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pat, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, X %Y) 3)(4)
pow(X, V) x to the powely
X ** y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, atiamod()
Deprecated since release 2.3stead convert to float usiraps() if appropriate.

Bit-string Operations on Integer Types

6As a consequence, the g, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

16 Chapter 2. Built-In Objects

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the
comparisons; the unary operatioi has the same priority as the other unary numeric operatigiisuid ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same
priority):

Operation | Result Notes
X| 'y bitwise or of x andy
X"y bitwise exclusive oiof x andy
X &Yy bitwiseandof x andy
X << n | xshifted left byn bits D), (2
X >> n | xshifted right byn bits (D), (3)
~X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp _iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fteratibre
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for andin statements. This method corresponds tottheiter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raiStapéeration exception.
This method corresponds to ttpe _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoiext() method raiseStoplteration , it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

2.3. Built-in Types 17

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter __() method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the iter __() andnext() methods.

2.3.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotégyzzy’ , "frobozz" . See chapter 2 of thEBython
Reference Manudbr more about string literals. Unicode strings are much like strings, but are specified in the
syntax using a preceeding’‘characteru’abc’ ,u"def" . Lists are constructed with square brackets, separating
items with commas[a, b, c] . Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parenthesesa,siich as

c or () . Asingle item tuple must have a trailing comma, suclidgs .

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don't support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don’t support slicing, concatenation or repetition, and usingot in , min()
ormax() on them is inefficient.

Most sequence types support the following operations. théand ‘not in ' operations have the same priori-
ties as the comparison operations. Thegnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the tables andt are sequences of the same typg;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tox, else0 (1)
X not in s | Oifanitem ofsis equal tax, elsel (1)
s+t the concatenation afandt
s * n, n * s | nshallow copies o concatenated | (2)
9 i] i'th item of s, origin O 3)
g i:] slice ofsfromitoj (3), (4)
gi:j: K slice ofsfromi toj with stepk (3), (5)
len(9 length ofs
min(s) smallest item o6
max(s) largest item of

Notes:

(1) Whensis a string or Unicode string object tive andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyoniehay be a string of any
length.

(2) Values ofn less tharD are treated a® (which yields an empty sequence of the same typs).ablote also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists

i o m

>>> lists[0].append(3)
>>> lists

(3], 3], 31

“They must have since the parser can't tell the type of the operands.

18 Chapter 2. Built-In Objects

What has happened is thiidts is a list containing three copies of the li§f] (a one-element list
containing an empty list), but the contained list is shared by each copy. You can create a list of different lists
this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> |ists

(3], 58], [71

(3) If i orj is negative, the index is relative to the end of the strieg{ s) + iorlen(s) + |is substituted.
But note that0 is still 0.

(4) The slice ofsfromi to is defined as the sequence of items with indlesuch thai <= k < j. Ifiorjis
greater thaten(s), uselen(s). If i is omitted, usd. If j is omitted, uséen(s) . If i is greater than or
equal toj, the slice is empty.

(5) The slice ofsfromi to j with stepk is defined as the sequence of items with index i + n*k such thaD
<= n < abs(i-j) . If i orj is greater thaten(s), uselen(s). If i orj are omitted then they become
“end” values (which end depends on the sigkjpfNote,k cannot be zero.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:
capitalize 0

Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, starl[, end]])
Return the number of occurrences of substsn@in string § start end . Optional argumentstart and
endare interpreted as in slice notation.

decode ([encodini, errors]])
Decodes the string using the codec registereéaoding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defalgtrist’ , meaning that
encoding errors rais€alueError . Other possible values atignore’ and’replace’ . New in
version 2.2.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string encermiang.

may be given to set a different error handling scheme. The defaudtrfors is 'strict’ , meaning that
encoding errors raise\dalueError . Other possible values alignore’ and’replace’ . Newin
version 2.0.

endswith (suffi>{, starl[, end]])
ReturnTrue if the string ends with the specifieliffix otherwise returrralse . With optionalstart, test
beginning at that position. With optionahd stop comparing at that position.

expandtabs ([tabsizd)
Return a copy of the string where all tab characters are expanded using sptalesizds not given, a tab
size of8 characters is assumed.

find (sut{, starl[, end]])
Return the lowest index in the string where substsagis found, such thasubis contained in the range
[start, end. Optional argumentstart andendare interpreted as in slice notation. Retutnif subis not
found.

2.3. Built-in Types 19

index (sut{, starl[, end]])
Like find() , but raisevalueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

istitle 0
Return true if the string is a titlecased string and there is at least one character, i.e. uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join ('seq
Return a string which is the concatenation of the strings in the seqeeqcEhe separator between elements
is the string providing this method.

ljust (width)
Return the string left justified in a string of lengthidth. Padding is done using spaces. The original string
is returned ifwidthis less thaen(s) .

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

Istrip ([chars])
Return a copy of the string with leading characters removecthéfrsis omitted orNone, whitespace
characters are removed. If given and Maine, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.2: Support for
thecharsargument.

replace (old, nevs[, count])
Return a copy of the string with all occurrences of substdlireplaced bynew If the optional argument
countis given, only the firstountoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsng is found, such thasubis contained within
s[start,end]. Optional argumerdtartandendare interpreted as in slice notation. Retutnon failure.

rindex (sut{, starl[, end]])
Like rfind() but raises/alueError when the substringubis not found.

20 Chapter 2. Built-In Objects

rjust (width)
Return the string right justified in a string of lenggtiidth. Padding is done using spaces. The original string
is returned ifwidthis less tharen(s) .

rstrip ([chars])
Return a copy of the string with trailing characters removedchtrsis omitted orNone, whitespace
characters are removed. If given and Maine, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.2: Supportfarthe
argument.

split ([sep[,maxsplit]])
Return a list of the words in the string, usisgpas the delimiter string. Ifhaxsplitis given, at mosmaxsplit
splits are done. (thus, the list will have at mosixsplitr1 elements). Iimaxsplitis not specified or is zero,
then there is no limit on the number of splits (all possible splits are made). Consecutive delimiters are not

grouped together and are deemed to delimit empty strings (for exariip)2;.split(’,") ' returns
Ty, 27). The separgument may consist of multiple characters (for examplg, 2,
3.split(,) "returns T'1’, '2’, '3). Splitting an empty string with a specified separator

returns an empty list.

If sepis not specified or ifone, a different splitting algorithm is applied. Words are separated by arbitrary
length strings of whitespace characters (spaces, tabs, newlines, returns, and formfeeds). Consecutive whites-
pace delimiters are treated as a single delimitdr ¢ 3'.split() "returns T2, 2, '3’] .

Splitting an empty string return§’] .

splitlines ([keepend];)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unles&eependss given and true.

startswith (prefix[, starl[, end]])
ReturnTrue if string starts with therefix otherwise returifralse . With optionalstart, test string begin-
ning at that position. With optionand stop comparing string at that position.

strip ([chars])
Return a copy of the string with leading and trailing characters removedhalfsis omitted orNone,
whitespace characters are removed. If given and\Nmote, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.2:
Support for thecharsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argdedetécharsre removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

For Unicode objects, theanslate() method does not accept the optiodaletecharsargument. In-
stead, it returns a copy of tleewhere all characters have been mapped through the given translation table
which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode stringsre. Unmapped
characters are left untouched. Characters mappéibie are deleted. Note, a more flexible approach is

to create a custom character mapping codec usingdtiecs module (seencodings.cp1251 for an
example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.
zfill - (‘width)

2.3. Built-in Types 21

Return the numeric string left filled with zeros in a string of lengitth. The original string is returned if
widthis less tharen(s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operatior¥bgerator (modulo). This is also known as the
string formattingor interpolationoperator. Giverformat %values(whereformatis a string or Unicode object),
%conversion specifications fiormatare replaced with zero or more elementwvalues The effect is similar to
the usingsprintf() in the C language. Hformatis a Unicode object, or if any of the objects being converted
using thedbsconversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argumentaluesmay be a single non-tuple object. Otherwise,valuesmust be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The 9% character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for efsonp@ame)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as ah’ (asterisk), the actual width is read from the next
element of the tuple inalues and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a’* (dot) followed by the precision. If specified as’*(an asterisk), the
actual width is read from the next element of the tupleatues and the value to convert comes after the
precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in themstrgtgnclude a
parenthesised mapping key into that dictionary inserted immediately aftevdloharacter. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \
{language’: "Python", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘#' | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

- The converted value is left adjusted (overrides @iecbnversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+" | Asign character ¢’ or ‘- ") will precede the conversion (overrides a "space” flag).

The length modifier may ble, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

22 Chapter 2. Built-In Objects

Conversion | Meaning Notes
‘o’ Signed integer decimal.
i Signed integer decimal.
‘0’ Unsigned octal. (1)
‘u’ Unsigned decimal.
‘X’ Unsigned hexidecimal (lowercase). (2)
‘X Unsigned hexidecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘B Floating point exponential format (uppercase).
“fr Floating point decimal format.
‘F Floating point decimal format.
‘9’ Same asé’ if exponent is greater than -4 or less than precisibhptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéfptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisiy()). 4)
‘0% No argument is converted, results in% tharacter in the result.

Notes:

(1) The alternate form causes a leading ze®) (o be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

(2) The alternate form causes a leadiig’ or’0X’ (depending on whether thg"or ‘ X' format was used) to
be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided is@nicode string, the resulting string will also hénicode .

Since Python strings have an explicit lendg¥s conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&@onversions for numbers whose absolute value
is over 1e25 are replaced Bygconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésg andre .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type
is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aneitf)e function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
guence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

2.3. Built-in Types 23

Operation Result Notes
qi] = X itemi of sis replaced by
girj] =t slice ofsfromitoj is replaced by
del di:j] same ag i: j] =[]
qgirj:k =t the elements off i: j: k] are replaced by those of N}
del di:j: K] removes the elements dfi: j: k] from the list
s.append(X) same as{len(sylen(9] = [X (2)
s.extend(X) same agllen(s)len(9] = X 3)
s.count(Xx) return number of’s for whichg[i] == x
s.index(x[, i[, j]]) return smallesk such thag[k] == xandi <= k < j (4)
sinsert(i, X) sameagi:i] = [X (5)
s.pop([i]) sameax = g i]; del g i]; return X (6)
sremove(X) same aslel 9 s.index(X)] 4)
s.reverse() reverses the items afin place @)
s.sort([cmpfunc:Noné) sort the items o§in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) Raises an exception wheris not a list object.

(4) RaisesValueError whenx is not found ins. When a negative index is passed as the second or third
parameter to thendex() method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previmd#y() didn’t have arguments
for specifying start and stop positions.

(5) When a negative index is passed as the first parameter tngée() method, the list length is added, as
for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so
that by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

(8) Thesort() method takes an optional argument specifying a comparison function of two arguments (list
items) which should return a negative, zero or positive number depending on whether the first argument
is considered smaller than, equal to, or larger than the second argument. Note that this slows the sorting
process down considerably; for example to sort a list in reverse order it is much faster sort@ll
followed byreverse() thantousesort() with a comparison function that reverses the ordering of the
elements. Passingone as the comparison function is semantically equivalent to caflort() with no
comparison function. Changed in version 2.3: SupporiNone as an equivalent to omittingmpfunowvas
added.

As an example of using thempfuncargument to thesort() method, consider sorting a list of sequences
by the second element of that list:

def mycmp(a, b):
return cmp(a[l], b[1])

mylist.sort(mycmp)

A more time-efficient approach for reasonably-sized data structures can often be used:

24 Chapter 2. Built-In Objects

tmplist = [(x[1], x) for x in mylist]
tmplist.sort()
mylist = [x for (key, x) in tmplist]

(9) Whether thesort() method is stable is not defined by the language (a sort is stable if it guarantees not
to change the relative order of elements that compare equal). In the C implementation of Python, sorts
were stable only by accident through Python 2.2. The C implementation of Python 2.3 introduced a stable
sort() method, but code that intends to be portable across implementations and versions must not rely on
stability.

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 makes the list appear empty for the duration, andVaise&rror if it
can detect that the list has been mutated during a sort.

2.3.7 Mapping Types

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, ttietionary. A dictionary’s keys are almost arbitrary values. Only values

containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity)
may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two

numbers compare equal (suchlaand1.0) then they can be used interchangeably to index the same dictionary

entry.

Dictionaries are created by placing a comma-separated likeyf value pairs within braces, for example:

{jack’> 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127: ’sjoerd?}
The following operations are defined on mappings (wlaexedb are mappingsk is a key, and andx are arbitrary
objects):
Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k 1)
akl = v setal k] tov
del a[K removea K] froma Q)
a.clear() remove all items frona
a.copy() a (shallow) copy ot
ahas _key(k) True if ahas a ke, elseFalse
kin a Equivalent toa.has key(K) (2)
k not in a Equivalent tonot a.has key(K) (2)
a.items() a copy ofa’s list of (key, valug pairs (©)
a.keys() a copy ofa’s list of keys 3)
a.update(b) for k in b.keys(): a[k] = b[K]
a.fromkeys(sec[, value]) Creates a new dictionary with keys frasagand values set tealue @)
a.values() a copy ofa’s list of values 3)
a.get(k[, x|) a[K] if k in a, elsex (4)
a.setdefault(K|, x]) al k] if k in @, elsex (also setting it) (5)
a.pop(k[, x!) a k] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrargey, value pair (6)
a.iteritems() return an iterator ovekgy, value pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), 3)
a.itervalues() return an iterator over the mapping’s values (2), (3)
Notes:
(1) Raises &KeyError exception ifk is not in the map.
2.3. Built-in Types 25

(2) New in version 2.2.

(3) Keys and values are listed in random order. itdms() , keys() , values() , iteritems() ,
iterkeys() , and itervalues() are called with no intervening modifications to the dictionary,
the lists will directly correspond. This allows the creation (ofalue key) pairs usingzip()

‘pairs = zip(avalues(), akeys()) . The same relationship holds for thterkeys()
and itervalues() methods: pairs = zip(a.itervalues(), a.iterkeys()) ' provides
the same value fgpairs . Another way to create the same listpgirs = [(v, k) for (k, V)

in aiteritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returmsx is optional; wherx is not provided and
k is not in the mapNone is returned.

(5) setdefault() is like get() , exceptthatikis missingxis both returned and inserted into the dictionary
as the value ok.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.
(7) fromkeys() is a class method that returns a new dictionagjuedefaults toNone. New in version 2.3.

(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

2.3.8 File Objects

File objects are implemented using Giglio package and can be created with the built-in construitegy
described in section 2.1, “Built-in Function¥)File objects are also returned by some other built-in functions and
methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/O-related reason, the excep@&iror is raised. This includes situations
where the operation is not defined for some reason,déek() on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise &alueError after the file has been closed. Callidgse() = more than once is
allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/0O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as thefcntl module oros.read() and friends.Note: File-like objects which do not have a real file
descriptor shoulaot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elBalse . Note: If a file-like object is not
associated with a real file, this method showdd be implemented.

next ()
A file object is its own iterator, for exampleer(f) returnsf (unlessf is closed). When a file is used
as an iterator, typically in éor loop (for examplefor line in f: print line), thenext()
method is called repeatedly. This method returns the next input line, or Btigelseration wheneEoF
is hit. In order to make for loop the most efficient way of looping over the lines of a file (a very common
operation), thenext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead
buffer, combiningnext() with other file methods (likeeadline()) does not work right. However,
usingseek() to reposition the file to an absolute position will flush the read-ahead buffer. New in version
2.3.

1%ile() is new in Python 2.2. The older built-mpen() is an alias foffile()

26 Chapter 2. Built-In Objects

read ([size])
Read at mossizebytes from the file (less if the read hiOF before obtainingsize bytes). If thesize
argument is negative or omitted, read all data wriFis reached. The bytes are returned as a string object.
An empty string is returned whemoF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after ear is hit.) Note that this method may call the underlying C function
fread() more than once in an effort to acquire as clossimebytes as possible. Also note that when
in non-blocking mode, less data than what was requested may be returned, eveizdparameter was
given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $trijogt may be absent
when a file ends with an incomplete line). If thizeargument is present and non-negative, it is a maximum
byte count (including the trailing newline) and an incomplete line may be returned. An empty string is
returnedonlywheneoris encountered immediatelote: Unlike stdio ’'s fgets() , the returned string
contains null character8@) if they occurred in the input.

readlines ([sizehint])
Read untileoF usingreadline() and return a list containing the lines thus read. If the optisizghint
argument is present, instead of reading uga®, whole lines totalling approximatelizehintbytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignoreizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingtes(f) . New in version 2.1.Deprecated since release 2.8lse
for line in file instead.

seek (offse{, Whencd)
Set the file’s current position, liketdio ’'s fseek() . Thewhenceargument is optional and defaultsQo
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to
the file’s end). There is no return value. Note that if the file is opened for appending (aloder 'a+’),
anyseek() operations will be undone at the next write. If the file is only opened for writing in append
mode (modea’), this method is essentially a no-op, but it remains useful for files opened in append mode
with reading enabled (moda+’). If the file is opened in text mode (modé), only offsets returned by
tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, likgdio s ftell()

truncate ([size])
Truncate the file’s size. If the optionaizeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, manyNUX variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to meschines() ; writelines()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same reé§ildtraadline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

11The advantage of leaving the newline on is that returning an empty string is then an unamtsigednsication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.3. Built-in Types 27

closed
bool indicating the current state of the file object. This is a read-only attributegltise() = method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may Alsnde
in which case the file uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The 1/0 mode for the file. If the file was created using ¢ipen() built-in function, this will be the value
of themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usimpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the-with-universal-newlines option (the default) this read-only at-
tribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can tak&rre ,"\n’ ,\r\n’ , None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conven-
tions were encountered. For files not opened in universal newline read mode the value of this attribute will
beNone.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a veofédpace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writablesoftspace attribute. Note: This attribute is not used to control tipeint statement, but to
allow the implementation gfrint to keep track of its internal state.

2.3.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute accessiame wherem is a module anchameaccesses a
name defined im’'s symbol table. Module attributes can be assigned to. (Note thathert statement is not,
strictly speaking, an operation on a module obj@oport foo does not require a module object nanfedto
exist, rather it requires an (externdgfinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thet

attribute is not possible (you can write __dict __['a] = 1 , which defineam.a to bel, but you can’t
writem. __dict __ = {}).

Modules built into the interpreter are written like thismodule ’sys’ (built-in)> . If loaded from afile,
they are written asmodule 'os’ from ’/usr/local/lib/python2.3/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manutdr these.

28 Chapter 2. Built-In Objects

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufesinc _code is a function’scode objecisee be-
low) andf.func _globals is the dictionary used as the function’s global namespace (this is the same as
m. __dict __ wheremis the module in which the functidhwas defined).

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach
metadata to functions. Regular attribute dot-notation is used to get and set such attiimteeshat the cur-

rent implementation only supports function attributes on user-defined functions. Function attributes on built-in
functions may be supported in the future.

Functions have another special attribfite__dict __ (a.k.a. f.func _dict) which contains the hamespace
used to support function attributes. dict __ andfunc _dict can be accessed directly or set to a dictionary
object. A function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance mettiods:self is the object on
which the method operates, amdm _func is the function implementing the method. Callim§arg-1, arg-

2, ..., arg-n) is completely equivalent to callingnim _func(m.im _self, arg-1, arg-2, ..., arg-

n .

Class instance methods are eitheundor unbound referring to whether the method was accessed through an
instance or a class, respectively. When a method is unbourah, itself attribute will beNone and if called, an
explicitself object must be passed as the first argument. In this salfe, must be an instance of the unbound
method’s class (or a subclass of that class), otherwiggaError s raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objetigth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resulByipedrror being raised. In

order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c =C(
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the buitteimpile() function and can be extracted from function
objects through theifiunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgdecthetatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

2.3. Built-in Types 29

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypet{®n .
There are no special operations on types. The standard mtyghele defines names for all standard built-in

types.
Types are written like thisctype ’int’>

The Null Object

This object is returned by functions that don'’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (se@ttieon Reference Manyalt supports no special operations.
There is exactly one ellipsis object, nanteitipsis (a built-in name).

It is written asEllipsis

Boolean Values

Boolean values are the two constant objé@itkse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in flbadiGn can be

used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written afalse andTrue , respectively.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and
slice objects.

2.3.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by th&() built-in function.

__dict
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

30 Chapter 2. Built-In Objects

__name__
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the rardeftions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wedbazfitons
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will
raise aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force program-
mers to use exception names rather than their string value when specifying exception handlers. The string value of
all built-in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined
by library modules.

For class exceptions, intey statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes front istdehived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string explaining the code). The associated value
is the second argument to theise statement. For string exceptions, the associated value itself will be stored

in the variable named as the second argument oéxoept clause (if any). For class exceptions, that variable
receives the exception instance. If the exception class is derived from the standard roBxckgsson |, the
associated value is present as the exception instaaigss attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from tHexception base class. More information on defining exceptions is available in
the Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsfff)e function, when applied to
an instance of this class (or most derived classes) returns the string value of the argument or arguments, or
an empty string if no arguments were given to the constructor. When used as a sequence, this accesses the
arguments given to the constructor (handy for backward compatibility with old code). The arguments are
also available on the instanceisgs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions excgfuplteration andSystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic ®werBowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError , KeyError . This can be raised directly tsys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syi€&mor , OSError . When
exceptions of this type are created with a 2-tuple, the first item is available on the insemnice’s attribute

2.4. Built-in Exceptions 31

(it is assumed to be an error number), and the second item is available stretrer attribute (it is
usually the associated error message). The tuple itself is also available argtheattribute. New in
version 1.5.2.

When arEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tflename attribute. However, for backwards compatibility,
theargs attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefne
andstrerror attributes are alsblone when the instance was created with other than 2 or 3 arguments.
In this last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anassert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references
or attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functioriggut() orraw _input()) hits an end-of-file conditiorg0OF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty
string when they hiEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERYmbol is defined in
the ‘pyconfig.h’ file.

exceptionlOError
Raised when an 1/O operation (such gwimt statement, the built-iopen() function or a method of a
file object) fails for an I/O-related reason, e.qg., “file not found” or “disk full”.

This class is derived fronEnvironmentError . See the discussion above for more information on
exception instance attributes.

exceptionimportError
Raised when amport statement fails to find the module definition or whefneam ... import fails
to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@lbytrol-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in fundtipoit() orraw _input() s
waiting for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecturméBc() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should

32 Chapter 2. Built-In Objects

raise this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived frorknvironmentError and is used primarily as thes module’sos.error
exception. Se&nvironmentError above for a description of the possible associated values. New in
version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits
than raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created bwyeh&ref .proxy() function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see theeakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iteratorsext() method to signal that there are no further values. This is derived from
Exception rather tharBtandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuirpart statement, in aexec
statement, in a call to the built-in functieval() or input() , or when reading the initial script or
standard input (also interactively).

Instances of this class have atttribufdésname , lineno , offset andtext for easier access to the
details.str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpretesys.version it is also printed at the start of an interactive Python session),

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exceptionSystemExit
This exception is raised by thsys.exit() function. When itis not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C'exit() function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly froException and notStandardError , since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up handieelly clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately

(for example, in the child process after a calfdok()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

2.4. Built-in Exceptions 33

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclassiémeError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. Itis a subdladsesrror . New
in version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclasgofieError . Newin
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclasgofieError . Newin
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldegcofieError . New
in version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegError

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspoardrto an
value. Theerrno andstrerror values are created from the return values of @etLastError()
and FormatMessage() functions from the Windows Platform API. This is a subclassO&Error .
New in version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seediméngs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

34 Chapter 2. Built-In Objects

Exception

+-- SystemExit

+-- Stoplteration

+-- StandardError
+-- Keyboardinterrupt
+-- ImportError
+-- EnvironmentError

| +-- I0Error

| +-- OSError

| +-- WindowsError
+-- EOFETrror

I
I
I
I
I
I
I
| +-- RuntimeError
| | +-- NotlmplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning
+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning
+-- RuntimeWarning
+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thbool type. New in version 2.3.

True
The true value of theool type. New in version 2.3.

None
The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function.

2.5. Built-in Constants 35

Notlmplemented
Special value which can be returned by the “rich comparison” special methodg (() , It __() ,
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

36 Chapter 2. Built-In Objects

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.

gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.

types Names for built-in types.

UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

UserString Class wrapper for string objects.

operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.

linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version gpickle , but not subclassable.

copy _reg Registempickle support functions.

shelve Python object persistence.

copy Shallow and deep copy operations.

marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of tiraport statement.
zipimport support for importing Python modules from ZIP archives.
pkgutil Utilities to support extension of packages.

code Base classes for interactive Python interpreters.

codeop Compile (possibly incomplete) Python code.

pprint Data pretty printer.

repr Alternaterepr() implementation with size limits.

new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.

user A standard way to reference user-specific modules.
__builtin - __ The set of built-in functions.

__main __ The environment where the top-level script is run.
__future __ Future statement definitions

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python serigw[0] is the script name (it is operating

37

system dependent whether this is a full pathname or not). If the command was executed using the
command line option to the interpretargv[0] is set to the string-c’ . If no script name was passed
to the Python interpreteargv has zero length.

byteorder
An indicator of the native byte order. This will have the valoig' on big-endian (most-signigicant byte
first) platforms, andittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way modules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.
dilhandle
Integer specifying the handle of the Python DLL. Availability: Windows.
displayhook (value
If valueis notNone, this function prints it tesys.stdout , and saves itin__builtin ~ __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk
This function prints out a given traceback and exceptiosygstderr

When an exception is raised and uncaught, the interpretersyallexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook __

__excepthook __
These objects contain the original valueglisplayhook andexcepthook at the start of the program.
They are saved so thaisplayhook andexcepthook can be restored in case they happen to get
replaced with broken objects.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception”
is defined as “executing or having executed an except clause.” For any stack frame, only information about
the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNbreevalues is returned.
Otherwise, the values returned drigpe valug tracebacl . Their meaning istypegets the exception

type of the exception being handled (a class objeefegets the exception parameter @issociated value

or the second argument taise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

If exc _clear() s called, this function will return threBone values until either another exception is
raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

Warning: Assigning theéracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback,
the best solution is to use something likrctype, value = sys.exc _info()[:2] to extract

only the exception type and value. If you do need the traceback, make sure to delete it after use (best
done with ary ... finally statement) or to caktxc _info() in a function that does not itself handle

an exception.Note: Beginning with Python 2.2, such cycles are automatically reclaimed when garbage

38 Chapter 3. Python Runtime Services

collection is enabled and they become unreachable, but it remains more efficient to avoid creating cycles.

exc _clear ()
This function clears all information relating to the current or last exception that occured in the current thread.
After calling this functiongxc _info() will return threeNone values until another exception is raised in
the current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling
systems that report information on the last or current exception. This function can also be used to try to free
resources and trigger object finalization, though no guarantee is made as to what objects will be freed, if
any. New in version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.&lseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handled, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed;
by default, this is als&/usr/local . This can be set at build time with theexec-prefixargument
to the configure script. Specifically, all configuration files (e.g. th®/¢onfig.h’ header file) are installed
in the directoryexec _prefix + ’/lib/python versioriconfig’ , and shared library modules are
installed inexec _prefix + '/lib/python versiorilib-dynload’ , wWhereversionis equal to
version[:3]

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes
sense.

exit ([arg])
Exit from Python. This is implemented by raising thgstemExit exception, so cleanup actions specified
by finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer
level. The optional argumerdrg can be an integer giving the exit status (defaulting to zero), or another
type of object. If it is an integer, zero is considered “successful termination” and any nonzero value is
considered “abnormal termination” by shells and the like. Most systems require it to be in the range 0-127,
and produce undefined results otherwise. Some systems have a convention for assigning specific meanings
to specific exit codes, but these are generally underdevelopad; programs generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of object is padsed,is equivalent to
passing zero, and any other object is printegyte.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify
a clean-up action at program exit. When set, it should be a parameterless function. This function will be
called when the interpreter exits. Only one function may be installed in this way; to allow multiple functions
which will be called at termination, use tla¢exit module. Note: The exit function is not called when
the program is killed by a signal, when a Python fatal internal error is detected, orosherexit() is

called.
getcheckinterval 0
Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.

getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in
version 2.0.

getdlopenflags 0
Return the current value of the flags that are usedifopen() calls. The flag constants are defined in
thedl andDLFCNmodules. Availability: WNix. New in version 2.2.

getfilesystemencoding 0

3.1. sys — System-specific parameters and functions 39

Return the name of the encoding used to convert Unicode filenames into system file naNwe dfrthe
system default encoding is used. The result value depends on the operating system:

¢On Windows 9x, the encoding is “mbcs”.

eOn Mac OS X, the encoding is “utf-8”.

¢On Unix, the encoding is the user’s preference according to the resultlaiginfo(CODESET), or
None if the nllanginfo(CODESET) failed.

¢On Windows NT+, file names are Unicode natively, so no conversion is performed.

New in version 2.3.

getrefcount (objec)
Return the reference count of thbject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeitrédcount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This
limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set
by setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that
many calls below the top of the stack. If that is deeper than the call séatkeError s raised. The
default fordepthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements
aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

0 (VER_PLATFORMWIN32s)Win32s on Windows 3.1.

1 (VER_PLATFORMWIN32_WINDOW)S$Vindows 95/98/ME

2 (VER_PLATFORMWIN32_NT)Windows NT/2000/XP

3 (VER_.PLATFORMWIN32_CBEWindows CE.
This function wraps the Win3&etVersionEx() function; see the Microsoft Documentation for more
information about these fields.
Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion '’ since it only really looks meaningful when viewed as the result of passing
it to the built-inhex() function. Theversion _info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last _type
last _value

40 Chapter 3. Python Runtime Services

last

_traceback

These three variables are not always defined; they are set when an exception is not handled and the inter-
preter prints an error message and a stack traceback. Their intended use is to allow an interactive user to
import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical useimport pdb; pdb.pm() " to enter the post-mortem debugger; see
chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valueskoninfo() above. (Since
there is only one interactive thread, thread-safety is not a concern for these variables, uice ftype
etc.)

maxint

The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer igmaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.

maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules

path

This is a dictionary that maps module names to modules which have already been loaded. This can be ma-
nipulated to force reloading of modules and other tricks. Note that removing a module from this dictionary
is notthe same as callinggload() on the corresponding module object.

A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the firstitem of this Ith[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard inpp&th[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is inserted
beforethe entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored..

platform

This string contains a platform identifier, e.¢gsunos5’ or 'linux1’ . This can be used to append
platform-specific components path , for instance.

prefix

psl
ps2

A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the stringusr/local’ . This can be set at build time with theprefix argument to
theconfigure script. The main collection of Python library modules is installed in the direqioefix +
"llib/python versiori while the platform independent header files (all exceptdnfig.h’) are stored

in prefix + ’linclude/python version , whereversionis equal toversion|:3]

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the inter-
preter is in interactive mode. Their initial values in this case’a» ' and’... . If a non-string

object is assigned to either variable,sts() is re-evaluated each time the interpreter prepares to read a
new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)

Set the interpreter’'s “check interval”. This integer value determines how often the interpreter checks for
periodic things such as thread switches and signal handlers. The defa0l jsmeaning the check is
performed every 100 Python virtual instructions. Setting it to a larger value may increase performance for
programs using threads. Setting it to a vadee0 checks every virtual instruction, maximizing responsive-
ness as well as overhead.

setdefaultencoding (nameg

Set the current default string encoding used by the Unicode implementatinamédoes not match any
available encodind,ookupError israised. This functionis only intended to be used bysfltee module

3.1. sys — System-specific parameters and functions 41

implementation and, where needed ditecustomize . Once used by theite module, it is removed
from thesys module’s namespace. New in version 2.0.

setdlopenflags (n)
Set the flags used by the interpreter @open() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag mod-
ules can be either found in tlid module, or in theDLFCNmodule. IfDLFCNis not available, it can be
generated from/tsr/include/difcn.h’ using theh2py script. Availability: UNIX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See chapter 10 for more information on the Python profiler. The system’s profile function is called similarly
to the system’s trace function (ssettrace()), but it isn’t called for each executed line of code (only
on call and return, but the return event is reported even when an exception has been set). The function is
thread-specific, but there is no way for the profiler to know about context switches between threads, so it
does not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it
can simply returrNone.

setrecursionlimit (‘limit)
Set the maximum depth of the Python interpreter stadkrtit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific;
for a debugger to support multiple threads, it must be registered sstirgce() for each thread being
debugged.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error sts¢édims. is used for all
interpreter input except for scripts but including callsrtput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the prompiispeft() andraw _input()
The interpreter’s own prompts and (almost all of) its error messagessjdéo . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it haigef) method that takes a
string argument. (Changing these objects doesn't affect the standard I/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr __
These objects contain the original valuestfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in
case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback
information printed when an unhandled exception occurs. The defal®08. When set td or less, all
traceback information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. It has a value of the fowersion (# build_number build_date
build_time) [compilef’ . The first three characters are used to identify the version in the installation
directories (where appropriate on each platform). An example:

42 Chapter 3. Python Runtime Services

>>> import sys
>>> gys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
A tuple containing the five components of the version numb®ajor, minor, micro, releaselevelandse-

rial. All values excepteleaselevebre integers; the release levelaipha’ |, ’beta’ , 'candidate’ ,
or 'final’ . Theversion _info value corresponding to the Python version 2.04s 0, O,
‘final’, 0) . New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three charactev®igion . It is provided in
thesys module for informational purposes; modifying this value has no effect on the registry keys used by
Python. Availability: Windows.

See Also:

Modulesite (section 3.29):
This describes how to use .pth files to extasyd.path

3.2 gc — Garbage Collector interface

Thegc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by callingyc.disable() . To debug a leaking program cagjt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run afull collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writteystetderr . See
below for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (thresholdd), threshold{, thresholdd])

3.2. gc — Garbage Collector interface 43

Set the garbage collection thresholds (the collection frequency). StttegholdOto zero disables collec-
tion.

The GC classifies objects into three generations depending on how many collection sweeps they have sur-
vived. New objects are placed in the youngest generation (genefgtidhan object survives a collection

it is moved into the next older generation. Since gener&i@the oldest generation, objects in that gener-

ation remain there after a collection. In order to decide when to run, the collector keeps track of the number
object allocations and deallocations since the last collection. When the number of allocations minus the
number of deallocations exceetiisesholdQ collection starts. Initially only generatidhis examined. If
generatiorD has been examined more thdmeshold1times since generatioh has been examined, then
generatiorl is examined as well. Similarlyhreshold2controls the number of collections of generatibn

before collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently live
objects, calkollect() before callingget _referrers()

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-levgpp _traverse methods (if any), and may not be all objects actually
directly reachabletp _traverse methods are supported only by objects that support garbage collection,
and are only required to visit objects that may be involved in a cycle. So, for example, if an integer is
directly reachable from an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
By default, this list contains only objects with_del __() methods. Objects that have _del __()
methods and are part of a reference cycle cause the entire reference cycle to be uncollectable, including
objects not necessarily in the cycle but reachable only from it. Python doesn't collect such cycles automati-
cally because, in general, it isn’t possible for Python to guess a safe order in which to rurdile__()
methods. If you know a safe order, you can force the issue by examinirgatbagelist, and explicitly
breaking cycles due to your objects within the list. Note that these objects are kept alive even so by virtue of
being in thegarbagelist, so they should be removed fragarbagetoo. For example, after breaking cycles,
dodel gc.garbage[:] to empty the list. It's generally better to avoid the issue by not creating cycles
containing objects with._del __() methods, angarbagecan be examined in that case to verify that no
such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wset _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to thewbage list.

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thosedeith__() methods.

44 Chapter 3. Python Runtime Services

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIES set, print information about instance ob-
jects found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, printinformation about objects other
than instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendeghtbagerather than being freed. This can be
useful for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking pro-
gram (equal toDEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES |
DEBUGOBJECTS | DEBUGSAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to creaméak referencew objects.
In the following, the ternteferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it's
desired that a large object not be kept alive solely because it appears in a cache or mapping. For example, if you
have a number of large binary image objects, you may wish to associate a name with each. If you used a Python
dictionary to map names to images, or images to names, the image objects would remain alive just because they
appeared as values or keys in the dictionaries. WeakKeyDictionary and WeakValueDictionary

classes supplied by theeakref module are an alternative, using weak references to construct mappings that
don't keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a
value in aWeakValueDictionary , then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in
weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting

up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need — it's not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed byitbakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), and methods (both bound and unbound). Extension types can easily be made to support
weak references; see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (objec{, callback])
Return a weak reference tvject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will ddaee to be
returned. Ifcallbackis provided and naione, it will be called when the object is about to be finalized; the
weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an objedés __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even after the
objectwas deleted. Ihash() is called the first time only after thebjectwas deleted, the call will raise

3.3. weakref — Weak references 45

TypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardlessaaliitck). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

proxy (objec{, callback])
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of eitheProxyType or CallableProxyType , depending on whetheabjectis callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to their
fundamentally mutable nature, and prevent their use as dictionarydadifzackis the same as the parameter
of the same name to thef() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refehjext

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebfect

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure fdieakKeyDictionary ~ because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure WéeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish "by magic”
(as a side effect of garbage collection).

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy

without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standarReferenceError exception.

See Also:

PEP 0205, Weak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

46 Chapter 3. Python Runtime Services

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
pass

>>> 0 = Object()
>>> r = weakref.ref(o)
>>> 02 = 1()

>>> 0 is 02

True

If the referent no longer exists, calling the reference object reNome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresjoris not None
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
0 = r()
if o is None:
referent has been garbage collected

print "Object has been allocated; can't frobnicate."
else:

print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3. weakref — Weak references 47

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incleg©hject* field in the instance structure
for the use of the weak reference mechanism; it must be initializédUiol by the object’s constructor. It must
also set thép _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs
to addPy_TPFLAGS HAVE WEAKREF® the tp_flags slot. For example, the instance type is defined with the
following structure:

typedef struct {
PyObject_ HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"module.instance”,

/* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, [* tp_richcompare */

offsetof(PylnstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference Isthol:

static PyObject *
instance_new() {
/* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak ref-
erences. This should be done before any other parts of the destruction have occurred, but is only required if the
weak reference list is noNULL

48 Chapter 3. Python Runtime Services

static void
instance_dealloc(PylnstanceObject *inst)

[* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any
real computer, some floating point operations produce results that cannot be expressed as a normal floating point
value. For example, try

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf" is a special, non-
numeric value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the
non-numeric results, nothing special happened when you asked Python to carry out those calculations. That is in
fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Theectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generaBt@RRE whenever

any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair

of wrapper macros that are inserted into the C code comprising your python sY&@RFPE is trapped and
converted into the PythdRloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation @IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpieitte module.

3.4. fpectl — Floating point exception control 49

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-
architecture basis. You may have to modifgctl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTandPyFPE_END PROTECTbe inserted into your code in an appropriate fashion.
Python itself has been modified to support fhectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The in-
clude file ‘include/pyfpe.h’ discusses the implementation of this module at some lenitbddles/fpetestmodule.c’
gives several examples of use. Many additional examples can be foubbjéets/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are auto-
matically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bysygexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thasgstexitfunc . In partic-
ular, other core Python modules are free to atexit ~ without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usg¢exit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounsymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed to
funcmust be passed as argumentsdgister()

At normal program termination (for instance,sys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower level
modules will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

50 Chapter 3. Python Runtime Services

Modulereadline (section 7.20):
Useful example oétexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passedgister() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.' % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name='Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such thiestiterator type. It is safe to useffom types import * " — the module does

not export any names besides the ones listed here. New names exported by future versions of this module will all
end in Type".

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchrg) andstr() are also names for the corresponding

3.6. types — Names for built-in types 51

types. This is now the preferred way to access the type instead of usitgpt®® module. Accordingly, the
example above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).
BooleanType

The type of thébool valuesTrue andFalse ; this is an alias of the built-ibool() function. New in
version 2.3.

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.gL).

FloatType
The type of floating point numbers (e.4.0).

ComplexType
The type of complex numbers (e0j). Thisis not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eigSpam’). This is not defined if Python was built without
Unicode support.

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType
The type of lists (e.g[0, 1, 2, 3]).
DictType
The type of dictionaries (e.g'Bacon’. 1, 'Ham’: 0}).
DictionaryType
An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdrunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returnecbmpile()

ClassType
The type of user-defined classes.

52 Chapter 3. Python Runtime Services

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sgs.stdout

XRangeType
The type of range objects returnedXnange()

SliceType
The type of objects returned Isjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only containd&JnicodeType if it has been built in the running version of Python. For example:
isinstance(s, types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from thedailt-in

type.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way
one can add new behaviors to dictionaries.

The module also defines a mixin defining all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the shelve
module).

TheUserDict module defines thEserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. lfinitialdata is provided,data is initialized with its
contents; note that a referencendialdata will not be kept, allowing it be used for other purposes.

3.7. UserDict — Class wrapper for dictionary objects 53

In addition to supporting the methods and operations of mappings (see section2sgrDict instances pro-
vide the following attribute:

data
A real dictionary used to store the contents oftheerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() , __setitem __() ,__delitem __() , andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more
functionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from
the full interface.

In addition to the four base methods, progessively more efficiency comes with defining
__contains __() ,__iter __() , anditeritems()

Since the mixin has no knowledge of the subclass constructor, it does not defivie __() orcopy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from theltsilt-in

type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thEserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblgati the
attribute ofUserList instances. The instance’s contents are initially set to a copgtpéiefaulting to the
empty list[] . list can be either a regular Python list, or an instancessdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiobseB.&t in-
stances provide the following attribute:

data
A real Python list object used to store the contents oltberList class.

Subclassing requirements:Subclasses dfiserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutaldata attribute. Earlier versions of Python did not attempt to create instances of
the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-istr type instead of usingJserString (there is no built-in equivalent to
MutableString).

54 Chapter 3. Python Runtime Services

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case fdutableString

TheUserString module defines the following classes:

classUserString ([sequenc}e)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible viadlaga attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode
string, an instance dfiserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-irstr() function.

classMutableString ([sequenc]e)
This class is derived from thdserString above and redefines strings to meitable Mutable strings
can’t be used as dictionary keys, because dictionaries reiquinatableobjects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the
__hash __() method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String
Methods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content dfsleeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For examplegperator.add(x, y) is equivalent to the expressiorty . The function names are
those used for special class methods; variants without leading and trailihgre also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations,
sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a, b

eq(a, b

ne(a,b)

ge(a, b

ot (a, b

__It __(a,b

_le__(a/b

__eq__(a,b

__ne__(ab

__ge__(a/b

_ot__(ab
Perform “rich comparisons” betweerandb. Specificallylt(a, b) isequivalentta < b,le(a, b)
isequivalentta <= b,eq(a, b) isequivalentt@ == b,ne(a, b) isequivalentt@a != b, gt(a,
b) is equivalenttaa > bandge(a, b) is equivalentta >= b. Note that unlike the built-ikmp() ,
these functions can return any value, which may or may not be interpretable as a Boolean value. See the
Python Reference Manufdr more informations about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

3.10. operator — Standard operators as functions. 55

not _(o)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the
interpreter core defines this operation. The result is affected by thenzero __() and__len __()

methods.)
truth (o)

ReturnTrue if oistrue, and=alse otherwise. This is equivalent to using theol constructor.
is _(a, b

Returna is b. Tests object identity. New in version 2.3.

is _not (a, b
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

and _(a, b
__and__(a,b
Return the bitwise and & andb.

div (a, b
__div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (a, b)
__floordiv. __(a,b)
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent t6' 0. The namesdnvert() and
__invert __() were added in Python 2.0.

Ishift (&, b
__Ishift __(a, b
Returna shifted left byb.

mod(a, b)
__mod__(a,b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

neg(o)
__neg__(0)
Returno negated.

or _(a,h

_or__(ab
Return the bitwise or of andb.

pos (0)
__pos__(0)

56 Chapter 3. Python Runtime Services

Returno positive.

pow(a, b)
__pow__(a, b
Returna** b, for aandb numbers. New in version 2.3.

rshift (&, b
__rshift __(a, b
Returna shifted right byb.

sub (a, b)
__sub__(a,b
Returna- b.

truediv (a, b

__truediv __(a,b)
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version
2.2.

xor (a, b)
__xor __(a,b)
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b

__contains __(a,b
Return the outcome of the telstin a. Note the reversed operands. The nameontains __() was
added in Python 2.0.

countOf (a,b)
Return the number of occurrencestah a.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a,b,9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value ad at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b)
Return the index of the first of occurrenceloih a.

repeat (a, b

__repeat __(a,b
Returna* b whereais a sequence arlis an integer.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()
setitem (a,b, 9

__setitem __(a,b,0
Set the value o at indexb to c.

3.10. operator — Standard operators as functions. 57

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objNct®: Be careful not to misin-
terpret the results of these functions; ordZallable() has any measure of reliability with instance objects.
For example:

>>> class C:
pass

>>> jmport operator

>>> 0 = C()

>>> operator.isMappingType(0)
True

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objeat can be called like a function, otherwise it returns false. True is returned for func-
tions, bound and unbound methods, class objects, and instance objects which suppadathe __()
method.

isMappingType (0)
Returns true if the objeat supports the mapping interface. This is true for dictionaries and all instance
objects.Warning: There is no reliable way to test if an instance supports the complete mapping protocol
since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objed represents a number. This is true for all numeric types implemented in C, and for
all instance objectdiVarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define
sequence methods in C, and for all instance objétgning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions
in theoperator module.

58 Chapter 3. Python Runtime Services

Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq 0)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b
Bitwise And aé&hb and _(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion - invert(a)
Bitwise Or al b or (a b
Exponentiation a*™ b pow(a, b)
Identity ais b is _(a b)
Identity aisnot b is _not(a, b)
Indexed Assignment okl = v setitem(o, k, V)
Indexed Deletion del o[K] delitem(o, k)
Indexing o[K] getitem(o, K)
Left Shift a<<b Ishift(&, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshiftf(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, value3
Slice Deletion del seqi:j] delslice(seq i, j)
Slicing seq i: |] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<hb lt(a b)
Ordering a<=b le(a, b)
Equality a==>b eq(a, h)
Difference al=»b ne(a, b)
Ordering a>=b ge(a, b)
Ordering a>hb ot(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as mod-
ules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The eleven
functions whose names begin with “is” are mainly provided as convenient choices for the second argument to
getmembers() . They also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 59

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,NMone
function | __doc__ documentation string
__nhame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

Note:

(1) Changed in version 2.2n _class used to refer to the class that defined the method.

getmembers (objec{, predicatd)
Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opteatichte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path
Return a tuple of values that describe how Python will interpret the file identifiguhthf it is a module,

60 Chapter 3. Python Runtime Services

or None if it would not be identified as a module. The return tuplé ame suffix mode mtypg,
wherenameis the name of the module without the name of any enclosing pacgafiixis the trailing part

of the file name (which may not be a dot-delimited extensiom)deis theopen() mode that would be
used ' or’rb’), andmtypeis an integer giving the type of the modulatypewill have a value which
can be compared to the constants defined inirtie module; see the documentation for that module for
more information on module types.

getmodulename (path)
Return the name of the module named by theddéh, without including the names of enclosing packages.
This uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be
matched according to the interpreter’s ruldsne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objec)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of inhdd__. An object passing this test has a
__get__ attribute but not a__set__ attribute, but beyond that the set of attributes varieshame__ is
usually sensible, and_doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethod-
descriptor() test, simply because the other tests promise more — you can, e.g., count on havinfutine im
attribute (etc) when an object passes ismethod().

isdatadescriptor (objech
Return true if the object is a data descriptor.

Data descriptors have both aget _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa hasene__and__doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New
in version 2.3.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second
line onwards is removed.

getcomments (objec)

3.11. inspect — Inspect live objects 61

Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail vilisipaError
if the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WitheError
if the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code
was found. AnOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Emar s raised if
the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains
classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing
a class and a tuple of its base classes. Ifuh@ueargument is true, exactly one entry appears in the
returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their
descendants will appear multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is ret(argd;
varargs varkw, defaultd . argsis a list of the argument names (it may contain nested ligtsjrgsand
varkware the names of tifeand** arguments oNone. defaultsis a tuple of default argument values or
None if there are not any; if the tuple haglements, they correspond to the lagiements listed iargs

getargvalues (frame
Get information about arguments passed into a particular frame. A tuple of four things is reiuangs!:
varargs varkw, locals) . argsis a list of the argument names (it may contain nested liseargsand
varkware the names of tHeand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}bnat
Format a pretty argument spec from the four values returnegtargspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, vaIuefoﬂmat

Format a pretty argument spec from the four values returnegebgrgvalues() . The other four ar-
guments are the corresponding optional formatting functions that are called to turn names and values into
strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

62 Chapter 3. Python Runtime Services

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the
filename, the line number of the current line, the function name, a list of lines of context from the source code,
and the index of the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records thede func-
tions return, can cause your program to create reference cycles. Once a reference cycle has been crgated, the
lifespan of all objects which can be accessed from the objects which form the cycle can become mucly longer
even if Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure
they are explicitly broken to avoid the delayed destruction of objects and increased memory consumption
which occurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made deter-
ministic by removing the cycle infinally clause. This is also important if the cycle detector was disaljled
when Python was compiled or using .disable() . For example:
def handle_stackframe_without_leak():
frame = inspect.currentframe()

try:

do something with the frame
finally:

del frame

The optionalcontextargument supported by most of these functions specifies the number of lines of context to
return, which are centered around the current line.

getframeinfo (framd:, contexl])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame{, contexﬂ)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame The first entry in the returned list represefngsne the last entry represents the outermost
call onframes stack.

getinnerframes (tracebacl[, contexﬂ)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence fshme The first entry in the list represerttmceback the last entry represents where
the exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexﬂ)
Return a list of frame records for the caller’'s stack. The first entry in the returned list represents the caller;
the last entry represents the outermost call on the stack.

trace ([context])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayaldes _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

3.12. traceback — Print or retrieve a stack traceback 63

The module defines the following functions:

print _tb (tracebacl[, Iimit[, file]])
Print up tolimit stack trace entries fromnaceback If limit is omitted orNone, all entries are printed. ffle
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object
to receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tonit stack trace entries fromracebackto file. This differs from
print _tb() inthe following ways: (1) itracebackis notNone, it prints a headerTraceback (most
recent call last): "+ (2) it prints the exceptiortype andvalue after the stack trace; (3) tiypeis
SyntaxError andvalue has the appropriate format, it prints the line where the syntax error occurred
with a caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same
information in a thread-safe way instead of using the deprecated variables.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optiéreeigument can be used to spec-
ify an alternate stack frame to start. The optiolalt andfile arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trhssthack
It is useful for alternate formatting of stack tracesliriit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilienameline numberfunction nametext) representing the
information that is usually printed for a stack trace. Téetis a string with leading and trailing whitespace
stripped; if the source is not available ithine.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _tb() . The optionaF andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given alist of tuples as returned bytract _tb() orextract _stack() ,returnalistof strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items whose
source text line is ndtlone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given
by sys.last _type andsys.last _value . The return value is a list of strings, each ending in a
newline. Normally, the list contains a single string; however,SgntaxError exceptions, it contains
several lines that (when printed) display detailed information about where the syntax error occurred. The
message indicating which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the cor-
responding arguments fint _exception() . The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as dopent _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[, limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)

64 Chapter 3. Python Runtime Services

This function returns the current line number set in the traceback object. This function was necessary
because in versions of Python prior to 2.3 when-tBdlag was passed to Python ttietb _lineno was
not updated correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refecdo¢henodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print '-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using
a cache, the common case where many lines are read from a single file. This is usettdgetbeeck module
to retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedilename This function will never throw an exception — it will retuth
on errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search patys.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyetling()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version.

Example:

>>> import linecache
>>> |inecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.13. linecache = — Random access to text lines 65

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte
stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierar-

chy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalltngy™flattening”, however,
to avoid confusion, the terms used here are “pickling” and “unpickling”.

This documentation describes both fliekle module and thePickle module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called ttieickle module. As its name impliegPickle

is written in C, so it can be up to 1000 times faster tipckle . However it does not support subclassing

of the Pickler() and Unpickler() classes, because @Pickle these are functions, not classes. Most
applications have no need for this functionality, and can benefit from the improved performacieieldé

Other than that, the interfaces of the two modules are nearly identical; the common interface is described in this
manual and differences are pointed out where necessary. In the following discussions, we use the term “pickle” to
collectively describe thpickle andcPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caftemtshal , but in generapickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python’spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn't do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the
same obiject in different places in the object hierarchy being serializiellle stores such objects only

once, and ensures that all other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

e marshal cannotbe used to serialize user-defined classes and their instpickés. can save and restore
class instances transparently, however the class definition must be importable and live in the same module
as when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support.pyc’ files, the Python implementers reserve the right to change the serial-
ization format in non-backwards compatible ways should the need arisquidiie serialization format
is guaranteed to be backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constjucted
data. Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpicgle reads and writes file objects,

it does not handle the issue of nhaming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. Tgiekle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do
with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store
them in a database. The modsleslve provides a simple interface to pickle and unpickle objects on DBM-style
database files.

2Don't confuse this with thenarshal module

66 Chapter 3. Python Runtime Services

3.14.2 Data stream format

The data format used lpickle is Python-specific. This has the advantage that there are no restrictions imposed
by external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printabdecii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtal (and of some other characteristicpitkle ’'s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0O is the original ASCII protocol and is backwards compatible with earlier versions of
Python.

e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. [rotocol is specified as a negative value or
HIGHEST_PROTOCAQLthe highest protocol version available will be used.

Changed in version 2.3: THain parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtleegument
to thePickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a
binary format.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picllerip() method. To de-
serialize a data stream, you first create an unpickler, then you call the unpitddel(3 method. Theickle
module provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passepra®aolvalue. New in version 2.3.

Thepickle module provides the following functions to make this process more convenient:

dump(object, file[, protoco[, bin]])
Write a pickled representation objectto the open file objedile. This is equivalent tdickler(file,
protocol bin).dump(objec) .
If the protocol parameter is ommitted, protocol O is used.ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQ]Lthe highest protocol version will be used.
Changed in version 2.3: Tharotocol parameter was added. Tlbén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.
If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() ~ method that accepts a single string argument. It can thus be a file object opened
for writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objdile and interpret it as a pickle data stream, reconstructing and
returning the original object hierarchy. This is equivalenttwickler(file).load()

file must have two methodsyead() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string.fildnoan be a file object opened for
reading, eéStringlO object, or any other custom object that meets this interface.

3.14. pickle — Python object serialization 67

This function automatically determines whether the data stream was written in binary mode or not.

dumps(objec{, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is ommitted, protocol 0 is used.ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQ]lthe highest protocol version will be used.

Changed in version 2.3: Tharotocol parameter was added. Thén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representa-

tion are ignored.
Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherité&ikoeption

exceptionPicklingError
This exception is raised when an unpicklable object is passed thuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may also
be raised during unpickling, including (but not necessarily limited&tiibuteError , EOFError
ImportError , andindexError

Thepickle module also exports two callablg®ickler andUnpickler
classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is ommitted, protocol 0 is usedpibtocolis specified as a negative value, the
highest protocol version will be used.

Changed in version 2.3: THan parameter is deprecated and only provided for backwards compatibility.
You should use thprotocolparameter instead.

Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwiseniw|
format is used (this is the default).

file must have avrite() method that accepts a single string argument. It can thus be an open file object,
aStringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(objec)
Write a pickled representation objectto the open file object given in the constructor. Either the binary or
Ascli format will be used, depending on the value of teflag passed to the constructor.

clear _memq)
Clears the pickler’'s “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3clear _memo() was only available on the picklers createdd®ickle . In
thepickle module, picklers have an instance variable caitegmowhich is a Python dictionary. So to
clear the memo for pickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simaliease _memo() .

3In the pickle module these callables are classes, which you could subclass to customize the behavior. HoweveRiikithe
module these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can
actually be unpickled. See section 3.14.6 for more details.

68 Chapter 3. Python Runtime Services

It is possible to make multiple calls to tlleemp() method of the samBickler instance. These must then be
matched to the same number of calls to fibed() method of the correspondingnpickler instance. If the
same object is pickled by multiptump() calls, theload() will all yield references to the same objéct

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag aBioklie
factory.

file must have two methodsyaad() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string.fildhaan be a file object opened for
reading, eStringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the recon-
stituted object hierarchy specified therein.

noload ()
This is just likeload() except that it doesn’t actually create any objects. This is useful primarily for
finding what's called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5
below for more details.

Note: the noload() method is currently only available obdnpickler objects created with the
cPickle module.pickle moduleUnpickler s do not have theoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex humbers
e normal and Unicode strings

e tuples, lists, and dictionaries containing only picklable objects

¢ functions defined at the top level of a module

e built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whosedict __ or __setstate __() is picklable (see section 3.14.5 for
details)
Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspec-

ified number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither
the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable
in the unpickling environment, and the module must contain the named object, otherwise an exception will be
raised.

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the sdPiekler instance, the object is not pickled again — a reference to it is pickled and the
Unpickler will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a
minimal set of changes. Garbage Collection may also become a problem here.

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 69

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class aiftibutes not
restored in the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and
still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that
will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class'setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the ob-
jects that are being serialized. This protocol provides a standard way for you to define, customize, and control how
your objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations
that you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see
section 3.14.6 for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. If it is
desirable that the__init __() method be called on unpickling, an old-style class can define a method
__getinitargs __() , which should return a&uple containing the arguments to be passed to the class con-
structor (i.e.__init __()). The__getinitargs __() method is called at pickle time; the tuple it returns is
incorporated in the pickle for the instance.

New-style types can provide a_getnewargs __() method that is used for protocol 2. Implementing this
method is needed if the type establishes some internal invariants when the instance is created, or if the memory
allocation is affected by the values passed to_theew__() method for the type (as it is for tuples and strings).
Instances of a new-style tyfigare created using

obj = C._new_ (C, * arg9

where args is the result of calling__getnewargs __() on the original object; if there is no
__getnewargs __() , an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the megbistate __() ,
it is called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s
dictionary. If there is na__getstate __() method, the instance’s_dict __is pickled.

Upon unpickling, if the class also defines the methadetstate __() , it is called with the unpickled stdte

If there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the
new instance’s dictionary. If a class defines baotlgetstate __() and__setstate __() , the state object
needn’t be a dictionary and these methods can do what they’want.

Warning: For new-style classes, if_getstate __() returns a false value, the_setstate __()
method will not be called.

8These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedimpthenodule.

70 Chapter 3. Python Runtime Services

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks
in two places for a hint of how to pickle it. One alternative is for the object to implementraduce __()
method. If provided, at pickling time_reduce __() will be called with no arguments, and it must return either

a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is returned,
it must be of length two or three, with the following semantics:

e A callable object, which in the unpickling environment must be either a class, a callable registered as a “safe
constructor” (see below), or it must have an attributesafe _for _unpickling __ with a true value.
Otherwise, arUnpicklingError will be raised in the unpickling environment. Note that as usual, the
callable itself is pickled by name.

e A tuple of arguments for the callable object, done. Deprecated since release 2.3Use the tuple of
arguments instead

e Optionally, the object’s state, which will be passed to the object'setstate __() method as described
in section 3.14.5. If the object has no setstate __() method, then, as above, the value must be a
dictionary and it will be added to the object'sdict __.

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the tuple of
arguments; it should return the unpickled object.

If the second item walslone, then instead of calling the callable directly, itsbasicnew __() method is called
without arguments. It should also return the unpickled object.

Deprecated since release 2.8Ise the tuple of arguments instead

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable

with the copy _reg module. This module provides a way for programs to register “reduction functions”

and constructors for user-defined types. Reduction functions have the same semantics and interface as the
__reduce __() method described above, except that they are called with a single argument, the object to be
pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, fliekle module supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of
printableascii characters. The resolution of such names is not defined byitckkee module; it will delegate

this resolution to user defined functions on the pickler and unpftkler

To define external persistent id resolution, you need to sgbéngistent _id attribute of the pickler object
and thepersistent _load attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a @esistent _id() method

that takes an object as an argument and returns ditbee or the persistent id for that object. Whé&lone is
returned, the pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will
pickle that string, along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugtersistent _load() function that takes a
persistent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

8The actual mechanism for associating these user defined functions is slightly differgickfer andcPickle . The description given
here works the same for both implementations. Users gbitide module could also use subclassing to effect the same results, overriding
thepersistent _id() andpersistent _load() methods in the derived classes.

3.14. pickle — Python object serialization 71

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init__ (self, x):
self.x = x
def __str__ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def _ str_ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpicklerpersistent _load attribute can also be set to a Python list, in

which case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this
list. This functionality exists so that a pickle data stream can be “sniffed” for object references without actually
instantiating all the objects in a picRleSettingpersistent _load to a listis usually used in conjunction with
thenoload() method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets
unpickled and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

72 Chapter 3. Python Runtime Services

depending on whether you're usipigkle orcPickle .1°,

In the pickle module, you need to derive a subclass frompickler , overriding theload _global()
method.load _global() should read two lines from the pickle data stream where the first line will the name

of the module containing the class and the second line will be the name of the instance’s class. It then looks up the
class, possibly importing the module and digging out the attribute, then it appends what it finds to the unpickler’s
stack. Later on, this class will be assigned to thelass __ attribute of an empty class, as a way of magically
creating an instance without calling its class’sinit __() . Your job (should you choose to accept it), would

be to havdoad _global() push onto the unpickler’s stack, a known safe version of any class you deem safe to
unpickle. It is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling
of instances. If this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner withPickle , but not by much. To control what gets unpickled, you can set the
unpicklersfind _global attribute to a function oNone. If it is None then any attempts to unpickle instances

will raise anUnpicklingError . If it is a function, then it should accept a module name and a class name,
and return the corresponding class object. It is responsible for looking up the class and performing any necessary
imports, and it may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file,
and returns the line number and line contents each tintedtdline() method is called. If &extReader
instance is pickled, all attribute=xceptthe file object member are saved. When the instance is unpickled, the
file is reopened, and reading resumes from the last location_Thketstate __() and__getstate __()
methods are used to implement this behavior.

class TextReader:
""Print and number lines in a text file."™"
def __init__(self, file):
self.file = file
self.th = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __ getstate__ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__ (self,dict):

fh = open(dict[‘file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of
Python. We intend to someday provide a common interface for controlling this behavior, which will work inpgitkler or cPickle

3.14. pickle — Python object serialization 73

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

If you want to see thapickle works across Python processes, start another Python session, before continuing.
What follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and
functionality nearly identical to theickle module. There are several differences, the most important being
performance and subclassability.

First,cPickle can be up to 1000 times faster thgickle because the former is implemented in C. Second, in
thecPickle module the callableBickler() andUnpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pigkle andcPickle are identical, so it is possible to up&ekle and
cPickle interchangeably with existing pickl¥s

There are additional minor differences in API betwegickle andpickle , however for most applications,
they are interchangable. More documentation is provided ipitide module documentation, which includes
a list of the documented differences.

3.16 copy _reg — Register pickle support functions

HSince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will
always be able to read each other’s data streams.

74 Chapter 3. Python Runtime Services

Thecopy _reg module provides support for theckle andcPickle modules. Theopy module is likely
to use this in the future as well. It provides configuration information about object constructors which are not
classes. Such constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. kbbjectis not callable (and hence not valid as a constructor),
raisesTypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thafunctionshould be used as a “reduction” function for objects of tiygee typemust not be
a “classic” class object. (Classic classes are handled differently; see the documentationpfokithe
module for details.Junctionshould return either a string or a tuple containing two or three elements.

The optionalconstructorparameter, if provided, is a callable object which can be used to reconstruct the
object when called with the tuple of arguments returnedumgtionat pickling time. TypeError will be
raised ifobjectis a class oconstructoris not callable.

See thepickle module for more details on the interface expectefiinttionandconstructor

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the
keys!) in a shelf can be essentially arbitrary Python objects — anything thaittkie module can handle. This

includes most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are
ordinary strings.

open (filename[,flag:’c’ [,protocoI:None[,Writeback:FaIse [,binary:None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The opfiaggdararameter has the same
interpretation as thitag parameter oinydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. Changed in version 2.3: Tpretocol parameter was added. Th@ary
parameter is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the
optionalwritebackparameter is set torue, all entries accessed are cached in memory, and written back at
close time; this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries
are accessed, it can consume vast amounts of memory for the cache, and it can make the close operation
very slow since all accessed entries are written back (there is no way to determine which accessed entries
are mutable, nor which ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based
scripts to those requiring persistent storage.

3.17.1 Restrictions

e The choice of which database package will be used (suatbas gdbm or bsddb) depends on which
interface is available. Therefore it is not safe to open the database directlydising he database is also
(unfortunately) subject to the limitations dbm, if it is used — this means that (the pickled representation
of) the objects stored in the database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush
changes to disk. The_del __ method of theShelf class calls thelose method, so the programmer
generally need not do this explicitly.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simulta-
neous read accesses are safe.) When a program has a shelf open for writing, no other program should have
it open for reading or writing. Wix file locking can be used to solve this, but this differs acrossxU
versions and requires knowledge about the database implementation used.

3.17. shelve — Python object persistence 75

classShelf (dict[, protocoI=None[, writeback=FaIs¥, binary=None]]])
A subclass ofJserDict.DictMixin which stores pickled values in tlaict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be speci-
fied with theprotocol parameter. See thgckle documentation for a discussion of the pickle protocols.
Changed in version 2.3: Th@rotocol parameter was added. Thaary parameter is deprecated and pro-
vided for backwards compatibility only.

If the writebackparameter igrue , the object will hold a cache of all entries accessed and write them back
to thedict at sync and close times. This allows natural operations on mutable entries, but can consume much
more memory and make sync and close take a long time.

classBsdDbShelf (dict[, protocoI:Non{, writeback:Falsé, binary:None]]])
A subclass oShelf which expose$irst |, next , previous ,last andset _location which are
available in thdosddb module but not in other database modules. @it object passed to the construc-
tor must support those methods. This is generally accomplished by calling drseldif.hashopen
bsddb.btopen or bsddb.rnopen . The optionalprotocol writeback andbinary parameters have the
same interpretation as for tighelf class.

classDbfilenameShelf (filename{, flag:’c’[, protocoI:Non({, Writeback:Falsé, binary:None]]]])
A subclass ofShelf which accepts dilenameinstead of a dict-like object. The underlying file will be
opened using@nydbm.open . By default, the file will be created and opened for both read and write.
The optionalflag parameter has the same interpretation as fooffen function. The optionaprotocol
writeback andbinary parameters have the same interpretation as fostiedf class.

3.17.2 Example

To summarize the interfackdy is a stringdata is an arbitrary object):

import shelve

d = shelve.open(flename) # open -- file may get suffix added by low-level
library

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = dlkey] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d['xx] = range(4) # this works as expected, but...

d['xx’].append(5) # *this doesn’t’* -- d['xx] is STILL range(4)!!

having opened d without writeback=True, you need to code carefully:

temp = d['xx] # extracts the copy
temp.append(5) # mutates the copy
dI'xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface tdbm-style databases.

76 Chapter 3. Python Runtime Services

Modulebsddb (section 7.13):
BSD db database interface.

Moduledbhash (section 7.11):
Thin layer around thésddb which provides ampen function like the other database modules.

Moduledbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondlbeninterface.

Modulepickle (section 3.14):
Obiject serialization used tshelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ireferemcesnto
it to the objects found in the original.

e A deep copyconstructs a new compound object and then, recursively, insgpissinto it of the objects
found in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

e Because deep copy copiegerythingt may copy too much, e.g., administrative data structures that should
be shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket,
window, array, or any similar types.

3.18. copy — Shallow and deep copy operations 77

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
modulepickle for information on these methods. Thepy module does not use tlwpy _reg registration
module.

In order for a class to define its own copy implementation, it can define special methadgpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the__deepcopy __() implementation needs to make a deep copy of a component, it should call
thedeepcopy() function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific
to Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC,
transport the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may
change between Python versions (although it rarely ddes).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules of¢’ files. Therefore, the Python maintainers reserve the

right to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and
de-serializing Python objects, use thiekle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constllucted
data. Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppdotes:integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where
it should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein
are themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible

to create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a
machine where C'®ong int type has only 32 bits, a Python long integer object is returned instead. While of a
different type, the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the
least-significant 32 bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object
such assys.stdout or returned byopen() or posix.popen() . It must be opened in binary mode
(wb’ or'w+b’).
If the value has (or contains an object that has) an unsupported tyjady@Error exception is raised —
but garbage data will also be written to the file. The object will not be properly read bdokdh)

load (file)
Read one value from the open file and return it. If no valid value is read, E&$&=rror , ValueError
or TypeError . The file must be an open file object opened in binary maté (or'r+b’).

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “mar-
shalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to
external form (in an RPC buffer for instance) and “unmarshalling” for the reverse process.

78 Chapter 3. Python Runtime Services

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substi-
tute None for the unmarshallable type.

dumps(value
Return the string that would be written to a file bymp(valug file) . The value must be a supported
type. Raise &alueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, rd&i€@~Error , ValueError or TypeError
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a
program, where that condition (normally) doesn’t warrant raising an exception and terminating the program. For
example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwizen() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manu@air details).

Warning messages are normally writtensigs.stderr , but their disposition can be changed flexibly, from
ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning
category (see below), the text of the warning message, and the source location where it is issued. Repetitions of a
particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence
of matching rules and actions. Rules can be added to the filter by céiltergvarnings() and reset to its
default state by callingesetwarnings()

The printing of warning messages is done by caligwwarning() , which may be overidden; the default
implementation of this function formats the message by caftingnatwarning() , which is also available for
use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be
able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclesseyfition
UserWarning The default category fovarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to
the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A
warning category must always be a subclass ofttaening class.

3.20. warnings — Warning control 79

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of
the match. Each entry is a tuple of the forat{jon messagecategory module lineno), where:

e actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default” print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e messages a string containing a regular expression that the warning message must match (the match is
compiled to always be case-insensitive)

e categoryis a class (a subclass W¥farning) of which the warning category must be a subclass in order to
match

e moduleis a string containing a regular expression that the module name must match (the match is compiled
to be case-sensitive)

¢ linenois an integer that the line number where the warning occurred must matéhtoomatch all line
numbers

Since theWarning class is derived from the built-iBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter
saves the arguments for alV options without interpretation isys.warnoptions ; thewarnings module
parses these when it is first imported (invalid options are ignored, after printing a messggstderr).

3.20.3 Available Functions

warn (messag[: categor)[, stackleve]])
Issue a warning, or maybe ignore it or raise an exception.caktegoryargument, if given, must be a warn-
ing category class (see above); it defaultdJgerWarning . Alternatively messagean be aVarning
instance, in which caseategorywill be ignored andnessage. __class __ will be used. In this case the
message text will bstr(message) . This function raises an exception if the particular warning issued
is changed into an error by the warnings filter see above.stdeklevebrgument can be used by wrapper
functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer teprecation() s caller, rather than to the sourceddprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit ~ (message, category, filename, Iinénmodule{, registry]])
This is a low-level interface to the functionality efarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename with
.py stripped,; if no registry is passed, the warning is never suppressessagenust be a string andat-
egorya subclass ofvarning or messagenay be aWarning instance, in which caseategorywill be
ignored.

80 Chapter 3. Python Runtime Services

showwarning (message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation cédisnatwarning(message category file-
name lineng) and writes the resulting string fde, which defaults tesys.stderr . You may replace
this function with an alternative implementation by assigningi&nings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends
in a newline.

filterwarnings (actior{, messag[e categor)[, module[, Iinenc{, appencl]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaagipénds true,
it is inserted at the end. This checks the types of the arguments, compiles the message and module regular
expressions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries
inserted earlier, if both match a particular warning. Omitted arguments default to a value that matches
everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous cafikgnvarnings() , including
that of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implementgbg statement. It defines the
following constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code figs {iles). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has thedoffix mode
type , wheresuffixis a string to be appended to the module name to form the filename to seantiodiar,
is the mode string to pass to the builtépen() function to open the file (this can b for text files or
rb’ for binary files), andypeis the file type, which has one of the valu@¥_SOURCHY_COMPILED
or C_LEXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory nhames, each directory
is searched for files with any of the suffixes returnedyby _suffixes() above. Invalid names in the
list are silently ignored (but all list items must be strings)pdthis omitted orNone, the list of directory
names given bgys.path is searched, but first it searches a few special places: it tries to find a built-in
module with the given nameC(BUILTIN), then a frozen moduldP(Y_FROZEN, and on some systems
some other places are looked in as well (on the Mac, it looks for a res@RYc&RESOURCEoN Windows,
it looks in the registry which may point to a specific file).

If search is successful, the return value is a tr{diee, pathname descriptior) wherefile is an open file

object positioned at the beginningathnames the pathname of the file found, addscriptionis a triple as
contained in the list returned met _suffixes() describing the kind of module found. If the module
does not live in a file, the returndde is None, filenameis the empty string, and théescriptiontuple
contains empty strings for its suffix and mode; the module type is as indicate in parentheses above. If the
search is unsuccessflimportError is raised. Other exceptions indicate problems with the arguments

or environment.

This function does not handle hierarchical module names (names containing dots). In ordePtvlfititht
is, submoduléM of packageP, usefind _module() andload _module() to find and load package,
and then uséind _module() with thepathargument set t®. __path __. WhenP itself has a dotted
name, apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously found figd _module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module was already
imported, it is equivalent to eeload() ! The nameargument indicates the full module name (including

3.21. imp — Access the import internals 81

the package name, if this is a submodule of a package).filEh@rgument is an open file, aritenameis

the corresponding file name; these carNmme and” , respectively, when the module is not being loaded
from a file. Thedescriptionargument is a tuple, as would be returnedgey _suffixes() , describing
what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing tfile argument, if it was noone, even when an excep-
tion is raised. This is best done usingra ... finally statement.

new_module (nam§
Return a new empty module object callegime This object isnotinserted insys.modules

lock _held ()
ReturnTrue if the import lock is currently held, eldéalse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn
prevents other threads from seeing incomplete module objects constructed by the original thread while in
the process of completing its import (and the imports, if any, triggered by that).

acquire _lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to
ensure thread-safety when importing modules. On platforms without threads, this function does nothing.
New in version 2.3.

release _lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in
version 2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thfowegh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized,
it will be initialized again A few modules cannot be initialized twice — attempting to initialize these again
will raise anlmportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module callesemeand return its module object. If the module was already initialized,

82 Chapter 3. Python Runtime Services

it will be initialized again If there is no frozen module callethme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (nam@
Returnl if there is a built-in module calledamewhich can be initialized again. Returfh if there is a
built-in module callechamewhich cannot be initialized again (segt _builtin()). ReturnoO if there
is no built-in module calletiame

is _frozen (nam¢
ReturnTrue if thereis afrozen module (sé@t _frozen()) calledname orFalse if thereis no such
module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeahain Thenameargument is used to create or access
a module object. Theathnameargument points to the byte-compiled code file. Titeeargument is the
byte-compiled code file, open for reading in binary mode, from the beginning. It must currently be a real
file object, not a user-defined class emulating a file.

load _dynamic (hame, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module
object. If the module was already initialized, it will be initializadain Some modules don't like that and
may raise an exception. Thmthnameargument must point to the shared library. TH@neargument is
used to construct the name of the initialization function: an external C function calied hamé) ’in
the shared library is called. The optioridé argument is ignored. (Note: using shared libraries is highly
system dependent, and not all systems support it.)

load _source (nhame, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Tfie argument is the source file, open for
reading as text, from the beginning. It must currently be a real file object, not a user-defined class emulating
a file. Note that if a properly matching byte-compiled file (with suffpyt’ or ‘.pyo’) exists, it will be used
instead of parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical module
names). (Thismplementationwouldn’t work in that version, sinchd _module() has been extended and
load _module() has been addedin 1.4.)

3.21. imp — Access the import internals 83

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and inchadtesd) function can be
found in the modul&nee . Theknee module can be found irDemo/imputil/’ in the Python source distribution.

3.22 zipimport — Import modules from Zip archives

New in version 2.3.

This module adds the ability to import Python modules{’, * *.py[co]’) and packages from ZIP-format archives.
It is usually not needed to use thipimport module explicitly; it is automatically used by the builimport
mechanism foeys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an itesyspath to

be a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package
imports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
‘ tmp/example.zip/lib/’ would only import from the fib/’ subdirectory within the archive.

Any files may be present in the ZIP archive, but only filgs*and ‘.py[co] are available for import. ZIP import
of dynamic modules (pyd’, ‘ .s0’) is disallowed. Note that if an archive only containgy’ files, Python will
not attempt to modify the archive by adding the corresponding™or ‘.pyo’ file, meaning that if a ZIP archive
doesn’t contain.pyc’ files, importing may be rather slow.

Using the built-inreload() function will fail if called on a module loaded from a ZIP archive; it is unlikely that
reload() would be needed, since this would imply that the ZIP has been altered during runtime.

The available attributes of this module are:

exceptionZiplmporterError
Exception raised by zipimporter objects. It's a subclasdngportError , so it can be caught as
ImportError |, too.

classzipimporter
The class for importing ZIP files. Seeipimporter Objects(section 3.22.1) for constructor details.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

84 Chapter 3. Python Runtime Services

PEP 0273, Import Modules from Zip Archivés
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification
in PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described in
PEP 302.

PEP 0302, New Import HooKs
The PEP to add the import hooks that help this module work.

3.22.1 zipimporter Objects

classzipimporter (archivepath
Create a new zipimporter instan@chivepathmust be a path to a zipfil&iplmportError is raised if
archivepathdoesn't point to a valid ZIP archive.

find _module (fuIIname[, path])
Search for a module specified byllname fullnamemust be the fully qualified (dotted) module name. It
returns the zipimporter instance itself if the module was found\lame if it wasn’'t. The optionalpath
argument is ignored—it’s there for compatibility with the importer protocol.

get _code (fullnam@
Return the code object for the specified module. R&igtmportError if the module couldn’t be
found.

get _data (pathnamg
Return the data associated wighthname RaiselOError if the file wasn'’t found.

get _source (fullnamg
Return the source code for the specified module. RaigemportError if the module couldn't be
found, returrNone if the archive does contain the module, but has no source for it.

is _package (fullname
Return True if the module specified liyllnameis a package. RaisgiplmportError if the module
couldn’t be found.

load _module (fullnamé
Load the module specified Hullname fullnamemust be the fully qualified (dotted) module name. It
returns the imported module, or rais&plmportError if it wasn't found.

3.22.2 Examples

Here is an example that imports a module from a ZIP archive - note thaigimeport module is not explicitly
used.

$ unzip -1 /tmp/example.zip
Archive: /tmp/example.zip
Length Date Time Name

8467 11-26-02 22:30 jwzthreading.py

8467 1 file
$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, '/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading._ file
"ltmp/example.zip/jwzthreading.py’

3.22. zipimport — Import modules from Zip archives 85

3.23 pkgutil — Package extension utility

New in version 2.3.
This module provides a single function:

extend _path (path, namg
Extend the search path for the modules which comprise a package. Intended use is to place the following
code in a package’s "init__.py’:

from pkgutil import extend_path
__path__ = extend_path(__path__, _ name_)

This will add to the package’s_path __ all subdirectories of directories @ys.path named after the
package. This is useful if one wants to distribute different parts of a single logical package as multiple
directories.

It also looks for *.pkg’ files beginning wherer matches thenameargument. This feature is similar to
‘* pth’ files (see thesite module for more information), except that it doesn't special-case lines starting
with import . A “*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found in
a *.pkg’ file are added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is
not modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed thatys.path is a sequence. Items efs.path that are not (Unicode or 8-bit) strings
referring to existing directories are ignored. Unicode itemsyspath that cause errors when used as
filenames may cause this function to raise an exception (in lineagithath.isdir() behavior).

3.24 code — Interpreter base classes

Thecode module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffer-
ing or prompting or input file naming (the filename is always passed in explicitly). The optmrels
argument specifies the dictionary in which code will be executed; it defaults to a newly created dictionary

with key’ __name__' setto’ __console __' andkey __doc__' settoNone.

classinteractiveConsole ([Iocals[, filenamd])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
Interactivelnterpreter and adds prompting using the familisys.ps1 andsys.ps2 , and in-
put buffering.

interact ([bannel[, readfun«{, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and setsreadfuncto be used as theaw _input() method, if provided.
If local is provided, it is passed to thiateractiveConsole constructor for use as the default
namespace for the interpreter loop. Theeract() method of the instance is then run witkanner

passed as the banner to use, if provided. The console object is discarded after use.

compile _command source[, filenamé, symboﬂ])
This function is useful for programs that want to emulate Python'’s interpreter main loop (a.k.a. the read-
eval-print loop). The tricky part is to determine when the user has entered an incomplete command that can
be completed by entering more text (as opposed to a complete command or a syntax error). This function
almostalways makes the same decision as the real interpreter main loop.

sourceis the source stringfilenameis the optional filename from which source was read, defaulting to
<input>' ; andsymbolis the optional grammar start symbol, which should be eitiagle’ (the
default) or'eval’

86 Chapter 3. Python Runtime Services

Returns a code object (the samecaspile(source filename symbo)) if the command is complete
and valid; None if the command is incomplete; rais&yntaxError if the command is complete and
contains a syntax error, or rais@serflowError or ValueError if the command contains an invalid
literal.

3.24.1 Interactive Interpreter Objects

runsource (source[, fiIenam(ﬁ, symbo]|])
Compile and run some source in the interpreter. Arguments are the samecasfile _command() ;
the default foffilenameis '<input>" , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrect; compile _command() raised an exception SfyntaxError or
OverflowError). A syntax traceback will be printed by calling tshowsyntaxerror()
method.runsource() returnsFalse .

eThe input is incomplete, and more input is requirethmpile _command() returnedNone.
runsource() returnsTrue .

eThe input is completecompile _command() returned a code object. The code is executed
by calling theruncode() (which also handles run-time exceptions, except3gstemExit).
runsource() returnskalse .

The return value can be used to decide whether tesysgsl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocalrewtraceback() is called to display a traceback.
All exceptions are caught excepystemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt . this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamé)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for
syntax errors. Ifilenameis given, it is stuffed into the exception instead of the default filename provided
by Python’s parser, because it always ussting>’ when reading from a string. The output is written
by thewrite() method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter
object implementation. The output is written by thgte() method.

write (datg
Write a string to the standard error streasyiq.stderr). Derived classes should override this to provide
the appropriate output handling as needed.

3.24.2 Interactive Console Objects

ThelnteractiveConsole class is a subclass tfteractivelnterpreter , and so offers all the meth-
ods of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print
before the first interaction; by default it prints a banner similar to the one printed by the standard Python
interpreter, followed by the class name of the console object in parentheses (so as not to confuse this with
the real interpreter — since it’s so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreten'source() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was

3.24. code — Interpreter base classes 87

appended. The return valueTsue if more input is requiredFalse if the line was dealt with in some
way (this is the same asnsource()).

resetbuffer 0
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user
enters theeOF key sequencelOFError is raised. The base implementation uses the built-in function
raw _input() ; a subclass may replace this with a different implementation.

3.25 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in
thecode module. As a result, you probably don’t want to use the module directly; if you want to include such a
loop in your program you probably want to use tieele module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether toprint or
" next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these
in effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, filenamé, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objeciuifceis
valid Python code. In that case, the filename attribute of the code object Vilkbame which defaults to
<input>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raisedSyntaxError is raised if there is invalid
Python syntax, an@verflowError orValueError ifthere is an invalid literal.

Thesymbolargument determines whettsurceis compiled as a statemersifigle’ , the default) or as
an expressiondval’). Any other value will caus¥alueError to be raised.

Caveat: Itis possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example,
a backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the
API for the parser is better.

classCompile ()
Instances of this class have_call __() methods indentical in signature to the built-in function

compile() , butwith the difference that if the instance compiles program text containindgure __
statement, the instance remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class havecall __() methods identical in signature tompile _command() ; the
difference is that if the instance compiles program text containingfature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: th€ompile andCommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you
can either write

88 Chapter 3. Python Runtime Services

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_command

and then calCommandCompiler every time you need a fresh compiler object.

3.26 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can

be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don't fit within the allowed width. Constru®rettyPrinter objects explicitly if you need to adjust the width
constraint.

Thepprint module defines one class:

classPrettyPrinter (..)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using thieeamkeyword; the only method used on the stream object is the
file protocol'swrite() ~ method. If not specified, thErettyPrinter adoptssys.stdout . Three
additional parameters may be used to control the formatted representation. The keywordsrgrdepth
andwidth. The amount of indentation added for each recursive level is specifigubyt the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled bigpth if the data structure being printed is too deep, the
next contained level is replaced by.' '. By default, there is no constraint on the depth of the objects
being formatted. The desired output width is constrained usingvitith parameter; the default is eighty
characters. If a structure cannot be formatted within the constrained width, a best effort will be made.

3.26. pprint — Data pretty printer 89

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[
'fusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
"fusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(
parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...))))

The PrettyPrinter class supports several derivative functions:

pformat (objec)
Return the formatted representatiorobffectas a string. The default parameters for formatting are used.

pprint (objec{, streanﬂ)
Prints the formatted representation abject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteacgpohfa statement for
inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationatijectis “readable,” or can be used to reconstruct the value
usingeval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
False

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representationalfject protected against recursive