GnuTLS

Transport Layer Security Library for the GNU system
for version 3.1.3, 9 October 2012

Nikos Mavrogiannopoulos
Simon Josefsson (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is last updated 9 October 2012 for version 3.1.3 of GnuTLS.
Copyright (©) 2001-2012 Free Software Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Preface........... 1
2 Introduction to GnuTLS....................... 2
2.1 Downloading and installing..............., 2
2.2 OVEIVIEW ..ttt 3

3 Introduction to TLS and DTLS 4
3.1 TLS Iayers . o .ov e 4
3.2 The transport layer 4
3.3 The TLS record protocol...... ..., 5
3.3.1 Encryption algorithms used in the record layer............. 5)

3.3.2 Compression algorithms used in the record layer........... 7

3.3.3 Weaknesses and countermeasures 7

3.34 Onrecord padding ..o, 7

3.4 The TLS alert protocol.......... oo, 8
3.5 The TLS handshake protocol........... o .. 9
3.5.1 TLS ciphersuites 9

3.5.2 Authentication............. ... 10

3.5.3 Client authentication................coiiiiiiiiiii... 10

3.5.4 Resuming Sessions..........ccouuiiiiiiiiiiiiiiieennnnnn. 10

3.6 TLS eXtensionsttt 10
3.6.1 Maximum fragment length negotiation.................... 10

3.6.2 Server name indicationoiiiiiiiaa.... 11

3.6.3 Session tickets........ ... 11

3.6.4 HeartBeat.........oooii 11

3.6.5 Safe renegotiation.......... o i 11

3.6.6 OCSP status requestoovireniiniiiii e 13

3.7 How to use TLS in application protocols....................... 13
3.7.1 Separate POTtSottt 13

3.7.2 Upward negotiationoooiiiiiiiiiiiiiiiii... 14

3.8 On SSL 2 and older protocols ..., 15

4 Certificate authentication.................. ... 16
4.1 X509 certificateso 17
4.1.1 X.509 certificate structure i, 18

4.1.2 Importing an X.509 certificate............... 20

4.1.3 X.509 distinguished nameso 21

4.1.4 Verifying X.509 certificate paths 23

4.1.5 Verifying a certificate in the context of TLS session....... 27

4.2 OpenPGP certificates. ..., 29
4.2.1 OpenPGP certificate structure 30

4.2.2 Verifying an OpenPGP certificate 31

4.2.3 Verifying a certificate in the context of a TLS session..... 31
4.3 Advanced certificate verification............... L. 32
4.3.1 Verifying a certificate using trust on first use authentication

.. 32

4.3.2 Verifying a certificate using DANE (DNSSEC)............ 34
4.4 Digital signatures.......... .o i 35
4.4.1 Trading security for interoperability 36

Shared-key and anonymous authentication.. 38

5.1 SRP authentication i 38
5.1.1 Authentication using SRPciiiiiiiiiiiaie... 38
5.1.2 Invoking srptool....... ... 39

5.2 PSK authentication................. . i i 41
5.2.1 Authentication using PSK ...ttt 41
5.2.2 Invoking psktool 41

5.3 Anonymous authentication............... 43

More on certificate authentication........... 44

6.1 PKCS #10 certificate requests. ..., 44

6.2 PKIX certificate revocation lists............. 47

6.3 OCSP certificate status checking............ 49

6.4 Managing encrypted keys ... 54

6.5 Invoking certtool........ ... 61

6.6 Invoking ocsptool....... ... 71

6.7 Invoking danetool......... i 74

Hardware security modules and abstract key

DY PES . oo 79
7.1 Abstract key types.o 79
7.1.1 Publickeyso 79
7.1.2 Private keys. ... 81
7.1.3 Operations....... ..o 82
7.2 Smart cards and HSMs. ... i 85
7.2.1 Initialization ... 85
7.2.2 Accessing objects that require a PIN 86
7.2.3 Reading objects..... ... 88
7.2.4 Writing objects. ... 90
7.2.5 Using a PKCS #11 token with TLS....................... 91
7.2.6 Invoking plltool...... i 92
7.3 Trusted Platform Module (TPM)................oooiiiiiiiat 95
7.3.1 Keysin TPM ... 95
7.3.2 Key generation........ccooiiiiiiiiiiii i 96
7.3.3 Using keys ..o 97

7.3.4 Invoking tpmtool....... 98

ii

8 How to use GnuTLS in applications......... 102
8.1 Introductiono 102
8.1.1 General idea ... 102
8.1.2 Error handling.........o i i 103
8.1.3 CommoOn tYPeS . ..ottt 103
8.1.4 Debugging and auditing............... ...l 103
8.1.5 Thread safetyo 104
8.1.6 Callback functionso i 105
8.2 Preparation.............oiiiiiiiiii 105
8.2.1 Headers.......coouiiiiii e 105
8.2.2 Inmitialization........ ..o 105
8.2.3 Version check i 106
8.2.4 Building the source i 106
8.3 Session initialization 107
8.4 Associating the credentials............... L. 108
8.4.1 Certificatesot 108
8.4.2 SR .. 113
8.4.3 PSOK .. 115
8.4.4 ANONYINOUS . ..ttt ettt 116
8.5 Setting up the transport layer..............., 116
8.5.1 Asynchronous operation................ciiiiiiiii., 119
8.5.2 DTLS SESSIONS ...ttt e 120
8.6 TLS handshake......... i i, 120
8.7 Data transfer and termination.............. 121
8.8 Handling alertso 124
8.9 Priority strings ... 125
8.10 Advanced and other topics. ... 132
8.10.1 Session resumption............ ..o, 132
8.10.2 Parameter generationt 134
8.10.3 Keying material exporters.............. ...l 135
8.10.4 Channel bindingsco i 135
8.10.5 Interoperability oo 136
8.10.6 Compatibility with the OpenSSL library................ 136
8.11 Using the cryptographic library 136
8.11.1 Symmetric cryptographyo 137
8.11.2 Hash and HMAC functions............................. 137
8.11.3 Random number generation............................ 138

8.12 Selecting cryptographic key sizes................ 138

iii

9 GnuTLS application examples 141

9.1 Client examples.ot e 141
9.1.1 Simple client example with X.509 certificate support 141
9.1.2 Simple client example with SSH-style certificate verification

... 146
9.1.3 Simple client example with anonymous authentication ... 149
9.1.4 Simple datagram TLS client example 151
9.1.5 Obtaining session information 154
9.1.6 Using a callback to select the certificate to use........... 157
9.1.7 Verifying a certificatet 162
9.1.8 Using a smart card with TLS........... 166
9.1.9 Client with resume capability example................... 169
9.1.10 Simple client example with SRP authentication......... 173
9.1.11 Simple client example using the C++ API.............. 175
9.1.12 Helper functions for TCP connections.................. 178
9.1.13 Helper functions for UDP connections.................. 179

9.2 Server examples. 180
9.2.1 Echo server with X.509 authentication................... 180
9.2.2 Echo server with OpenPGP authentication............... 185
9.2.3 Echo server with SRP authentication 189
9.2.4 FEcho server with anonymous authentication 193
9.2.5 DTLS echo server with X.509 authentication............. 197

9.3 OCSP exampleooouiiiii 206

9.4 Miscellaneous examples ... 213
9.4.1 Checking foran alert.......... i 213
9.4.2 X.509 certificate parsing example, 214
9.4.3 Listing the ciphersuites in a priority string............... 216

10 Other included programs................... 219

10.1 Invoking gnutls-cli........ o i 219

10.2 Invoking gnutls-servo 223

10.3 Invoking gnutls-cli-debug.............l 228

11 Internal Architecture of GnuTLS....... ... 231

11.1 The TLS Protocol ... e 231

11.2 TLS Handshake Protocol i i, 231

11.3 TLS Authentication Methods o i... 232

11.4 TLS Extension Handling..........o oL, 233

11.5 Cryptographic Backend L 239

Appendix A Upgrading from previous versions
... 242

Appendix B Support.......................... 244

B.1 Getting Help ... 244
B.2 Commercial SUpportcooiiiiiiiiiiii 244
B.3 Bug Reports ..o 244
B4 Contributingoouiiiiii 245

Appendix C Error Codes and Descriptions.. 246

Appendix D Supported Ciphersuites......... 253
Appendix E API reference.................... 258
E.1 Core TLS APIL. ... 258
E.2 Datagram TLS API 328
E.3 X.509 certificate APIL. 331
B4 OCSP APL. ... 405
E.5 OpenPGP APIL.... ... e 415
E.6 PKCS 12 AP ... i 434
E.7 Hardware token via PKCS 11 APL........................... 441
E.8 TPM APL. ... 452
E.9 Abstract key API..... ... o 454
E.10 DANE API. ... 476
E.11 Cryptographic APT i, 479
E.12 Compatibility APToee et 485
Appendix F Copying Information............ 495
Bibliography.............. 503
Function and Data Index........................ 507

Concept Index................ 515

Chapter 1: Preface 1

1 Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require
the programmer to make careful and correct usage of them. Otherwise it is likely to only
obtain a false sense of security. The term of security is very broad even if restricted to
computer software, and cannot be confined to a single cryptographic library. For that
reason, do not consider any program secure just because it uses GnuTLS; there are several
ways to compromise a program or a communication line and GnuTLS only helps with some
of them.

Although this document tries to be self contained, basic network programming and public
key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to
networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to
security engineering in [ANDERSON].

Updated versions of the GnuTLS software and this document will be available from http://
www.gnutls.org/ and http://www.gnu.org/software/gnutls/.

http://www.gnutls.org/
http://www.gnutls.org/
http://www.gnu.org/software/gnutls/

Chapter 2: Introduction to GnuTLS 2

2 Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (see Chapter 3 [Introduction to TLS], page 4, for a detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. Important features of the GnuTLS library include:

e Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

e Support for Datagram TLS 1.0.

e Support for handling and verification of X.509 and OpenPGP certificates.

e Support for password authentication using TLS-SRP.

e Support for keyed authentication using TLS-PSK.

e Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it
uses functionality from the libtasn1! library. The “Cryptographic back-end” is provided by
the nettle? library.

2.1 Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable
release and a odd minor version number indicate a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on Libnettle, and you will need to install it before installing GnuTLS.
Libnettle is available from http://www.lysator.liu.se/ nisse/nettle/. Don’t forget
to verify the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive. Typically you invoke ./configure and then
make check install. There are a number of compile-time parameters, as discussed below.

The compression library, libz, as well as pl11-kit are a optional dependencies. You can get
libz from http://www.zlib.net/ and pll-kit from http://pll-glue.freedesktop.org/

The X.509 part of GnuTLS needs ASN.1 functionality, from a library called libtasnl. A
copy of libtasnl is included in GnuTLS. If you want to install it separately (e.g., to make

1 http://www.gnu.org/software/libtasnl/
2 http://www.lysator.liu.se/ nisse/nettle/

http://www.gnutls.org/download.html
http://www.lysator.liu.se/~nisse/nettle/
http://www.zlib.net/
http://p11-glue.freedesktop.org/
http://p11-glue.freedesktop.org/
http://www.gnu.org/software/libtasn1/
http://www.lysator.liu.se/~nisse/nettle/

Chapter 2: Introduction to GnuTLS 3

it possibly to use libtasnl in other programs), you can get it from http://www.gnu.org/
software/gnutls/download.html.

A few configure options may be relevant, summarized below. They disable or enable
particular features, to create a smaller library with only the required features. Note however,
that although a smaller library is generated, the included programs are not guarranteed to
compile if some of these options are given.

--disable-srp-authentication
--disable-psk-authentication
--disable-anon-authentication
--disable-extra-pki
--disable-openpgp-authentication
--disable-openssl-compatibility
--disable-libdane
--without-pl1l-kit

—--without-tpm

For the complete list, refer to the output from configure --help.

2.2 Overview

In this document we present an overview of the supported security protocols in Chapter 3
[Introduction to TLS], page 4, and continue by providing more information on the certifi-
cate authentication in Chapter 4 [Certificate authentication|, page 16, and shared-key as
well anonymous authentication in Chapter 5 [Shared-key and anonymous authentication],
page 38. We elaborate on certificate authentication by demonstrating advanced usage of
the API in Chapter 6 [More on certificate authentication|, page 44. The core of the TLS
library is presented in Chapter 8 [How to use GnuTLS in applications], page 102 and ex-
ample applications are listed in Chapter 9 [GnuTLS application examples], page 141. In
Chapter 10 [Other included programs], page 219 the usage of few included programs that
may assist debugging is presented. The last chapter is Chapter 11 [Internal architecture of
GnuTLS], page 231 that provides a short introduction to GnuTLS’ internal architecture.

http://www.gnu.org/software/gnutls/download.html
http://www.gnu.org/software/gnutls/download.html

Chapter 3: Introduction to TLS and DTLS 4

3 Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF*,
described in [RFC5246]. The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to
all other TLS versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [RFC/347] is a protocol with identical goals as
TLS, but can operate under unreliable transport layers such as UDP. The discussions below
apply to this protocol as well, except when noted otherwise.

3.1 TLS layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and
the alert protocol. The record protocol is to serve all other protocols and is above the
transport layer. The record protocol offers symmetric encryption, data authenticity, and
optionally compression. The alert protocol offers some signaling to the other protocols.
It can help informing the peer for the cause of failures and other error conditions. See
[The Alert Protocol], page 8, for more information. The alert protocol is above the record
protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol], page 9, for more informa-
tion about the handshake protocol. The protocol layering in TLS is shown in Figure 3.1.

— —

'FI)'LStHar:dshake TLS Alert Application
rotoco Protocol Protocol

—_ ———

TLS Record
Protocol

S ———

Transport Layer

— -

Figure 3.1: The TLS protocol layers.

3.2 The transport layer

TLS is not limited to any transport layer and can be used above any transport layer,
as long as it is a reliable one. DTLS can be used over reliable and unreliable transport

IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS and DTLS 5

layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets
API. However, any transport layer can be used by providing callbacks for GnuTLS to access
the transport layer (for details see Section 8.5 [Setting up the transport layer|, page 116).

3.3 The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The record layer functions can be called
at any time after the handshake process is finished, when there is need to receive or send
data. In DTLS however, due to re-transmission timers used in the handshake out-of-order
handshake data might be received for some time (maximum 60 seconds) after the handshake
process is finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the
record protocol’s parameters are all set by the handshake protocol. The record protocol
initially starts with NULL parameters, which means no encryption, and no MAC is used.
Encryption and authentication begin just after the handshake protocol has finished.

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption al-
gorithms like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
CBC mode also provide protection against statistical analysis of the data. Thus, if you're
using the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 3.1 and Table 3.2.

Chapter 3: Introduction to TLS and DTLS

Algorithm
3DES_CBC

ARCFOUR_128

ARCFOUR_40

AES_CBC

AES_GCM

CAMELLIA _-
CBC

Description

This is the DES block cipher algorithm used with triple en-
cryption (EDE). Has 64 bits block size and is used in CBC
mode.

ARCFOUR_128 is a compatible algorithm with RSA’s RC4
algorithm, which is considered to be a trade secret. It is a
fast cipher but considered weak today.

This is the ARCFOUR cipher fed with a 40 bit key, which is
considered weak.

AES or RIJNDAEL is the block cipher algorithm that replaces
the old DES algorithm. Has 128 bits block size and is used in
CBC mode.

This is the AES algorithm in the authenticated encryption
GCM mode. This mode combines message authentication and
encryption and can be extremely fast on CPUs that support
hardware acceleration.

This is an 128-bit block cipher developed by Mitsubishi and
NTT. It is one of the approved ciphers of the European
NESSIE and Japanese CRYPTREC projects.

Table 3.1: Supported ciphers.

Algorithm
MAC_MD5

MAC_SHA1

MAC_SHA256

MAC_AEAD

Description
This is an HMAC based on MD5 a cryptographic hash algo-
rithm designed by Ron Rivest. Outputs 128 bits of data.

An HMAC based on the SHA1 cryptographic hash algorithm
designed by NSA. Outputs 160 bits of data.

An HMAC based on SHA256. Outputs 256 bits of data.

This indicates that an authenticated encryption algorithm,
such as GCM, is in use.

Table 3.2: Supported MAC algorithms.

Chapter 3: Introduction to TLS and DTLS 7

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS
can be found in the table below. The included algorithms perform really good when text,
or other compressible data are to be transferred, but offer nothing on already compressed
data, such as compressed images, zipped archives etc. These compression algorithms, may
be useful in high bandwidth TLS tunnels, and in cases where network usage has to be
minimized. It should be noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [RFC3749]. The sup-
ported algorithms are shown below.

GNUTLS_COMP_UNKNOWN
Unknown compression method.

GNUTLS_COMP_NULL
The NULL compression method (no compression).

GNUTLS_COMP_DEFLATE
The DEFLATE compression method from zlib.

GNUTLS_COMP_ZLIB
Same as GNUTLS_COMP_DEFLATE .

Figure 3.2: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery
under certain circumstances. To avoid some of these attacks GnuTLS allows each record
to be compressed independently (i.e., stateless compression), by using the "%STATE-
LESS_COMPRESSION" priority string, in order to be used in cases where the attacker
controlled data are pt in separate records.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS
1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption_failed” and “bad_record_mac”

2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.
Those weaknesses were solved in TLS 1.1 [RFC43/6] which is implemented in GnuTLS. For
this reason we suggest to always negotiate the highest supported TLS version with the

peer?. For a detailed discussion of the issues see the archives of the TLS Working Group
mailing list and [CBCATT].

3.3.4 On record padding

The TLS protocol allows for random padding of records in CBC ciphers, to prevent statis-
tical analysis based on the length of exchanged messages (see [RFC5246] section 6.2.3.2).

2 If this is not possible then please consult Section 8.10.5 [Interoperability], page 136.

Chapter 3: Introduction to TLS and DTLS 8

GnuTLS appears to be one of few implementation that take advantage of this text, and pad
records by a random length.

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as "A TLS fatal alert has
been received’, 'Bad record MAC’, or both, on the GnuTLS server side.

GnuTLS implements a work around for this problem. However, it has to be enabled
specifically. It can be enabled by using [gnutls_record_disable_padding]|, page 307, or
[gnutls_priority_set], page 301 with the %COMPAT priority string (see Section 8.9 [Priority
Strings|, page 125).

If you implement an application that have a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls_priority_set], page 301. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

3.4 The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (e.g. GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(e.g. GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future re-negotiations using the current session ID. All alert messages are summarized in
the table below.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

Alert ID Description
GNUTLS_A_CLOSE_NOTIFY 0 Close notify
GNUTLS_A_UNEXPECTED_MESSAGE 10 Unexpected message
GNUTLS_A_BAD_RECORD_MAC 20 Bad record MAC
GNUTLS_A_DECRYPTION_FAILED 21 Decryption failed
GNUTLS_A_RECORD_OVERFLOW 22 Record overflow
GNUTLS_A_DECOMPRESSION_FAILURE 30 Decompression failed
GNUTLS_A_HANDSHAKE_FAILURE 40 Handshake failed
GNUTLS_A_SSL3_NO_CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS_A_BAD_CERTIFICATE 42 Certificate is bad
GNUTLS_A_UNSUPPORTED_CERTIFICATE 43 Certificate is not
supported
GNUTLS_A_CERTIFICATE_REVOKED 44 Certificate was revoked
GNUTLS_A_CERTIFICATE_EXPIRED 45 Certificate is expired

GNUTLS_A_CERTIFICATE_UNKNOWN 46 Unknown certificate

Chapter 3: Introduction to TLS and DTLS 9

GNUTLS_A_ILLEGAL_PARAMETER 47 Illegal parameter
GNUTLS_A_UNKNOWN_CA 48 CA is unknown
GNUTLS_A_ACCESS_DENIED 49 Access was denied
GNUTLS_A_DECODE_ERROR 50 Decode error
GNUTLS_A_DECRYPT_ERROR 51 Decrypt error
GNUTLS_A_EXPORT_RESTRICTION 60 Export restriction
GNUTLS_A_PROTOCOL_VERSION 70 Error in protocol version
GNUTLS_A_INSUFFICIENT_SECURITY 71 Insufficient security
GNUTLS_A_INTERNAL_ERROR 80 Internal error
GNUTLS_A_USER_CANCELED 90 User canceled
GNUTLS_A_NO_RENEGOTIATION 100 No renegotiation is
allowed
GNUTLS_A_UNSUPPORTED_EXTENSION 110 An unsupported exten-

sion was sent

GNUTLS_A_CERTIFICATE_UNOBTAINABLE 111 Could not retrieve the
specified certificate

GNUTLS_A_UNRECOGNIZED_NAME 112 The server name sent
was not recognized
GNUTLS_A_UNKNOWN_PSK_IDENTITY 115 The SRP/PSK username

is missing or not known

3.5 The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. The main handshake func-
tion is [gnutls_handshake], page 287. In the next paragraphs we elaborate on the handshake
protocol, i.e., the ciphersuite negotiation.

3.5.1 TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these
parameters:

e The key exchange algorithm. DHE_RSA in the example.
e The Symmetric encryption algorithm and mode 3DES_CBC in this example.
e The MAC? algorithm used for authentication. MAC_SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the record protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS
to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are listed in [ciphersuites]|, page 253.

3 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS and DTLS 10

3.5.2 Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

e Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

e SRP authentication: Authenticated key exchange using a password.
e PSK authentication: Authenticated key exchange using a pre-shared key.

e Anonymous authentication: Key exchange without peer authentication.

3.5.3 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client using the
[gnutls_certificate_server_set_request], page 265 function. We elaborate in Section 8.4.1
[Certificate credentials|, page 108.

3.5.4 Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature of
the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established
keys, meaning the server needs to store the state of established connections (unless session
tickets are used — Section 3.6.3 [Session tickets], page 11).

Session resumption is an integral part of GnuTLS, and Section 8.10.1 [Session resumption],
page 132 and [ex:resume-client], page 169 illustrate typical uses of it.

3.6 TLS extensions
A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The
extensions supported in GnuTLS are:
e Maximum fragment length negotiation
e Server name indication
Session tickets
e HeartBeat

e Safe Renegotiation

and they will be discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities.
The functions shown below can be used to control this extension.

size_t [gnutls_record_get_max_size], page 307 (gnutls_session_t session)
ssize_t [gnutls_record_set_max_size], page 309 (gnutls_session_t session,
size_t size)

Chapter 3: Introduction to TLS and DTLS 11

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls_server_name_set|, page 311 and [gnutls_server_name_get|, page 310 can be
used to enable this extension, or to retrieve the name sent by a client.

int [gnutls_server_name_set], page 311 (gnutls_session_t session,
gnutls_server_name_type_t type, const void * name, size_t name_length)
int [gnutls_server_name_get], page 310 (gnutls_session_t session, void *
data, size_t * data_length, unsigned int * type, unsigned int indx)

3.6.3 Session tickets

To resume a TLS session the server normally store session parameters. This complicates
deployment, and could be avoiding by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to
the server and then sent to the client. The Session Tickets extension is described in RFC
5077 [TLSTKT].

Since version 3.1.3 GnuTLS clients transparently support session tickets.

3.6.4 HeartBeat

This TLS extension allows to ping and receive confirmation from the peer, is described
in [RFC6520]. The extension is disabled by default and [gnutls_heartbeat_enable],
page 290 can be used to enable it. A policy may be negotiated to only allow sending
heartbeat messages or sending and receiving. The current session policy can be checked
with [gnutls_heartbeat_allowed], page 289. The requests coming from the peer result
to GNUTLS_E_HERTBEAT_PING_RECEIVED being returned from the receive function. Ping
requests to peer can be send via [gnutls_heartbeat_ping|, page 290.

int [gnutls_heartbeat_allowed], page 289 (gnutls_session_t session, unsigned
int type)

void [gnutls_heartbeat_enable], page 290 (gnutls_session_t session, unsigned
int type)

int [gnutls_heartbeat_ping], page 290 (gnutls_session_t session, size_t
data_size, unsigned int max_tries, unsigned int flags)

int [gnutls_heartbeat_pong]l, page 290 (gnutls_session_t session, unsigned int
flags)

void [gnutls_heartbeat_set_timeouts], page 291 (gnutls_session_t session,
unsigned int retrans_timeout, unsigned int total_timeout)

unsigned int [gnutls_heartbeat_get_timeout], page 290 (gnutls_session_t
session)

3.6.5 Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect

Chapter 3: Introduction to TLS and DTLS 12

using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could
forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or un-
derstood, thus today some application protocols the TLS renegotiation feature in a manner
that enables a malicious server to insert content of his choice in the beginning of a TLS
session.

The most prominent vulnerability was with HTTPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with
server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client
attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-
tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behavior would prevent in-
teroperability against the majority of deployed servers out there. We will reconsider this
default behavior in the future when more servers have been upgraded. Note that it is easy
to configure clients to always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see
Section 8.9 [Priority Strings|, page 125). The %UNSAFE_RENEGOTIATION priority string
permits (re-)handshakes even when the safe renegotiation extension was not negotiated.
The default behavior is %PARTIAL_RENEGOTIATION that will prevent renegotiation with
clients and servers not supporting the extension. This is secure for servers but leaves clients
vulnerable to some attacks, but this is a trade-off between security and compatibility with
old servers. The %SAFE_RENEGOTIATION priority string makes clients and servers require
the extension for every handshake. The latter is the most secure option for clients, at the

Chapter 3: Introduction to TLS and DTLS 13

cost of not being able to connect to legacy servers. Servers will also deny clients that do
not support the extension from connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:
Server: %PARTIAL_RENEGOTIATION
Client: %PARTIAL_RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The
[gnutls_safe_renegotiation_status|, page 310 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

3.6.6 OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify
the server certificate for revocation without messing with certificate revocation lists. Its
drawback is that it requires the client to connect to the server’s CA OCSP server and request
the status of the certificate. This extension however, enables a TLS server to include its CA
OCSP server response in the handshake. That is an HTTPS server may periodically run
ocsptool (see Section 6.6 [ocsptool Invocation], page 71) to obtain its certificate revocation
status and serve it to the clients. This reduces the number of connections a client needs to
perform to access a secure server.

void [gnutls_certificate_set_ocsp_status_request_function], page 266
(gnutls_certificate_credentials_t sc, gnutls_status_request_ocsp_func
ocsp_func, void * ptr)

int [gnutls_certificate_set_ocsp_status_request_file], page 265
(gnutls_certificate_credentials_t sc, const char* response_file, unsigned int
flags)

int [gnutls_ocsp_status_request_enable_client], page 294 (gnutls_session_t
session, gnutls_datum_t * responder_id, size_t responder_id_size,
gnutls_datum_t * extensions)

Since version 3.1.3 GnuTLS clients transparently support the certificate status request.

3.7 How to use TLS in application protocols

This chapter is intended to provide some hints on how to use the TLS over simple custom
made application protocols. The discussion below mainly refers to the TCP/IP transport
layer but may be extended to other ones too.

3.7.1 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for the
secure services. That way two separate ports were assigned, one for the non secure sessions,
and one for the secured ones. This has the benefit that if a user requests a secure session
then the client will try to connect to the secure port and fail otherwise. The only possible
attack with this method is a denial of service one. The most famous example of this method
is the famous “HTTP over TLS” or HTTPS protocol [RFC2818].

Chapter 3: Introduction to TLS and DTLS 14

Despite its wide use, this method is not as good as it seems. This approach starts the
TLS Handshake procedure just after the client connects on the —so called— secure port.
That way the TLS protocol does not know anything about the client, and popular methods
like the host advertising in HTTP do not work®. There is no way for the client to say “I
connected to YYY server” before the Handshake starts, so the server cannot possibly know
which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon obsoleted.

3.7.2 Upward negotiation

Other application protocols® use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it
is more flexible. The idea is to extend the application protocol to have a “STARTTLS”
request, whose purpose it to start the TLS protocols just after the client requests it. This
approach does not require any extra port to be reserved. There is even an extension to
HTTP protocol to support that method [RFC2817].

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

Rk TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA
And see an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was dummy enough to send the confidential
data in the clear.

4 See also the Server Name Indication extension on [serverind], page 11.
5 See LDAP, IMAP etc.

Chapter 3: Introduction to TLS and DTLS 15

How to avoid the above attack? As you may have already noticed this one is easy to avoid.
The client has to ask the user before it connects whether the user requests TLS or not. If
the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)
This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is

that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file, or anything else!

3.8 On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

e Message integrity compromised. The SSLv2 message authentication uses the MDb5
function, and is insecure.

e Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

e Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

o Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are
negotiated (say 40-bit keys) the message authentication code uses the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

Chapter 4: Certificate authentication 16

4 Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [PKIX] public
key infrastructure is daily used by anyone using a browser today. GnuTLS supports both
X.509 certificates [PKIX] and OpenPGP certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 4.1.

Chapter 4: Certificate authentication 17

Key exchange Description

RSA The RSA algorithm is used to encrypt a key and send it to
the peer. The certificate must allow the key to be used for
encryption.

RSA_EXPORT The RSA algorithm is used to encrypt a key and send it to the
peer. In the EXPORT algorithm, the server signs temporary
RSA parameters of 512 bits — which are considered weak —
and sends them to the client.

DHE_RSA The RSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The key in the certifi-
cate must allow the key to be used for signing. Note that key
exchange algorithms which use ephemeral Diffie-Hellman pa-
rameters, offer perfect forward secrecy. That means that even
if the private key used for signing is compromised, it cannot
be used to reveal past session data.

ECDHE_RSA The RSA algorithm is used to sign ephemeral elliptic curve
Diffie-Hellman parameters which are sent to the peer. The key
in the certificate must allow the key to be used for signing. It
also offers perfect forward secrecy. That means that even if
the private key used for signing is compromised, it cannot be
used to reveal past session data.

DHE_DSS The DSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The certificate must
contain DSA parameters to use this key exchange algorithm.
DSA is the algorithm of the Digital Signature Standard
(DSS).

ECDHE_ECDSA The Elliptic curve DSA algorithm is used to sign ephemeral
elliptic curve Diffie-Hellman parameters which are sent to the
peer. The certificate must contain ECDSA parameters (i.e.,
EC and marked for signing) to use this key exchange algo-
rithm.

Table 4.1: Supported key exchange algorithms.

4.1 X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities

Chapter 4: Certificate authentication 18

exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

Root CA

i l Web Server
Bob

Alice

Figure 4.1: An example of the X.509 hierarchical trust model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated
on Figure 4.1.

4.1.1 X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [PKIX] as shown in Table 4.2.

Chapter 4: Certificate authentication 19

Field Description

version The field that indicates the version of the certificate.
serialNumber This field holds a unique serial number per certificate.
signature The issuing authority’s signature.

issuer Holds the issuer’s distinguished name.

validity The activation and expiration dates.

subject The subject’s distinguished name of the certificate.
extensions The extensions are fields only present in version 3 certificates.

Table 4.2: X.509 certificate fields.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
‘gnutls/x509.h’.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The walidity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

Certificate extensions are there to include information about the certificate’s subject that
did not fit in the typical certificate fields. Those may be e-mail addresses, flags that indicate
whether the belongs to a CA etc. All the supported X.509 version 3 extensions are shown
in Table 4.3.

Chapter 4: Certificate authentication 20

Extension OID Description

Subject key id 2.5.29.14 An identifier of the key of the sub-
ject.

Authority key id 2.5.29.35 An identifier of the authority’s key

used to sign the certificate.

Subject alternative name 2.5.29.17 Alternative names to subject’s
distinguished name.

Key usage 2.5.29.15 Constraints the key’s usage of the
certificate.

Extended key usage 2.5.29.37 Constraints the purpose of the
certificate.

Basic constraints 2.5.29.19 Indicates whether this is a CA

certificate or not, and specify the
maximum path lengths of certifi-
cate chains.

CRL distribution points 2.5.29.31 This extension is set by the CA, in
order to inform about the issued
CRLs.

Proxy Certification 1.3.6.1.5.5.7.1.14 Proxy Certificates includes this

Information extension that contains the OID

of the proxy policy language used,
and can specify limits on the max-
imum lengths of proxy chains.
Proxy Certificates are specified in
[RFC3820].

Table 4.3: X.509 certificate extensions.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in ‘gnutls/x509.h’. An
example program to demonstrate the X.509 parsing capabilities can be found in [ex:x509-
infol|, page 214.

4.1.2 Importing an X.509 certificate

The certificate structure should be initialized using [gnutls_x509_crt_init], page 378, and a
certificate structure can be imported using [gnutls_x509_crt_import|, page 377.

Chapter 4: Certificate authentication 21

int [gnutls_x509_crt_init], page 378 (gnutls_x509_crt_t * cert)

int [gnutls_x509_crt_import], page 377 (gnutls_x509_crt_t cert, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

void [gnutls_x509_crt_deinit], page 359 (gnutls_x509_crt_t cert)

In several functions an array of certificates is required. To assist in initialization and import
the following two functions are provided.

int [gnutls_x509_crt_list_import], page 378 (gnutls_x509_crt_t * certs,
unsigned int * cert_max, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

int [gnutls_x509_crt_list_import2], page 378 (gnutls_x509_crt_t ** certs,
unsigned int * size, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

In all cases after use a certificate must be deinitialized using [gnutls_x509_crt_deinit],
page 359. Note that although the functions above apply to gnutls_x509_crt_t structure,
similar functions exist for the CRL structure gnutls_x509_crl_t.

4.1.3 X.509 distinguished names

The “subject” of an X.509 certificate is not described by a single name, but rather with a
distinguished name. This in X.509 terminology is a list of strings each associated an ob-
ject identifier. To make things simple GnuTLS provides [gnutls_x509_crt_get_dn], page 363
which follows the rules in [RFC/4514] and returns a single string. Access to each string by in-
dividual object identifiers can be accessed using [gnutls_x509_crt_get_dn_by_oid], page 364.

int gnutls_x509_crt_get_dn (gnutls_x509_crt_t cert, char * buf, [Function]
size_t * buf_size)
cert: should contain a gnutls_x509_crt_t structure

buf: a pointer to a structure to hold the name (may be null)
buf_size: initially holds the size of buf

This function will copy the name of the Certificate in the provided buffer. The name
will be in the form "C=xxxx,0=yyyy,CN=zzzz" as described in RFC4514. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the buf_size will be updated with the required size. On success 0
is returned.

int gnutls_x509_crt_get_dn_by_oid (gnutls_x509_crt_t cert, const [Function]
char * oid, int indx, unsigned int raw_flag, void * buf, size_t * buf_size)
cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw_flag: If non (0) returns the raw DER data of the DN part.
buf: a pointer where the DN part will be copied (may be null).

Chapter 4: Certificate authentication 22

buf_size: initially holds the size of buf

This function will extract the part of the name of the Certificate subject specified by
the given OID. The output, if the raw flag is not used, will be encoded as described
in RFC4514. Thus a string that is ASCII or UTF-8 encoded, depending on the
certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC4514 — in hex format with a ’#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known() .

If buf is null then only the size will be filled. If the raw_flag is not specified the
output is always null terminated, although the buf_size will not include the null
character.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *buf_size will be updated with the required size. On success 0 is
returned.

int gnutls_x509_crt_get_dn_oid (gnutls_x509_crt_t cert, int indx, [Function]
void * oid, size-t * oid_size)
cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use (0) to get the first one.
oid: a pointer to a buffer to hold the OID (may be null)
oid_size: initially holds the size of oid

This function will extract the OIDs of the name of the Certificate subject specified
by the given index.

If 0id is null then only the size will be filled. The oid returned will be null terminated,
although oid_size will not account for the trailing null.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the oid_size will be updated with the required size. On success 0
is returned.

The more powerful [gnutls_x509_crt_get_subject], page 375 and [gnutls_x509_dn_get_rdn_ava,

)

page 389 provide efficient access to the contents of the distinguished name structure.

int gnutls_x509_crt_get_subject (gnutls_x509_crt_t cert, [Function]
gnutls_x509_dn_t * dn)
cert: should contain a gnutls_x509_crt_t structure

dn: output variable with pointer to uint8_t DN.

Return the Certificate’s Subject DN as an uint8_t data type. You may use gnutls_
x509_dn_get_rdn_ava() to decode the DN.

Note that dn should be treated as constant. Because points into the cert object, you
may not deallocate cert and continue to access dn .

Returns: Returns 0 on success, or an error code.

Chapter 4: Certificate authentication 23

int gnutls_x509_dn_get_rdn_ava (gnutls_x509_dn_t dn, int irdn, int ~ [Function]
iava, gnutls_x509_ava_st * ava)
dn: input variable with uint8_t DN pointer
irdn: index of RDN
iava: index of AVA.
ava: Pointer to structure which will hold output information.
Get pointers to data within the DN.

Note that ava will contain pointers into the dn structure, so you should not modify
any data or deallocate it. Note also that the DN in turn points into the original
certificate structure, and thus you may not deallocate the certificate and continue to
access dn .

Returns: Returns 0 on success, or an error code.

Similar functions exist to access the distinguished name of the issuer of the certificate.

int [gnutls_x509_crt_get_issuer_dn], page 369 (gnutls_x509_crt_t cert, char *
buf, size_t * buf_size)

int [gnutls_x509_crt_get_issuer_dn_by_oid], page 369 (gnutls_x509_crt_t
cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size_t *
buf_size)

int [gnutls_x509_crt_get_issuer_dn_oid], page 370 (gnutls_x509_crt_t cert,
int indx, void * oid, size_t * oid_size)

int [gnutls_x509_crt_get_issuer], page 367 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

4.1.4 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the fol-
lowing functions are provided.

int gnutls_x509_trust_list_add_cas (gnutls-x509-trust_list_t [Function]
list, const gnutls_-x509_crt_t * clist, int clist_size, unsigned int flags)
list: The structure of the list

clist: A list of CAs

clist_size: The length of the CA list

flags: should be 0.

This function will add the given certificate authorities to the trusted list. The list of
CAs must not be deinitialized during this structure’s lifetime.

Returns: The number of added elements is returned.

Since: 3.0

int gnutls_x509_trust_list_add_named_crt [Function]
(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags)
list: The structure of the list

cert: A certificate

Chapter 4: Certificate authentication 24

name: An identifier for the certificate
name_size: The size of the identifier
flags: should be 0.

This function will add the given certificate to the trusted list and associate it with a
name. The certificate will not be be used for verification with gnutls_x509_trust_
list_verify_crt() but only with gnutls_x509_trust_list_verify_named_crt()

In principle this function can be used to set individual "server" certificates that are
trusted by the user for that specific server but for no other purposes.

The certificate must not be deinitialized during the lifetime of the trusted list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_x509_trust_list_add_crls (gnutls_x509-trust_list_t [Function]

1list, const gnutls_x509_crl_t * crl_list, int crl_size, unsigned int flags,
unsigned int verification_flags)
list: The structure of the list

crl_list: A list of CRLs
crl_size: The length of the CRL list

flags: if GNUTLS_TL_VERIFY_CRL is given the CRLs will be verified before being
added.

verification_flags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY _CRL

This function will add the given certificate revocation lists to the trusted list. The
list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls_x509_trust_list_add_cas() to allow
verifying the CRLs for validity.

Returns: The number of added elements is returned.
Since: 3.0

int gnutls_x509_trust_list_verify_crt (gnutls_x509_trust_list_t [Function]
list, gnutls_x509_crt_t * cert_list, unsigned int cert_list_size,
unsigned int flags, unsigned int * verify, gnutls_verify_output_function
func)
list: The structure of the list

cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

verify: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Chapter 4: Certificate authentication 25

Limitation: Pathlen constraints or key usage flags are not consulted.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_x509_trust_list_verify_named_crt [Function]

(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags, unsigned int * verify,
gnutls_verify_output_function func)

list: The structure of the list

cert: is the certificate to be verified
name: is the certificate’s name
name_size: is the certificate’s name size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

verify: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.

This function will try to find a certificate that is associated with the provided name —
see gnutls_x509_trust_list_add_named_crt() . If a match is found the certificate
is considered valid. In addition to that this function will also check CRLs. The
verify parameter will hold an OR’ed sequence of gnutls_certificate_status_t

flags.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.
Since: 3.0
int gnutls_x509_trust_list_add_trust_file [Function]

(gnutls_x509_trust_list_t 1ist, const char* ca_file, const char* crl_file,
gnutls_x509_crt_fmt_t type, unsigned int t1_flags, unsigned int t1_vflags)
list: The structure of the list
ca_file: A file containing a list of CAs (optional)
crl_file: A file containing a list of CRLs (optional)
type: The format of the certificates
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list. pkesll
URLs are also accepted, instead of files, by this function.
Returns: The number of added elements is returned.
Since: 3.1

int gnutls_x509_trust_list_add_trust_mem [Function]
(gnutls_x509_trust_list_t 1ist, const gnutls_datum_t * cas, const
gnutls_datum_t * crls, gnutls_x509_crt_fmt_t type, unsigned int t1_flags,
unsigned int t1_vflags)
list: The structure of the list

Chapter 4: Certificate authentication 26

cas: A buffer containing a list of CAs (optional)

crls: A buffer containing a list of CRLs (optional)

type: The format of the certificates

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list.

Returns: The number of added elements is returned.

Since: 3.1
int gnutls_x509_trust_list_add_system_trust [Function]
(gnutls_x509_trust_list_t 1ist, unsigned int t1_flags, unsigned int
tl_vflags)

list: The structure of the list

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function adds the system’s default trusted certificate authorities to
the trusted list. Note that on unsupported system this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE .

Returns: The number of added elements or a negative error code on error.

Since: 3.1

The verification function will verify a given certificate chain against a list of certificate au-
thorities and certificate revocation lists, and output a bit-wise OR of elements of the gnutls_
certificate_status_t enumeration shown in Figure 4.2. The GNUTLS_CERT_INVALID flag
is always set on a verification error and more detailed flags will also be set when appropriate.

Chapter 4: Certificate authentication 27

GNUTLS_CERT_INVALID
The certificate is not signed by one of the known authorities or the signature is
invalid.

GNUTLS_CERT_REVOKED
Certificate is revoked by its authority. In X.509 this will be set only if CRLs
are checked.

GNUTLS_CERT_SIGNER_NOT_FOUND
The certificate’s issuer is not known. This is the case if the issuer is not included
in the trusted certificate list.

GNUTLS_CERT_SIGNER_NOT_CA
The certificate’s signer was not a CA. This may happen if this was a version 1
certificate, which is common with some CAs, or a version 3 certificate without
the basic constrains extension.

GNUTLS_CERT_INSECURE_ALGORITHM
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

GNUTLS_CERT_NOT_ACTIVATED
The certificate is not yet activated.

GNUTLS_CERT_EXPIRED
The certificate has expired.

GNUTLS_CERT_SIGNATURE_FAILURE
The signature verification failed.

Figure 4.2: The gnutls_certificate_status_t enumeration.

An example of certificate verification is shown in [ex:verify2], page 162. It is also possible to
have a set of certificates that are trusted for a particular server but not to authorize other
certificates. This purpose is served by the functions [gnutls_x509_trust_list_add_named_crt],
page 401 and [gnutls_x509_trust_list_verify_named_crt], page 404.

4.1.5 Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate authority list may
also be set using:

int [gnutls_certificate_set_x509_trust_filel], page 272
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_crl_file], page 268
(gnutls_certificate_credentials_t res, const char * crifile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_system_trust], page 271
(gnutls_certificate_credentials_t cred)

Then it is not required to setup a trusted list as above. The function
[gnutls_certificate_verify_peers2], page 274 may then be used to verify the peer’s

Chapter 4: Certificate authentication 28

certificate chain. The flags are set similarly to the verification functions in the previous
section.

There is also the possibility to pass some input to the verification functions in the form
of flags. For [gnutls_x509_trust_list_verify_crt], page 404 the flags are passed straightfor-
ward, but [gnutls_certificate_verify_peers2], page 274 depends on the flags set by calling
[gnutls_certificate_set_verify _flags|, page 267. All the available flags are part of the enumer-
ation gnutls_certificate_verify_flags shown in Figure 4.3.

GNUTLS_VERIFY_DISABLE_CA_SIGN
If set a signer does not have to be a certificate authority. This flag should
normaly be disabled, unless you know what this means.

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT
Allow trusted CA certicates with version 1. This is safer than GNUTLS_VERIFY_
ALLOW_ANY_X509_V1_CA_CRT , and should be used instead. That way only
signers in your trusted list will be allowed to have certicates of version 1. This
is the default.

GNUTLS_VERIFY_DO_NOT_ALLOW_SAME
If a certificate is not signed by anyone trusted but exists in the trusted CA list
do not treat it as trusted.

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT
Allow CA certificates that have version 1 (both root and intermediate). This
might be dangerous since those haven’t the basicConstraints extension. Must
be used in combination with GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT .

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
Allow certificates to be signed using the broken MD2 algorithm.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5
Allow certificates to be signed using the broken MD5 algorithm.

GNUTLS_VERIFY_DISABLE_TIME_CHECKS
Disable checking of activation and expiration validity periods of certificate
chains. Don’t set this unless you understand the security implications.

GNUTLS_VERIFY_DISABLE_TRUSTED_TIME_CHECKS
If set a signer in the trusted list is never checked for expiration or activation.

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT
Do not allow trusted CA certificates that have version 1. This option is to be
used to deprecate all certificates of version 1.

GNUTLS_VERIFY_DISABLE_CRL_CHECKS
Disable checking for validity using certificate revocation lists.

GNUTLS_VERIFY_ALLOW_UNSORTED_CHAIN
A certificate chain is tolerated if unsorted (the case with many TLS servers out
there).

Figure 4.3: The gnutls_certificate_verify_flags enumeration.

Chapter 4: Certificate authentication 29

Although the verification of a certificate path indicates that the certificate is signed by
trusted authority, does not reveal anything about the peer’s identity. It is required to
verify if the certificate’s owner is the one you expect. For more information consult
[gnutls_x509_crt_check_hostname|, page 358, section [ex:verify|, page 141 for an example,
and [RFC2818].

4.2 OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are
the same as a CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice
signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer. For
example in Figure 4.4, David trusts Alice to be an introducer and Alice signed Bob’s key
thus Dave trusts Bob’s key to be the real one.

XL

Trust
\{ }
~

{Tszt}
|

Bob Charlie

Figure 4.4: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

Chapter 4: Certificate authentication 30

Field Description

version The field that indicates the version of the OpenPGP structure.

user ID An RFC 2822 string that identifies the owner of the key. There
may be multiple user identifiers in a key.

public key The main public key of the certificate.

expiration The expiration time of the main public key.

public subkey An additional public key of the certificate. There may be

multiple subkeys in a certificate.

public subkey The expiration time of the subkey.
expiration

Table 4.4: OpenPGP certificate fields.

4.2.1 OpenPGP certificate structure

In GnuTLS the OpenPGP certificate structures [RFC2440] are handled using the gnutls_
openpgp_crt_t type. A typical certificate contains the user ID, which is an RFC 2822
mail and name address, a public key, possibly a number of additional public keys (called
subkeys), and a number of signatures. The various fields are shown in Table 4.4.

The additional subkeys may provide key for various different purposes, e.g. one key to
encrypt mail, and another to sign a TLS key exchange. Each subkey is identified by a
unique key ID. The keys that are to be used in a TLS key exchange that requires signatures
are called authentication keys in the OpenPGP jargon. The mapping of TLS key exchange
methods to public keys is shown in Table 4.5.

Key exchange Public key requirements

RSA An RSA public key that allows encryption.
DHE_RSA An RSA public key that is marked for authentication.
ECDHE_RSA An RSA public key that is marked for authentication.
DHE_DSS A DSA public key that is marked for authentication.

Table 4.5: The types of (sub)keys required for the various TLS key exchange methods.

The corresponding private keys are stored in the gnutls_openpgp_privkey_t type. All the
prototypes for the key handling functions can be found in ‘gnutls/openpgp.h’.

Chapter 4: Certificate authentication 31

4.2.2 Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do
not use the features of the “web of trust”. For that reason, if the verification needs are
complex, the assistance of external tools like GnuPG and GPGME! is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the
[gnutls_openpgp_crt_verify_ring], page 425. This checks an OpenPGP key against
a given set of public keys (keyring) and returns the key status. The key verification status
is the same as in X.509 certificates, although the meaning and interpretation are different.
For example an OpenPGP key may be valid, if the self signature is ok, even if no signers
were found. The meaning of verification status flags is the same as in the X.509 certificates
(see Figure 4.3).

int gnutls_openpgp_crt_verify_ring (gnutls_openpgp-crt_t key, [Function]
gnutls_openpgp_keyring_t keyring, unsigned int flags, unsigned int *
verify)

key: the structure that holds the key.

keyring: holds the keyring to check against

flags: unused (should be 0)

verify: will hold the certificate verification output.

Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

int gnutls_openpgp_crt_verify_self (gnutls_openpgp-crt_t key, [Function]
unsigned int flags, unsigned int * verify)
key: the structure that holds the key.

flags: unused (should be 0)
verify: will hold the key verification output.

Verifies the self signature in the key. The key verification output will be put in verify
and will be one or more of the gnutls_certificate_status_t enumerated elements bitwise
or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

4.2.3 Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring
file in the credentials structure. The certificates in this file will be used by
[gnutls_certificate_verify_peers2], page 274 to verify the signatures in the certificate sent
by the peer.

! http://www.gnupg.org/related_software/gpgme/

http://www.gnupg.org/related_software/gpgme/

Chapter 4: Certificate authentication 32

int gnutls_certificate_set_openpgp_keyring_file [Function]
(gnutls_certificate_credentials_t ¢, const char * file, gnutls_openpgp_crt_fmt_t
format)

c: A certificate credentials structure

file: filename of the keyring.

format: format of keyring.

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.3 Advanced certificate verification

4.3.1 Verifying a certificate using trust on first use authentication

It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That
is the concept used by the SSH programs, where the public key of the peer is not verified,
or verified in an out-of-bound way, but subsequent connections to the same peer require
the public key to remain the same. Such a system in combination with the typical CA
verification of a certificate, and OCSP revocation checks, can help to provide multiple
factor verification, where a single point of failure is not enough to compromise the system.
For example a server compromise may be detected using OCSP, and a CA compromise can
be detected using the trust on first use method. Such a hybrid system with X.509 and trust
on first use authentication is shown in Section 9.1.2 [Simple client example with SSH-style
certificate verification], page 146.

int gnutls_verify_stored_pubkey (const char* db_name, [Function]

gnutls_tdb_t tdb, const char* host, const char* service,
gnutls_certificate_type_t cert_type, const gnutls_datum_t * cert, unsigned
int flags)

db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert_type: The type of the certificate

cert: The raw (der) data of the certificate

flags: should be 0.

This function will try to verify the provided certificate using a list of stored public
keys. The service field if non-NULL should be a port number.

The retrieve variable if non-null specifies a custom backend for the retrieval of
entries. If it is NULL then the default file backend will be used. In POSIX-like
systems the file backend uses the SHOME/.gnutls/known_hosts file.

Note that if the custom storage backend is provided the retrieval function should
return GNUTLS_E_CERTIFICATE_KEY_MISMATCH if the host/service pair is found but

Chapter 4: Certificate authentication 33

key doesn’t match, GNUTLS_E_NO_CERTIFICATE_FOUND if no such host/service with
the given key is found, and 0 if it was found. The storage function should return 0
on success.

Returns: If no associated public key is found then GNUTLS_E_NO_CERTIFICATE_FOUND
will be returned. If a key is found but does not match GNUTLS_E_CERTIFICATE_KEY_
MISMATCH is returned. On success, GNUTLS_E_SUCCESS (0) is returned, or a negative
error value on other errors.

Since: 3.0

int gnutls_store_pubkey (const char* db_name, gnutls_tdb_t tdb, [Function]
const char* host, const char* service, gnutls_certificate_type_t cert_type,
const gnutls_datum_t * cert, time_t expiration, unsigned int flags)
db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)
cert_type: The type of the certificate

cert: The data of the certificate

expiration: The expiration time (use 0 to disable expiration)
flags: should be 0.

This function will store the provided certificate to the list of stored public keys. The
key will be considered valid until the provided expiration time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

In addition to the above the [gnutls_store_commitment], page 322 can be used to implement
a key-pinning architecture as in [KEYPIN]. This provides a way for web server to commit
on a public key that is not yet active.

int gnutls_store_commitment (const char®* db_name, gnutls_tdb_t [Function]

tdb, const char® host, const char* service, gnutls_digest_algorithm_t
hash_algo, const gnutls_datum_t* hash, time_t expiration, unsigned int
flags)

db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

hash_algo: The hash algorithm type

hash: The raw hash

expiration: The expiration time (use 0 to disable expiration)

Chapter 4: Certificate authentication 34

flags: should be 0.

This function will store the provided hash commitment to the list of stored public keys.
The key with the given hash will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Note that this function is not thread safe with the default backend.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

The storage and verification functions may be used with the default text file based back-end,
or another back-end may be specified. That should contain storage and retrieval functions
and specified as below.

int [gnutls_tdb_init], page 323 (gnutls_tdb_t* tdb)

void [gnutls_tdb_deinit], page 323 (gnutls_tdb_t tdb)

void [gnutls_tdb_set_verify_func], page 324 (gnutls_tdb_t tdb,
gnutls_tdb_verify_func verify)

void [gnutls_tdb_set_store_func], page 324 (gnutls_tdb_t tdb,
gnutls_tdb_store_func store)

void [gnutls_tdb_set_store_commitment_func], page 324 (gnutls_tdb_t tdb,
gnutls_tdb_store_commitment_func cstore)

4.3.2 Verifying a certificate using DANE (DNSSEC)

The DANE protocol is a protocol that can be used to verify TLS certificates using the
DNS (or better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide
an alternative public key infrastructure to the commercial CAs that are typically used to
sign TLS certificates. The DANE protocol takes advantage of the DNSSEC infrastructure
to verify TLS certificates. This can be in addition to the verification by commercial CA
infrastructure or could even replace it where DNSSEC is deployed.

The DANE functionality is provided by the libgnutls-dane library that is shipped with
GnuTLS and the function prototypes are in gnutls/dane.h. The high level verification
functions are shown below.

int dane_verify_crt (dane_state_t s, const gnutls_.datum_t * chain, [Function]
unsigned chain_size, gnutls_certificate_type_t chain_type, const char *
hostname, const char* proto, unsigned int port, unsigned int sflags,
unsigned int vflags, unsigned int * verify)
s: A DANE state structure (may be NULL)

chain: A certificate chain

chain_size: The size of the chain

chain_type: The type of the certificate chain
hostname: The hostname associated with the chain

proto: The protocol of the service connecting (e.g. tcp)

Chapter 4: Certificate authentication 35

port: The port of the service connecting (e.g. 443)
sflags: Flags for the the initialization of s (if NULL)
vflags: Verification flags; should be zero

verify: An OR’ed list of dane_verify_status_t .

This function will verify the given certificate chain against the CA constrains and/or
the certificate available via DANE. If no information via DANE can be obtained the
flag DANE_VERIFY_NO_DANE_INFO is set. If a DNSSEC signature is not available for
the DANE record then the verify flag DANE_VERIFY_NO_DNSSEC_DATA is set.

Due to the many possible options of DANE, there is no single threat model countered.
When notifying the user about DANE verification results it may be better to mention:
DANE verification did not reject the certificate, rather than mentioning a successful
DANE verication.

If the q parameter is provided it will be used for caching entries.

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

int [dane_verify_session_crt], page 479 (dane_state_t s, gnutls_session_t
session, const char * hostname, const char* proto, unsigned int port, unsigned
int sflags, unsigned int vflags, unsigned int * verify)

const char * [dane_strerror], page 478 (int error)

Note that the dane_state_t structure that is accepted by both verification functions is
optional. It is required when many queries are performed to facilitate caching. The following
flags are returned by the verify functions to indicate the status of the verification.

DANE_VERIFY_CA_CONSTRAINS_VIOLATED
The CA constrains was violated.

DANE_VERIFY_CERT_DIFFERS
The certificate obtained via DNS differs.

DANE_VERIFY_NO_DANE_INFO
No DANE data were found in the DNS record.

Figure 4.5: The DANE verification status flags.

In order to generate a DANE TLSA entry to use in a DNS server you may use danetool
(see Section 6.7 [danetool Invocation], page 74).

4.4 Digital signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature

Chapter 4: Certificate authentication 36

could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 euro to Greenpeace and find out that he donated 1.000.000 euros to Bad Inc.

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(x), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair z,y with y = H(x) it is
impossible to calculate an a’ such that y = H ().

3. Collision resistance. That means that it is impossible to calculate random x and 2z
such H(z') = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 gperations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 2%, but it
has been showed to have a collision strength well under 2°°. As of November 2005, it is
believed that SHA-1’s collision strength is around 2%3. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 2% can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

4.4.1 Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and get
a GNUTLS_CERT_INSECURE_ALGORITHM validation error (see Section 4.1.4 [Verifying X.509
certificate paths|, page 23), it means that somewhere in the certificate chain there is a
certificate signed using RSA-MD2 or RSA-MD5. These two digital signature algorithms are
considered broken, so GnuTLS fails verifying the certificate. In some situations, it may be
useful to be able to verify the certificate chain anyway, assuming an attacker did not utilize
the fact that these signatures algorithms are broken. This section will give help on how to
achieve that.

It is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The
certificates in the trusted list are considered trusted irrespective of the signature.

If you are using [gnutls_certificate_verify_peers2], page 274 to verify the certificate chain,
you can call [gnutls_certificate_set_verify_flags], page 267 with the flags:

e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

as in the following example:

gnutls_certificate_set_verify_flags (x509cred,
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5) ;

Chapter 4: Certificate authentication 37

This will tell the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using [gnutls_x509_crt_verify|, page 388 or [gnutls_x509_crt_list_verify|, page 379,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags
parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself,
you can use [gnutls_certificate_get_peers|, page 264 to extract the raw server’s certificate
chain, [gnutls_x509_crt_list_import|, page 378 to parse each of the certificates, and then
[gnutls_x509_crt_get_signature_algorithm|, page 374 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2
or GNUTLS_SIGN_RSA_MD5, you could present a warning.

Chapter 5: Shared-key and anonymous authentication 38

5 Shared-key and anonymous authentication

In addition to certificate authentication, the TLS protocol may be used with password,
shared-key and anonymous authentication methods. The rest of this chapter discusses
details of these methods.

5.1 SRP authentication

5.1.1 Authentication using SRP

GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see
[RFC2945, TOMSRP] for a description). The SRP key exchange is an extension to the
TLS protocol, and it provides an authenticated with a password key exchange. The peers
can be identified using a single password, or there can be combinations where the client is
authenticated using SRP and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does
not require the server to hold the user’s password. This kind of protection is similar to the
one used traditionally in the UNIX ‘/etc/passwd’ file, where the contents of this file did
not cause harm to the system security if they were revealed. The SRP needs instead of the
plain password something called a verifier, which is calculated using the user’s password,
and if stolen cannot be used to impersonate the user.

Typical conventions in SRP are a password file, called ‘tpasswd’ that holds the SRP verifiers
(encoded passwords) and another file, ‘tpasswd.conf’, which holds the allowed SRP pa-
rameters. The included in GnuTLS helper follow those conventions. The srptool program,
discussed in the next section is a tool to manipulate the SRP parameters.

The implementation in GnuTLS is based on [TLSSRP]. The supported key exchange meth-
ods are shown below.

SRP: Authentication using the SRP protocol.

SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using a
certificate with DSA parameters.

SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using a
certificate with RSA parameters.

int gnutls_srp_verifier (const char * username, const char * [Function]
password, const gnutls_datum_t * salt, const gnutls_datum_t * generator,
const gnutls_datum_t * prime, gnutls_datum_t * res)
username: is the user’s name

password: is the user’s password

salt: should be some randomly generated bytes
generator: is the generator of the group

prime: is the group’s prime

res: where the verifier will be stored.

Chapter 5: Shared-key and anonymous authentication 39

This function will create an SRP verifier, as specified in RFC2945. The prime and
generator should be one of the static parameters defined in gnutls/gnutls.h or may
be generated.

The verifier will be allocated with gnutls_malloc () and will be stored in res using
binary format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

int [gnutls_srp_base64_encode_alloc], page 319 (const gnutls_datum_t * data,
gnutls_datum_t * result)

int [gnutls_srp_base64_decode_alloc], page 318 (const gnutls_datum_t *
b64_data, gnutls_datum_t * result)

5.1.2 Invoking srptool

Simple program that emulates the programs in the Stanford SRP (Secure Remote Pass-
word) libraries using GnuTLS. It is intended for use in places where you don’t expect SRP
authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password file that holds
the users and the verifiers associated with them and the configuration file to hold the group
parameters (called tpasswd.conf).

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the srptool program. This software is released under the GNU General
Public License, version 3 or later.

srptool help/usage (-h)

This is the automatically generated usage text for srptool. The text printed is the same
whether for the help option (-h) or the more-help option (-!). more-help will print the
usage text by passing it through a pager program. more-help is disabled on platforms
without a working fork(2) function. The PAGER environment variable is used to select the
program, defaulting to ‘more’. Both will exit with a status code of 0.

srptool - GnuTLS SRP tool - Ver. QVERSIONG

USAGE: srptool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, --debug=num Enable debugging.
- It must be in the range:
0 to 9999

-i, --index specify the index of the group parameters in tpasswd.conf to
-u, —--username=str specify a username
-p, ——passwd=str specify a password file.
-s, ——salt=num specify salt size.

--verify just verify the password.
-v, —--passwd-conf=str specify a password conf file.

--create-conf=str Generate a password configuration file.
-v, —--version[=arg] Output version information and exit
-h, --help Display extended usage information and exit

-!, —-—more-help Extended usage information passed thru pager

Chapter 5: Shared-key and anonymous authentication 40

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Simple program that emulates the programs in the Stanford SRP (Secure
Remote Password) libraries using GnuTLS. It is intended for use in places
where you don’t expect SRP authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password
file that holds the users and the verifiers associated with them and the
configuration file to hold the group parameters (called tpasswd.conf).

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

verify option

This is the “just verify the password.” option. Verifies the password provided against the
password file.

passwd-conf option (-v)

This is the “specify a password conf file.” option. This option takes an argument string.
Specify a filename or a PKCS #11 URL to read the CAs from.

create-conf option

This is the “generate a password configuration file.” option. This option takes an argument
string. This generates a password configuration file (tpasswd.conf) containing the required
for TLS parameters.

srptool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’

The operation failed or the command syntax was not valid.
srptool See Also
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), psktool (1), certtool (1)

srptool Examples

To create ‘tpasswd.conf’ which holds the g and n values for SRP protocol (generator and
a large prime), run:

Chapter 5: Shared-key and anonymous authentication 41

$ srptool --create-conf /etc/tpasswd.conf
This command will create ‘/etc/tpasswd’ and will add user "test’ (you will also be prompted
for a password). Verifiers are stored by default in the way libsrp expects.
$ srptool --passwd /etc/tpasswd --passwd-conf /etc/tpasswd.conf -u test
This command will check against a password. If the password matches the one in
‘/etc/tpasswd’ you will get an ok.
$ srptool --passwd /etc/tpasswd --passwd\-conf /etc/tpasswd.conf --verify -u test

5.2 PSK authentication

5.2.1 Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and
binary keys. This protocol avoids making use of public key infrastructure and expensive
calculations, thus it is suitable for constraint clients.

The implementation in GnuTLS is based on [TLSPSK]. The supported PSK key exchange
methods are:

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange. This
method offers perfect forward secrecy.

ECDHE-PSK:
Authentication using the PSK protocol and Elliptic curve Diffie-Hellman key
exchange. This method offers perfect forward secrecy.

Helper functions to generate and maintain PSK keys are also included in GnuTLS.

int [gnutls_key_generate], page 292 (gnutls_datum_t * key, unsigned int
key_size)

int [gnutls_hex_encodel], page 292 (const gnutls_datum_t * data, char * result,
size_t * result_size)

int [gnutls_hex_decode], page 291 (const gnutls_datum_t * hex_data, void *
result, size_t * result_size)

5.2.2 Invoking psktool

Program that generates random keys for use with TLS-PSK. The keys are stored in hex-
adecimal format in a key file.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the psktool program. This software is released under the GNU General
Public License, version 3 or later.

psktool help/usage (-h)

This is the automatically generated usage text for psktool. The text printed is the same
whether for the help option (-h) or the more-help option (-!). more-help will print the
usage text by passing it through a pager program. more-help is disabled on platforms
without a working fork(2) function. The PAGER environment variable is used to select the
program, defaulting to ‘more’. Both will exit with a status code of 0.

Chapter 5: Shared-key and anonymous authentication 42

psktool - GnuTLS PSK tool - Ver. QVERSION®

USAGE: psktool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, —--debug=num Enable debugging.
- It must be in the range:
0 to 9999
-s, ——keysize=num specify the key size in bytes
- It must be in the range:
0 to 512
-u, —--username=str specify a username
-p, ——passwd=str specify a password file.
-v, —--version[=arg] Output version information and exit
-h, --help Display extended usage information and exit
-1, —--more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Program that generates random keys for use with TLS-PSK. The keys are
stored in hexadecimal format in a key file.

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

psktool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

psktool See Also
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), certtool (1)

psktool Examples

To add a user 'psk_identity’ in ‘passwd.psk’ for use with GnuTLS run:

$./psktool -u psk_identity -p passwd.psk
Generating a random key for user ’psk_identity’
Key stored to passwd.psk

$ cat psks.txt

Chapter 5: Shared-key and anonymous authentication 43

psk_identity:88£3824b3e5659£52d00e959bacab954b6540344
$

This command will create ‘passwd.psk’ if it does not exist and will add user "psk_identity’
(you will also be prompted for a password).

5.3 Anonymous authentication

The anonymous key exchange offers encryption without any indication of the peer’s identity.
This kind of authentication is vulnerable to a man in the middle attack, but can be used
even if there is no prior communication or shared trusted parties with the peer. Moreover
it is useful when complete anonymity is required. Unless in one of the above cases, do not
use anonymous authentication.

The available key exchange algorithms for anonymous authentication are shown below, but
note that few public servers support them. They typically have to be explicitly enabled.
ANON_DH: This algorithm exchanges Diffie-Hellman parameters.

ANON_ECDH:
This algorithm exchanges elliptic curve Diffie-Hellman parameters. It is more
efficient than ANON_DH on equivalent security levels.

Chapter 6: More on certificate authentication 44

6 More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several
other structures that are used for certificate requests, encrypted private keys, revocation
lists, GnuTLS abstract key structures, etc., are discussed in this chapter.

6.1 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986]. Other formats of certificate requests are not currently supported.

A certificate request can be generated by associating it with a private key, setting the
subject’s information and finally self signing it. The last step ensures that the requester is
in possession of the private key.

int [gnutls_x509_crq_set_version], page 357 (gnutls_x509_crq_t crq, unsigned
int version)

int [gnutls_x509_crq_set_dn_by_oid], page 355 (gnutls_x509_crq_t crq, const
char * oid, unsigned int raw_flag, const void * data, unsigned int sizeof_data)
int [gnutls_x509_crq_set_key_usagel, page 356 (gnutls_x509_crq_t crq,
unsigned int usage)

int [gnutls_x509_crq_set_key_purpose_oid], page 356 (gnutls_x509_crq_t crq,
const void * oid, unsigned int critical)

int [gnutls_x509_crq_set_basic_constraints], page 355 (gnutls_x509_crq_t
crq, unsigned int ca, int pathLenConstraint)

The [gnutls_x509_crq_set_key], page 356 and [gnutls_x509_crq-sign2], page 358 functions
associate the request with a private key and sign it. If a request is to be signed with a
key residing in a PKCS #11 token it is recommended to use the signing functions shown in
Section 7.1 [Abstract key types|, page 79.

int gnutls_x509_crq_set_key (gnutls_x509_crq_t crq, [Function]
gnutls_x509_privkey_t key)
crq: should contain a gnutls_x509_crq_t structure

key: holds a private key
This function will set the public parameters from the given private key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int gnutls_x509_crq_sign2 (gnutls_x509-crq-t crq, [Function]
gnutls_x509_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)
crq: should contain a gnutls_x509_crq_t structure

key: holds a private key
dig: The message digest to use, i.e., GNUTLS_DIG_SHA1
flags: must be 0

Chapter 6: More on certificate authentication 45

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

The following example is about generating a certificate request, and a private key. A
certificate request can be later be processed by a CA which should return a signed certificate.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <gnutls/abstract.h>
#include <time.h>

/* This example will generate a private key and a certificate
* request.

*/

int

main (void)

{
gnutls_x509_crq_t crq;
gnutls_x509_privkey_t key;
unsigned char buffer[10 * 1024];
size_t buffer_size = sizeof (buffer);
unsigned int bits;

gnutls_global_init (O);

/* Initialize an empty certificate request, and
* an empty private key.
*/

gnutls_x509_crq_init (&crq);

gnutls_x509_privkey_init (&key);

Chapter 6: More on certificate authentication 46

/* Generate an RSA key of moderate security.

*/
bits = gnutls_sec_param_to_pk_bits (GNUTLS_PK_RSA, GNUTLS_SEC_PARAM_NORMAL) ;
gnutls_x509_privkey_generate (key, GNUTLS_PK_RSA, bits, 0);

/* Add stuff to the distinguished name
x/
gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COUNTRY_NAME,
0, "GR", 2);

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COMMON_NAME,
0, "Nikos", strlen ("Nikos"));

/* Set the request version.
*/

gnutls_x509_crq_set_version (crq, 1);

/* Set a challenge password.
*/

gnutls_x509_crq_set_challenge_password (crq, "something to remember here");

/* Associate the request with the private key
*/
gnutls_x509_crq_set_key (crq, key);

/* Self sign the certificate request.
x/
gnutls_x509_crq_sign2 (crq, key, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and
* display it.
*/
gnutls_x509_crq_export (crq, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("Certificate Request: \nJs", buffer);

/* Export the PEM encoded private key, and
* display it.
*/
buffer_size = sizeof (buffer);
gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("\n\nPrivate key: \nJ)s", buffer);

gnutls_x509_crq_deinit (crq);
gnutls_x509_privkey_deinit (key);

Chapter 6: More on certificate authentication 47

return O;

6.2 PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically con-
taining a list of revoked certificates serial numbers. The CRL structure is signed with the
issuing authorities’” keys. A typical CRL contains the fields as shown in Table 6.1. Certifi-
cate revocation lists are used to complement the expiration date of a certificate, in order to
account for other reasons of revocation, such as compromised keys, etc.

Each CRL is valid for limited amount of time and is required to provide, except for the
current issuing time, also the issuing time of the next update.

Field Description

version The field that indicates the version of the CRL structure.

signature A signature by the issuing authority.

issuer Holds the issuer’s distinguished name.

thisUpdate The issuing time of the revocation list.

nextUpdate The issuing time of the revocation list that will update that
one.

revokedCertificates List of revoked certificates serial numbers.

extensions Optional CRL structure extensions.
Table 6.1: Certificate revocation list fields.

The basic CRL structure functions follow.

int [gnutls_x509_crl_init], page 341 (gnutls_x509_crl_t * crl)

int [gnutls_x509_crl_import], page 341 (gnutls_x509_crl_t crl, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_x509_crl_export], page 335 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)
int [gnutls_x509_crl_export], page 335 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

Chapter 6: More on certificate authentication 48

Reading a CRL

The most important function that extracts the certificate revocation information from a
CRL is [gnutls_x509_crl_get_crt_serial], page 337. Other functions that return other fields
of the CRL structure are also provided.

int gnutls_x509_crl_get_crt_serial (gnutls-x509-crl_t crl, int [Function]
indx, unsigned char * serial, size-t * serial_size, time_t * t)
crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)
serial: where the serial number will be copied

serial_size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

This function will retrieve the serial number of the specified, by the index, revoked
certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

int [gnutls_x509_crl_get_version], page 341 (gnutls_x509_crl_t crl)

int [gnutls_x509_crl_get_issuer_dn], page 338 (const gnutls_x509_crl_t crl,
char * buf, size_t * sizeof_buf)

time_t [gnutls_x509_crl_get_this_update], page 340 (gnutls_x509_crl_t crl)
time_t [gnutls_x509_crl_get_next_update], page 339 (gnutls_x509_crl_t crl)
int [gnutls_x509_crl_get_crt_count], page 336 (gnutls_x509_crl_t crl)

Generation of a CRL

The following functions can be used to generate a CRL.

int [gnutls_x509_crl_set_version], page 344 (gnutls_x509_crl_t crl, unsigned
int version)

int [gnutls_x509_crl_set_crt_seriall, page 343 (gnutls_x509_crl_t crl, const
void * serial, size_t serial_size, time_t revocation_time)

int [gnutls_x509_crl_set_crt], page 343 (gnutls_x509_crl_t crl,
gnutls_x509_crt_t crt, time_t revocation_time)

int [gnutls_x509_crl_set_next_update], page 343 (gnutls_x509_crl_t crl,
time_t exp_time)

int [gnutls_x509_crl_set_this_updatel], page 344 (gnutls_x509_crl_t crl,
time_t act_time)

tions sign the revocation list with a private key. The latter function can be used to sign
with a key residing in a PKCS #11 token.

The [gnutls_x509_crl_sign2|, page 344 and [gnutls_x509_crl_privkey_sign|, page 475 func-

int gnutls_x509_crl_sign2 (gnutls_x509_crl_t crl, gnutls_x509_crt_t [Function]
issuer, gnutls_x509_privkey_t issuer_key, gnutls_digest_algorithm_t dig,
unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer

Chapter 6: More on certificate authentication 49

issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAT is the safe choice unless you
know what you're doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int gnutls_x509_crl_privkey_sign (gnutls_x509_crl_-t crl, [Function]
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAT is the safe choice unless you
know what you're doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 2.12.0

Few extensions on the CRL structure are supported, including the CRL number extension
and the authority key identifier.

int [gnutls_x509_crl_set_number], page 343 (gnutls_x509_crl_t crl, const void
* nr, size_t nr_size)

int [gnutls_x509_crl_set_authority_key_id], page 342 (gnutls_x509_crl_t crl,
const void * id, size_t id_size)

6.3 OCSP certificate status checking

Certificates may be revoked before their expiration time has been reached. There are several
reasons for revoking certificates, but a typical situation is when the private key associated
with a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs)
have been used by application to implement revocation checking, however, several problems
with CRLs have been identified [RIVESTCRL).

The Online Certificate Status Protocol, or OCSP [RFC2560], is a widely implemented pro-
tocol to perform certificate revocation status checking. An application that wish to verify
the identity of a peer will verify the certificate against a set of trusted certificates and then

Chapter 6: More on certificate authentication 50

check whether the certificate is listed in a CRL and/or perform an OCSP check for the
certificate.

Before performing the OCSP query, the application will need to figure out the address of
the OCSP server. The OCSP server address can be provided by the local user in manual
configuration or may be stored in the certificate that is being checked. When stored in a
certificate the OCSP server is in the extension field called the Authority Information Access
(AIA). The following function extracts this information from a certificate.

int [gnutls_x509_crt_get_authority_info_access], page 360 (gnutls_x509_crt_t
crt, unsigned int seq, int what, gnutls_datum_t * data, unsigned int *
critical)

There are several functions in GnuTLS for creating and manipulating OCSP requests and
responses. The general idea is that a client application create an OCSP request object,
store some information about the certificate to check in the request, and then export the
request in DER format. The request will then need to be sent to the OCSP responder, which
needs to be done by the application (GnuTLS does not send and receive OCSP packets).
Normally an OCSP response is received that the application will need to import into an
OCSP response object. The digital signature in the OCSP response needs to be verified
against a set of trust anchors before the information in the response can be trusted.

The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the
structures to get an understanding of which fields are modified by GnuTLS functions.

OCSPRequest D= SEQUENCE {

tbsRequest TBSRequest,

optionalSignature [0] EXPLICIT Signature OPTIONAL }
TBSRequest Di= SEQUENCE {

version (0] EXPLICIT Version DEFAULT vi,

requestorName (1] EXPLICIT GeneralName OPTIONAL,

requestList SEQUENCE OF Request,

requestExtensions [2] EXPLICIT Extensions OPTIONAL }
Request S SEQUENCE {

reqCert CertID,

singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }
CertID i:= SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

issuerNameHash OCTET STRING, -- Hash of Issuer’s DN

issuerKeyHash OCTET STRING, -- Hash of Issuers public key

serialNumber CertificateSerialNumber }

The basic functions to initialize, import, export and deallocate OCSP requests are the
following.

Chapter 6: More on certificate authentication 51

int [gnutls_ocsp_req_init], page 408 (gnutls_ocsp_req_t * req)

void [gnutls_ocsp_req_deinit], page 406 (gnutls_ocsp_req_t req)

int [gnutls_ocsp_req_import], page 407 (gnutls_ocsp_req_t req, const
gnutls_datum_t * data)

int [gnutls_ocsp_req_export], page 406 (gnutls_ocsp_req_t req, gnutls_datum_t
* data)

int [gnutls_ocsp_req_print], page 408 (gnutls_ocsp_req_t req,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

To generate an OCSP request the issuer name hash, issuer key hash, and the checked
certificate’s serial number are required. There are two interfaces available for setting those
in an OCSP request. The is a low-level function when you have the issuer name hash, issuer
key hash, and certificate serial number in binary form. The second is more useful if you
have the certificate (and its issuer) in a gnutls_x509_crt_t type. There is also a function
to extract this information from existing an OCSP request.

int [gnutls_ocsp_req_add_cert_id], page 405 (gnutls_ocsp_req_t regq,
gnutls_digest_algorithm_t digest, const gnutls_datum_t * issuer_name_hash,
const gnutls_datum_t * issuer_key_hash, const gnutls_datum_t * serial_number)
int [gnutls_ocsp_req_add_cert], page 405 (gnutls_ocsp_req_t req,
gnutls_digest_algorithm_t digest, gnutls_x509_crt_t issuer,
gnutls_x509_crt_t cert)

int [gnutls_ocsp_req_get_cert_id], page 406 (gnutls_ocsp_req_t req, unsigned
indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t * issuer_name_hash,
gnutls_datum_t * issuer_key_hash, gnutls_datum_t * serial_number)

Each OCSP request may contain a number of extensions. Extensions are identified by an
Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied
by the OID. You can extract or set those extensions using the following functions.

int [gnutls_ocsp_req_get_extension], page 406 (gnutls_ocsp_req_t req,
unsigned indx, gnutls_datum_t * oid, unsigned int * critical, gnutls_datum_t *
data)

int [gnutls_ocsp_req_set_extension], page 408 (gnutls_ocsp_req_t req, const
char * oid, unsigned int critical, const gnutls_datum_t * data)

A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which
is used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension
carries a value that is intended to be sufficiently random and unique so that an attacker
will not be able to give a stale response for the same nonce.

int [gnutls_ocsp_req_get_noncel], page 407 (gnutls_ocsp_req_t req, unsigned
int * critical, gnutls_datum_t * nonce)

int [gnutls_ocsp_req_set_noncel], page 409 (gnutls_ocsp_req_t req, unsigned
int critical, const gnutls_datum_t * nonce)

int [gnutls_ocsp_req_randomize_nonce], page 408 (gnutls_ocsp_req_t req)

The OCSP response structures is a complex structure. A simplified overview of it is in
Table 6.2. Note that a response may contain information on multiple certificates.

Chapter 6: More on certificate authentication 52

Field Description

version The OCSP response version number (typically 1).

responder 1D An identifier of the responder (DN name or a hash of its key).
issue time The time the response was generated.

thisUpdate The issuing time of the revocation information.

nextUpdate The issuing time of the revocation information that will up-

date that one.

Revoked certificates
certificate status The status of the certificate.
certificate serial The certificate’s serial number.
revocationTime The time the certificate was revoked.

revocationReason The reason the certificate was revoked.

Table 6.2: The most important OCSP response fields.

We provide basic functions for initialization, importing, exporting and deallocating OCSP
responses.

int [gnutls_ocsp_resp_init], page 413 (gnutls_ocsp_resp_t * resp)

void [gnutls_ocsp_resp_deinit], page 409 (gnutls_ocsp_resp_t resp)

int [gnutls_ocsp_resp_import], page 413 (gnutls_ocsp_resp_t resp, const
gnutls_datum_t * data)

int [gnutls_ocsp_resp_export], page 409 (gnutls_ocsp_resp_t resp,
gnutls_datum_t * data)

int [gnutls_ocsp_resp_print], page 413 (gnutls_ocsp_resp_t resp,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

The utility function that extracts the revocation as well as other information from a response
is shown below.

int gnutls_ocsp_resp_get_single (gnutls_ocsp_resp_t resp, [Function]
unsigned indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t *
issuer_name_hash, gnutls_.datum_t * issuer_key_hash, gnutls_datum_t *
serial_number, unsigned int * cert_status, time_t * this_update,
time_t * next_update, time_t * revocation_time, unsigned int *
revocation_reason)
resp: should contain a gnutls_ocsp_resp_t structure

Chapter 6: More on certificate authentication 53

indx: Specifies response number to get. Use (0) to get the first one.

digest: output variable with gnutls_digest_algorithm_t hash algorithm

issuer_name_hash: output buffer with hash of issuer’s DN

issuer_key_hash: output buffer with hash of issuer’s public key

serial_number: output buffer with serial number of certificate to check

cert_status: a certificate status, a gnutls_ocsp_cert_status_t enum.

this_update: time at which the status is known to be correct.

next_update: when newer information will be available, or (time_t)-1 if unspecified

revocation_time: when cert_status is GNUTLS_OCSP_CERT_REVOKED , holds time of
revocation.

revocation_reason: revocation reason, a gnutls_x509_crl_reason_t enum.

This function will return the certificate information of the indx ’ed response in the
Basic OCSP Response resp . The information returned corresponds to the OCSP
SingleResponse structure except the final singleExtensions.

Each of the pointers to output variables may be NULL to indicate that the caller is
not interested in that value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned. If you have reached the last CertID available GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE will be returned.

The possible revocation reasons available in an OCSP response are shown below.

Chapter 6: More on certificate authentication 54

GNUTLS_X509_CRLREASON_UNSPECIFIED
Unspecified reason.

GNUTLS_X509_CRLREASON_KEYCOMPROMISE
Private key compromised.

GNUTLS_X509_CRLREASON_CACOMPROMISE
CA compromised.

GNUTLS_X509_CRLREASON_AFFILTATIONCHANGED
Affiliation has changed.

GNUTLS_X509_CRLREASON_SUPERSEDED
Certificate superseded.

GNUTLS_X509_CRLREASON_CESSATIONOFOPERATION
Operation has ceased.

GNUTLS_X509_CRLREASON_CERTIFICATEHOLD
Certificate is on hold.

GNUTLS_X509_CRLREASON_REMOVEFROMCRL
Will be removed from delta CRL.

GNUTLS_X509_CRLREASON_PRIVILEGEWITHDRAWN
Privilege withdrawn.

GNUTLS_X509_CRLREASON_AACOMPROMISE
AA compromised.

Figure 6.1: The revocation reasons

Note, that the OCSP response needs to be verified against some set of trust anchors before
it can be relied upon. It is also important to check whether the received OCSP response
corresponds to the certificate being checked.

int [gnutls_ocsp_resp_verify], page 414 (gnutls_ocsp_resp_t resp,
gnutls_x509_trust_list_t trustlist, unsigned int * verify, unsigned int flags)
int [gnutls_ocsp_resp_verify_direct], page 414 (gnutls_ocsp_resp_t resp,
gnutls_x509_crt_t issuer, unsigned int * verify, unsigned int flags)

int [gnutls_ocsp_resp_check_crt], page 409 (gnutls_ocsp_resp_t resp, unsigned
int indx, gnutls_x509_crt_t crt)

6.4 Managing encrypted keys

Transferring or storing private keys in plain might not be a good idea. Any access on
the keys becomes a fatal compromise. Storing the keys in hardware security modules (see
Section 7.2 [Smart cards and HSMs|, page 85) could solve the storage problem but it is not
always practical or efficient enough. This section describes alternative ways that involve
encryption of the private keys to store and transfer.

There are two alternatives to use for key encryption, PKCS #8 and #12 methods of private
key encryption. The PKCS #8 method only allows encryption of the private key, whilst the

Chapter 6: More on certificate authentication 55

PKCS #12 method allows in addition the bundling of other data into the structure. That
could be bundling together the certificate as well as the trusted CA certificate.

PKCS #8 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions
below. An addition to the normal import functions, are a password and a flags argument.
The flags can be any element of the gnutls_pkcs_encrypt_flags_t enumeration. Note
however, that GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys
encrypted with the obsolete PBES1 scheme cannot be decrypted.

int [gnutls_x509_privkey_import_pkcs8], page 398 (gnutls_x509_privkey_t key,
const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *
password, unsigned int flags)

int [gnutls_x509_privkey_export_pkcs8], page 393 (gnutls_x509_privkey_t key,
gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags, void *
output_data, size_t * output_data_size)

int [gnutls_x509_privkey_export2_pkcs8], page 392 (gnutls_x509_privkey_t
key, gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags,
gnutls_datum_t * out)

GNUTLS_PKCS_PLAIN
Unencrypted private key.

GNUTLS_PKCS_USE_PKCS12_3DES
PKCS-12 3DES.

GNUTLS_PKCS_USE_PKCS12_ARCFQOUR
PKCS-12 ARCFOUR.

GNUTLS_PKCS_USE_PKCS12_RC2_40
PKCS-12 RC2-40.

GNUTLS_PKCS_USE_PBES2_3DES
PBES2 3DES.

GNUTLS_PKCS_USE_PBES2_AES_128
PBES2 AES-128.

GNUTLS_PKCS_USE_PBES2_AES_192
PBES2 AES-192.

GNUTLS_PKCS_USE_PBES2_AES_256
PBES2 AES-256.

GNUTLS_PKCS_NULL_PASSWORD
Some schemas distinguish between an empty and a NULL password.

Figure 6.2: Encryption flags

PKCS #12 structures

A PKCS #12 structure [PKCS12] usually contains a user’s private keys and certificates. It
is commonly used in browsers to export and import the user’s identities.

Chapter 6: More on certificate authentication 56

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
A bag of type encrypted should be decrypted in order for its data to be accessed.

To reduce the complexity in parsing the structures the simple helper function
[gnutls_pkes12_simple_parse], page 440 is provided. For more advanced uses, manual
parsing of the structure is required using the functions below.

int [gnutls_pkcsl2_get_bag], page 438 (gnutls_pkcsl2_t pkcs12, int indx,
gnutls_pkcsl12_bag_t bag)

int [gnutls_pkcsl2_verify_mac], page 440 (gnutls_pkcsl2_t pkcs12, const char
* pass)

int [gnutls_pkcsl12_bag_decrypt], page 434 (gnutls_pkcsl12_bag_t bag, const
char * pass)

int [gnutls_pkcsl12_bag_get_count], page 435 (gnutls_pkcsl2_bag_t bag)

int gnutls_pkcsl12_simple_parse (gnutls_pkcsl2_t p12, const char * [Function]
password, gnutls_x509_privkey_t * key, gnutls_x509_crt_t ** chain, unsigned
int * chain_len, gnutls_x509_crt_t ** extra_certs, unsigned int *
extra_certs_len, gnutls_x509_crl_t * crl, unsigned int flags)
pl2: the PKCS12 blob.

password: optional password used to decrypt PKCS12 blob, bags and keys.

key: a structure to store the parsed private key.

chain: the corresponding to key certificate chain

chain_len: will be updated with the number of additional

extra_certs: optional pointer to receive an array of additional certificates found in the
PKCS12 blob.

extra_certs_len: will be updated with the number of additional certs.

crl: an optional structure to store the parsed CRL.

flags: should be zero or one of GNUTLS_PKCS12_SP_*

This function parses a PKCS12 blob in p12blob and extracts the private key, the
corresponding certificate chain, and any additional certificates and a CRL.

The extra_certs_ret and extra_certs_ret_len parameters are optional and both
may be set to NULL . If either is non-NULL , then both must be.

Encrypted PKCS12 bags and PKCS8 private keys are supported. However, only
password based security, and the same password for all operations, are supported.

PKCS12 file may contain many keys and/or certificates, and there is no way to
identify which key/certificate pair you want. You should make sure the PKCS12 file
only contain one key/certificate pair and/or one CRL.

It is believed that the limitations of this function is acceptable for most usage, and
that any more flexibility would introduce complexity that would make it harder to
use this functionality at all.

If the provided structure has encrypted fields but no password is provided then this
function returns GNUTLS_E_DECRYPTION_FAILED .

Chapter 6: More on certificate authentication 57

Note that normally the chain constructed does not include self signed certificates, to
comply with TLS’ requirements. If, however, the flag GNUTLS_PKCS12_SP_INCLUDE_
SELF_SIGNED is specified then self signed certificates will be included in the chain.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1

int [gnutls_pkcsl12_bag_get_datal, page 435 (gnutls_pkcsl2_bag_t bag, int
indx, gnutls_datum_t * data)

int [gnutls_pkcsl2_bag_get_key_id], page 436 (gnutls_pkcsl2_bag_t bag, int
indx, gnutls_datum_t * id)

int [gnutls_pkcsl12_bag_get_friendly_name], page 435 (gnutls_pkcsl2_bag_t
bag, int indx, char ** name)

Chapter 6: More on certificate authentication 58

The functions below are used to generate a PKCS #12 structure. An example of their usage
is also shown.

int [gnutls_pkcs12_set_bag]l, page 439 (gnutls_pkcsl2_t pkcs12,
gnutls_pkcs12_bag_t bag)

int [gnutls_pkcsl12_bag_encrypt], page 435 (gnutls_pkcsl12_bag_t bag, const
char * pass, unsigned int flags)

int [gnutls_pkcsl2_generate_mac], page 438 (gnutls_pkcsl2_t pkcs12, const
char * pass)

int [gnutls_pkcsl12_bag_set_datal, page 437 (gnutls_pkcsl2_bag_t bag,
gnutls_pkcsl2_bag_type_t type, const gnutls_datum_t * data)

int [gnutls_pkcsl2_bag_set_crl], page 436 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crl_t crl)

int [gnutls_pkcsl2_bag_set_crt], page 436 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crt_t crt)

int [gnutls_pkcsl2_bag_set_key_id], page 437 (gnutls_pkcsl2_bag_t bag, int
indx, const gnutls_datum_t * id)

int [gnutls_pkcsl12_bag_set_friendly_name], page 437 (gnutls_pkcsl2_bag_ t
bag, int indx, const char * name)

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/pkcsi2.h>

#include "examples.h"
#define OUTFILE "out.pl2"

/* This function will write a pkcsl2 structure into a file.

* cert: 1is a DER encoded certificate

*x pkcs8_key: 1is a PKCS #8 encrypted key (note that this must be
* encrypted using a PKCS #12 cipher, or some browsers will crash)
password: 1is the password used to encrypt the PKCS #12 packet.

*

*/
int
write_pkcsl12 (const gnutls_datum_t * cert,

const gnutls_datum_t * pkcs8_key, const char *password)

{

gnutls_pkcsl12_t pkcsl2;

int ret, bag_index;

gnutls_pkcsl2_bag_t bag, key_bag;

Chapter 6: More on certificate authentication 59

char pkcsi2_struct[10 * 1024];
size_t pkcsl2_struct_size;
FILE *fd;

/* A good idea might be to use gnutls_x509_privkey_get_key_id()
* to obtain a unique ID.
*/

gnutls_datum_t key_id = { (void *) "\x00\x00\x07", 3 };

gnutls_global_init (O);

/* Firstly we create two helper bags, which hold the certificate,
* and the (encrypted) key.
*/

gnutls_pkcsl12_bag_init (&bag);
gnutls_pkcsl2_bag_init (&key_bag);

ret = gnutls_pkcsl2_bag_set_data (bag, GNUTLS_BAG_CERTIFICATE, cert);
if (ret < 0)
{
fprintf (stderr, "ret: Ys\n", gnutls_strerror (ret));
return 1;

}

/* ret now holds the bag’s index.
*/

bag_index = ret;

/* Associate a friendly name with the given certificate. Used
* by browsers.
*/

gnutls_pkcs12_bag_set_friendly_name (bag, bag_index, "My name");

/* Associate the certificate with the key using a unique key
* ID.
*/

gnutls_pkcs12_bag_set_key_id (bag, bag_index, &key_id);

/* use weak encryption for the certificate.
*/
gnutls_pkcsl12_bag_encrypt (bag, password, GNUTLS_PKCS_USE_PKCS12_RC2_40);

/* Now the key.
*/

ret = gnutls_pkcsl2_bag_set_data (key_bag,

Chapter 6: More on certificate authentication

GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,

pkcs8_key) ;
if (ret < 0)
{
fprintf (stderr, "ret: Ys\n", gnutls_strerror (ret));
return 1;
}

/* Note that since the PKCS #8 key is already encrypted we don’t
* bother encrypting that bag.
*/

bag_index = ret;
gnutls_pkcsl12_bag_set_friendly_name (key_bag, bag_index, "My name");

gnutls_pkcsl12_bag_set_key_id (key_bag, bag_index, &key_id);

/* The bags were filled. Now create the PKCS #12 structure.
*/
gnutls_pkcs12_init (&pkcsl2);

/* Insert the two bags in the PKCS #12 structure.
*/

gnutls_pkcs12_set_bag (pkcsl2, bag);
gnutls_pkcsl2_set_bag (pkcsl2, key_bag);

/* Generate a message authentication code for the PKCS #12
* structure.
*/

gnutls_pkcs12_generate_mac (pkcsl2, password);

pkcsl2_struct_size = sizeof (pkcsl2_struct);
ret =
gnutls_pkcs12_export (pkcsl2, GNUTLS_X509_FMT_DER, pkcsl2_struct,
&pkcsl12_struct_size);
if (ret < 0)
{
fprintf (stderr, "ret: Ys\n", gnutls_strerror (ret));
return 1;

3

fd = fopen (OUTFILE, "w");
if (fd == NULL)
{

60

Chapter 6: More on certificate authentication 61

fprintf (stderr, "cannot open file\n");
return 1;

}
furite (pkcsl12_struct, 1, pkcsl2_struct_size, fd);

fclose (fd);

gnutls_pkcs12_bag_deinit (bag);
gnutls_pkcs12_bag_deinit (key_bag);
gnutls_pkcs12_deinit (pkcsil2);

return O;

}

Other structures

Unfortunately the structures discussed in the previous sections are not the only struc-
tures that may hold an encrypted private key. For example the OpenSSL library offers
a custom key encryption method. Those structures are also supported in GnuTLS with
[gnutls_x509_privkey_import_openssl], page 397.

int gnutls_x509_privkey_import_openssl (gnutls-x509_privkey_t [Function]
key, const gnutls_datum_t * data, const char* password)
key: The structure to store the parsed key
data: The DER or PEM encoded key.
password: the password to decrypt the key (if it is encrypted).
This function will convert the given PEM encrypted to the native
gnutls_x509_privkey_t format. The output will be stored in key .
The password should be in ASCII.
If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and
the "DEK-Info" header.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Generic and higher level private key import functions are also available.

int [gnutls_x509_privkey_import2], page 396 (gnutls_x509_privkey_t key, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)

int [gnutls_privkey_import_x509_raw], page 462 (gnutls_privkey_t pkey, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)

6.5 Invoking certtool

Tool to parse and generate X.509 certificates, requests and private keys. It can be used
interactively or non interactively by specifying the template command line option.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the certtool program. This software is released under the GNU General
Public License, version 3 or later.

Chapter 6: More on certificate authentication 62

certtool help/usage (-h)

This is the automatically generated usage text for certtool. The text printed is the same
whether for the help option (-h) or the more-help option (-!). more-help will print the
usage text by passing it through a pager program. more-help is disabled on platforms
without a working fork(2) function. The PAGER environment variable is used to select the
program, defaulting to ‘more’. Both will exit with a status code of 0.

certtool - GnuTLS certificate tool - Ver. QVERSIONQ
certtool [-<flag> [<val>] | --<name>[{=| }<val>]]...

USAGE:

-d,

-V,

-s,

-u,
-p,
-q,
-e,

_i’

—--debug=num

—--verbose
—-infile=file

--outfile=str
--generate-self-signed
--generate-certificate
—-—generate—proxy
--generate-crl
--update-certificate
--generate-privkey
-—generate-request
--verify-chain
--verify

--verify-crl

--generate-dh-params
--get-dh-params
—-—-dh-info
--load-privkey=str
--load-pubkey=str
--load-request=£file

—-load-certificate=str
--load-ca-privkey=str

Enable debugging.
- It must be in the range:
0 to 9999
More verbose output
- may appear multiple times
Input file
- file must pre-exist
OQutput file
Generate a self-signed certificate
Generate a signed certificate
Generates a proxy certificate
Generate a CRL
Update a signed certificate
Generate a private key
Generate a PKCS #10 certificate request
Verify a PEM encoded certificate chain.
Verify a PEM encoded certificate chain using a trusted list.
- requires these options:
load-ca-certificate
Verify a CRL using a trusted list.
- requires these options:
load-ca-certificate
Generate PKCS #3 encoded Diffie-Hellman parameters.
Get the included PKCS #3 encoded Diffie-Hellman parameters.
Print information PKCS #3 encoded Diffie-Hellman parameters
Loads a private key file
Loads a public key file
Loads a certificate request file
- file must pre-exist
Loads a certificate file
Loads the certificate authority’s private key file

--load-ca-certificate=str Loads the certificate authority’s certificate file

--password=str
--null-password
—-—certificate-info
--certificate-pubkey
--pgp-certificate-info

Password to use

Enforce a NULL password

Print information on the given certificate

Print certificate’s public key

Print information on the given OpenPGP certificate

Chapter 6: More on certificate authentication 63

--pgp-ring-info
-1, --crl-info
--crqg-info
--no-crq-extensions
--pl2-info
-—-p7-info
—--smime-to-p7
-k, --key-info
--pgp-key-info
—--pubkey-info
--vl
--to-pl2

--to-p8
-8, ——pkcs8
--rsa
--dsa
-—ecc
—-hash=str
-—inder

——inraw
—-outder

-—-outraw

--bits=num
--sec-param=str
--disable-quick-random
-—template=file

—--pkcs-cipher=str

-v, —--version[=arg]
-h, --help
-1, ——more-help

Options are specified by doub
hyphen and the flag character

Tool to parse and generate X.
It can be used interactively
template command line option.

please send bug reports to:

Print information on the given OpenPGP keyring structure
Print information on the given CRL structure
Print information on the given certificate request
Do not use extensions in certificate requests
Print information on a PKCS #12 structure
Print information on a PKCS #7 structure
Convert S/MIME to PKCS #7 structure
Print information on a private key
Print information on an OpenPGP private key
Print information on a public key
Generate an X.509 version 1 certificate (with no extensions)
Generate a PKCS #12 structure
- requires these options:
load-certificate
Generate a PKCS #8 structure
Use PKCS #8 format for private keys
Generate RSA key
Generate DSA key
Generate ECC (ECDSA) key
Hash algorithm to use for signing.
Use DER format for input certificates and private keys.
- disabled as --no-inder
This is an alias for ’inder’
Use DER format for output certificates and private keys
- disabled as —--no-outder
This is an alias for ’outder’
Specify the number of bits for key generate
Specify the security level [low, legacy, normal, high, ultral
No effect
Template file to use for non-interactive operation
- file must pre-exist
Cipher to use for PKCS #8 and #12 operations
Output version information and exit
Display extended usage information and exit
Extended usage information passed thru pager

led hyphens and their name or by a single

509 certificates, requests and private keys.
or non interactively by specifying the

bug-gnutls@gnu.org

Chapter 6: More on certificate authentication 64

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

verify-chain option (-e)

This is the “verify a pem encoded certificate chain.” option. The last certificate in the
chain must be a self signed one.

verify option

This is the “verify a pem encoded certificate chain using a trusted list.” option.

This option has some usage constraints. It:

e must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with —load-ca-certificate.

verify-crl option
This is the “verify a crl using a trusted list.” option.
This option has some usage constraints. It:

e must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with —load-ca-certificate.

get-dh-params option

This is the “get the included pkcs #3 encoded diffie-hellman parameters.” option. Returns
stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The
parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.
load-privkey option

This is the “loads a private key file” option. This option takes an argument string. This
can be either a file or a PKCS #11 URL

load-pubkey option

This is the “loads a public key file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

load-ca-privkey option

This is the “loads the certificate authority’s private key file” option. This option takes an
argument string. This can be either a file or a PKCS #11 URL

Chapter 6: More on certificate authentication 65

load-ca-certificate option

This is the “loads the certificate authority’s certificate file” option. This option takes an
argument string. This can be either a file or a PKCS #11 URL

null-password option

This is the “enforce a null password” option. This option enforces a NULL password. This
may be different than the empty password in some schemas.

to-p12 option

This is the “generate a pkcs #12 structure” option.

This option has some usage constraints. It:

e must appear in combination with the following options: load-certificate.

It requires a certificate, a private key and possibly a CA certificate to be specified.

hash option

This is the “hash algorithm to use for signing.” option. This option takes an argument
string. Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

inder option

This is the “use der format for input certificates and private keys.” option. The input files
will be assumed to be in DER or RAW format. Unlike options that in PEM input would
allow multiple input data (e.g. multiple certificates), when reading in DER format a single
data structure is read.

inraw option

This is an alias for the inder option, see [certtool inder|, page 65.

outder option

This is the “use der format for output certificates and private keys” option. The output
will be in DER or RAW format.

outraw option

This is an alias for the outder option, see [certtool outder|, page 65.

sec-param option

”

This is the “specify the security level [low, legacy, normal, high, ultra].” option. This option

takes an argument string ‘Security parameter’. This is alternative to the bits option.

pkcs-cipher option

This is the “cipher to use for pkes #8 and #12 operations” option. This option takes
an argument string ‘Cipher’. Cipher may be one of 3des, 3des-pkcsl2, aes-128, aes-192,
aes-256, rc2-40, arcfour.

Chapter 6: More on certificate authentication 66

certtool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

certtool See Also
plltool (1)

certtool Examples

Generating private keys

To create an RSA private key, run:
$ certtool --generate-privkey --outfile key.pem --rsa

To create a DSA or elliptic curves (ECDSA) private key use the above command combined
with ’dsa’ or ’ecc’ options.

Generating certificate requests

To create a certificate request (needed when the certificate is issued by another party), run:

certtool --generate-request --load-privkey key.pem \
--outfile request.pem

If the private key is stored in a smart card you can generate a request by specifying the
private key object URL.

$./certtool --generate-request --load-privkey "pkcsil:..." \
--load-pubkey "pkcsll:..." --outfile request.pem

Generating a self-signed certificate

To create a self signed certificate, use the command:

$ certtool --generate-privkey --outfile ca-key.pem
$ certtool --generate-self-signed --load-privkey ca-key.pem \
—-—outfile ca-cert.pem

Note that a self-signed certificate usually belongs to a certificate authority, that signs other
certificates.

Generating a certificate

To generate a certificate using the previous request, use the command:

$ certtool --generate-certificate --load-request request.pem \
—--outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem
To generate a certificate using the private key only, use the command:

$ certtool --generate-certificate --load-privkey key.pem \
—--outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem

Chapter 6: More on certificate authentication 67

Certificate information
To view the certificate information, use:

$ certtool --certificate-info --infile cert.pem

PKCS #12 structure generation

To generate a PKCS #12 structure using the previous key and certificate, use the command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \
--to-pl2 --outder --outfile key.pl2

Some tools (reportedly web browsers) have problems with that file because it does not
contain the CA certificate for the certificate. To work around that problem in the tool, you
can use the —load-ca-certificate parameter as follows:

$ certtool --load-ca-certificate ca.pem \
--load-certificate cert.pem --load-privkey key.pem \
--to-pl2 --outder --outfile key.pl2

Diffie-Hellman parameter generation

To generate parameters for Diffie-Hellman key exchange, use the command:

$ certtool --generate-dh-params --outfile dh.pem --sec-param normal

Proxy certificate generation

Proxy certificate can be used to delegate your credential to a temporary, typically short-
lived, certificate. To create one from the previously created certificate, first create a tem-
porary key and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem

$ certtool --generate-proxy --load-ca-privkey key.pem \
--load-privkey proxy-key.pem --load-certificate cert.pem \
--outfile proxy-cert.pem

Certificate revocation list generation
To create an empty Certificate Revocation List (CRL) do:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
--load-ca-certificate x509-ca.pem

To create a CRL that contains some revoked certificates, place the certificates in a file and
use ——load-certificate as follows:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
--load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

To verify a Certificate Revocation List (CRL) do:

$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

certtool Files

Chapter 6: More on certificate authentication 68

Certtool’s template file format

A template file can be used to avoid the interactive questions of certtool. Initially create a
file named ’cert.cfg’ that contains the information about the certificate. The template can
be used as below:

$ certtool --generate-certificate cert.pem --load-privkey key.pem \
--template cert.cfg \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file that can be used to generate a certificate request or a self
signed certificate follows.

X.509 Certificate options
#
DN options

The organization of the subject.
organization = "Koko inc."

The organizational unit of the subject.
unit = "sleeping dept."

The locality of the subject.
locality =

The state of the certificate owner.
state = "Attiki"

The country of the subject. Two letter code.
country = GR

The common name of the certificate owner.
cn = "Cindy Lauper"

A user id of the certificate owner.
#uid = "clauper"

Set domain components
#dc = "name"
#dc = "domain"

If the supported DN OIDs are not adequate you can set

any OID here.

For example set the X.520 Title and the X.520 Pseudonym
by using OID and string pairs.

#dn_oid = 2.5.4.12 Dr.

#dn_oid = 2.5.4.65 jackal

This is deprecated and should not be used in new

Chapter 6: More on certificate authentication 69

certificates.
pkcs9_email = "none@none.org"

The serial number of the certificate
serial = 007

In how many days, counting from today, this certificate will expire.
expiration_days = 700

X.509 v3 extensions
A dnsname in case of a WWW server.
#dns_name = "www.none.org"

#dns_name = "www.morethanone.org"

A subject alternative name URI
#uri = "http://www.example.com"

An IP address in case of a server.
#ip_address = "192.168.1.1"

An email in case of a person
email = "none@none.org"

Challenge password used in certificate requests
challenge_passwd = 123456

An URL that has CRLs (certificate revocation lists)
available. Needed in CA certificates.

#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not
#ca

for microsoft smart card logon
key_purpose_oid = 1.3.6.1.4.1.311.20.2.2

Other predefined key purpose 0IDs

Whether this certificate will be used for a TLS client
#tls_www_client

Whether this certificate will be used for a TLS server
#tls_www_server

Whether this certificate will be used to sign data (needed
in TLS DHE ciphersuites).

Chapter 6: More on certificate authentication 70

signing_key

Whether this certificate will be used to encrypt data (needed

in TLS RSA ciphersuites). Note that it is preferred to use different
keys for encryption and signing.

#encryption_key

Whether this key will be used to sign other certificates.
#cert_signing key

Whether this key will be used to sign CRLs.
#crl_signing_key

Whether this key will be used to sign code.
#code_signing_key

Whether this key will be used to sign OCSP data.
#ocsp_signing_key

Whether this key will be used for time stamping.
#time_stamping_key

Whether this key will be used for IPsec IKE operatioms.
#ipsec_ike_key

end of key purpose 0IDs

When generating a certificate from a certificate

request, then honor the extensions stored in the request
and store them in the real certificate.
#honor_crq_extensions

Path length contraint. Sets the maximum number of

certificates that can be used to certify this certificate.
(i.e. the certificate chain length)

#path_len = -1

#path_len = 2

0OCSP URI
ocsp_uri = http://my.ocsp.server/ocsp

+*

CA issuers URI
ca_issuers_uri = http://my.ca.issuer

**

Options for proxy certificates
proxy_policy_language = 1.3.6.1.5.5.7.21.1

Chapter 6: More on certificate authentication 71

Options for generating a CRL

next CRL update will be in 43 days (wow)
#crl_next_update = 43

this is the 5th CRL by this CA
#crl_number = 5

6.6 Invoking ocsptool

Ocsptool is a program that can parse and print information about OCSP requests/responses,
generate requests and verify responses.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the ocsptool program. This software is released under the GNU General
Public License, version 3 or later.

ocsptool help/usage (-h)

This is the automatically generated usage text for ocsptool. The text printed is the same
whether for the help option (-h) or the more-help option (-!). more-help will print the
usage text by passing it through a pager program. more-help is disabled on platforms
without a working fork(2) function. The PAGER environment variable is used to select the
program, defaulting to ‘more’. Both will exit with a status code of 0.

ocsptool - GnuTLS OCSP tool - Ver. QVERSION®

USAGE: ocsptool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, -—-debug=num Enable debugging.
- It must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--infile=file Input file
- file must pre-exist
--outfile=str Output file
--ask[=arg] Ask an OCSP/HTTP server on a certificate validity
- requires these options:
load-cert
load-issuer
-e, —-verify-response Verify response
-i, —--request-info Print information on a OCSP request
-j, ——response-info Print information on a OCSP response
-q, —-generate-request Generate an 0CSP request
--nonce Don’t add nonce to OCSP request
- disabled as --no-nonce
-—load-issuer=file Read issuer certificate from file

- file must pre-exist
—-load-cert=file Read certificate to check from file

Chapter 6: More on certificate authentication 72

- file must pre-exist
-—load-trust=file Read OCSP trust anchors from file

- prohibits these options:

load-signer

- file must pre-exist

--load-signer=file Read OCSP response signer from file
- prohibits these options:
load-trust
- file must pre-exist
--inder Use DER format for input certificates and private keys

- disabled as --no-inder

-Q, ——load-request=file Read DER encoded OCSP request from file
- file must pre-exist

-S, ——load-response=file Read DER encoded OCSP response from file
- file must pre-exist

-v, —--version[=arg] Output version information and exit
-h, --help Display extended usage information and exit
-!, —--more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Ocsptool is a program that can parse and print information about OCSP
requests/responses, generate requests and verify responses.

please send bug reports to: bug-gnutls@gnu.org
debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

ask option

This is the “ask an ocsp/http server on a certificate validity” option. This option takes an
optional argument string ‘server name|url’.

This option has some usage constraints. It:
e must appear in combination with the following options: load-cert, load-issuer.

Connects to the specified HTTP OCSP server and queries on the validity of the loaded
certificate.

ocsptool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

Chapter 6: More on certificate authentication 73

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

ocsptool See Also
certtool (1)

ocsptool Examples

Print information about an OCSP request

To parse an OCSP request and print information about the content, the -i or ~-request-
info parameter may be used as follows. The -Q parameter specify the name of the file
containing the OCSP request, and it should contain the OCSP request in binary DER
format.

$ ocsptool -i -Q ocsp-request.der
The input file may also be sent to standard input like this:

$ cat ocsp-request.der | ocsptool --request-info

Print information about an OCSP response

Similar to parsing OCSP requests, OCSP responses can be parsed using the -j or --
response-info as follows.

$ ocsptool -j -Q ocsp-response.der
$ cat ocsp-response.der | ocsptool --response-info

Generate an OCSP request

The -q or —--generate-request parameters are used to generate an OCSP request. By
default the OCSP request is written to standard output in binary DER format, but can be
stored in a file using —-outfile. To generate an OCSP request the issuer of the certificate
to check needs to be specified with —-load-issuer and the certificate to check with —-
load-cert. By default PEM format is used for these files, although --inder can be used
to specify that the input files are in DER format.

$ ocsptool -q --load-issuer issuer.pem --load-cert client.pem \
--outfile ocsp-request.der

When generating OCSP requests, the tool will add an OCSP extension containing a nonce.
This behaviour can be disabled by specifying --no-nonce.

Verify signature in OCSP response

To verify the signature in an OCSP response the -e or —-verify-response parameter is
used. The tool will read an OCSP response in DER format from standard input, or from
the file specified by --load-response. The OCSP response is verified against a set of
trust anchors, which are specified using —-load-trust. The trust anchors are concatenated
certificates in PEM format. The certificate that signed the OCSP response needs to be in
the set of trust anchors, or the issuer of the signer certificate needs to be in the set of trust
anchors and the OCSP Extended Key Usage bit has to be asserted in the signer certificate.

$ ocsptool -e --load-trust issuer.pem \
--load-response ocsp-response.der

Chapter 6: More on certificate authentication 74

The tool will print status of verification.

Verify signature in OCSP response against given certificate

It is possible to override the normal trust logic if you know that a certain certificate is
supposed to have signed the OCSP response, and you want to use it to check the signature.
This is achieved using --load-signer instead of --load-trust. This will load one certifi-
cate and it will be used to verify the signature in the OCSP response. It will not check the
Extended Key Usage bit.

$ ocsptool -e --load-signer ocsp-signer.pem \
--load-response ocsp-response.der

This approach is normally only relevant in two situations. The first is when the OCSP
response does not contain a copy of the signer certificate, so the ——load-trust code would
fail. The second is if you want to avoid the indirect mode where the OCSP response signer
certificate is signed by a trust anchor.

Real-world example

Here is an example of how to generate an OCSP request for a certificate and to verify the
response. For illustration we’ll use the blog. josefsson.org host, which (as of writing)
uses a certificate from CACert. First we’ll use gnutls-cli to get a copy of the server
certificate chain. The server is not required to send this information, but this particular
one is configured to do so.

$ echo | gnutls-cli -p 443 blog.josefsson.org --print-cert > chain.pem

Use a text editor on chain.pem to create three files for each separate certificates, called
cert.pem for the first certificate for the domain itself, secondly issuer.pem for the inter-
mediate certificate and root.pem for the final root certificate.

The domain certificate normally contains a pointer to where the OCSP responder is located,
in the Authority Information Access Information extension. For example, from certtool
-i < cert.pem there is this information:

Authority Information Access Information (not critical):
Access Method: 1.3.6.1.5.5.7.48.1 (id-ad-ocsp)
Access Location URI: http://ocsp.CAcert.org/

This means the CA support OCSP queries over HT'TP. We are now ready to create a OCSP
request for the certificate.

$ ocsptool --ask ocsp.CAcert.org --load-issuer issuer.pem \
--load-cert cert.pem --outfile ocsp-response.der

The request is sent via HT'TP to the OCSP server address specified. If the address is
ommited ocsptool will use the address stored in the certificate.

6.7 Invoking danetool
Tool generate DNS resource records for the DANE protocol.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the danetool program. This software is released under the GNU General
Public License, version 3 or later.

Chapter 6: More on certificate authentication 75

danetool help/usage (-h)

This is the automatically generated usage text for danetool. The text printed is the same
whether for the help option (-h) or the more-help option (-!). more-help will print the
usage text by passing it through a pager program. more-help is disabled on platforms
without a working fork(2) function. The PAGER environment variable is used to select the
program, defaulting to ‘more’. Both will exit with a status code of 0.

danetool - GnuTLS DANE tool -

Ver. QVERSIONG®

USAGE: danetool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num

-V, —--verbose
——infile=file

--outfile=str
--load-pubkey=str
--load-certificate=str
--hash=str

——inder

——inraw
—--outder

-—-outraw
--tlsa-rr

-—host=str
—--proto=str
——port=num
--ca
authority.
--x509
--local
-v, —--version[=arg]
-h, --help
—-!, ——more-help

Enable debugging.
- It must be in the range:
0 to 9999
More verbose output
- may appear multiple times
Input file
- file must pre-exist
OQutput file
Loads a public key file
Loads a certificate file
Hash algorithm to use for signing.
Use DER format for input certificates and private keys.
- disabled as --no-inder
This is an alias for ’inder’
Use DER format for output certificates and private keys
- disabled as —-—no-outder
This is an alias for ’outder’
Print the DANE RR data on a certificate or public key
- requires these options:
host
Specify the hostname to be used in the DANE RR
The protocol set for DANE data (tcp, udp etc.)
Specify the port number for the DANE data.
Whether the provided certificate or public key is a Certifica

Use the hash of the X.509 certificate, rather than the public
The provided certificate or public key is a local entity.
Output version information and exit

Display extended usage information and exit

Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Tool generate DNS resource records for the DANE protocol.

Chapter 6: More on certificate authentication 76

please send bug reports to: bug-gnutls@gnu.org
debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

load-pubkey option

This is the “loads a public key file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

hash option

This is the “hash algorithm to use for signing.” option. This option takes an argument
string. Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

inder option

This is the “use der format for input certificates and private keys.” option. The input files
will be assumed to be in DER or RAW format. Unlike options that in PEM input would
allow multiple input data (e.g. multiple certificates), when reading in DER format a single
data structure is read.

inraw option

This is an alias for the inder option, see [danetool inder], page 76.

outder option

This is the “use der format for output certificates and private keys” option. The output
will be in DER or RAW format.

outraw option

This is an alias for the outder option, see [danetool outder|, page 76.

tlsa-rr option

This is the “print the dane rr data on a certificate or public key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: host.

This command prints the DANE RR data needed to enable DANE on a DNS server.
host option

This is the “specify the hostname to be used in the dane rr” option. This option takes an
argument string ‘Hostname’. This command sets the hostname for the DANE RR.

Chapter 6: More on certificate authentication 77

proto option

This is the “the protocol set for dane data (tcp, udp etc.)” option. This option takes an
argument string ‘Protocol’. This command specifies the protocol for the service set in the
DANE data.

ca option

This is the “whether the provided certificate or public key is a certificate authority.” option.
Marks the DANE RR as a CA certificate if specified.

x509 option

This is the “use the hash of the x.509 certificate, rather than the public key.” option. This
option forces the generated record to contain the hash of the full X.509 certificate. By
default only the hash of the public key is used.

local option

This is the “the provided certificate or public key is a local entity.” option. DANE distin-
guishes certificates and public keys offered via the DNSSEC to trusted and local entities.
Use this flag if this is a local (and possibly unsigned) entity.

danetool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

danetool See Also
plltool (1)

danetool Examples

DANE TLSA RR generation

To create a DANE TLSA resource record for a CA signed certificate use the following
commands.

$ certtool --tlsa-rr --host www.example.com --load-certificate cert.pem
For a self signed certificate use:

$ certtool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--local

The latter is useful to add in your DNS entry even if your certificate is signed by a CA.
That way even users who do not trust your CA will be able to verify your certificate using
DANE.

In order to create a record for the signer of your certificate use:

Chapter 6: More on certificate authentication 78

$ certtool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--ca

To read a server’s DANE TLSA entry, using the dig tool, use:
$ dig +short TYPES52 _443._tcp.www.example.com

Chapter 7: Hardware security modules and abstract key types 79

7 Hardware security modules and abstract key
types

In several cases storing the long term cryptographic keys in a hard disk or even in memory
poses a significant risk. Once the system they are stored is compromised the keys must be
replaced as the secrecy of future sessions is no longer guarranteed. Moreover, past sessions
that were not protected by a perfect forward secrecy offering ciphersuite are also to be
assumed compromised.

If such threats need to be addressed, then it may be wise storing the keys in a security
module such as a smart card, an HSM or the TPM chip. Those modules ensure the pro-
tection of the cryptographic keys by only allowing operations on them and preventing their
extraction.

7.1 Abstract key types

Since there are many forms of a public or private keys supported by GnuTLS such as X.509,
OpenPGP, PKCS #11 or TPM it is desirable to allow common operations on them. For
these reasons the abstract gnutls_privkey_t and gnutls_pubkey_t were introduced in
gnutls/abstract.h header. Those types are initialized using a specific type of key and
then can be used to perform operations in an abstract way. For example in order to sign
an X.509 certificate with a key that resides in a token the following steps must be used.

#inlude <gnutls/abstract.h>

void sign_cert(gnutls_x509_crt_t to_be_signed)
{

gnutls_x509_crt_t ca_cert;

gnutls_privkey_t abs_key;

/* initialize the abstract key */
gnutls_privkey_init (&abs_key) ;

/* keys stored in tokens are identified by URLs */
gnutls_privkey_import_url(abs_key, key_url);

gnutls_x509_crt_init (&ca_cert);
gnutls_x509_crt_import_pkcsll_url(&ca_cert, cert_url);

/* sign the certificate to be signed */
gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, abs_key,
GNUTLS_DIG_SHA256, 0);
}

7.1.1 Public keys

An abstract gnutls_pubkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_crt_t, or through an ASN.1
encoding of the X.509 SubjectPublicKeyInfo sequence.

Chapter 7: Hardware security modules and abstract key types 80

int [gnutls_pubkey_import_x509], page 472 (gnutls_pubkey_t key,
gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_openpgpl, page 469 (gnutls_pubkey_t key,
gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_pkcsll], page 470 (gnutls_pubkey_t key,
gnutls_pkcsll_obj_t obj, unsigned int flags)

int [gnutls_pubkey_import_url], page 472 (gnutls_pubkey_t key, const char *
url, unsigned int flags)

int [gnutls_pubkey_import_privkey], page 470 (gnutls_pubkey_t key,
gnutls_privkey_t pkey, unsigned int usage, unsigned int flags)

int [gnutls_pubkey_import], page 468 (gnutls_pubkey_t key, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_pubkey_export], page 464 (gnutls_pubkey_t key,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)
int [gnutls_pubkey_export2], page 464 (gnutls_pubkey_t key,
gnutls_x509_crt_fmt_t format, gnutls_datum_t * out)

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below.

int [gnutls_pubkey_import_x509_raw], page 472 (gnutls_pubkey_t pkey, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pubkey_import_openpgp_raw], page 469 (gnutls_pubkey_t pkey, const
gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const
gnutls_openpgp_keyid_t keyid, unsigned int flags)

An important function is [gnutls_pubkey_import_url|, page 472 which will import public
keys from URLs that identify objects stored in tokens (see Section 7.2 [Smart cards and
HSMs]|, page 85 and Section 7.3 [Trusted Platform Module], page 95). A function to check
for a supported by GnuTLS URL is [gnutls_url_is_supported], page 327.

int gnutls_url_is_supported (const char* url) [Function]
url: A PKCS 11 url

Check whether url is supported. Depending on the system libraries GnuTLS may
support pkesll or tpmkey URLs.

Returns: return non-zero if the given URL is supported, and zero if it is not known.
Since: 3.1.0

Additional functions are available that will return information over a public key, as well as
a function that given a public key fingerprint would provide a memorable sketch.

int [gnutls_pubkey_get_pk_algorithm], page 466 (gnutls_pubkey_t key, unsigned
int * bits)

int [gnutls_pubkey_get_preferred_hash_algorithm], page 467 (gnutls_pubkey_t
key, gnutls_digest_algorithm_t * hash, unsigned int * mand)

int [gnutls_pubkey_get_key_id], page 465 (gnutls_pubkey_t key, unsigned int
flags, unsigned char * output_data, size_t * output_data_size)

int [gnutls_random_art], page 306 (gnutls_random_art_t type, const charx
key_type, unsigned int key_size, void * fpr, size_t fpr_size, gnutls_datum_t*
art)

Chapter 7: Hardware security modules and abstract key types 81

7.1.2 Private keys

An abstract gnutls_privkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_privkey_t, but unlike public
keys it cannot be exported. That is to allow abstraction over keys stored in hardware that
makes available only operations.

int [gnutls_privkey_import_x509], page 461 (gnutls_privkey_t pkey,
gnutls_x509_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_openpgpl, page 459 (gnutls_privkey_t pkey,
gnutls_openpgp_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_pkcsll], page 459 (gnutls_privkey_t pkey,
gnutls_pkcsll_privkey_t key, unsigned int flags)

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below. Again, as with public keys, private keys can be imported from a hardware
module using URLs.

int [gnutls_privkey_import_x509_raw], page 462 (gnutls_privkey_t pkey, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)

int [gnutls_privkey_import_openpgp_raw], page 459 (gnutls_privkey_t pkey,
const gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const
gnutls_openpgp_keyid_t keyid, const char* password)

int gnutls_privkey_import_url (gnutls_privkey_t key, const char * [Function]
url, unsigned int flags)
key: A key of type gnutls_privkey_t
url: A PKCS 11 url
flags: should be zero

This function will import a PKCS11 or TPM URL as a private key. The supported
URL types can be checked using gnutls_url_is_supported() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_privkey_get_pk_algorithm], page 457 (gnutls_privkey_t key,
unsigned int * bits)

gnutls_privkey_type_t [gnutls_privkey_get_typel, page 458 (gnutls_privkey_t
key)

In order to support cryptographic operations using an external API, the following function
is provided. This allows for a simple extensibility API without resorting to PKCS #11.

int gnutls_privkey_import_ext2 (gnutls_privkey_t pkey, [Function]
gnutls_pk_algorithm_t pk, void* userdata, gnutls_privkey_sign_func
sign_func, gnutls_privkey_decrypt_func decrypt_func,
gnutls_privkey_deinit_func deinit_func, unsigned int flags)
pkey: The private key
pk: The public key algorithm

Chapter 7: Hardware security modules and abstract key types 82

userdata: private data to be provided to the callbacks
sign_func: callback for signature operations
decrypt_func: callback for decryption operations
deinit_func: a deinitialization function

flags: Flags for the import

This function will associate the given callbacks with the gnutls_privkey_t structure.
At least one of the two callbacks must be non-null. If a deinitialization function is
provided then flags is assumed to contain GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1

7.1.3 Operations

The abstract key types can be used to access signing and signature verification operations
with the underlying keys.

int gnutls_pubkey_verify_data2 (gnutls-pubkey_t pubkey, [Function]

gnutls_sign_algorithm_t algo, unsigned int flags, const gnutls_datum_t *
data, const gnutls_datum_t * signature)

pubkey: Holds the public key

algo: The signature algorithm used

flags: should be 0 for now

data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

int gnutls_pubkey_verify_hash2 (gnutls_pubkey.t key, [Function]
gnutls_sign_algorithm_t algo, unsigned int flags, const gnutls_datum_t *
hash, const gnutls_.datum_t * signature)
key: Holds the public key

algo: The signature algorithm used

flags: should be 0 for now

hash: holds the hash digest to be verified

signature: contains the signature

This function will verify the given signed digest, using the parameters from the public
key.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

Chapter 7: Hardware security modules and abstract key types 83

int gnutls_pubkey_encrypt_data (gnutls_pubkey_t key, unsigned int [Function]
flags, const gnutls_datum_t * plaintext, gnutls_.datum_t * ciphertext)
key: Holds the public key

flags: should be 0 for now

plaintext: The data to be encrypted

ciphertext: contains the encrypted data

This function will encrypt the given data, using the public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_privkey_sign_data (gnutls_privkey_t signer, [Function]

gnutls_digest_algorithm_t hash, unsigned int flags, const gnutls_datum_t *
data, gnutls_datum_t * signature)
signer: Holds the key

hash: should be a digest algorithm

flags: should be 0 for now

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only the SHA
family for the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_privkey_sign_hash (gnutls_privkey_t signer, [Function]

gnutls_digest_algorithm_t hash_algo, unsigned int flags, const
gnutls_datum_t * hash_data, gnutls_datum_t * signature)
signer: Holds the signer’s key
hash_algo: The hash algorithm used
flags: zero for now
hash_data: holds the data to be signed
signature: will contain newly allocated signature
This function will sign the given hashed data using a signature algorithm supported by
the private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Chapter 7: Hardware security modules and abstract key types

84

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_privkey_decrypt_data (gnutls_privkey_t key, unsigned [Function]

int flags, const gnutls_datum_t * ciphertext, gnutls_datum_t *
plaintext)
key: Holds the key

flags: zero for now
ciphertext: holds the data to be decrypted
plaintext: will contain the decrypted data, allocated with gnutls_malloc()

This function will decrypt the given data using the algorithm supported by the private

key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0

Signing existing structures, such as certificates, CRLs, or certificate requests, as well as

associating public keys with structures is also possible using the key abstractions.

int gnutls_x509_crq_set_pubkey (gnutls_x509_crq-t crq, [Function]

gnutls_pubkey_t key)
crq: should contain a gnutls_x509_crq_t structure

key: holds a public key

This function will set the public parameters from the given public key to the request.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_x509_crt_set_pubkey (gnutls_x509_crt_t crt, [Function]

gnutls_pubkey_t key)
crt: should contain a gnutls_x509_crt_t structure

key: holds a public key

This function will set the public parameters from the given public key to the request.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0

int [gnutls_x509_crt_privkey_sign], page 476 (gnutls_x509_crt_t crt,
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crl_privkey_sign], page 475 (gnutls_x509_crl_t crl,
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crq_privkey_sign], page 475 (gnutls_x509_crq_t crq,
gnutls_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)

Chapter 7: Hardware security modules and abstract key types 85

7.2 Smart cards and HSMs

In this section we present the smart-card and hardware security module (HSM) support in
GnuTLS using PKCS #11 [PKCS11]. Hardware security modules and smart cards provide
a way to store private keys and perform operations on them without exposing them. This
decouples cryptographic keys from the applications that use them and provide an additional
security layer against cryptographic key extraction. Since this can also be achieved in
software components such as in Gnome keyring, we will use the term security module to
describe any cryptographic key separation subsystem.

PKCS #11 is plugin API allowing applications to access cryptographic operations on a
security module, as well as to objects residing on it. PKCS #11 modules exist for hardware
tokens such as smart cards!, cryptographic tokens, as well as for software modules like
Gnome Keyring. The objects residing on a security module may be certificates, public keys,
private keys or secret keys. Of those certificates and public/private key pairs can be used
with GnuTLS. PKCS #11’s main advantage is that it allows operations on private key
objects such as decryption and signing without exposing the key. In GnuTLS the PKCS
#11 functionality is available in gnutls/pkcsil.h.

Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system
to access shared cryptographic keys and certificates in a uniform way, as in Figure 7.1. That
way applications could load their trusted certificate list, as well as user certificates from a
common PKCS #11 module. Such a provider exists in the Gnome system, being the Gnome
Keyring.

Trusted Platform
Module

GnuTLS

Gnome Keyring
’-. S
Provider
User
Application
Other crypto
package

Figure 7.1: PKCS #11 module usage.

iU

Smart card

PKCS #11
Provider

7.2.1 Initialization

To allow all the GnuTLS applications to access PKCS #11 tokens you can use a con-
figuration per module, stored in /etc/pkcsil/modules/. These are the configuration
files of p11-kit?. For example a file that will load the OpenSC module, could be named
/etc/pkcsll/modules/opensc and contain the following:

module: /usr/lib/opensc-pkcsll.so

1 http://www.opensc-project.org
2 http://pll-glue.freedesktop.org/

http://www.opensc-project.org
http://p11-glue.freedesktop.org/

Chapter 7: Hardware security modules and abstract key types 86

If you use this file, then there is no need for other initialization in GnuTLS, except for
the PIN and token functions (see next section). However, you may manually initialize the
PKCS #11 subsystem if the default settings are not desirable.

int gnutls_pkcs1l_init (unsigned int flags, const char * [Function]
deprecated_config _file)
flags: GNUTLS_PKCS11_FLAG_MANUAL or GNUTLS_PKCS11_FLAG_AUTO

deprecated_config_file: either NULL or the location of a deprecated configuration file

This function will initialize the PKCS 11 subsystem in gnutls. It will read configu-
ration files if GNUTLS_PKCS11_FLAG_AUTO is used or allow you to independently load
PKCS 11 modules using gnutls_pkcsil_add_provider () if GNUTLS_PKCS11_FLAG_
MANUAL is specified.

Normally you don’t need to call this function since it is being called by gnutls_
global_init() using the GNUTLS_PKCS11_FLAG_AUTO . If other option is required
then it must be called before it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Note that PKCS #11 modules must be reinitialized on the child processes after a fork.
GnuTLS provides [gnutls_pkes11_reinit|, page 448 to be called for this purpose.

int gnutls_pkcsll_reinit (void) [Function]
This function will reinitialize the PKCS 11 subsystem in gnutls. This is required by
PKCS 11 when an application uses fork() . The reinitialization function must be
called on the child.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

7.2.2 Accessing objects that require a PIN

Objects stored in token such as a private keys are typically protected from access by a PIN
or password. This PIN may be required to either read the object (if allowed) or to perform
operations with it. To allow obtaining the PIN when accessing a protected object, as well
as probe the user to insert the token the following functions allow to set a callback.

void [gnutls_pkcsll_set_token_function], page 449
(gnutls_pkcs1l_token_callback_t fn, void * userdata)

void [gnutls_pkcsll_set_pin_function], page 449 (gnutls_pin_callback_t fn,
void * userdata)

int [gnutls_pkcsll_add_provider], page 441 (const char * name, const char *
params)

gnutls_pin_callback_t [gnutls_pkcsll_get_pin_function], page 443 (void **
userdata)

The callback is of type gnutls_pin_callback_t and will have as input the provided user-
data, the PIN attempt number, a URL describing the token, a label describing the object

Chapter 7: Hardware security modules and abstract key types 87

and flags. The PIN must be at most of pin_max size and must be copied to pin variable.
The function must return 0 on success or a negative error code otherwise.

typedef int (*gnutls_pin_callback_t) (void *userdata, int attempt,
const char *token_url,
const char *token_label,
unsigned int flags,
char *pin, size_t pin_max);

The flags are of gnutls_pin_flag_t type and are explained below.

GNUTLS_PIN_USER
The PIN for the user.

GNUTLS_PIN_SO
The PIN for the security officer (admin).

GNUTLS_PIN_FINAL_TRY
This is the final try before blocking.

GNUTLS_PIN_COUNT_LOW
Few tries remain before token blocks.

GNUTLS_PIN_CONTEXT_SPECIFIC
The PIN is for a specific action and key like signing.

GNUTLS_PIN_WRONG
Last given PIN was not correct.

Figure 7.2: The gnutls_pin_flag_t enumeration.

Note that due to limitations of PKCS #11 there are issues when multiple libraries are
sharing a module. To avoid this problem GnuTLS uses p11-kit that provides a middleware
to control access to resources over the multiple users.

To avoid conflicts with multiple registered callbacks for PIN functions,
[gnutls_pkesl1_get_pin_function], page 443 may be used to check for any previ-
ously set functions. In addition context specific PIN functions are allowed, e.g., by using
functions below.

void [gnutls_certificate_set_pin_function], page 266
(gnutls_certificate_credentials_t cred, gnutls_pin_callback_t fn, void *
userdata)

void [gnutls_pubkey_set_pin_function], page 473 (gnutls_pubkey_t key,
gnutls_pin_callback_t fn, void * userdata)

void [gnutls_privkey_set_pin_function], page 462 (gnutls_privkey_t key,
gnutls_pin_callback_t fn, void * userdata)

void [gnutls_pkcsll_obj_set_pin_function], page 446 (gnutls_pkcsll_obj_t
obj, gnutls_pin_callback_t fn, void * userdata)

void [gnutls_x509_crt_set_pin_function], page 384 (gnutls_x509_crt_t crt,
gnutls_pin_callback_t fn, void * userdata)

Chapter 7: Hardware security modules and abstract key types 88

7.2.3 Reading objects

All PKCS #11 objects are referenced by GnuTLS functions by URLs as described
in [PKCS11URI]. This allows for a consistent naming of objects across systems and
applications in the same system. For example a public key on a smart card may be
referenced as:

pkcsll:token=Nikos;serial=307521161601031;model=PKCS%2315; \
manufacturer=EnterSafe;object=testl;objecttype=public;\
1d=32£153£3e37990b08624141077cabdec2d15faed

while the smart card itself can be referenced as:
pkcsll:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive.
Usually only private keys are marked as sensitive and cannot be extracted, while certificates
and other data can be retrieved. The functions that can be used to access objects are shown
below.

int [gnutls_pkcsll_obj_import_url], page 445 (gnutls_pkcsll_obj_t obj, const
char * url, unsigned int flags)

int [gnutls_pkcsll_obj_export_url], page 444 (gnutls_pkcsll_obj_t obj,
gnutls_pkcsll_url_type_t detailed, char ** url)

int gnutls_pkcsll_obj_get_info (gnutls_pkesll_obj_t crt, [Function]
gnutls_pkesll_obj_info_t itype, void * output, size_t * output_size)
crt: should contain a gnutls_pkcsil_obj_t structure

itype: Denotes the type of information requested
output: where output will be stored

output_size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS11 certificate such as the label,
id as well as token information where the key is stored. When output is text it returns
null terminated string although output_size contains the size of the actual data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

int [gnutls_x509_crt_import_pkcsll], page 451 (gnutls_x509_crt_t crt,
gnutls_pkcsll_obj_t pkecsll_crt)

int [gnutls_x509_crt_import_pkcsll_url], page 451 (gnutls_x509_crt_t crt,
const char * url, unsigned int flags)

int [gnutls_x509_crt_list_import_pkcsil], page 452 (gnutls_x509_crt_t *
certs, unsigned int cert_max, gnutls_pkcsll_obj_t * const objs, unsigned int
flags)

Properties of the physical token can also be accessed and altered with GnuTLS. For example
data in a token can be erased (initialized), PIN can be altered, etc.

Chapter 7: Hardware security modules and abstract key types 89

int [gnutls_pkcsll_token_init], page 450 (const char * token_url, const char *
so_pin, const char * label)

int [gnutls_pkcsll_token_get_url], page 450 (unsigned int seq,
gnutls_pkcsil_url_type_t detailed, char ** url)

int [gnutls_pkcsll_token_get_info], page 449 (const char * url,
gnutls_pkcsll_token_info_t ttype, void * output, size_t * output_size)

int [gnutls_pkcsll_token_get_flags], page 449 (const char * url, unsigned int
*x flags)

int [gnutls_pkcsll_token_set_pin], page 450 (const char * token_url, const
char * oldpin, const char * newpin, unsigned int flags)

The following examples demonstrate the usage of the API. The first example will list all
available PKCS #11 tokens in a system and the latter will list all certificates in a token
that have a corresponding private key.

int 1i;

charx*x url;

gnutls_global_init();

for (i=0;;i++)
{
ret = gnutls_pkcsll_token_get_url(i, &url);
if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)
break;

if (ret < 0)
exit(1);

fprintf(stdout, "Token[%d]: URL: %s\n", i, url);
gnutls_free(url);
}
gnutls_global_deinit();

/* This example code is placed in the public domain. */

#include <config.h>
#include <gnutls/gnutls.h>
#include <gnutls/pkcsil.h>
#include <stdio.h>
#include <stdlib.h>

#define URL "pkcs11:URL"

int

main (int argc, char*x argv)

{
gnutls_pkcsll_obj_t *obj_list;
gnutls_x509_crt_t =xcrt;

Chapter 7: Hardware security modules and abstract key types 90

unsigned int obj_list_size = O;
gnutls_datum_t cinfo;

int ret;

unsigned int 1i;

obj_list_size = O;
ret = gnutls_pkcsll_obj_list_import_url (NULL, &obj_list_size, URL,
GNUTLS_PKCS11_0BJ_ATTR_CRT_WITH_PRIVKEY,
0);
if (ret < 0 && ret !'= GNUTLS_E_SHORT_MEMORY_BUFFER)
return -1;

/* no error checking from now on */
obj_list = malloc (sizeof (*obj_list) * obj_list_size);

gnutls_pkcsll_obj_list_import_url (obj_list, &obj_list_size, URL,
GNUTLS_PKCS11_0BJ_ATTR_CRT_WITH_PRIVKEY,
0);

/* now all certificates are in obj_list */
for (i = 0; i < obj_list_size; i++)

{
gnutls_x509_crt_init (&xcrt);
gnutls_x509_crt_import_pkcsll (xcrt, obj_list[il);
gnutls_x509_crt_print (xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);
fprintf (stdout, "cert[/d]:\n %s\n\n", i, cinfo.data);

gnutls_free (cinfo.data);
gnutls_x509_crt_deinit (xcrt);

return O;

¥

7.2.4 Writing objects

With GnuTLS you can copy existing private keys and certificates to a token. Note that
when copying private keys it is recommended to mark them as sensitive using the GNUTLS_
PKCS11_0BJ_FLAG_MARK_SENSITIVE to prevent its extraction. An object can be marked
as private using the flag GNUTLS_PKCS11_0BJ_FLAG_MARK_PRIVATE, to require PIN to be
entered before accessing the object (for operations or otherwise).

Chapter 7: Hardware security modules and abstract key types 91

int gnutls_pkcsll_copy_x509_privkey (const char * token_url, [Function]
gnutls_x509_privkey_t key, const char * label, unsigned int key_usage,
unsigned int flags)
token_url: A PKCS 11 URL specifying a token

key: A private key

label: A name to be used for the stored data
key_usage: One of GNUTLS_KEY_*

flags: One of GNUTLS_PKCS11_OBJ_* flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_0BJ_FLAG_MARK_SENSITIVE
unless there is a strong reason not to.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_pkcsll_copy_x509_crt (const char * token_url, [Function]

gnutls_x509_crt_t crt, const char * label, unsigned int flags)
token_url: A PKCS 11 URL specifying a token

crt: A certificate
label: A name to be used for the stored data
flags: One of GNUTLS_PKCS11_OBJ_FLAG_*

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

int gnutls_pkcsll_delete_url (const char * object_url, unsigned [Function]
int flags)
object_url: The URL of the object to delete.

flags: One of GNUTLS_PKCS11_OBJ_* flags

This function will delete objects matching the given URL. Note that not all tokens
support the delete operation.

Returns: On success, the number of objects deleted is returned, otherwise a negative
error value.

Since: 2.12.0

7.2.5 Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in [ex:pkesll-client],
page 166. In addition the following functions can be used to load PKCS #11 key and
certificates by specifying a PKCS #11 URL instead of a filename.

Chapter 7: Hardware security modules and abstract key types 92

int [gnutls_certificate_set_x509_trust_file], page 272
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_key_file], page 269
(gnutls_certificate_credentials_t res, const char * certfile, const char *
keyfile, gnutls_x509_crt_fmt_t type)

int gnutls_certificate_set_xb509_system_trust [Function]
(gnutls_certificate_credentials_t cred)
cred: is a gnutls_certificate_credentials_t structure.
This function adds the system’s default trusted CAs in order to verify client or server
certificates.
In the case the system is currently unsupported GNUTLS_E_UNIMPLEMENTED_FEATURE
is returned.

Returns: the number of certificates processed or a negative error code on error.
Since: 3.0

7.2.6 Invoking plltool

Program that allows handling data from PKCS #11 smart cards and security modules.

To use PKCS #11 tokens with gnutls the configuration file /etc/gnutls/pkesll.conf has to
exist and contain a number of lines of the form ’load=/usr/lib/opensc-pkesl1.so’.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the plitool program. This software is released under the GNU General
Public License, version 3 or later.

plltool help/usage (-h)

This is the automatically generated usage text for plltool. The text printed is the same
whether for the help option (-h) or the more-help option (-!). more-help will print the
usage text by passing it through a pager program. more-help is disabled on platforms
without a working fork(2) function. The PAGER environment variable is used to select the
program, defaulting to ‘more’. Both will exit with a status code of 0.

plitool - GnuTLS PKCS #11 tool - Ver. QVERSION®@

USAGE: pilitool [-<flag> [<val>] | --<name>[{=| }<val>]]... [url]
-d, --debug=num Enable debugging.
- It must be in the range:
0 to 9999
--outfile=str Output file
--list-tokens List all available tokens
—--export Export the object specified by the URL
--list-mechanisms List all available mechanisms in a token
--list-all List all available objects in a token
--list-all-certs List all available certificates in a token
--list-certs List all certificates that have an associated private key
--list-all-privkeys List all available private keys in a token

—-list-all-trusted List all available certificates marked as trusted

Chapter 7: Hardware security modules and abstract key types

——initialize
--write
--delete
--generate-rsa
--generate-dsa
—--generate-ecc
--label=str
-—trusted

--private

--login
—--detailed-url

--secret-key=str
--load-privkey=file

—--load-pubkey=file

Initializes a PKCS #11 token

93

Writes the loaded objects to a PKCS #11 token
Deletes the objects matching the PKCS #11 URL

Generate an RSA private-public key pair
Generate an RSA private-public key pair
Generate an RSA private-public key pair
Sets a label for the write operation
Marks the object to be written as trusted
- disabled as --no-trusted
Marks the object to be written as private
- disabled as —-—-no-private
- enabled by default
Force login to token
- disabled as --no-login
Print detailed URLs
- disabled as --no-detailed-url
Provide a hex encoded secret key
Private key file to use
- file must pre-exist
Public key file to use
- file must pre-exist

—-load-certificate=file Certificate file to use

-8, ——pkcs8
—-bits=num
--sec-param=str
—-inder

-—inraw
--provider=file

-v, —--version[=arg]
-h, --help
-1, —--more-help

- file must pre-exist
Use PKCS #8 format for private keys

Specify the number of bits for key generate

Specify the security level

Use DER/RAW format for input
- disabled as --no-inder

This is an alias for ’inder’

Specify the PKCS #11 provider library
- file must pre-exist

Output version information and exit

Display extended usage information and exit

Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Operands and options may be intermixed. They will be reordered.

Program that allows handling data from PKCS #11 smart cards and security

modules.

To use PKCS #11 tokens with gnutls the configuration file

/etc/gnutls/pkcsll.conf has to exist and contain a number of lines of the

form ’load=/usr/lib/opensc-pkcsll.so’.

Chapter 7: Hardware security modules and abstract key types 94

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

write option

This is the “writes the loaded objects to a pkes #11 token” option. It can be used to write
private keys, certificates or secret keys to a token.

generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair on the specified token.

generate-dsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair on the specified token.

generate-ecc option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair on the specified token.

private option
This is the “marks the object to be written as private” option.
This option has some usage constraints. It:

e is enabled by default.

The written object will require a PIN to be used.

sec-param option

This is the “specify the security level” option. This option takes an argument string
‘Security parameter’. This is alternative to the bits option. Available options are [low,
legacy, normal, high, ultra].

inder option

This is the “use der/raw format for input” option. Use DER/RAW format for input cer-
tificates and private keys.

inraw option

This is an alias for the inder option, see [pl1tool inder], page 94.

Chapter 7: Hardware security modules and abstract key types 95

provider option

This is the “specify the pkcs #11 provider library” option. This option takes an argument
file. This will override the default options in /etc/gnutls/pkesll.conf

plltool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

plltool See Also
certtool (1)

plltool Examples
To view all tokens in your system use:
$ plitool --list-tokens
To view all objects in a token use:
$ plitool --login --list-all "pkcsll:TOKEN-URL"
To store a private key and a certificate in a token run:

$ plitool --login --write "pkcs11:URL" --load-privkey key.pem \
--label "Mykey"

$ plitool --login --write "pkcsl1:URL" --load-certificate cert.pem \
--label "Mykey"

Note that some tokens require the same label to be used for the certificate and its corre-
sponding private key.

7.3 Trusted Platform Module (TPM)

In this section we present the Trusted Platform Module (TPM) support in GnuTLS. There
was a big hype when the TPM chip was introduced into computers. Briefly it is a co-
processor in your PC that allows it to perform calculations independently of the main
processor. This has good and bad side-effects. In this section we focus on the good ones,
which are the fact that you can use it to perform cryptographic operations the similarly to a
PKCS #11 smart card. It allows for storing and using RSA keys but with slight differences
from a PKCS #11 module that require different handling. The basic operations supported,
and used by GnuTLS, are key generation and signing.

In GnuTLS the TPM functionality is available in gnutls/tpm.h.

7.3.1 Keys in TPM

The RSA keys in the TPM module may either be stored in a flash memory within TPM
or stored in a file in disk. In the former case the key can provide operations as with PKCS
#11 and is identified by a URL. The URL is of the following form.

Chapter 7: Hardware security modules and abstract key types 96

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23adl;storage=user

It consists from a unique identifier of the key as well as the part of the flash memory the
key is stored at. The two options for the storage field are ‘user’ and ‘system’. The user keys
are typically only available to the generating user and the system keys to all users. The
stored in TPM keys are called registered keys.

The keys that are stored in the disk are exported from the TPM but in an encrypted form.
To access them two passwords are required. The first is the TPM Storage Root Key (SRK),
and the other is a key-specific password. Also those keys are identified by a URL of the
form:

tpmkey:file=/path/to/file

When objects require a PIN to be accessed the same callbacks as with PKCS #11 objects
are expected (see Section 7.2.2 [Accessing objects that require a PIN], page 86).

7.3.2 Key generation

All keys used by the TPM must be generated by the TPM. This can be done using
[gnutls_tpm_privkey_generate|, page 453.

int gnutls_tpm_privkey_generate (gnutls_pk_algorithm_t pk, [Function]
unsigned int bits, const char* srk_password, const char* key_password,
gnutls_tpmkey_fmt_t format, gnutls_x509_crt_fmt_t pub_format,
gnutls_datum_t* privkey, gnutls_datum_t* pubkey, unsigned int flags)
pk: the public key algorithm

bits: the security bits

srk_password: a password to protect the exported key (optional)
key_password: the password for the TPM (optional)

format: the format of the private key

pub_format: the format of the public key

privkey: the generated key

pubkey: the corresponding public key (may be null)

flags: should be a list of GNUTLS_TPM_* flags

This function will generate a private key in the TPM chip. The private key will be
generated within the chip and will be exported in a wrapped with TPM’s master key
form. Furthermore the wrapped key can be protected with the provided password .

Note that bits in TPM is quantized value. If the input value is not one of the allowed
values, then it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384.
Allowed flags are:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_tpm_get_registered], page 452 (gnutls_tpm_key_list_t * list)
void [gnutls_tpm_key_list_deinit], page 452 (gnutls_tpm_key_list_t list)
int [gnutls_tpm_key_list_get_url], page 452 (gnutls_tpm_key_list_t list,
unsigned int idx, char**x url, unsigned int flags)

Chapter 7: Hardware security modules and abstract key types 97

int gnutls_tpm_privkey_delete (const char* url, const char* [Function]
srk_password)
url: the URL describing the key

srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

7.3.3 Using keys

Importing keys

The TPM keys can be used directly by the abstract key types and do not require any
special structures. Moreover functions like [gnutls_certificate_set_x509_key_file], page 269
can access TPM URLs.

int [gnutls_privkey_import_tpm_raw], page 460 (gnutls_privkey_t pkey, const
gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,
const char * key_password, unsigned int flags)

int [gnutls_pubkey_import_tpm_raw], page 471 (gnutls_pubkey_t pkey, const
gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,
unsigned int flags)

int gnutls_privkey_import_tpm_url (gnutls_privkey_t pkey, const [Function]
char* url, const char * srk_password, const char * key_password, unsigned
int flags)

pkey: The private key

url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
key_password: A password for the key (optional)

flags: One of the GNUTLS_PRIVKEY _* flags

This function will import the given private key to the abstract gnutls_privkey_t
structure.

Note that unless GNUTLS_PRIVKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_
PASSWORD_ERROR is returned and if the key password is wrong or not provided then
GNUTLS_E_TPM_KEY_PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.1.0
int gnutls_pubkey_import_tpm_url (gnutls_pubkey_t pkey, const [Function]

char* url, const char * srk_password, unsigned int flags)
pkey: The public key

Chapter 7: Hardware security modules and abstract key types 98

url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t
structure.

Note that unless GNUTLS_PUBKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_
PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

Listing and deleting keys

The registered keys (that are stored in the TPM) can be listed using one of the following
functions. Those keys are unfortunately only identified by their UUID and have no label
or other human friendly identifier. Keys can be deleted from permament storage using
[gnutls_tpm_privkey_delete], page 453.

int [gnutls_tpm_get_registered], page 452 (gnutls_tpm_key_list_t * list)
void [gnutls_tpm_key_list_deinit], page 452 (gnutls_tpm_key_list_t list)
int [gnutls_tpm_key_list_get_url], page 452 (gnutls_tpm_key_list_t list,
unsigned int idx, char**x url, unsigned int flags)

int gnutls_tpm_privkey_delete (const char® url, const char* [Function]
srk_password)
url: the URL describing the key
srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

7.3.4 Invoking tpmtool
Program that allows handling cryptographic data from the TPM chip.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the tpmtool program. This software is released under the GNU General
Public License, version 3 or later.

tpmtool help/usage (-h)

This is the automatically generated usage text for tpmtool. The text printed is the same
whether for the help option (-h) or the more-help option (-!). more-help will print the
usage text by passing it through a pager program. more-help is disabled on platforms
without a working fork(2) function. The PAGER environment variable is used to select the
program, defaulting to ‘more’. Both will exit with a status code of 0.

Chapter 7: Hardware security modules and abstract key types 99

tpmtool - GnuTlLS TPM tool - Ver. QVERSIONGQ
USAGE: tpmtool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, —--debug=num

——-infile=file

--outfile=str
-—generate-rsa

--register Any generated key will be registered in the TPM
- requires these options:
generate-rsa
--signing Any generated key will be a signing key
- requires these options:
generate-rsa
-- and prohibits these options:
legacy
--legacy Any generated key will be a legacy key
- requires these options:
generate-rsa
-- and prohibits these options:
signing
--user Any registered key will be a user key
- requires these options:
register
-- and prohibits these options:
system
--system Any registred key will be a system key
- requires these options:
register
-- and prohibits these options:
user
--pubkey=str Prints the public key of the provided key
--list Lists all stored keys in the TPM
--delete=str Delete the key identified by the given URL (UUID).
--sec-param=str Specify the security level [low, legacy, normal, high, ultral
--bits=num Specify the number of bits for key generate
--inder Use the DER format for keys.
- disabled as --no-inder
--outder Use DER format for output keys
- disabled as --no-outder
-v, --version[=arg] Output version information and exit
-h, --help Display extended usage information and exit
-1, —-more-help Extended usage information passed thru pager

Enable debugging.
- It must be in the range:
0 to 9999
Input file
- file must pre-exist
Output file
Generate an RSA private-public key pair

Options are specified by doubled hyphens and their name or by a single

Chapter 7: Hardware security modules and abstract key types 100

hyphen and the flag character.

Program that allows handling cryptographic data from the TPM chip.

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair in the TPM chip. The key may be stored in filesystem and protected by a
PIN, or stored (registered) in the TPM chip flash.

user option
This is the “any registered key will be a user key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: register.

e must not appear in combination with any of the following options: system.

The generated key will be stored in a user specific persistent storage.

system option
This is the “any registred key will be a system key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: register.

e must not appear in combination with any of the following options: user.

The generated key will be stored in system persistent storage.

sec-param option

b

This is the “specify the security level [low, legacy, normal, high, ultra].” option. This option
takes an argument string ‘Security parameter’. This is alternative to the bits option. Note
however that the values allowed by the TPM chip are quantized and given values may be

rounded up.

inder option

This is the “use the der format for keys.” option. The input files will be assumed to be in
the portable DER format of TPM. The default format is a custom format used by various
TPM tools

Chapter 7: Hardware security modules and abstract key types 101

outder option

This is the “use der format for output keys” option. The output will be in the TPM portable
DER format.

tpmtool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

tpmtool See Also
plltool (1), certtool (1)

tpmtool Examples
To generate a key that is to be stored in filesystem use:

$ tpmtool --generate-rsa --bits 2048 --outfile tpmkey.pem
To generate a key that is to be stored in TPM’s flash use:

$ tpmtool --generate-rsa --bits 2048 --register --user
To get the public key of a TPM key use:

$ tpmtool --pubkey tpmkey:uuid=58ad734b-bde6-45c7-89d8-756a55ad1891;storage=user \
--outfile pubkey.pem

or if the key is stored in the filesystem:

$ tpmtool --pubkey tpmkey:file=tmpkey.pem --outfile pubkey.pem
To list all keys stored in TPM use:

$ tpmtool --list

Chapter 8: How to use GnuTLS in applications 102

8 How to use GnuTLS in applications

8.1 Introduction

8.1.1 General idea

A brief description of how GnuTLS works internally is shown at Figure 8.1. This section
may become more clear after having read the rest of this section. As shown in the figure,
there is a read-only global state that is initialized once by the global initialization function.
This global structure, among others, contains the memory allocation functions used, and
structures needed for the ASN.1 parser. This structure is never modified by any GnuTLS
function, except for the deinitialization function which frees all allocated memory and is
called after the program has permanently finished using GnuTLS.

Global state Credentials

TLS Session TLS Session L] 4

Session Database
Backend

Transport Layer

Figure 8.1: High level design of GnuTLS.

The credentials structures are used by the authentication methods, such as certificate au-
thentication. They store certificates, privates keys, and other information that is needed
to prove the identity to the peer, and/or verify the indentity of the peer. The information
stored in the credentials structures is initialized once and then can be shared by many TLS
sessions.

A GnuTLS session contains all the required information to handle one secure connection.
The session communicates with the peers using the provided functions of the transport
layer. Every session has a unique session ID shared with the peer.

Since TLS sessions can be resumed, servers need a database back-end to hold the session’s
parameters. Every GnuTLS session after a successful handshake calls the appropriate back-
end function (see [resume|, page 10) to store the newly negotiated session. The session

9

Chapter 8: How to use GnuTLS in applications 103

database is examined by the server just after having received the client hello!, and if the
session ID sent by the client, matches a stored session, the stored session will be retrieved,
and the new session will be a resumed one, and will share the same session ID with the
previous one.

8.1.2 Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be
disallowed. Such an example is GNUTLS_E_DECRYPTION_FAILED. Non-fatal errors may
warn about something, i.e., a warning alert was received, or indicate the some action
has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE returned
by [gnutls_record_recv], page 308. This error code indicates that the server requests a re-
handshake. The client may ignore this request, or may reply with an alert. You can test if
an error code is a fatal one by using the [gnutls_error_is_fatal], page 284. All errors can be
converted to a descriptive string using [gnutls_strerror|, page 323.

If any non fatal errors, that require an action, are to be returned by a function, these
error codes will be documented in the function’s reference. For example the error codes
GNUTLS_E_WARNING_ALERT_RECEIVED and GNUTLS_E_FATAL_ALERT_RECEIVED that may re-
turned when receiving data, should be handled by notifying the user of the alert (as ex-
plained in Section 8.8 [Handling alerts], page 124). See Appendix C [Error codes|, page 246,
for a description of the available error codes.

8.1.3 Common types

Several functions in GnuTLS use gnutls_datum_t which is convenient way to combine a
pointer to data and data’s size. Its definition is shown below.

typedef struct

{
unsigned char *data;
unsigned int size;

} gnutls_datum_t;

Other functions that require data for scattered read use a structure similar to struct iovec
typically used by readv. It is shown below.

typedef struct
{

void *iov_base; /* Starting address */

size_t iov_len; /* Number of bytes to transfer */
} giovec_t;

8.1.4 Debugging and auditing

In many cases things may not go as expected and further information, to assist debug-
ging, from GnuTLS is desired. Those are the cases where the [gnutls_global_set_log_level],

L The first message in a TLS handshake

Chapter 8: How to use GnuTLS in applications 104

page 286 and [gnutls_global_set_log_function], page 286 are to be used. Those will print
verbose information on the GnuTLS functions internal flow.

void [gnutls_global_set_log_levell, page 286 (int level)
void [gnutls_global_set_log_function], page 286 (gnutls_log_func log_func)

When debugging is not required, important issues, such as detected attacks on the
protocol still need to be logged. This is provided by the logging function set by
[gnutls_global _set_audit_log_function], page 285. The provided function will receive an
message and the corresponding TLS session. The session information might be used to
derive IP addresses or other information about the peer involved.

void gnutls_global_set_audit_log_function [Function]
(gnutls_audit_log_func log_func)
log_func: it is the audit log function

This is the function where you set the logging function gnutls is going to use. This is
different from gnutls_global_set_log_function() because it will report the session
of the event if any. Note that that session might be null if there is no corresponding
TLS session.

gnutls_audit_log_func is of the form, void (*gnutls_audit_log_func)(
gnutls_session_t, int level, const char*);

Since: 3.0

8.1.5 Thread safety

The GnuTLS library is thread safe by design, meaning that objects of the library such as
TLS sessions, can be safely divided across threads as long as a single thread accesses a single
object. This is sufficient to support a server which handles several sessions per thread. If,
however, an object needs to be shared across threads then access must be protected with a
mutex. Read-only access to objects, for example the credentials holding structures, is also
thread-safe.

The random generator of the cryptographic back-end, is not thread safe and requires mu-
tex locks which are setup by GnuTLS. Applications can either call [gnutls_global_init],
page 285 which will initialize the default operating system provided locks (i.e. pthreads on
GNU/Linux and CriticalSection on Windows), or manually specify the locking system
using the function [gnutls_global_set_mutex]|, page 287 before calling [gnutls_global_init],
page 285. Setting mutexes manually is recommended only for applications that have full
control of the underlying libraries. If this is not the case, the use of the operating system
defaults is recommended. An example of non-native thread usage is shown below.

#include <gnutls/gnutls.h>

int main()
{
/* When the system mutexes are not to be used
*x gnutls_global_set_mutex() must be called explicitly
*/
gnutls_global_set_mutex (mutex_init, mutex_deinit,
mutex_lock, mutex_unlock);

Chapter 8: How to use GnuTLS in applications 105

gnutls_global_init();

}
void gnutls_global_set_mutex (mutex_init_func init, [Function]
mutex_deinit_func deinit, mutex_lock_func lock, mutex_unlock_func
unlock)

init: mutex initialization function
deinit: mutex deinitialization function
lock: mutex locking function

unlock: mutex unlocking function

With this function you are allowed to override the default mutex locks used in some
parts of gnutls and dependent libraries. This function should be used if you have
complete control of your program and libraries. Do not call this function from a
library. Instead only initialize gnutls and the default OS mutex locks will be used.

This function must be called before gnutls_global_init() .
Since: 2.12.0

8.1.6 Callback functions

There are several cases where GnuTLS may need out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.

An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.

void [gnutls_transport_set_push_function], page 326 (gnutls_session_t
session, gnutls_push_func push_func)
void [gnutls_transport_set_pull_function], page 326 (gnutls_session_t
session, gnutls_pull_func pull_func)

Other callback functions may require more complicated input and data to be allocated.
Such an example is [gnutls_srp_set_server_credentials_function|, page 321. All callbacks
should allocate and free memory using gnutls_malloc and gnutls_free.

8.2 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

8.2.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
‘gnutls/gnutls.h’. This must be included in all programs that make use of the GnuTLS
library.

8.2.2 Initialization

GnuTLS must be initialized before it can be used. The library is initialized by calling
[gnutls_global _init], page 285. The resources allocated by the initialization process can be

Chapter 8: How to use GnuTLS in applications 106

released if the application no longer has a need to call GnuTLS functions, this is done by
calling [gnutls_global_deinit], page 285.

In order to take advantage of the internationalization features in GnuTLS, such as trans-
lated error messages, the application must set the current locale using setlocale before
initializing GnuTLS.

8.2.3 Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits
all requirements. Even with binary compatibility new features may have been introduced
but due to problem with the dynamic linker an old version is actually used. So you may
want to check that the version is okay right after program start-up. See the function
[gnutls_check_version], page 274.

8.2.4 Building the source

If you want to compile a source file including the ‘gnutls/gnutls.h’ header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
gnutls. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config gnutls --cflags®

Adding the output of ‘pkg-config gnutls --cflags’ to the compilers command line will
ensure that the compiler can find the ‘gnutls/gnutls.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--1ibs’ to pkg-config
gnutls can be used. For convenience, this option also outputs all other options that are
required to link the program with the library (for instance, the ‘-1tasni1’ option). The
example shows how to link ‘foo.o’ with the library to a program foo.

gcc -o foo foo.o ‘pkg-config gnutls --libs*

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config gnutls --cflags --libs®

When a program uses the GNU autoconf system, then the following line or similar can be
used to detect the presence of GnuTLS.

PKG_CHECK_MODULES ([LIBGNUTLS], [gnutls >= 3.0.0])

AC_SUBST ([LIBGNUTLS_CFLAGS])
AC_SUBST([LIBGNUTLS_LIBS])

Chapter 8: How to use GnuTLS in applications 107

8.3 Session initialization

In the previous sections we have discussed the global initialization required for GnuTLS
as well as the initialization required for each authentication method’s credentials (see
Section 3.5.2 [Authentication], page 10). In this section we elaborate on the TLS or DTLS
session initiation. Each session is initialized using [gnutls_init], page 292 which among
others is used to specify the type of the connection (server or client), and the underlying
protocol type, i.e., datagram (UDP) or reliable (TCP).

int gnutls_init (gnutls_session_t * session, unsigned int flags) [Function]
session: is a pointer to a gnutls_session_t structure.

flags: indicate if this session is to be used for server or client.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit() . Returns GNUTLS_E_SUCCESS
(0) on success.

flags can be one of GNUTLS_CLIENT and GNUTLS_SERVER . For a DTLS entity, the
flags GNUTLS_DATAGRAM and GNUTLS_NONBLOCK are also available. The latter flag will
enable a non-blocking operation of the DTLS timers.

Note that since version 3.1.2 this function enables some common TLS extensions such
as session tickets and OCSP certificate status request in client side by default. To
prevent that use the GNUTLS_NO_EXTENSIONS flag.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

After the session initialization details on the allowed ciphersuites and protocol versions
should be set using the priority functions such as [gnutls_priority_set_direct|, page 302. We
elaborate on them in Section 8.9 [Priority Strings|, page 125. The credentials used for
the key exchange method, such as certificates or usernames and passwords should also be
associated with the session current session using [gnutls_credentials_set], page 277.

int gnutls_credentials_set (gnutls_session_t session, [Function]
gnutls_credentials_type_t type, void * cred)

session: is a gnutls_session_t structure.
type: is the type of the credentials
cred: is a pointer to a structure.
Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The cred parameter is a structure that depends on the specified
type and on the current session (client or server).
In order to minimize memory usage, and share credentials between several threads
gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have
to keep the structure allocated until you call gnutls_deinit() .
For GNUTLS_CRD_ANON , cred should be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t .

For GNUTLS_CRD_SRP , cred should be gnutls_srp_client_credentials_t in case
of a client, and gnutls_srp_server_credentials_t , in case of a server.

Chapter 8: How to use GnuTLS in applications 108

For GNUTLS_CRD_CERTIFICATE, cred should be gnutls_certificate_credentials_
t.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

8.4 Associating the credentials

Each authentication method is associated with a key exchange method, and a credentials
type. The contents of the credentials is method-dependent, e.g. certificates for
certificate authentication and should be initialized and associated with a session (see
[gnutls_credentials_set], page 277). A mapping of the key exchange methods with the
credential types is shown in Table 8.1.

Authentication Key exchange Client Server creden-
method credentials tials
Certificate KX_RSA, KX_DHE_ CRD CRD

RSA, KX_DHE_DSS, CERTIFICATE CERTIFICATE
KX_ECDHE_RSA,

KX_ECDHE_ECDSA,

KX_RSA_EXPORT

Password and KX_SRP_RSA, CRD_SRP CRD_
certificate KX_SRP_DSS CERTIFICATE,
CRD_SRP

Password KX_SRP CRD_SRP CRD_SRP

Anonymous KX_ANON_DH, CRD_ANON CRD_ANON
KX_ANON_ECDH

Pre-shared key KX_PSK, KX_ CRD_PSK CRD_PSK
DHE_PSK,

KX_ECDHE_PSK
Table 8.1: Key exchange algorithms and the corresponding credential types.

8.4.1 Certificates

Server certificate authentication

When using certificates the server is required to have at least one certificate and private
key pair. Clients may not hold such a pair, but a server could require it. In this section we
discuss general issues applying to both client and server certificates. The next section will
elaborate on issues arising from client authentication only.

Chapter 8: How to use GnuTLS in applications 109

int [gnutls_certificate_allocate_credentials], page 262
(gnutls_certificate_credentials_t * res)

void [gnutls_certificate_free_credentials], page 263
(gnutls_certificate_credentials_t sc)

After the credentials structures are initialized, the certificate and key pair must be loaded.
This occurs before any TLS session is initialized, and the same structures are reused for
multiple sessions. Depending on the certificate type different loading functions are available,
as shown below. For X.509 certificates, the functions will accept and use a certificate chain
that leads to a trusted authority. The certificate chain must be ordered in such way that
every certificate certifies the one before it. The trusted authority’s certificate need not to
be included since the peer should possess it already.

int [gnutls_certificate_set_x509_key_mem], page 270
(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const
gnutls_datum_t * key, gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_key], page 269
(gnutls_certificate_credentials_t res, gnutls_x509_crt_t * cert_list, int
cert_list_size, gnutls_x509_privkey_t key)

int [gnutls_certificate_set_x509_key_file], page 269
(gnutls_certificate_credentials_t res, const char *x certfile, const char *
keyfile, gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_openpgp_key_mem], page 416
(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const
gnutls_datum_t * key, gnutls_openpgp_crt_fmt_t format)

int [gnutls_certificate_set_openpgp_keyl, page 415
(gnutls_certificate_credentials_t res, gnutls_openpgp_crt_t crt,
gnutls_openpgp_privkey_t pkey)

int [gnutls_certificate_set_openpgp_key_filel], page 415
(gnutls_certificate_credentials_t res, const char * certfile, const char *
keyfile, gnutls_openpgp_crt_fmt_t format)

Note however, that since functions like [gnutls_certificate_set_x509_key_file|, page 269
may accept URLs that specify objects stored in token, another important function is
[gnutls_certificate_set_pin_function|, page 266. That allows setting a callback function to
retrieve a PIN if the input keys are protected by PIN by the token.

void gnutls_certificate_set_pin_function [Function]
(gnutls_certificate_credentials_t cred, gnutls_pin_callback_t fn, void *
userdata)

cred: is a gnutls_certificate_credentials_t structure.
fn: A PIN callback
userdata: Data to be passed in the callback

This function will set a callback function to be used when required to access a pro-
tected object. This function overrides any other global PIN functions.

Note that this function must be called right after initialization to have effect.
Since: 3.1.0

Chapter 8: How to use GnuTLS in applications 110

If the imported keys and certificates need to be accessed before any TLS session is es-
tablished, it is convenient to use [gnutls_certificate_set_key], page 454 in combination with
[gnutls_pcert_import_x509_raw|, page 456 and [gnutls_privkey_import_x509_raw|, page 462.

int gnutls_certificate_set_key (gnutls_certificate_credentials_t [Function]
res, const char** names, int names_size, gnutls_pcert_st * pcert_list, int
pcert_list_size, gnutls_privkey_t key)
res: is a gnutls_certificate_credentials_t structure.

names: is an array of DNS name of the certificate (NULL if none)
names_size: holds the size of the names list

peert_list: contains a certificate list (path) for the specified private key
pcert_list_size: holds the size of the certificate list

key: is a gnutls_privkey_t key

This function sets a certificate/private key pair in the gnutls_certificate_credentials_t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in pcert_list . The pcert_list and key will become part of the credentials
structure and must not be deallocated. They will be automatically deallocated when
res is deinitialized.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.
Since: 3.0

If multiple certificates are used with the functions above each client’s request will be served
with the certificate that matches the requested name (see Section 3.6.2 [Server name indi-
cation|, page 11).

As an alternative to loading from files or buffers, a callback may be used for the server
or the client to specify the certificate and the key at the handshake time. In that case a
certificate should be selected according the peer’s signature algorithm preferences. To get
those preferences use [gnutls_sign_algorithm_get_requested], page 316. Both functions are
shown below.

void [gnutls_certificate_set_retrieve_function], page 267
(gnutls_certificate_credentials_t cred, gnutls_certificate_retrieve_function
*x func)

void [gnutls_certificate_set_retrieve_function2], page 454
(gnutls_certificate_credentials_t cred,
gnutls_certificate_retrieve_function2 * func)

int [gnutls_sign_algorithm_get_requested], page 316 (gnutls_session_t
session, size_t indx, gnutls_sign_algorithm_t * algo)

The functions above do not handle the requested server name automatically. A server would
need to check the name requested by the client using [gnutls_server_name_get|, page 310,
and serve the appropriate certificate. Note that some of these functions require the gnutls_
pcert_st structure to be filled in. Helper functions to make the required structures are
listed below.

Chapter 8: How to use GnuTLS in applications 111

typedef struct gnutls_pcert_st

{
gnutls_pubkey_t pubkey;
gnutls_datum_t cert;
gnutls_certificate_type_t type;

} gnutls_pcert_st;

int [gnutls_pcert_import_x509], page 456 (gnutls_pcert_st* pcert,
gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_openpgpl, page 455 (gnutls_pcert_st* pcert,
gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_x509_raw], page 456 (gnutls_pcert_st * pcert, const
gnutls_datum_t* cert, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pcert_import_openpgp_raw], page 455 (gnutls_pcert_st * pcert,
const gnutls_datum_t* cert, gnutls_openpgp_crt_fmt_t format,
gnutls_openpgp_keyid_t keyid, unsigned int flags)

void [gnutls_pcert_deinit], page 455 (gnutls_pcert_st * pcert)

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so some
key exchange methods might not be available with all certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled authentication methods.
For example keys marked as sign-only, will not be able to access the plain RSA ciphersuites,
that require decryption. It is not recommended to use RSA keys for both signing and
encryption. If possible use a different key for the DHE-RSA which uses signing and RSA that
requires decryption. All the key exchange methods shown in Table 4.1 are available in
certificate authentication.

Client certificate authentication

If a certificate is to be requested from the client during the handshake, the
server will send a certificate request message. This behavior is controlled
[gnutls_certificate_server_set_request], page 265. The request contains a list of the
acceptable by the server certificate signers. This list is constructed using the trusted
certificate authorities of the server. In cases where the server supports a large number of
certificate authorities it makes sense not to advertise all of the names to save bandwidth.
That can be controlled using the function [gnutls_certificate_send-x509_rdn_sequence],
page 264. This however will have the side-effect of not restricting the client to certificates
signed by server’s acceptable signers.

void gnutls_certificate_server_set_request (gnutls_session_t [Function]
session, gnutls_certificate_request_t req)
session: is a gnutls_session_t structure.

req: is one of GNUTLS_CERT_REQUEST, GNUTLS_CERT_REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS_CERT_REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

Chapter 8: How to use GnuTLS in applications 112

void gnutls_certificate_send_x509_rdn_sequence [Function]
(gnutls_session_t session, int status)
session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertise its trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertise the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

Client or server certificate verification

Certificate verification is possible by loading the trusted authorities into the credentials
structure by using the following functions, applicable to X.509 and OpenPGP certificates.

int [gnutls_certificate_set_x509_trust_file], page 272
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_openpgp_keyring file], page 417
(gnutls_certificate_credentials_t c, const char * file,
gnutls_openpgp_crt_fmt_t format)

The peer’s certificate is not automatically verified and one should call
[gnutls_certificate_verify_peers2], page 274 after a successful handshake to verify
the certificate’s signature. Alternative the verification can occur during the handshake by
using [gnutls_certificate_set_verify_function], page 267.

In order to report a detailed verification output, an alternative way has to be used. For
that, one should call [gnutls_certificate_get_peers|, page 264 to obtain the raw certificate
of the peer and verify it using the functions discussed in Section 4.1 [X.509 certificates],
page 17.

int gnutls_certificate_verify_peers2 (gnutls_session_t session, [Function]
unsigned int * status)
session: is a gnutls session

status: is the output of the verification

This function will try to verify the peer’s certificate and return its status
(trusted, invalid etc.). The value of status should be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d. To avoid denial of
service attacks some default upper limits regarding the certificate key size and chain
size are set. To override them use gnutls_certificate_set_verify_limits() .

This function will utilize the OCSP Certificate Status extension if negotiated —to
enable see gnutls_ocsp_status_request_enable_client() .

Note that you must also check the peer’s name in order to check if the verified cer-
tificate belongs to the actual peer, see gnutls_x509_crt_check_hostname() .

Returns: a negative error code on error and GNUTLS_E_SU