
Package ‘grf’
November 15, 2024

Title Generalized Random Forests

Version 2.4.0

BugReports https://github.com/grf-labs/grf/issues

Description Forest-based statistical estimation and inference.
GRF provides non-parametric methods for heterogeneous treatment effects estimation
(optionally using right-
censored outcomes, multiple treatment arms or outcomes, or instrumental variables),
as well as least-squares regression, quantile regression, and survival regression,
all with support for missing covariates.

Depends R (>= 3.5.0)

License GPL-3

LinkingTo Rcpp, RcppEigen

Imports DiceKriging, lmtest, Matrix, methods, Rcpp (>= 0.12.15),
sandwich (>= 2.4-0)

RoxygenNote 7.3.2

Suggests DiagrammeR, MASS, rdd, survival (>= 3.2-8), testthat (>=
3.0.4)

SystemRequirements GNU make

URL https://github.com/grf-labs/grf

Encoding UTF-8

NeedsCompilation yes

Author Julie Tibshirani [aut],
Susan Athey [aut],
Rina Friedberg [ctb],
Vitor Hadad [ctb],
David Hirshberg [ctb],
Luke Miner [ctb],
Erik Sverdrup [aut, cre],
Stefan Wager [aut],
Marvin Wright [ctb]

Maintainer Erik Sverdrup <erik.sverdrup@monash.edu>

1

https://github.com/grf-labs/grf/issues
https://github.com/grf-labs/grf

2 Contents

Repository CRAN

Date/Publication 2024-11-15 10:10:09 UTC

Contents
average_treatment_effect . 3
best_linear_projection . 6
boosted_regression_forest . 8
causal_forest . 11
causal_survival_forest . 15
generate_causal_data . 19
generate_causal_survival_data . 20
get_forest_weights . 22
get_leaf_node . 23
get_scores . 24
get_scores.causal_forest . 24
get_scores.causal_survival_forest . 25
get_scores.instrumental_forest . 26
get_scores.multi_arm_causal_forest . 27
get_tree . 28
grf_options . 29
instrumental_forest . 30
ll_regression_forest . 33
lm_forest . 36
merge_forests . 39
multi_arm_causal_forest . 40
multi_regression_forest . 44
plot.grf_tree . 47
plot.rank_average_treatment_effect . 48
predict.boosted_regression_forest . 48
predict.causal_forest . 49
predict.causal_survival_forest . 51
predict.instrumental_forest . 53
predict.ll_regression_forest . 54
predict.lm_forest . 56
predict.multi_arm_causal_forest . 57
predict.multi_regression_forest . 60
predict.probability_forest . 61
predict.quantile_forest . 62
predict.regression_forest . 63
predict.survival_forest . 65
print.boosted_regression_forest . 67
print.grf . 67
print.grf_tree . 68
print.rank_average_treatment_effect . 68
print.tuning_output . 69
probability_forest . 69

average_treatment_effect 3

quantile_forest . 72
rank_average_treatment_effect . 74
rank_average_treatment_effect.fit . 78
regression_forest . 80
split_frequencies . 83
survival_forest . 84
test_calibration . 87
variable_importance . 88

Index 89

average_treatment_effect

Get doubly robust estimates of average treatment effects.

Description

In the case of a causal forest with binary treatment, we provide estimates of one of the following:

• The average treatment effect (target.sample = all): E[Y(1) - Y(0)]

• The average treatment effect on the treated (target.sample = treated): E[Y(1) - Y(0) | Wi = 1]

• The average treatment effect on the controls (target.sample = control): E[Y(1) - Y(0) | Wi = 0]

• The overlap-weighted average treatment effect (target.sample = overlap): E[e(X) (1 - e(X))
(Y(1) - Y(0))] / E[e(X) (1 - e(X)), where e(x) = P[Wi = 1 | Xi = x].

This last estimand is recommended by Li, Morgan, and Zaslavsky (2018) in case of poor overlap
(i.e., when the propensities e(x) may be very close to 0 or 1), as it doesn’t involve dividing by
estimated propensities.

Usage

average_treatment_effect(
forest,
target.sample = c("all", "treated", "control", "overlap"),
method = c("AIPW", "TMLE"),
subset = NULL,
debiasing.weights = NULL,
compliance.score = NULL,
num.trees.for.weights = 500

)

Arguments

forest The trained forest.

target.sample Which sample to aggregate treatment effects over. Note: Options other than
"all" are only currently implemented for causal forests.

4 average_treatment_effect

method Method used for doubly robust inference. Can be either augmented inverse-
propensity weighting (AIPW), or targeted maximum likelihood estimation (TMLE).
Note: TMLE is currently only implemented for causal forests with a binary
treatment.

subset Specifies subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

debiasing.weights

A vector of length n (or the subset length) of debiasing weights. If NULL (de-
fault) these are obtained via the appropriate doubly robust score construction,
e.g., in the case of causal_forests with a binary treatment, they are obtained via
inverse-propensity weighting.

compliance.score

Only used with instrumental forests. An estimate of the causal effect of Z on
W, i.e., Delta(X) = E[W | X, Z = 1] - E[W | X, Z = 0], which can then be used
to produce debiasing.weights. If not provided, this is estimated via an auxiliary
causal forest.

num.trees.for.weights

In some cases (e.g., with causal forests with a continuous treatment), we need
to train auxiliary forests to learn debiasing weights. This is the number of trees
used for this task. Note: this argument is only used when debiasing.weights =
NULL.

Details

In the case of a causal forest with continuous treatment, we provide estimates of the average partial
effect, i.e., E[Cov[W, Y | X] / Var[W | X]]. In the case of a binary treatment, the average partial
effect matches the average treatment effect. Computing the average partial effect is somewhat more
involved, as the relevant doubly robust scores require an estimate of Var[Wi | Xi = x]. By default,
we get such estimates by training an auxiliary forest; however, these weights can also be passed
manually by specifying debiasing.weights.

In the case of instrumental forests with a binary treatment, we provide an estimate of the the Average
(Conditional) Local Average Treatment (ACLATE). Specifically, given an outcome Y, treatment W
and instrument Z, the (conditional) local average treatment effect is tau(x) = Cov[Y, Z | X = x] /
Cov[W, Z | X = x]. This is the quantity that is estimated with an instrumental forest. It can be
intepreted causally in various ways. Given a homogeneity assumption, tau(x) is simply the CATE
at x. When W is binary and there are no "defiers", Imbens and Angrist (1994) show that tau(x) can
be interpreted as an average treatment effect on compliers. This function provides an estimate of
tau = E[tau(X)]. See Chernozhukov et al. (2022) for a discussion, and Section 5.2 of Athey and
Wager (2021) for an example using forests.

If clusters are specified, then each unit gets equal weight by default. For example, if there are 10
clusters with 1 unit each and per-cluster ATE = 1, and there are 10 clusters with 19 units each
and per-cluster ATE = 0, then the overall ATE is 0.05 (additional sample.weights allow for custom
weighting). If equalize.cluster.weights = TRUE each cluster gets equal weight and the overall ATE
is 0.5.

average_treatment_effect 5

Value

An estimate of the average treatment effect, along with standard error.

References

Athey, Susan, and Stefan Wager. "Policy Learning With Observational Data." Econometrica 89.1
(2021): 133-161.

Chernozhukov, Victor, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K. Newey, and James
M. Robins. "Locally robust semiparametric estimation." Econometrica 90(4), 2022.

Imbens, Guido W., and Joshua D. Angrist. "Identification and Estimation of Local Average Treat-
ment Effects." Econometrica 62(2), 1994.

Li, Fan, Kari Lock Morgan, and Alan M. Zaslavsky. "Balancing covariates via propensity score
weighting." Journal of the American Statistical Association 113(521), 2018.

Mayer, Imke, Erik Sverdrup, Tobias Gauss, Jean-Denis Moyer, Stefan Wager, and Julie Josse. "Dou-
bly robust treatment effect estimation with missing attributes." Annals of Applied Statistics, 14(3),
2020.

Robins, James M., and Andrea Rotnitzky. "Semiparametric efficiency in multivariate regression
models with missing data." Journal of the American Statistical Association 90(429), 1995.

Examples

Train a causal forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)
Estimate the conditional average treatment effect on the full sample (CATE).
average_treatment_effect(c.forest, target.sample = "all")

Estimate the conditional average treatment effect on the treated sample (CATT).
We don't expect much difference between the CATE and the CATT in this example,
since treatment assignment was randomized.
average_treatment_effect(c.forest, target.sample = "treated")

Estimate the conditional average treatment effect on samples with positive X[,1].
average_treatment_effect(c.forest, target.sample = "all", subset = X[, 1] > 0)

Example for causal forests with a continuous treatment.
n <- 2000
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 1 / (1 + exp(-X[, 2]))) + rnorm(n)

6 best_linear_projection

Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
tau.forest <- causal_forest(X, Y, W)
tau.hat <- predict(tau.forest)
average_treatment_effect(tau.forest)
average_treatment_effect(tau.forest, subset = X[, 1] > 0)

best_linear_projection

Estimate the best linear projection of a conditional average treatment
effect.

Description

Let tau(Xi) = E[Y(1) - Y(0) | X = Xi] be the CATE, and Ai be a vector of user-provided covariates.
This function provides a (doubly robust) fit to the linear model tau(Xi) ~ beta_0 + Ai * beta.

Usage

best_linear_projection(
forest,
A = NULL,
subset = NULL,
debiasing.weights = NULL,
compliance.score = NULL,
num.trees.for.weights = 500,
vcov.type = "HC3",
target.sample = c("all", "overlap")

)

Arguments

forest The trained forest.
A The covariates we want to project the CATE onto.
subset Specifies subset of the training examples over which we estimate the ATE.

WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

debiasing.weights

A vector of length n (or the subset length) of debiasing weights. If NULL (de-
fault) these are obtained via the appropriate doubly robust score construction,
e.g., in the case of causal_forests with a binary treatment, they are obtained via
inverse-propensity weighting.

compliance.score

Only used with instrumental forests. An estimate of the causal effect of Z on
W, i.e., Delta(X) = E[W | X, Z = 1] - E[W | X, Z = 0], which can then be used
to produce debiasing.weights. If not provided, this is estimated via an auxiliary
causal forest.

best_linear_projection 7

num.trees.for.weights

In some cases (e.g., with causal forests with a continuous treatment), we need
to train auxiliary forests to learn debiasing weights. This is the number of trees
used for this task. Note: this argument is only used when debiasing.weights =
NULL.

vcov.type Optional covariance type for standard errors. The possible options are HC0, ...,
HC3. The default is "HC3", which is recommended in small samples and corre-
sponds to the "shortcut formula" for the jackknife (see MacKinnon & White for
more discussion, and Cameron & Miller for a review). For large data sets with
clusters, "HC0" or "HC1" are significantly faster to compute.

target.sample Which sample to compute the BLP over. The default is "all". Option "overlap"
uses weights equal to e(X)(1 - e(X)), where e(x) are estimates of the propensity
score.

Details

Procedurally, we do so by regressing doubly robust scores derived from the forest against the Ai.
Note the covariates Ai may consist of a subset of the Xi, or they may be distinct. The case of the
null model tau(Xi) ~ beta_0 is equivalent to fitting an average treatment effect via AIPW.

In the event the treatment is continuous the inverse-propensity weight component of the double
robust scores are replaced with a component based on a forest based estimate of Var[Wi | Xi = x].
These weights can also be passed manually by specifying debiasing.weights.

Value

An estimate of the best linear projection, along with coefficient standard errors.

References

Cameron, A. Colin, and Douglas L. Miller. "A practitioner’s guide to cluster-robust inference."
Journal of Human Resources 50, no. 2 (2015): 317-372.

Cui, Yifan, Michael R. Kosorok, Erik Sverdrup, Stefan Wager, and Ruoqing Zhu. "Estimating
Heterogeneous Treatment Effects with Right-Censored Data via Causal Survival Forests." Journal
of the Royal Statistical Society: Series B, 85(2), 2023.

MacKinnon, James G., and Halbert White. "Some heteroskedasticity-consistent covariance matrix
estimators with improved finite sample properties." Journal of Econometrics 29.3 (1985): 305-325.

Semenova, Vira, and Victor Chernozhukov. "Debiased Machine Learning of Conditional Average
Treatment Effects and Other Causal Functions". The Econometrics Journal 24.2 (2021).

Examples

n <- 800
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.25 + 0.5 * (X[, 1] > 0))
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
forest <- causal_forest(X, Y, W)
best_linear_projection(forest, X[,1:2])

8 boosted_regression_forest

boosted_regression_forest

Boosted regression forest

Description

Trains a boosted regression forest that can be used to estimate the conditional mean function mu(x)
= E[Y | X = x]. Selects number of boosting iterations based on cross-validation.

Usage

boosted_regression_forest(
X,
Y,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
ci.group.size = 2,
tune.parameters = "none",
tune.num.trees = 10,
tune.num.reps = 100,
tune.num.draws = 1000,
boost.steps = NULL,
boost.error.reduction = 0.97,
boost.max.steps = 5,
boost.trees.tune = 10,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the regression.

Y The outcome.

boosted_regression_forest 9

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to each observation in estimation. If NULL, each observation
receives the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

10 boosted_regression_forest

tune.parameters

If true, NULL parameters are tuned by cross-validation; if FALSE NULL pa-
rameters are set to defaults. Default is FALSE.

tune.num.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 10.

tune.num.reps The number of forests used to fit the tuning model. Default is 100.
tune.num.draws The number of random parameter values considered when using the model to

select the optimal parameters. Default is 1000.
boost.steps The number of boosting iterations. If NULL, selected by cross-validation. De-

fault is NULL.
boost.error.reduction

If boost.steps is NULL, the percentage of previous steps’ error that must be
estimated by cross validation in order to take a new step, default 0.97.

boost.max.steps

The maximum number of boosting iterations to try when boost.steps=NULL.
Default is 5.

boost.trees.tune

If boost.steps is NULL, the number of trees used to test a new boosting step
when tuning boost.steps. Default is 10.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

seed The seed for the C++ random number generator.

Value

A boosted regression forest object. $error contains the mean debiased error for each step, and
$forests contains the trained regression forest for each step.

Examples

Train a boosted regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
boosted.forest <- boosted_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
boost.pred <- predict(boosted.forest, X.test)

Predict on out-of-bag training samples.
boost.pred <- predict(boosted.forest)

Check how many boosting iterations were used
print(length(boosted.forest$forests))

causal_forest 11

causal_forest Causal forest

Description

Trains a causal forest that can be used to estimate conditional average treatment effects tau(X).
When the treatment assignment W is binary and unconfounded, we have tau(X) = E[Y(1) - Y(0) |
X = x], where Y(0) and Y(1) are potential outcomes corresponding to the two possible treatment
states. When W is continuous, we effectively estimate an average partial effect Cov[Y, W | X = x] /
Var[W | X = x], and interpret it as a treatment effect given unconfoundedness.

Usage

causal_forest(
X,
Y,
W,
Y.hat = NULL,
W.hat = NULL,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
ci.group.size = 2,
tune.parameters = "none",
tune.num.trees = 200,
tune.num.reps = 50,
tune.num.draws = 1000,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the causal regression.

Y The outcome (must be a numeric vector with no NAs).

12 causal_forest

W The treatment assignment (must be a binary or real numeric vector with no NAs).
Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment.

If Y.hat = NULL, these are estimated using a separate regression forest. See
section 6.1.1 of the GRF paper for further discussion of this quantity. Default is
NULL.

W.hat Estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are
estimated using a separate regression forest. Default is NULL.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to each sample in estimation. If NULL, each observation receives
the same weight. Note: To avoid introducing confounding, weights should be
independent of the potential outcomes given X. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.
min.node.size A target for the minimum number of observations in each tree leaf. Note that

nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

causal_forest 13

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the treatment should be taken into account when determining the
imbalance of a split. Default is TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters

A vector of parameter names to tune. If "all": all tunable parameters are tuned
by cross-validation. The following parameters are tunable: ("sample.fraction",
"mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "im-
balance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned.
Default is "none" (no parameters are tuned).

tune.num.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 200.

tune.num.reps The number of forests used to fit the tuning model. Default is 50.

tune.num.draws The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained causal forest object. If tune.parameters is enabled, then tuning information will be in-
cluded through the ‘tuning.output‘ attribute.

References

Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized Random Forests". Annals of Statis-
tics, 47(2), 2019.

Wager, Stefan, and Susan Athey. "Estimation and Inference of Heterogeneous Treatment Effects
using Random Forests". Journal of the American Statistical Association, 113(523), 2018.

Nie, Xinkun, and Stefan Wager. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects".
Biometrika, 108(2), 2021.

Examples

Train a causal forest.
n <- 500

14 causal_forest

p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

Predict on out-of-bag training samples.
c.pred <- predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 4000)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)

In some examples, pre-fitting models for Y and W separately may
be helpful (e.g., if different models use different covariates).
In some applications, one may even want to get Y.hat and W.hat
using a completely different method (e.g., boosting).
n <- 2000
p <- 20
X <- matrix(rnorm(n * p), n, p)
TAU <- 1 / (1 + exp(-X[, 3]))
W <- rbinom(n, 1, 1 / (1 + exp(-X[, 1] - X[, 2])))
Y <- pmax(X[, 2] + X[, 3], 0) + rowMeans(X[, 4:6]) / 2 + W * TAU + rnorm(n)

forest.W <- regression_forest(X, W, tune.parameters = "all")
W.hat <- predict(forest.W)$predictions

forest.Y <- regression_forest(X, Y, tune.parameters = "all")
Y.hat <- predict(forest.Y)$predictions

forest.Y.varimp <- variable_importance(forest.Y)

Note: Forests may have a hard time when trained on very few variables
(e.g., ncol(X) = 1, 2, or 3). We recommend not being too aggressive
in selection.
selected.vars <- which(forest.Y.varimp / mean(forest.Y.varimp) > 0.2)

tau.forest <- causal_forest(X[, selected.vars], Y, W,
W.hat = W.hat, Y.hat = Y.hat,
tune.parameters = "all"

)
tau.hat <- predict(tau.forest)$predictions

See if a causal forest succeeded in capturing heterogeneity by plotting
the TOC and calculating a 95% CI for the AUTOC.
train <- sample(1:n, n / 2)
train.forest <- causal_forest(X[train,], Y[train], W[train])
eval.forest <- causal_forest(X[-train,], Y[-train], W[-train])

causal_survival_forest 15

rate <- rank_average_treatment_effect(eval.forest,
predict(train.forest, X[-train,])$predictions)

plot(rate)
paste("AUTOC:", round(rate$estimate, 2), "+/", round(1.96 * rate$std.err, 2))

causal_survival_forest

Causal survival forest

Description

Trains a causal survival forest that can be used to estimate conditional treatment effects tau(X) with
right-censored outcomes. We estimate either 1) tau(X) = E[min(T(1), horizon) - min(T(0), horizon)
| X = x], where T(1) and T(0) are potental outcomes corresponding to the two possible treatment
states and ‘horizon‘ is the maximum follow-up time, or 2) tau(X) = P[T(1) > horizon | X = x] -
P[T(0) > horizon | X = x], for a chosen time point ‘horizon‘.

Usage

causal_survival_forest(
X,
Y,
W,
D,
W.hat = NULL,
target = c("RMST", "survival.probability"),
horizon = NULL,
failure.times = NULL,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
ci.group.size = 2,
tune.parameters = "none",
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

16 causal_survival_forest

Arguments

X The covariates.

Y The event time (must be non-negative).

W The treatment assignment (must be a binary or real numeric vector with no NAs).

D The event type (0: censored, 1: failure/observed event).

W.hat Estimates of the treatment propensities E[W | X = x]. If W.hat = NULL, these
are estimated using a separate regression forest. Default is NULL.

target The target estimand. Choices are Restricted Mean Survival Time ("RMST")
which estimates 1) E[min(T(1), horizon) - min(T(0), horizon) | X = x], or "sur-
vival.probability" which estimates 2) P[T(1) > horizon | X = x] - P[T(0) > hori-
zon | X = x]. Default is "RMST".

horizon A scalar that defines the estimand (required). If target is "RMST" then this
defines the maximum follow-up time. If target is "survival.probability", then
this defines the time point for the absolute risk difference estimate.

failure.times A vector of event times to fit the survival curves at. If NULL, then all the
unique event times are used. This speeds up forest estimation by constraining the
event grid. Observed event times are rounded down to the last sorted occurance
less than or equal to the specified failure time. The time points should be in
increasing order. Default is NULL.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to each sample in estimation. If NULL, each observation receives
the same weight. Note: To avoid introducing confounding, weights should be
independent of the potential outcomes given X. Sample weights are not used in
survival spliting. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

causal_survival_forest 17

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. This pa-
rameter plays the same role as in causal forest and survival forest, where for
the latter the number of failures in each child has to be at least one or ‘alpha‘
times the number of samples in the parent node. Default is 0.05. (On data with
very low event rate the default value may be too high for the forest to split and
lowering it may be beneficial).

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the treatment and censoring status should be taken into account
when determining the imbalance of a split. The requirement for valid split
candidates is the same as in causal_forest with the additional constraint that
num.failures(child) >= num.samples(parent) * alpha. Default is TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters

(Currently only applies to the regression forest used in W.hat estimation) A
vector of parameter names to tune. If "all": all tunable parameters are tuned
by cross-validation. The following parameters are tunable: ("sample.fraction",
"mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "im-
balance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned.
Default is "none" (no parameters are tuned).

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

18 causal_survival_forest

Details

When W is continuous, we effectively estimate an average partial effect corresponding to 1) Cov[min(T,
horizon), W | X = x] / Var[W | X = x] or 2) Cov[1(T > horizon), W | X = x] / Var[W | X = x], and
interpret it as a treatment effect given unconfoundedness.

Value

A trained causal_survival_forest forest object.

References

Cui, Yifan, Michael R. Kosorok, Erik Sverdrup, Stefan Wager, and Ruoqing Zhu. "Estimating
Heterogeneous Treatment Effects with Right-Censored Data via Causal Survival Forests". Journal
of the Royal Statistical Society: Series B, 85(2), 2023.

Sverdrup, Erik, and Stefan Wager. "Treatment Heterogeneity with Right-Censored Outcomes Using
grf". ASA Lifetime Data Science Newsletter, January 2024 (arXiv:2312.02482).

Examples

Train a causal survival forest targeting a Restricted Mean Survival Time (RMST)
with maximum follow-up time set to `horizon`.
n <- 2000
p <- 5
X <- matrix(runif(n * p), n, p)
W <- rbinom(n, 1, 0.5)
horizon <- 1
failure.time <- pmin(rexp(n) * X[, 1] + W, horizon)
censor.time <- 2 * runif(n)
Y <- pmin(failure.time, censor.time)
D <- as.integer(failure.time <= censor.time)
Save computation time by constraining the event grid by discretizing (rounding) continuous events.
cs.forest <- causal_survival_forest(X, round(Y, 2), W, D, horizon = horizon)
Or do so more flexibly by defining your own time grid using the failure.times argument.
grid <- seq(min(Y), max(Y), length.out = 150)
cs.forest <- causal_survival_forest(X, Y, W, D, horizon = horizon, failure.times = grid)

Predict using the forest.
X.test <- matrix(0.5, 10, p)
X.test[, 1] <- seq(0, 1, length.out = 10)
cs.pred <- predict(cs.forest, X.test)

Predict on out-of-bag training samples.
cs.pred <- predict(cs.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.pred <- predict(cs.forest, X.test, estimate.variance = TRUE)

Compute a doubly robust estimate of the average treatment effect.
average_treatment_effect(cs.forest)

Compute the best linear projection on the first covariate.

https://arxiv.org/abs/2312.02482

generate_causal_data 19

best_linear_projection(cs.forest, X[, 1])

See if a causal survival forest succeeded in capturing heterogeneity by plotting
the TOC and calculating a 95% CI for the AUTOC.
train <- sample(1:n, n / 2)
eval <- -train
train.forest <- causal_survival_forest(X[train,], Y[train], W[train], D[train], horizon = horizon)
eval.forest <- causal_survival_forest(X[eval,], Y[eval], W[eval], D[eval], horizon = horizon)
rate <- rank_average_treatment_effect(eval.forest,

predict(train.forest, X[eval,])$predictions)
plot(rate)
paste("AUTOC:", round(rate$estimate, 2), "+/", round(1.96 * rate$std.err, 2))

generate_causal_data Generate causal forest data

Description

The following DGPs are available for benchmarking purposes:

• "simple": tau = max(X1, 0), e = 0.4 + 0.2 * 1(X1 > 0).

• "aw1": equation (27) of https://arxiv.org/pdf/1510.04342.pdf

• "aw2": equation (28) of https://arxiv.org/pdf/1510.04342.pdf

• "aw3": confounding is from "aw1" and tau is from "aw2"

• "aw3reverse": Same as aw3, but HTEs anticorrelated with baseline

• "ai1": "Setup 1" from section 6 of https://arxiv.org/pdf/1504.01132.pdf

• "ai2": "Setup 2" from section 6 of https://arxiv.org/pdf/1504.01132.pdf

• "kunzel": "Simulation 1" from A.1 in https://arxiv.org/pdf/1706.03461.pdf

• "nw1": "Setup A" from Section 4 of https://arxiv.org/pdf/1712.04912.pdf

• "nw2": "Setup B" from Section 4 of https://arxiv.org/pdf/1712.04912.pdf

• "nw3": "Setup C" from Section 4 of https://arxiv.org/pdf/1712.04912.pdf

• "nw4": "Setup D" from Section 4 of https://arxiv.org/pdf/1712.04912.pdf

Usage

generate_causal_data(
n,
p,
sigma.m = 1,
sigma.tau = 0.1,
sigma.noise = 1,
dgp = c("simple", "aw1", "aw2", "aw3", "aw3reverse", "ai1", "ai2", "kunzel", "nw1",

"nw2", "nw3", "nw4")
)

20 generate_causal_survival_data

Arguments

n The number of observations.
p The number of covariates (note: the minimum varies by DGP).
sigma.m The standard deviation of the unconditional mean of Y. Default is 1.
sigma.tau The standard deviation of the treatment effect. Default is 0.1.
sigma.noise The conditional variance of Y. Default is 1.
dgp The kind of dgp. Default is "simple".

Details

Each DGP is parameterized by X: observables, m: conditional mean of Y, tau: treatment effect, e:
propensity scores, V: conditional variance of Y.

The following rescaled data is returned m = m / sd(m) * sigma.m, tau = tau / sd(tau) * sigma.tau, V
= V / mean(V) * sigma.noise^2, W = rbinom(e), Y = m + (W - e) * tau + sqrt(V) + rnorm(n).

Value

A list consisting of: X, Y, W, tau, m, e, dgp.

Examples

Generate simple benchmark data
data <- generate_causal_data(100, 5, dgp = "simple")
Generate data from Wager and Athey (2018)
data <- generate_causal_data(100, 5, dgp = "aw1")
data2 <- generate_causal_data(100, 5, dgp = "aw2")

generate_causal_survival_data

Simulate causal survival data

Description

The following DGPs are available for benchmarking purposes, T is the failure time and C the
censoring time:

• "simple1": T = X1*eps + W, C ~ U(0, 2) where eps ~ Exp(1) and Y.max = 1.
• "type1": T is drawn from an accelerated failure time model and C from a Cox model (scenario

1 in https://arxiv.org/abs/2001.09887)
• "type2": T is drawn from a proportional hazard model and C from a accelerated failure time

(scenario 2 in https://arxiv.org/abs/2001.09887)
• "type3": T and C are drawn from a Poisson distribution (scenario 3 in https://arxiv.org/abs/2001.09887)
• "type4": T and C are drawn from a Poisson distribution (scenario 4 in https://arxiv.org/abs/2001.09887)
• "type5": is similar to "type2" but with censoring generated from an accelerated failure time

model.

generate_causal_survival_data 21

Usage

generate_causal_survival_data(
n,
p,
Y.max = NULL,
y0 = NULL,
X = NULL,
rho = 0,
n.mc = 10000,
dgp = c("simple1", "type1", "type2", "type3", "type4", "type5")

)

Arguments

n The number of samples.

p The number of covariates.

Y.max The maximum follow-up time (optional).

y0 Query time to estimate P(T(1) > y0 | X) - P(T(0) > y0 | X) (optional).

X The covariates (optional).

rho The correlation coefficient of the X’s covariance matrix V_(ij) = rho^|i-j|. De-
fault is 0.

n.mc The number of monte carlo draws to estimate the treatment effect with. Default
is 10000.

dgp The type of DGP.

Value

A list with entries: ‘X‘: the covariates, ‘Y‘: the event times, ‘W‘: the treatment indicator, ‘D‘: the
censoring indicator, ‘cate‘: the treatment effect (RMST) estimated by monte carlo, ‘cate.prob‘ the
difference in survival probability, ‘cate.sign‘: the true sign of the cate for ITR comparison, ‘dgp‘:
the dgp name, ‘Y.max‘: the maximum follow-up time, ‘y0‘: the query time for difference in survival
probability.

Examples

Generate data
n <- 1000
p <- 5
data <- generate_causal_survival_data(n, p)
Get true CATE on a test set
X.test <- matrix(seq(0, 1, length.out = 5), 5, p)
cate.test <- generate_causal_survival_data(n, p, X = X.test)$cate

22 get_forest_weights

get_forest_weights Given a trained forest and test data, compute the kernel weights for
each test point.

Description

During normal prediction, these weights (named alpha in the GRF paper) are computed as an inter-
mediate step towards producing estimates. This function allows for examining the weights directly,
so they could be potentially be used as the input to a different analysis.

Usage

get_forest_weights(forest, newdata = NULL, num.threads = NULL)

Arguments

forest The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example).

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

Value

A sparse matrix where each row represents a test sample, and each column is a sample in the training
data. The value at (i, j) gives the weight of training sample j for test sample i.

Examples

p <- 10
n <- 100
X <- matrix(2 * runif(n * p) - 1, n, p)
Y <- (X[, 1] > 0) + 2 * rnorm(n)
rrf <- regression_forest(X, Y, mtry = p)
forest.weights.oob <- get_forest_weights(rrf)

n.test <- 15
X.test <- matrix(2 * runif(n.test * p) - 1, n.test, p)
forest.weights <- get_forest_weights(rrf, X.test)

get_leaf_node 23

get_leaf_node Find the leaf node for a test sample.

Description

Given a GRF tree object, compute the leaf node a test sample falls into. The nodes in a GRF tree are
numbered breadth first, and the returned numbers will be the leaf integer according to this ordering.
To get kernel weights based on leaf membership, see the function get_forest_weights.

Usage

get_leaf_node(tree, newdata, node.id = TRUE)

Arguments

tree A GRF tree object (retrieved by ‘get_tree‘).

newdata Points at which leaf predictions should be made.

node.id Boolean indicating whether to return the node.id for each query sample (default),
or if FALSE, a list of node numbers with the samples contained.

Value

A vector of integers indicating the leaf number for each sample in the given tree.

Examples

p <- 10
n <- 100
X <- matrix(2 * runif(n * p) - 1, n, p)
Y <- (X[, 1] > 0) + 2 * rnorm(n)
r.forest <- regression_forest(X, Y, num.tree = 50)

n.test <- 5
X.test <- matrix(2 * runif(n.test * p) - 1, n.test, p)
tree <- get_tree(r.forest, 1)
Get a vector of node numbers for each sample.
get_leaf_node(tree, X.test)
Get a list of samples per node.
get_leaf_node(tree, X.test, node.id = FALSE)

24 get_scores.causal_forest

get_scores Compute doubly robust scores for a GRF forest object

Description

Compute doubly robust scores for a GRF forest object

Usage

get_scores(forest, ...)

Arguments

forest A grf forest object

... Additional arguments

Value

A vector of scores

get_scores.causal_forest

Compute doubly robust scores for a causal forest.

Description

Compute doubly robust (AIPW) scores for average treatment effect estimation or average partial
effect estimation with continuous treatment, using a causal forest. Under regularity conditions, the
average of the DR.scores is an efficient estimate of the average treatment effect.

Usage

S3 method for class 'causal_forest'
get_scores(
forest,
subset = NULL,
debiasing.weights = NULL,
num.trees.for.weights = 500,
...

)

get_scores.causal_survival_forest 25

Arguments

forest A trained causal forest.

subset Specifies subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

debiasing.weights

A vector of length n (or the subset length) of debiasing weights. If NULL (de-
fault) they are obtained via inverse-propensity weighting in the case of binary
treatment or by estimating Var[W | X = x] using a new forest in the case of a
continuous treatment.

num.trees.for.weights

Number of trees used to estimate Var[W | X = x]. Note: this argument is only
used when debiasing.weights = NULL.

... Additional arguments (currently ignored).

Value

A vector of scores.

References

Farrell, Max H. "Robust inference on average treatment effects with possibly more covariates than
observations." Journal of Econometrics 189(1), 2015.

Graham, Bryan S., and Cristine Campos de Xavier Pinto. "Semiparametrically efficient estimation
of the average linear regression function." Journal of Econometrics 226(1), 2022.

Hirshberg, David A., and Stefan Wager. "Augmented minimax linear estimation." The Annals of
Statistics 49(6), 2021.

Robins, James M., and Andrea Rotnitzky. "Semiparametric efficiency in multivariate regression
models with missing data." Journal of the American Statistical Association 90(429), 1995.

get_scores.causal_survival_forest

Compute doubly robust scores for a causal survival forest.

Description

For details see section 3.2 in the causal survival forest paper.

Usage

S3 method for class 'causal_survival_forest'
get_scores(forest, subset = NULL, num.trees.for.weights = 500, ...)

26 get_scores.instrumental_forest

Arguments

forest A trained causal survival forest.

subset Specifies subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

num.trees.for.weights

Number of trees used to estimate Var[W | X = x]. Note: this argument is only
used in the case of a continuous treatment (see get_scores.causal_forest
for details).

... Additional arguments (currently ignored).

Value

A vector of scores.

get_scores.instrumental_forest

Doubly robust scores for estimating the average conditional local av-
erage treatment effect.

Description

Given an outcome Y, treatment W and instrument Z, the (conditional) local average treatment effect
is tau(x) = Cov[Y, Z | X = x] / Cov[W, Z | X = x]. This is the quantity that is estimated with an
instrumental forest. It can be intepreted causally in various ways. Given a homogeneity assumption,
tau(x) is simply the CATE at x. When W is binary and there are no "defiers", Imbens and Angrist
(1994) show that tau(x) can be interpreted as an average treatment effect on compliers. This doubly
robust scores provided here are for estimating tau = E[tau(X)].

Usage

S3 method for class 'instrumental_forest'
get_scores(
forest,
subset = NULL,
debiasing.weights = NULL,
compliance.score = NULL,
num.trees.for.weights = 500,
...

)

Arguments

forest A trained instrumental forest.

get_scores.multi_arm_causal_forest 27

subset Specifies subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

debiasing.weights

A vector of length n (or the subset length) of debiasing weights. If NULL (de-
fault) these are obtained via the appropriate doubly robust score construction,
e.g., in the case of causal_forests with a binary treatment, they are obtained via
inverse-propensity weighting.

compliance.score

An estimate of the causal effect of Z on W, i.e., Delta(X) = E[W | X, Z = 1] -
E[W | X, Z = 0], which can then be used to produce debiasing.weights. If not
provided, this is estimated via an auxiliary causal forest.

num.trees.for.weights

In some cases (e.g., with causal forests with a continuous treatment), we need
to train auxiliary forests to learn debiasing weights. This is the number of trees
used for this task. Note: this argument is only used when debiasing.weights =
NULL.

... Additional arguments (currently ignored).

Value

A vector of scores.

References

Aronow, Peter M., and Allison Carnegie. "Beyond LATE: Estimation of the average treatment
effect with an instrumental variable." Political Analysis 21(4), 2013.

Chernozhukov, Victor, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K. Newey, and James
M. Robins. "Locally robust semiparametric estimation." Econometrica 90(4), 2022.

Imbens, Guido W., and Joshua D. Angrist. "Identification and Estimation of Local Average Treat-
ment Effects." Econometrica 62(2), 1994.

get_scores.multi_arm_causal_forest

Compute doubly robust scores for a multi arm causal forest.

Description

Compute doubly robust (AIPW) scores for average treatment effect estimation using a multi arm
causal forest. Under regularity conditions, the average of the DR.scores is an efficient estimate of
the average treatment effect.

Usage

S3 method for class 'multi_arm_causal_forest'
get_scores(forest, subset = NULL, drop = FALSE, ...)

28 get_tree

Arguments

forest A trained multi arm causal forest.

subset Specifies subset of the training examples over which we estimate the ATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

drop If TRUE, coerce the result to the lowest possible dimension. Default is FALSE.

... Additional arguments (currently ignored).

Value

An array of scores for each contrast and outcome.

get_tree Retrieve a single tree from a trained forest object.

Description

Retrieve a single tree from a trained forest object.

Usage

get_tree(forest, index)

Arguments

forest The trained forest.

index The index of the tree to retrieve.

Value

A GRF tree object containing the below attributes. drawn_samples: a list of examples that were
used in training the tree. This includes examples that were used in choosing splits, as well as the
examples that populate the leaf nodes. Put another way, if honesty is enabled, this list includes both
subsamples from the split (J1 and J2 in the notation of the paper). num_samples: the number of
examples used in training the tree. nodes: a list of objects representing the nodes in the tree, starting
with the root node. Each node will contain an ’is_leaf’ attribute, which indicates whether it is an
interior or leaf node. Interior nodes contain the attributes ’left_child’ and ’right_child’, which give
the indices of their children in the list, as well as ’split_variable’, and ’split_value’, which describe
the split that was chosen. Leaf nodes only have the attribute ’samples’, which is a list of the training
examples that the leaf contains. Note that if honesty is enabled, this list will only contain examples
from the second subsample that was used to ’repopulate’ the tree (J2 in the notation of the paper).

grf_options 29

Examples

Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Examine a particular tree.
q.tree <- get_tree(q.forest, 3)
q.tree$nodes

grf_options grf package options

Description

grf package options can be set using R’s options command. The current available options are:

• ‘grf.legacy.seed‘: controls whether grf’s random seed behavior depends on the number of
CPU threads used to train the forest. The default value is ‘FALSE‘. Set to ‘TRUE‘ to recover
results produced with grf versions prior to 2.4.0.

Usage

grf_options()

Value

Prints the current grf package options.

Examples

Use random seed behavior prior to version 2.4.0.
options(grf.legacy.seed = TRUE)

Print current package options.
grf_options()

Use random seed independent of num.threads (default as of version 2.4.0 and higher).
options(grf.legacy.seed = FALSE)

30 instrumental_forest

instrumental_forest Intrumental forest

Description

Trains an instrumental forest that can be used to estimate conditional local average treatment effects
tau(X) identified using instruments. Formally, the forest estimates tau(X) = Cov[Y, Z | X = x] /
Cov[W, Z | X = x]. Note that when the instrument Z and treatment assignment W coincide, an
instrumental forest is equivalent to a causal forest.

Usage

instrumental_forest(
X,
Y,
W,
Z,
Y.hat = NULL,
W.hat = NULL,
Z.hat = NULL,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
ci.group.size = 2,
reduced.form.weight = 0,
tune.parameters = "none",
tune.num.trees = 200,
tune.num.reps = 50,
tune.num.draws = 1000,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the instrumental regression.

instrumental_forest 31

Y The outcome.

W The treatment assignment (may be binary or real).

Z The instrument (may be binary or real).

Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment. If
Y.hat = NULL, these are estimated using a separate regression forest. Default is
NULL.

W.hat Estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are
estimated using a separate regression forest. Default is NULL.

Z.hat Estimates of the instrument propensities E[Z | Xi]. If Z.hat = NULL, these are
estimated using a separate regression forest. Default is NULL.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to each observation in estimation. If NULL, each observation
receives equal weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave

32 instrumental_forest

is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the instrument should be taken into account when determining
the imbalance of a split. Default is TRUE.

ci.group.size The forst will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

reduced.form.weight

Whether splits should be regularized towards a naive splitting criterion that ig-
nores the instrument (and instead emulates a causal forest).

tune.parameters

A vector of parameter names to tune. If "all": all tunable parameters are tuned
by cross-validation. The following parameters are tunable: ("sample.fraction",
"mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "im-
balance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned.
Default is "none" (no parameters are tuned).

tune.num.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 200.

tune.num.reps The number of forests used to fit the tuning model. Default is 50.

tune.num.draws The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained instrumental forest object.

References

Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized Random Forests". Annals of Statis-
tics, 47(2), 2019.

ll_regression_forest 33

Examples

Train an instrumental forest.
n <- 2000
p <- 5
X <- matrix(rbinom(n * p, 1, 0.5), n, p)
Z <- rbinom(n, 1, 0.5)
Q <- rbinom(n, 1, 0.5)
W <- Q * Z
tau <- X[, 1] / 2
Y <- rowSums(X[, 1:3]) + tau * W + Q + rnorm(n)
iv.forest <- instrumental_forest(X, Y, W, Z)

Predict on out-of-bag training samples.
iv.pred <- predict(iv.forest)

Estimate a (local) average treatment effect.
average_treatment_effect(iv.forest)

ll_regression_forest Local linear forest

Description

Trains a local linear forest that can be used to estimate the conditional mean function mu(x) = E[Y
| X = x]

Usage

ll_regression_forest(
X,
Y,
enable.ll.split = FALSE,
ll.split.weight.penalty = FALSE,
ll.split.lambda = 0.1,
ll.split.variables = NULL,
ll.split.cutoff = NULL,
num.trees = 2000,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,

34 ll_regression_forest

imbalance.penalty = 0,
ci.group.size = 2,
tune.parameters = "none",
tune.num.trees = 50,
tune.num.reps = 100,
tune.num.draws = 1000,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the regression.

Y The outcome.
enable.ll.split

(experimental) Optional choice to make forest splits based on ridge residuals as
opposed to standard CART splits. Defaults to FALSE.

ll.split.weight.penalty

If using local linear splits, user can specify whether or not to use a covariance
ridge penalty, analogously to the prediction case. Defaults to FALSE.

ll.split.lambda

Ridge penalty for splitting. Defaults to 0.1.
ll.split.variables

Linear correction variables for splitting. Defaults to all variables.
ll.split.cutoff

Enables the option to use regression coefficients from the full dataset for LL
splitting once leaves get sufficiently small. Leaf size after which we use the
overall beta. Defaults to the square root of the number of samples. If desired,
users can enforce no regulation (i.e., using the leaf betas at each step) by setting
this parameter to zero.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Default
is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

ll_regression_forest 35

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 1.

tune.parameters

If true, NULL parameters are tuned by cross-validation; if FALSE NULL pa-
rameters are set to defaults. Default is FALSE. Currently, local linear tuning
is based on regression forest fit, and is only supported for ‘enable.ll.split =
FALSE‘.

tune.num.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 10.

tune.num.reps The number of forests used to fit the tuning model. Default is 100.

tune.num.draws The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained local linear forest object.

36 lm_forest

References

Friedberg, Rina, Julie Tibshirani, Susan Athey, and Stefan Wager. "Local Linear Forests". Journal
of Computational and Graphical Statistics, 30(2), 2020.

Examples

Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
forest <- ll_regression_forest(X, Y)

lm_forest LM Forest

Description

Trains a linear model forest that can be used to estimate hk(x), k = 1..K at X = x in the the condi-
tional linear model Y = c(x)+h1(x)W1+...+hK(x)WK , where Y is a (potentially vector-valued)
response and W a set of regressors.

Usage

lm_forest(
X,
Y,
W,
Y.hat = NULL,
W.hat = NULL,
num.trees = 2000,
sample.weights = NULL,
gradient.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = FALSE,
ci.group.size = 2,

lm_forest 37

compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the regression.

Y The outcome (must be a numeric vector or matrix [one column per outcome]
with no NAs). Multiple outcomes should be on the same scale.

W The conditional regressors (must be a vector or matrix with no NAs).

Y.hat Estimates of the conditional means E[Y | Xi]. If Y.hat = NULL, these are esti-
mated using a separate multi-task regression forest. Default is NULL.

W.hat Estimates of the conditional means E[Wk | Xi]. If W.hat = NULL, these are
estimated using a separate multi-task regression forest. Default is NULL.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to each sample in estimation. If NULL, each observation receives
the same weight. Default is NULL.

gradient.weights

Weights given to each coefficient h_k(x) when targeting heterogeneity in the
estimates. These enter the GRF algorithm through the split criterion ∆: the k-
th coordinate of this is ∆k * gradient.weights[k]. If NULL, each coefficient is
given the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

38 lm_forest

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not Wk should be taken into account when determining the imbal-
ance of a split. It is an exact extension of the single-arm constraints (detailed
in the causal forest algorithm reference) to multiple arms, where the constraints
apply to each regressor Wk. Default is FALSE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2. (Confidence
intervals are currently only supported for univariate outcomes Y).

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained lm forest object.

References

Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized Random Forests". Annals of Statis-
tics, 47(2), 2019.

Zeileis, Achim, Torsten Hothorn, and Kurt Hornik. "Model-based Recursive Partitioning." Journal
of Computational and Graphical Statistics 17(2), 2008.

merge_forests 39

Examples

if (require("rdd", quietly = TRUE)) {
Train a LM Forest to estimate CATEs in a regression discontinuity design.
Simulate a simple example with a heterogeneous jump in the CEF.
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
Z <- runif(n, -4, 4)
cutoff <- 0
W <- as.numeric(Z >= cutoff)
tau <- pmax(0.5 * X[, 1], 0)
Y <- tau * W + 1 / (1 + exp(2 * Z)) + 0.2 * rnorm(n)

Compute the Imbens-Kalyanaraman MSE-optimal bandwidth for a local linear regression.
bandwidth <- IKbandwidth(Z, Y, cutoff)
Compute kernel weights for a triangular kernel.
sample.weights <- kernelwts(Z, cutoff, bandwidth, "triangular")

Alternatively, specify bandwith and triangular kernel weights without using the `rdd` package.
bandwidth <- # user can hand-specify this.
dist <- abs((Z - cutoff) / bandwidth)
sample.weights <- (1 - dist) * (dist <= 1) / bandwidth

Estimate a local linear regression with the running variable Z conditional on covariates X = x:
Y = c(x) + tau(x) W + b(x) Z.
Specify gradient.weights = c(1, 0) to target heterogeneity in the RDD coefficient tau(x).
Also, fit forest on subset with non-zero weights for faster estimation.
subset <- sample.weights > 0
lmf <- lm_forest(X[subset,], Y[subset], cbind(W, Z)[subset,],

sample.weights = sample.weights[subset], gradient.weights = c(1, 0))
tau.hat <- predict(lmf)$predictions[, 1,]

Plot estimated tau(x) vs simulated ground truth.
plot(X[subset, 1], tau.hat)
points(X[subset, 1], tau[subset], col = "red", cex = 0.1)
}

merge_forests Merges a list of forests that were grown using the same data into one
large forest.

Description

Merges a list of forests that were grown using the same data into one large forest.

Usage

merge_forests(forest_list, compute.oob.predictions = TRUE)

40 multi_arm_causal_forest

Arguments

forest_list A ‘list‘ of forests to be concatenated. All forests must be of the same type,
and the type must be a subclass of ‘grf‘. In addition, all forests must have the
same ’ci.group.size’. Other tuning parameters (e.g. alpha, mtry, min.node.size,
imbalance.penalty) are allowed to differ across forests.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Note that
even if OOB predictions have already been precomputed for the forests in ’for-
est_list’, those predictions are not used. Instead, a new set of oob predictions is
computed anew using the larger forest. Default is TRUE.

Value

A single forest containing all the trees in each forest in the input list.

Examples

Train standard regression forests
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest1 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)
r.forest2 <- regression_forest(X, Y, compute.oob.predictions = FALSE, num.trees = 100)

Join the forests together. The resulting forest will contain 200 trees.
big_rf <- merge_forests(list(r.forest1, r.forest2))

multi_arm_causal_forest

Multi-arm/multi-outcome causal forest

Description

Trains a causal forest that can be used to estimate conditional average treatment effects tau_k(X).
When the treatment assignment W is {1, ..., K} and unconfounded, we have tau_k(X) = E[Y(k) -
Y(1) | X = x] where Y(k) and Y(1) are potential outcomes corresponding to the treatment state for
arm k and the baseline arm 1.

Usage

multi_arm_causal_forest(
X,
Y,
W,

multi_arm_causal_forest 41

Y.hat = NULL,
W.hat = NULL,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
stabilize.splits = TRUE,
ci.group.size = 2,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the causal regression.

Y The outcome (must be a numeric vector or matrix [one column per outcome]
with no NAs). Multiple outcomes should be on the same scale.

W The treatment assignment (must be a factor vector with no NAs). The reference
treatment is set to the first treatment according to the ordinality of the factors,
this can be changed with the ‘relevel‘ function in R.

Y.hat Estimates of the expected responses E[Y | Xi], marginalizing over treatment. If
Y.hat = NULL, these are estimated using a separate multi-task regression forest.
Default is NULL.

W.hat Matrix with estimates of the treatment propensities E[Wk | Xi]. If W.hat =
NULL, these are estimated using a probability forest.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to each sample in estimation. If NULL, each observation receives
the same weight. Note: To avoid introducing confounding, weights should be
independent of the potential outcomes given X. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during

42 multi_arm_causal_forest

training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.
min.node.size A target for the minimum number of observations in each tree leaf. Note that

nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

stabilize.splits

Whether or not the treatment should be taken into account when determining
the imbalance of a split. It is an exact extension of the single-arm constraints
(detailed in the causal forest algorithm reference) to multiple arms, where the
constraints apply to each treatment arm independently. Default is TRUE.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2. (Confidence
intervals are currently only supported for univariate outcomes Y).

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

multi_arm_causal_forest 43

Details

This forest fits a multi-arm treatment estimate following the multivariate extension of the "R-
learner" suggested in Nie and Wager (2021), with kernel weights derived by the GRF algorithm
(Athey, Tibshirani, and Wager, 2019). In particular, with K arms, and W encoded as {0, 1}^(K-1),
we estimate, for a target sample x, and a chosen baseline arm:

τ̂(x) = argminτ

{∑n
i=1 αi(x)

(
Yi − m̂(−i)(Xi)− c(x)−

〈
Wi − ê(−i)(Xi), τ(Xi)

〉)2}
,

where the angle brackets indicates an inner product, e(X) = E[W | X = x] is a (vector valued) gen-
eralized propensity score, and m(x) = E[Y | X = x]. The forest weights alpha(x) are derived from
a generalized random forest splitting on the vector-valued gradient of tau(x). (The intercept c(x) is
a nuisance parameter not directly estimated). By default, e(X) and m(X) are estimated using two
separate random forests, a probability forest and regression forest respectively (optionally provided
through the arguments W.hat and Y.hat). The k-th element of tau(x) measures the conditional aver-
age treatment effect of the k-th treatment arm at X = x for k = 1, ..., K-1. The treatment effect for
multiple outcomes can be estimated jointly (i.e. Y can be vector-valued) - in which case the split-
ting rule takes into account all outcomes simultaneously (specifically, we concatenate the gradient
vector for each outcome).

For a single treatment and outcome, this forest is equivalent to a causal forest, however, they may
produce different results due to differences in numerics.

Value

A trained multi arm causal forest object.

References

Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized Random Forests". Annals of Statis-
tics, 47(2), 2019.

Nie, Xinkun, and Stefan Wager. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects".
Biometrika, 108(2), 2021.

Examples

Train a multi arm causal forest.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "B") - 1.5 * X[, 2] * (W == "C") + rnorm(n)
mc.forest <- multi_arm_causal_forest(X, Y, W)

Predict contrasts (out-of-bag) using the forest.
Fitting several outcomes jointly is supported, and the returned prediction array has
dimension [num.samples, num.contrasts, num.outcomes]. Since num.outcomes is one in
this example, we use drop = TRUE to ignore this singleton dimension.
mc.pred <- predict(mc.forest, drop = TRUE)

By default, the first ordinal treatment is used as baseline ("A" in this example),
giving two contrasts tau_B = Y(B) - Y(A), tau_C = Y(C) - Y(A)

44 multi_regression_forest

tau.hat <- mc.pred$predictions

plot(X[, 2], tau.hat[, "B - A"], ylab = "tau.contrast")
abline(0, 1, col = "red")
points(X[, 2], tau.hat[, "C - A"], col = "blue")
abline(0, -1.5, col = "red")
legend("topleft", c("B - A", "C - A"), col = c("black", "blue"), pch = 19)

A doubly robust estimate (AIPW) of the average treatment effect of the arms.
average_treatment_effect(mc.forest)

The conditional response surfaces mu_k(X) for a single outcome can be reconstructed from
the contrasts tau_k(x), the treatment propensities e_k(x), and the conditional mean m(x).
Given treatment "A" as baseline we have:
m(x) := E[Y | X] = E[Y(A) | X] + E[W_B (Y(B) - Y(A))] + E[W_C (Y(C) - Y(A))]
which given unconfoundedness is equal to:
m(x) = mu(A, x) + e_B(x) tau_B(X) + e_C(x) tau_C(x)
Rearranging and plugging in the above expressions, we obtain the following estimates
* mu(A, x) = m(x) - e_B(x) tau_B(x) - e_C(x) tau_C(x)
* mu(B, x) = m(x) + (1 - e_B(x)) tau_B(x) - e_C(x) tau_C(x)
* mu(C, x) = m(x) - e_B(x) tau_B(x) + (1 - e_C(x)) tau_C(x)
Y.hat <- mc.forest$Y.hat
W.hat <- mc.forest$W.hat

muA <- Y.hat - W.hat[, "B"] * tau.hat[, "B - A"] - W.hat[, "C"] * tau.hat[, "C - A"]
muB <- Y.hat + (1 - W.hat[, "B"]) * tau.hat[, "B - A"] - W.hat[, "C"] * tau.hat[, "C - A"]
muC <- Y.hat - W.hat[, "B"] * tau.hat[, "B - A"] + (1 - W.hat[, "C"]) * tau.hat[, "C - A"]

These can also be obtained with some array manipulations.
(the first column is always the baseline arm)
Y.hat.baseline <- Y.hat - rowSums(W.hat[, -1, drop = FALSE] * tau.hat)
mu.hat.matrix <- cbind(Y.hat.baseline, c(Y.hat.baseline) + tau.hat)
colnames(mu.hat.matrix) <- levels(W)
head(mu.hat.matrix)

The reference level for contrast prediction can be changed with `relevel`.
Fit and predict with treatment B as baseline:
W <- relevel(W, ref = "B")
mc.forest.B <- multi_arm_causal_forest(X, Y, W)

multi_regression_forest

Multi-task regression forest

Description

Trains a regression forest that can be used to estimate the conditional mean functions mu_i(x) =
E[Y_i | X = x]

multi_regression_forest 45

Usage

multi_regression_forest(
X,
Y,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the regression.

Y The outcomes (must be a numeric vector/matrix with no NAs).

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to an observation in estimation. If NULL, each observation is
given the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

46 multi_regression_forest

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained multi regression forest object.

Examples

Train a standard regression forest.
n <- 500
p <- 5
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1, drop = FALSE] %*% cbind(1, 2) + rnorm(n)
mr.forest <- multi_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
mr.pred <- predict(mr.forest, X.test)

Predict on out-of-bag training samples.

plot.grf_tree 47

mr.pred <- predict(mr.forest)

plot.grf_tree Plot a GRF tree object.

Description

The direction NAs are sent are indicated with the arrow fill. An empty arrow indicates that NAs are
sent that way. If trained without missing values, both arrows are filled.

Usage

S3 method for class 'grf_tree'
plot(x, include.na.path = NULL, ...)

Arguments

x The tree to plot
include.na.path

A boolean toggling whether to include the path of missing values or not. It
defaults to whether the forest was trained with NAs.

... Additional arguments (currently ignored).

Examples

Not run:
Plot a tree in the forest (requires the `DiagrammeR` package).
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)
plot(tree <- get_tree(c.forest, 1))
Compute the leaf nodes the first five samples falls into.
leaf.nodes <- get_leaf_node(tree, X[1:5,])

Saving a plot in .svg can be done with the `DiagrammeRsvg` package.
install.packages("DiagrammeRsvg")
tree.plot = plot(tree)
cat(DiagrammeRsvg::export_svg(tree.plot), file = 'plot.svg')

End(Not run)

48 predict.boosted_regression_forest

plot.rank_average_treatment_effect

Plot the Targeting Operator Characteristic curve.

Description

Plot the Targeting Operator Characteristic curve.

Usage

S3 method for class 'rank_average_treatment_effect'
plot(x, ..., ci.args = list(), abline.args = list(), legend.args = list())

Arguments

x The output of rank_average_treatment_effect.

... Additional arguments passed to plot.

ci.args Additional arguments passed to points.

abline.args Additional arguments passed to abline.

legend.args Additional arguments passed to legend.

predict.boosted_regression_forest

Predict with a boosted regression forest.

Description

Gets estimates of E[Y|X=x] using a trained regression forest.

Usage

S3 method for class 'boosted_regression_forest'
predict(
object,
newdata = NULL,
boost.predict.steps = NULL,
num.threads = NULL,
...

)

predict.causal_forest 49

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order

boost.predict.steps

Number of boosting iterations to use for prediction. If blank, uses the full num-
ber of steps for the object given

num.threads the number of threads used in prediction

... Additional arguments (currently ignored).

Value

A vector of predictions.

Examples

Train a boosted regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.boosted.forest <- boosted_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.boosted.forest, X.test)

Predict on out-of-bag training samples.
r.pred <- predict(r.boosted.forest)

predict.causal_forest Predict with a causal forest

Description

Gets estimates of tau(x) using a trained causal forest.

50 predict.causal_forest

Usage

S3 method for class 'causal_forest'
predict(
object,
newdata = NULL,
linear.correction.variables = NULL,
ll.lambda = NULL,
ll.weight.penalty = FALSE,
num.threads = NULL,
estimate.variance = FALSE,
...

)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

linear.correction.variables

Optional subset of indexes for variables to be used in local linear prediction. If
NULL, standard GRF prediction is used. Otherwise, we run a locally weighted
linear regression on the included variables. Please note that this is a beta feature
still in development, and may slow down prediction considerably. Defaults to
NULL.

ll.lambda Ridge penalty for local linear predictions. Defaults to NULL and will be cross-
validated.

ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Penalizes equally by default.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for τ̂(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates.
Column ’predictions’ contains estimates of the conditional average treatent effect (CATE). The
square-root of column ’variance.estimates’ is the standard error of CATE. For out-of-bag estimates,
we also output the following error measures. First, column ’debiased.error’ contains estimates of
the ’R-loss’ criterion, (See Nie and Wager, 2021 for a justification). Second, column ’excess.error’
contains jackknife estimates of the Monte-carlo error (Wager, Hastie, Efron 2014), a measure of
how unstable estimates are if we grow forests of the same size on the same data set. The sum of

predict.causal_survival_forest 51

’debiased.error’ and ’excess.error’ is the raw error attained by the current forest, and ’debiased.error’
alone is an estimate of the error attained by a forest with an infinite number of trees. We recommend
that users grow enough forests to make the ’excess.error’ negligible.

References

Friedberg, Rina, Julie Tibshirani, Susan Athey, and Stefan Wager. "Local Linear Forests". Journal
of Computational and Graphical Statistics, 30(2), 2020.

Wager, Stefan, Trevor Hastie, and Bradley Efron. "Confidence intervals for random forests: The
jackknife and the infinitesimal jackknife." The Journal of Machine Learning Research 15(1), 2014.

Nie, Xinkun, and Stefan Wager. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects".
Biometrika, 108(2), 2021.

Examples

Train a causal forest.
n <- 100
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)

Predict on out-of-bag training samples.
c.pred <- predict(c.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 500)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)

predict.causal_survival_forest

Predict with a causal survival forest forest

Description

Gets estimates of tau(X) using a trained causal survival forest.

52 predict.causal_survival_forest

Usage

S3 method for class 'causal_survival_forest'
predict(
object,
newdata = NULL,
num.threads = NULL,
estimate.variance = FALSE,
...

)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for τ̂(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions along with optional variance estimates.

Examples

Train a causal survival forest targeting a Restricted Mean Survival Time (RMST)
with maximum follow-up time set to `horizon`.
n <- 2000
p <- 5
X <- matrix(runif(n * p), n, p)
W <- rbinom(n, 1, 0.5)
horizon <- 1
failure.time <- pmin(rexp(n) * X[, 1] + W, horizon)
censor.time <- 2 * runif(n)
Y <- pmin(failure.time, censor.time)
D <- as.integer(failure.time <= censor.time)
Save computation time by constraining the event grid by discretizing (rounding) continuous events.
cs.forest <- causal_survival_forest(X, round(Y, 2), W, D, horizon = horizon)
Or do so more flexibly by defining your own time grid using the failure.times argument.
grid <- seq(min(Y), max(Y), length.out = 150)
cs.forest <- causal_survival_forest(X, Y, W, D, horizon = horizon, failure.times = grid)

Predict using the forest.
X.test <- matrix(0.5, 10, p)

predict.instrumental_forest 53

X.test[, 1] <- seq(0, 1, length.out = 10)
cs.pred <- predict(cs.forest, X.test)

Predict on out-of-bag training samples.
cs.pred <- predict(cs.forest)

Predict with confidence intervals; growing more trees is now recommended.
c.pred <- predict(cs.forest, X.test, estimate.variance = TRUE)

Compute a doubly robust estimate of the average treatment effect.
average_treatment_effect(cs.forest)

Compute the best linear projection on the first covariate.
best_linear_projection(cs.forest, X[, 1])

See if a causal survival forest succeeded in capturing heterogeneity by plotting
the TOC and calculating a 95% CI for the AUTOC.
train <- sample(1:n, n / 2)
eval <- -train
train.forest <- causal_survival_forest(X[train,], Y[train], W[train], D[train], horizon = horizon)
eval.forest <- causal_survival_forest(X[eval,], Y[eval], W[eval], D[eval], horizon = horizon)
rate <- rank_average_treatment_effect(eval.forest,

predict(train.forest, X[eval,])$predictions)
plot(rate)
paste("AUTOC:", round(rate$estimate, 2), "+/", round(1.96 * rate$std.err, 2))

predict.instrumental_forest

Predict with an instrumental forest

Description

Gets estimates of tau(x) using a trained instrumental forest.

Usage

S3 method for class 'instrumental_forest'
predict(
object,
newdata = NULL,
num.threads = NULL,
estimate.variance = FALSE,
...

)

54 predict.ll_regression_forest

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for τ̂(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions, along with (optional) variance estimates.

Examples

Train an instrumental forest.
n <- 2000
p <- 5
X <- matrix(rbinom(n * p, 1, 0.5), n, p)
Z <- rbinom(n, 1, 0.5)
Q <- rbinom(n, 1, 0.5)
W <- Q * Z
tau <- X[, 1] / 2
Y <- rowSums(X[, 1:3]) + tau * W + Q + rnorm(n)
iv.forest <- instrumental_forest(X, Y, W, Z)

Predict on out-of-bag training samples.
iv.pred <- predict(iv.forest)

Estimate a (local) average treatment effect.
average_treatment_effect(iv.forest)

predict.ll_regression_forest

Predict with a local linear forest

Description

Gets estimates of E[Y|X=x] using a trained regression forest.

predict.ll_regression_forest 55

Usage

S3 method for class 'll_regression_forest'
predict(
object,
newdata = NULL,
linear.correction.variables = NULL,
ll.lambda = NULL,
ll.weight.penalty = FALSE,
num.threads = NULL,
estimate.variance = FALSE,
...

)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

linear.correction.variables

Optional subset of indexes for variables to be used in local linear prediction. If
left NULL, all variables are used. We run a locally weighted linear regression on
the included variables. Please note that this is a beta feature still in development,
and may slow down prediction considerably. Defaults to NULL.

ll.lambda Ridge penalty for local linear predictions. Defaults to NULL and will be cross-
validated.

ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Defaults to FALSE.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for τ̂(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

A vector of predictions.

Examples

Train the forest.
n <- 50
p <- 5
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)

56 predict.lm_forest

forest <- ll_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
predictions <- predict(forest, X.test)

Predict on out-of-bag training samples.
predictions.oob <- predict(forest)

predict.lm_forest Predict with a lm forest

Description

Gets estimates of hk(x), k = 1..K in the conditionally linear model Y = c(x) + h1(x)W1 + ... +
hK(x)WK , for a target sample X = x.

Usage

S3 method for class 'lm_forest'
predict(
object,
newdata = NULL,
num.threads = NULL,
estimate.variance = FALSE,
drop = FALSE,
...

)

Arguments

object The trained forest.
newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-

tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for ĥk(x) are desired (for confidence intervals).
This option is currently only supported for univariate outcomes Y.

drop If TRUE, coerce the prediction result to the lowest possible dimension. Default
is FALSE.

... Additional arguments (currently ignored).

predict.multi_arm_causal_forest 57

Value

A list with elements ‘predictions‘: a 3d array of dimension [num.samples, K, M] with predictions
for regressor W, for each outcome 1,..,M (singleton dimensions in this array can be dropped by
passing the ‘drop‘ argument to ‘[‘, or with the shorthand ‘$predictions[„]‘), and optionally ‘vari-
ance.estimates‘: a matrix with K columns with variance estimates.

Examples

if (require("rdd", quietly = TRUE)) {
Train a LM Forest to estimate CATEs in a regression discontinuity design.
Simulate a simple example with a heterogeneous jump in the CEF.
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
Z <- runif(n, -4, 4)
cutoff <- 0
W <- as.numeric(Z >= cutoff)
tau <- pmax(0.5 * X[, 1], 0)
Y <- tau * W + 1 / (1 + exp(2 * Z)) + 0.2 * rnorm(n)

Compute the Imbens-Kalyanaraman MSE-optimal bandwidth for a local linear regression.
bandwidth <- IKbandwidth(Z, Y, cutoff)
Compute kernel weights for a triangular kernel.
sample.weights <- kernelwts(Z, cutoff, bandwidth, "triangular")

Alternatively, specify bandwith and triangular kernel weights without using the `rdd` package.
bandwidth <- # user can hand-specify this.
dist <- abs((Z - cutoff) / bandwidth)
sample.weights <- (1 - dist) * (dist <= 1) / bandwidth

Estimate a local linear regression with the running variable Z conditional on covariates X = x:
Y = c(x) + tau(x) W + b(x) Z.
Specify gradient.weights = c(1, 0) to target heterogeneity in the RDD coefficient tau(x).
Also, fit forest on subset with non-zero weights for faster estimation.
subset <- sample.weights > 0
lmf <- lm_forest(X[subset,], Y[subset], cbind(W, Z)[subset,],

sample.weights = sample.weights[subset], gradient.weights = c(1, 0))
tau.hat <- predict(lmf)$predictions[, 1,]

Plot estimated tau(x) vs simulated ground truth.
plot(X[subset, 1], tau.hat)
points(X[subset, 1], tau[subset], col = "red", cex = 0.1)
}

predict.multi_arm_causal_forest

Predict with a multi arm causal forest

58 predict.multi_arm_causal_forest

Description

Gets estimates of contrasts tau_k(x) using a trained multi arm causal forest (k = 1,...,K-1 where K
is the number of treatments).

Usage

S3 method for class 'multi_arm_causal_forest'
predict(
object,
newdata = NULL,
num.threads = NULL,
estimate.variance = FALSE,
drop = FALSE,
...

)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for τ̂(x) are desired (for confidence intervals). This
option is currently only supported for univariate outcomes Y.

drop If TRUE, coerce the prediction result to the lowest possible dimension. Default
is FALSE.

... Additional arguments (currently ignored).

Value

A list with elements ‘predictions‘: a 3d array of dimension [num.samples, K-1, M] with predictions
for each contrast, for each outcome 1,..,M (singleton dimensions in this array can be dropped by
passing the ‘drop‘ argument to ‘[‘, or with the shorthand ‘$predictions[„]‘), and optionally ‘vari-
ance.estimates‘: a matrix with K-1 columns with variance estimates for each contrast.

Examples

Train a multi arm causal forest.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "B") - 1.5 * X[, 2] * (W == "C") + rnorm(n)

predict.multi_arm_causal_forest 59

mc.forest <- multi_arm_causal_forest(X, Y, W)

Predict contrasts (out-of-bag) using the forest.
Fitting several outcomes jointly is supported, and the returned prediction array has
dimension [num.samples, num.contrasts, num.outcomes]. Since num.outcomes is one in
this example, we use drop = TRUE to ignore this singleton dimension.
mc.pred <- predict(mc.forest, drop = TRUE)

By default, the first ordinal treatment is used as baseline ("A" in this example),
giving two contrasts tau_B = Y(B) - Y(A), tau_C = Y(C) - Y(A)
tau.hat <- mc.pred$predictions

plot(X[, 2], tau.hat[, "B - A"], ylab = "tau.contrast")
abline(0, 1, col = "red")
points(X[, 2], tau.hat[, "C - A"], col = "blue")
abline(0, -1.5, col = "red")
legend("topleft", c("B - A", "C - A"), col = c("black", "blue"), pch = 19)

The average treatment effect of the arms with "A" as baseline.
average_treatment_effect(mc.forest)

The conditional response surfaces mu_k(X) for a single outcome can be reconstructed from
the contrasts tau_k(x), the treatment propensities e_k(x), and the conditional mean m(x).
Given treatment "A" as baseline we have:
m(x) := E[Y | X] = E[Y(A) | X] + E[W_B (Y(B) - Y(A))] + E[W_C (Y(C) - Y(A))]
which given unconfoundedness is equal to:
m(x) = mu(A, x) + e_B(x) tau_B(X) + e_C(x) tau_C(x)
Rearranging and plugging in the above expressions, we obtain the following estimates
* mu(A, x) = m(x) - e_B(x) tau_B(x) - e_C(x) tau_C(x)
* mu(B, x) = m(x) + (1 - e_B(x)) tau_B(x) - e_C(x) tau_C(x)
* mu(C, x) = m(x) - e_B(x) tau_B(x) + (1 - e_C(x)) tau_C(x)
Y.hat <- mc.forest$Y.hat
W.hat <- mc.forest$W.hat

muA <- Y.hat - W.hat[, "B"] * tau.hat[, "B - A"] - W.hat[, "C"] * tau.hat[, "C - A"]
muB <- Y.hat + (1 - W.hat[, "B"]) * tau.hat[, "B - A"] - W.hat[, "C"] * tau.hat[, "C - A"]
muC <- Y.hat - W.hat[, "B"] * tau.hat[, "B - A"] + (1 - W.hat[, "C"]) * tau.hat[, "C - A"]

These can also be obtained with some array manipulations.
(the first column is always the baseline arm)
Y.hat.baseline <- Y.hat - rowSums(W.hat[, -1, drop = FALSE] * tau.hat)
mu.hat.matrix <- cbind(Y.hat.baseline, c(Y.hat.baseline) + tau.hat)
colnames(mu.hat.matrix) <- levels(W)
head(mu.hat.matrix)

The reference level for contrast prediction can be changed with `relevel`.
Fit and predict with treatment B as baseline:
W <- relevel(W, ref = "B")
mc.forest.B <- multi_arm_causal_forest(X, Y, W)

60 predict.multi_regression_forest

predict.multi_regression_forest

Predict with a multi regression forest

Description

Gets estimates of E[Y_i | X = x] using a trained multi regression forest.

Usage

S3 method for class 'multi_regression_forest'
predict(object, newdata = NULL, num.threads = NULL, drop = FALSE, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

drop If TRUE, coerce the prediction result to the lowest possible dimension. Default
is FALSE.

... Additional arguments (currently ignored).

Value

A list containing ‘predictions‘: a matrix of predictions for each outcome.

Examples

Train a standard regression forest.
n <- 500
p <- 5
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1, drop = FALSE] %*% cbind(1, 2) + rnorm(n)
mr.forest <- multi_regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
mr.pred <- predict(mr.forest, X.test)

Predict on out-of-bag training samples.
mr.pred <- predict(mr.forest)

predict.probability_forest 61

predict.probability_forest

Predict with a probability forest

Description

Gets estimates of P[Y = k | X = x] using a trained forest.

Usage

S3 method for class 'probability_forest'
predict(
object,
newdata = NULL,
num.threads = NULL,
estimate.variance = FALSE,
...

)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for P[Y = k | X] are desired (for confidence inter-
vals).

... Additional arguments (currently ignored).

Value

A list with attributes ‘predictions‘: a matrix of predictions for each class, and optionally the attribute
‘variance.estimates‘: a matrix of variance estimates for each class.

62 predict.quantile_forest

Examples

Train a probability forest.
p <- 5
n <- 2000
X <- matrix(rnorm(n*p), n, p)
prob <- 1 / (1 + exp(-X[, 1] - X[, 2]))
Y <- as.factor(rbinom(n, 1, prob))
p.forest <- probability_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 10, p)
X.test[, 1] <- seq(-1.5, 1.5, length.out = 10)
p.hat <- predict(p.forest, X.test, estimate.variance = TRUE)

Plot the estimated success probabilities with 95 % confidence bands.
prob.test <- 1 / (1 + exp(-X.test[, 1] - X.test[, 2]))
p.true <- cbind(`0` = 1 - prob.test, `1` = prob.test)
plot(X.test[, 1], p.true[, "1"], col = 'red', ylim = c(0, 1))
points(X.test[, 1], p.hat$predictions[, "1"], pch = 16)
lines(X.test[, 1], (p.hat$predictions + 2 * sqrt(p.hat$variance.estimates))[, "1"])
lines(X.test[, 1], (p.hat$predictions - 2 * sqrt(p.hat$variance.estimates))[, "1"])

Predict on out-of-bag training samples.
p.hat <- predict(p.forest)

predict.quantile_forest

Predict with a quantile forest

Description

Gets estimates of the conditional quantiles of Y given X using a trained forest.

Usage

S3 method for class 'quantile_forest'
predict(object, newdata = NULL, quantiles = NULL, num.threads = NULL, ...)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

predict.regression_forest 63

quantiles Vector of quantiles at which estimates are required. If NULL, the quantiles used
to train the forest is used. Default is NULL.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

... Additional arguments (currently ignored).

Value

A list with elements ‘predictions‘: a matrix with predictions at each test point for each desired
quantile.

Examples

Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Predict on out-of-bag training samples.
q.pred <- predict(q.forest)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
q.pred <- predict(q.forest, X.test)

predict.regression_forest

Predict with a regression forest

Description

Gets estimates of E[Y|X=x] using a trained regression forest.

Usage

S3 method for class 'regression_forest'
predict(
object,
newdata = NULL,
linear.correction.variables = NULL,
ll.lambda = NULL,
ll.weight.penalty = FALSE,
num.threads = NULL,

64 predict.regression_forest

estimate.variance = FALSE,
...

)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

linear.correction.variables

Optional subset of indexes for variables to be used in local linear prediction. If
NULL, standard GRF prediction is used. Otherwise, we run a locally weighted
linear regression on the included variables. Please note that this is a beta feature
still in development, and may slow down prediction considerably. Defaults to
NULL.

ll.lambda Ridge penalty for local linear predictions. Defaults to NULL and will be cross-
validated.

ll.weight.penalty

Option to standardize ridge penalty by covariance (TRUE), or penalize all co-
variates equally (FALSE). Defaults to FALSE.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.variance

Whether variance estimates for τ̂(x) are desired (for confidence intervals).

... Additional arguments (currently ignored).

Value

Vector of predictions, along with estimates of the error and (optionally) its variance estimates. Col-
umn ’predictions’ contains estimates of E[Y|X=x]. The square-root of column ’variance.estimates’
is the standard error the test mean-squared error. Column ’excess.error’ contains jackknife estimates
of the Monte-carlo error. The sum of ’debiased.error’ and ’excess.error’ is the raw error attained by
the current forest, and ’debiased.error’ alone is an estimate of the error attained by a forest with an
infinite number of trees. We recommend that users grow enough forests to make the ’excess.error’
negligible.

Examples

Train a standard regression forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)

predict.survival_forest 65

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)

Predict on out-of-bag training samples.
r.pred <- predict(r.forest)

Predict with confidence intervals; growing more trees is now recommended.
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)

predict.survival_forest

Predict with a survival forest

Description

Gets estimates of the conditional survival function S(t, x) = P[T > t | X = x] using a trained survival
forest. The curve can be estimated by Kaplan-Meier, or Nelson-Aalen.

Usage

S3 method for class 'survival_forest'
predict(
object,
newdata = NULL,
failure.times = NULL,
prediction.times = c("curve", "time"),
prediction.type = c("Kaplan-Meier", "Nelson-Aalen"),
num.threads = NULL,
...

)

Arguments

object The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example). Note that this matrix should have the
number of columns as the training matrix, and that the columns must appear in
the same order.

failure.times A vector of survival times to make predictions at. If NULL, then the failure
times used for training the forest is used. If prediction.times = "curve" then the
time points should be in increasing order. Default is NULL.

66 predict.survival_forest

prediction.times

"curve" predicts the survival curve S(t, x) on grid t = failure.times for each sam-
ple Xi. "time" predicts S(t, x) at an event time t = failure.times[i] for each sample
Xi. Default is "curve".

prediction.type

The type of estimate of the survival function, choices are "Kaplan-Meier" or
"Nelson-Aalen". The default is the prediction.type used to train the forest.

num.threads Number of threads used in prediction. If set to NULL, the software automati-
cally selects an appropriate amount.

... Additional arguments (currently ignored).

Value

A list with elements

• predictions: a matrix of survival curves. If prediction.times = "curve" then each row is the
survival curve for sample Xi: predictions[i, j] = S(failure.times[j], Xi). If prediction.times =
"time" then each row is the survival curve at time point failure.times[i] for sample Xi: predic-
tions[i,] = S(failure.times[i], Xi).

• failure.times: a vector of event times t for the survival curve.

Examples

Train a standard survival forest.
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
failure.time <- exp(0.5 * X[, 1]) * rexp(n)
censor.time <- 2 * rexp(n)
Y <- pmin(failure.time, censor.time)
D <- as.integer(failure.time <= censor.time)
Save computation time by constraining the event grid by discretizing (rounding) continuous events.
s.forest <- survival_forest(X, round(Y, 2), D)
Or do so more flexibly by defining your own time grid using the failure.times argument.
grid <- seq(min(Y[D==1]), max(Y[D==1]), length.out = 150)
s.forest <- survival_forest(X, Y, D, failure.times = grid)

Predict using the forest.
X.test <- matrix(0, 3, p)
X.test[, 1] <- seq(-2, 2, length.out = 3)
s.pred <- predict(s.forest, X.test)

Plot the survival curve.
plot(NA, NA, xlab = "failure time", ylab = "survival function",

xlim = range(s.pred$failure.times),
ylim = c(0, 1))

for(i in 1:3) {
lines(s.pred$failure.times, s.pred$predictions[i,], col = i)
s.true = exp(-s.pred$failure.times / exp(0.5 * X.test[i, 1]))
lines(s.pred$failure.times, s.true, col = i, lty = 2)

}

print.boosted_regression_forest 67

Predict on out-of-bag training samples.
s.pred <- predict(s.forest)

Compute OOB concordance based on the mortality score in Ishwaran et al. (2008).
s.pred.nelson.aalen <- predict(s.forest, prediction.type = "Nelson-Aalen")
chf.score <- rowSums(-log(s.pred.nelson.aalen$predictions))
if (require("survival", quietly = TRUE)) {
concordance(Surv(Y, D) ~ chf.score, reverse = TRUE)

}

print.boosted_regression_forest

Print a boosted regression forest

Description

Print a boosted regression forest

Usage

S3 method for class 'boosted_regression_forest'
print(x, ...)

Arguments

x The boosted forest to print.

... Additional arguments (currently ignored).

print.grf Print a GRF forest object.

Description

Print a GRF forest object.

Usage

S3 method for class 'grf'
print(x, decay.exponent = 2, max.depth = 4, ...)

68 print.rank_average_treatment_effect

Arguments

x The tree to print.

decay.exponent A tuning parameter that controls the importance of split depth.

max.depth The maximum depth of splits to consider.

... Additional arguments (currently ignored).

print.grf_tree Print a GRF tree object.

Description

Print a GRF tree object.

Usage

S3 method for class 'grf_tree'
print(x, ...)

Arguments

x The tree to print.

... Additional arguments (currently ignored).

print.rank_average_treatment_effect

Print the Rank-Weighted Average Treatment Effect (RATE).

Description

Print the Rank-Weighted Average Treatment Effect (RATE).

Usage

S3 method for class 'rank_average_treatment_effect'
print(x, ...)

Arguments

x The output of rank_average_treatment_effect.

... Additional arguments (currently ignored).

print.tuning_output 69

print.tuning_output Print tuning output. Displays average error for q-quantiles of tuned
parameters.

Description

Print tuning output. Displays average error for q-quantiles of tuned parameters.

Usage

S3 method for class 'tuning_output'
print(x, tuning.quantiles = seq(0, 1, 0.2), ...)

Arguments

x The tuning output to print.
tuning.quantiles

vector of quantiles to display average error over. Default: seq(0, 1, 0.2) (quin-
tiles)

... Additional arguments (currently ignored).

probability_forest Probability forest

Description

Trains a probability forest that can be used to estimate the conditional class probabilities P[Y = k |
X = x]

Usage

probability_forest(
X,
Y,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,

70 probability_forest

imbalance.penalty = 0,
ci.group.size = 2,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates.
Y The class label (must be a factor vector with no NAs).
num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals

generally requires more trees than getting accurate predictions. Default is 2000.
sample.weights Weights given to an observation in estimation. If NULL, each observation is

given the same weight. Default is NULL.
clusters Vector of integers or factors specifying which cluster each observation corre-

sponds to. Default is NULL (ignored).
equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.
min.node.size A target for the minimum number of observations in each tree leaf. Note that

nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

probability_forest 71

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained probability forest object.

Examples

Train a probability forest.
p <- 5
n <- 2000
X <- matrix(rnorm(n*p), n, p)
prob <- 1 / (1 + exp(-X[, 1] - X[, 2]))
Y <- as.factor(rbinom(n, 1, prob))
p.forest <- probability_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 10, p)
X.test[, 1] <- seq(-1.5, 1.5, length.out = 10)
p.hat <- predict(p.forest, X.test, estimate.variance = TRUE)

Plot the estimated success probabilities with 95 % confidence bands.
prob.test <- 1 / (1 + exp(-X.test[, 1] - X.test[, 2]))
p.true <- cbind(`0` = 1 - prob.test, `1` = prob.test)
plot(X.test[, 1], p.true[, "1"], col = 'red', ylim = c(0, 1))
points(X.test[, 1], p.hat$predictions[, "1"], pch = 16)
lines(X.test[, 1], (p.hat$predictions + 2 * sqrt(p.hat$variance.estimates))[, "1"])
lines(X.test[, 1], (p.hat$predictions - 2 * sqrt(p.hat$variance.estimates))[, "1"])

Predict on out-of-bag training samples.
p.hat <- predict(p.forest)

72 quantile_forest

quantile_forest Quantile forest

Description

Trains a regression forest that can be used to estimate quantiles of the conditional distribution of Y
given X = x.

Usage

quantile_forest(
X,
Y,
num.trees = 2000,
quantiles = c(0.1, 0.5, 0.9),
regression.splitting = FALSE,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
compute.oob.predictions = FALSE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates used in the quantile regression.

Y The outcome.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

quantiles Vector of quantiles used to calibrate the forest. Default is (0.1, 0.5, 0.9).
regression.splitting

Whether to use regression splits when growing trees instead of specialized splits
based on the quantiles (the default). Setting this flag to true corresponds to the
approach to quantile forests from Meinshausen (2006). Default is FALSE.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

quantile_forest 73

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
FALSE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained quantile forest object.

74 rank_average_treatment_effect

References

Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized Random Forests". Annals of Statis-
tics, 47(2), 2019.

Examples

Generate data.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
Y <- X[, 1] * rnorm(n)

Train a quantile forest.
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Make predictions.
q.hat <- predict(q.forest, X.test)

Make predictions for different quantiles than those used in training.
q.hat <- predict(q.forest, X.test, quantiles = c(0.1, 0.9))

Train a quantile forest using regression splitting instead of quantile-based
splits, emulating the approach in Meinshausen (2006).
meins.forest <- quantile_forest(X, Y, regression.splitting = TRUE)

Make predictions for the desired quantiles.
q.hat <- predict(meins.forest, X.test, quantiles = c(0.1, 0.5, 0.9))

rank_average_treatment_effect

Estimate a Rank-Weighted Average Treatment Effect (RATE).

Description

Consider a rule S(Xi) assigning scores to units in decreasing order of treatment prioritization. In
the case of a forest with binary treatment, we provide estimates of the following, where 1/n <= q
<= 1 represents the fraction of treated units:

• The Rank-Weighted Average Treatment Effect (RATE):
∫ 1

0
alpha(q)TOC(q;S)dq, where al-

pha is a weighting method corresponding to either ‘AUTOC‘ or ‘QINI‘.

• The Targeting Operator Characteristic (TOC): E[Yi(1)−Yi(0)|F (S(Xi)) ≥ 1−q]−E[Yi(1)−
Yi(0)], where F (·) is the distribution function of S(Xi).

rank_average_treatment_effect 75

The Targeting Operator Characteristic (TOC) is a curve comparing the benefit of treating only a
certain fraction q of units (as prioritized by S(Xi)), to the overall average treatment effect. The
Rank-Weighted Average Treatment Effect (RATE) is a weighted sum of this curve, and is a measure
designed to identify prioritization rules that effectively targets treatment (and can thus be used to
test for the presence of heterogeneous treatment effects).

Usage

rank_average_treatment_effect(
forest,
priorities,
target = c("AUTOC", "QINI"),
q = seq(0.1, 1, by = 0.1),
R = 200,
subset = NULL,
debiasing.weights = NULL,
compliance.score = NULL,
num.trees.for.weights = 500

)

Arguments

forest The evaluation set forest.

priorities Treatment prioritization scores S(Xi) for the units used to train the evaluation
forest. Two prioritization rules can be compared by supplying a two-column
array or named list of priorities (yielding paired standard errors that account for
the correlation between RATE metrics estimated on the same evaluation data).
WARNING: for valid statistical performance, these scores should be constructed
independently from the evaluation forest training data.

target The type of RATE estimate, options are "AUTOC" (exhibits greater power when
only a small subset of the population experience nontrivial heterogeneous treat-
ment effects) or "QINI" (exhibits greater power when the entire population ex-
perience diffuse or substantial heterogeneous treatment effects). Default is "AU-
TOC".

q The grid q to compute the TOC curve on. Default is (10%, 20%, ..., 100%).

R Number of bootstrap replicates for SEs. Default is 200.

subset Specifies subset of the training examples over which we estimate the RATE.
WARNING: For valid statistical performance, the subset should be defined only
using features Xi, not using the treatment Wi or the outcome Yi.

debiasing.weights

A vector of length n (or the subset length) of debiasing weights. If NULL (de-
fault) these are obtained via the appropriate doubly robust score construction,
e.g., in the case of causal_forests with a binary treatment, they are obtained via
inverse-propensity weighting.

compliance.score

Only used with instrumental forests. An estimate of the causal effect of Z on
W, i.e., Delta(X) = E[W | X, Z = 1] - E[W | X, Z = 0], which can then be used

76 rank_average_treatment_effect

to produce debiasing.weights. If not provided, this is estimated via an auxiliary
causal forest.

num.trees.for.weights

In some cases (e.g., with causal forests with a continuous treatment), we need
to train auxiliary forests to learn debiasing weights. This is the number of trees
used for this task. Note: this argument is only used when debiasing.weights =
NULL.

Value

A list of class ‘rank_average_treatment_effect‘ with elements

• estimate: the RATE estimate.

• std.err: bootstrapped standard error of RATE.

• target: the type of estimate.

• TOC: a data.frame with the Targeting Operator Characteristic curve estimated on grid q, along
with bootstrapped SEs.

References

Yadlowsky, Steve, Scott Fleming, Nigam Shah, Emma Brunskill, and Stefan Wager. "Evaluat-
ing Treatment Prioritization Rules via Rank-Weighted Average Treatment Effects." arXiv preprint
arXiv:2111.07966, 2021.

See Also

rank_average_treatment_effect.fit for computing a RATE with user-supplied doubly robust
scores.

Examples

Simulate a simple medical example with a binary outcome and heterogeneous treatment effects.
We're imagining that the treatment W decreases the risk of getting a stroke for some units,
while having no effect on the other units (those with X1 < 0).
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
stroke.probability <- 1 / (1 + exp(2 * (pmax(2 * X[, 1], 0) * W - X[, 2])))
Y.stroke <- rbinom(n, 1, stroke.probability)

We'll label the outcome Y such that "large" values are "good" to make interpretation easier.
With Y=1 ("no stroke") and Y=0 ("stroke"), then an average treatment effect,
E[Y(1) - Y(0)] = P[Y(1) = 1] - P[Y(0) = 1], quantifies the counterfactual risk difference
of being stroke-free with treatment over being stroke-free without treatment.
This will be positive if the treatment decreases the risk of getting a stroke.
Y <- 1 - Y.stroke

Train a CATE estimator on a training set.
train <- sample(1:n, n / 2)

rank_average_treatment_effect 77

cf.cate <- causal_forest(X[train,], Y[train], W[train])

Predict treatment effects on a held-out test set.
test <- -train
cate.hat <- predict(cf.cate, X[test,])$predictions

Next, use the RATE metric to assess heterogeneity.

Fit an evaluation forest for estimating the RATE.
cf.eval <- causal_forest(X[test,], Y[test], W[test])

Form a doubly robust RATE estimate on the held-out test set.
rate <- rank_average_treatment_effect(cf.eval, cate.hat)

Plot the Targeting Operator Characteristic (TOC) curve.
In this example, the ATE among the units with high predicted CATEs
is substantially larger than the overall ATE.
plot(rate)

Get an estimate of the area under the TOC (AUTOC).
rate

Construct a 95% CI for the AUTOC.
A significant result suggests that there are HTEs and that the CATE-based prioritization rule
is effective at stratifying the sample.
A non-significant result would suggest that either there are no HTEs
or that the treatment prioritization rule does not predict them effectively.
rate$estimate + 1.96*c(-1, 1)*rate$std.err

In some applications, we may be interested in other ways to target treatment.
One example is baseline risk. In our example, we could estimate the probability of getting
a stroke in the absence of treatment, and then use this as a non-causal heuristic
to prioritize individuals with a high baseline risk.
The hope would be that patients with a high predicted risk of getting a stroke,
also have a high treatment effect.

We can use the RATE metric to evaluate this treatment prioritization rule.

First, fit a baseline risk model on the training set control group (W=0).
train.control <- train[W[train] == 0]
rf.risk <- regression_forest(X[train.control,], Y.stroke[train.control])

Then, on the test set, predict the baseline risk of getting a stroke.
baseline.risk.hat <- predict(rf.risk, X[test,])$predictions

Use RATE to compare CATE and risk-based prioritization rules.
rate.diff <- rank_average_treatment_effect(cf.eval, cbind(cate.hat, baseline.risk.hat))
plot(rate.diff)

Construct a 95 % CI for the AUTOC and the difference in AUTOC.
rate.diff$estimate + data.frame(lower = -1.96 * rate.diff$std.err,

upper = 1.96 * rate.diff$std.err,
row.names = rate.diff$target)

78 rank_average_treatment_effect.fit

rank_average_treatment_effect.fit

Fitter function for Rank-Weighted Average Treatment Effect (RATE).

Description

Provides an optional interface to rank_average_treatment_effect which allows for user-supplied
evaluation scores.

Usage

rank_average_treatment_effect.fit(
DR.scores,
priorities,
target = c("AUTOC", "QINI"),
q = seq(0.1, 1, by = 0.1),
R = 200,
sample.weights = NULL,
clusters = NULL

)

Arguments

DR.scores A vector with the evaluation set scores.

priorities Treatment prioritization scores S(Xi) for the units in the evaluation set. Two
prioritization rules can be compared by supplying a two-column array or named
list of priorities (yielding paired standard errors that account for the correlation
between RATE metrics estimated on the same evaluation data). WARNING: for
valid statistical performance, these scores should be constructed independently
from the evaluation dataset used to construct DR.scores.

target The type of RATE estimate, options are "AUTOC" (exhibits greater power when
only a small subset of the population experience nontrivial heterogeneous treat-
ment effects) or "QINI" (exhibits greater power when the entire population ex-
perience diffuse or substantial heterogeneous treatment effects). Default is "AU-
TOC".

q The grid q to compute the TOC curve on. Default is (10%, 20%, ..., 100%).

R Number of bootstrap replicates for SEs. Default is 200.

sample.weights Weights given to an observation in estimation. If NULL, each observation is
given the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

rank_average_treatment_effect.fit 79

Value

A list of class ‘rank_average_treatment_effect‘ with elements

• estimate: the RATE estimate.

• std.err: bootstrapped standard error of RATE.

• target: the type of estimate.

• TOC: a data.frame with the Targeting Operator Characteristic curve estimated on grid q, along
with bootstrapped SEs.

Examples

Estimate CATEs with a causal forest.
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
event.probability <- 1 / (1 + exp(2 * (pmax(2 * X[, 1], 0) * W - X[, 2])))
Y <- 1 - rbinom(n, 1, event.probability)

train <- sample(1:n, n / 2)
cf.cate <- causal_forest(X[train,], Y[train], W[train])

Predict treatment effects on a held-out test set.
test <- -train
cate.hat <- predict(cf.cate, X[test,])$predictions

Estimate AIPW nuisance components on the held-out test set.
Y.forest.eval <- regression_forest(X[test,], Y[test], num.trees = 500)
Y.hat.eval <- predict(Y.forest.eval)$predictions
W.forest.eval <- regression_forest(X[test,], W[test], num.trees = 500)
W.hat.eval <- predict(W.forest.eval)$predictions
cf.eval <- causal_forest(X[test,], Y[test], W[test],

Y.hat = Y.hat.eval,
W.hat = W.hat.eval)

Form doubly robust scores.
tau.hat.eval <- predict(cf.eval)$predictions
debiasing.weights.eval <- (W[test] - W.hat.eval) / (W.hat.eval * (1 - W.hat.eval))
Y.residual.eval <- Y[test] - (Y.hat.eval + tau.hat.eval * (W[test] - W.hat.eval))
DR.scores <- tau.hat.eval + debiasing.weights.eval * Y.residual.eval

Could equivalently be obtained by
DR.scores <- get_scores(cf.eval)

Form a doubly robust RATE estimate on the held-out test set.
rate <- rank_average_treatment_effect.fit(DR.scores, cate.hat)
rate

Same as
rate <- rank_average_treatment_effect(cf.eval, cate.hat)

80 regression_forest

In settings where the treatment randomization probabilities W.hat are known, an
alternative to AIPW scores is to use inverse-propensity weighting (IPW):
1(W=1) * Y / W.hat - 1(W=0) * Y / (1 - W.hat).
Here, W.hat = 0.5, and an IPW-based estimate of RATE is:
IPW.scores <- ifelse(W[test] == 1, Y[test] / 0.5, -Y[test] / 0.5)
rate.ipw <- rank_average_treatment_effect.fit(IPW.scores, cate.hat)
rate.ipw

IPW-based estimators typically have higher variance. For details on
score constructions for other causal estimands, please see the RATE paper.

regression_forest Regression forest

Description

Trains a regression forest that can be used to estimate the conditional mean function mu(x) = E[Y |
X = x]

Usage

regression_forest(
X,
Y,
num.trees = 2000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 5,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
ci.group.size = 2,
tune.parameters = "none",
tune.num.trees = 50,
tune.num.reps = 100,
tune.num.draws = 1000,
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

regression_forest 81

Arguments

X The covariates used in the regression.

Y The outcome.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights Weights given to an observation in estimation. If NULL, each observation is
given the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

82 regression_forest

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters

A vector of parameter names to tune. If "all": all tunable parameters are tuned
by cross-validation. The following parameters are tunable: ("sample.fraction",
"mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "im-
balance.penalty"). If honesty is FALSE the honesty.* parameters are not tuned.
Default is "none" (no parameters are tuned).

tune.num.trees The number of trees in each ’mini forest’ used to fit the tuning model. Default
is 50.

tune.num.reps The number of forests used to fit the tuning model. Default is 100.

tune.num.draws The number of random parameter values considered when using the model to
select the optimal parameters. Default is 1000.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained regression forest object. If tune.parameters is enabled, then tuning information will be
included through the ‘tuning.output‘ attribute.

Examples

Train a standard regression forest.
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
r.forest <- regression_forest(X, Y)

Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
r.pred <- predict(r.forest, X.test)

Predict on out-of-bag training samples.
r.pred <- predict(r.forest)

Predict with confidence intervals; growing more trees is now recommended.
r.forest <- regression_forest(X, Y, num.trees = 100)
r.pred <- predict(r.forest, X.test, estimate.variance = TRUE)

split_frequencies 83

split_frequencies Calculate which features the forest split on at each depth.

Description

Calculate which features the forest split on at each depth.

Usage

split_frequencies(forest, max.depth = 4)

Arguments

forest The trained forest.

max.depth Maximum depth of splits to consider.

Value

A matrix of split depth by feature index, where each value is the number of times the feature was
split on at that depth.

Examples

Train a quantile forest.
n <- 250
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Calculate the split frequencies for this forest.
split_frequencies(q.forest)

84 survival_forest

survival_forest Survival forest

Description

Trains a forest for right-censored surival data that can be used to estimate the conditional survival
function S(t, x) = P[T > t | X = x]

Usage

survival_forest(
X,
Y,
D,
failure.times = NULL,
num.trees = 1000,
sample.weights = NULL,
clusters = NULL,
equalize.cluster.weights = FALSE,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 15,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
prediction.type = c("Kaplan-Meier", "Nelson-Aalen"),
compute.oob.predictions = TRUE,
num.threads = NULL,
seed = runif(1, 0, .Machine$integer.max)

)

Arguments

X The covariates.

Y The event time (must be non-negative).

D The event type (0: censored, 1: failure/observed event).

failure.times A vector of event times to fit the survival curve at. If NULL, then all the observed
failure times are used. This speeds up forest estimation by constraining the
event grid. Observed event times are rounded down to the last sorted occurance
less than or equal to the specified failure time. The time points should be in
increasing order. Default is NULL.

num.trees Number of trees grown in the forest. Default is 1000.

sample.weights Weights given to an observation in prediction. If NULL, each observation is
given the same weight. Default is NULL.

survival_forest 85

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to. Default is NULL (ignored).

equalize.cluster.weights

If FALSE, each unit is given the same weight (so that bigger clusters get more
weight). If TRUE, each cluster is given equal weight in the forest. In this case,
during training, each tree uses the same number of observations from each drawn
cluster: If the smallest cluster has K units, then when we sample a cluster during
training, we only give a random K elements of the cluster to the tree-growing
procedure. When estimating average treatment effects, each observation is given
weight 1/cluster size, so that the total weight of each cluster is the same. Note
that, if this argument is FALSE, sample weights may also be directly adjusted
via the sample.weights argument. If this argument is TRUE, sample.weights
must be set to NULL. Default is FALSE.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20 where p is the

number of variables.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 15.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the
data is used for determining splits).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keep the same tree as determined in the splits sample (if an empty leave
is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

alpha A tuning parameter that controls the maximum imbalance of a split. The number
of failures in each child has to be at least one or ‘alpha‘ times the number of
samples in the parent node. Default is 0.05. (On data with very low event rate
the default value may be too high for the forest to split and lowering it may be
beneficial).

prediction.type

The type of estimate of the survival function, choices are "Kaplan-Meier" or
"Nelson-Aalen". Only relevant if ‘compute.oob.predictions‘ is TRUE. Default
is "Kaplan-Meier".

compute.oob.predictions

Whether OOB predictions on training set should be precomputed. Default is
TRUE.

86 survival_forest

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.

Value

A trained survival_forest forest object.

References

Cui, Yifan, Michael R. Kosorok, Erik Sverdrup, Stefan Wager, and Ruoqing Zhu. "Estimating
Heterogeneous Treatment Effects with Right-Censored Data via Causal Survival Forests." Journal
of the Royal Statistical Society: Series B, 85(2), 2023.

Ishwaran, Hemant, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. "Random
survival forests." The Annals of Applied Statistics 2.3 (2008): 841-860.

Examples

Train a standard survival forest.
n <- 2000
p <- 5
X <- matrix(rnorm(n * p), n, p)
failure.time <- exp(0.5 * X[, 1]) * rexp(n)
censor.time <- 2 * rexp(n)
Y <- pmin(failure.time, censor.time)
D <- as.integer(failure.time <= censor.time)
Save computation time by constraining the event grid by discretizing (rounding) continuous events.
s.forest <- survival_forest(X, round(Y, 2), D)
Or do so more flexibly by defining your own time grid using the failure.times argument.
grid <- seq(min(Y[D==1]), max(Y[D==1]), length.out = 150)
s.forest <- survival_forest(X, Y, D, failure.times = grid)

Predict using the forest.
X.test <- matrix(0, 3, p)
X.test[, 1] <- seq(-2, 2, length.out = 3)
s.pred <- predict(s.forest, X.test)

Plot the survival curve.
plot(NA, NA, xlab = "failure time", ylab = "survival function",

xlim = range(s.pred$failure.times),
ylim = c(0, 1))

for(i in 1:3) {
lines(s.pred$failure.times, s.pred$predictions[i,], col = i)
s.true = exp(-s.pred$failure.times / exp(0.5 * X.test[i, 1]))
lines(s.pred$failure.times, s.true, col = i, lty = 2)

}

Predict on out-of-bag training samples.
s.pred <- predict(s.forest)

Compute OOB concordance based on the mortality score in Ishwaran et al. (2008).

test_calibration 87

s.pred.nelson.aalen <- predict(s.forest, prediction.type = "Nelson-Aalen")
chf.score <- rowSums(-log(s.pred.nelson.aalen$predictions))
if (require("survival", quietly = TRUE)) {
concordance(Surv(Y, D) ~ chf.score, reverse = TRUE)

}

test_calibration Omnibus evaluation of the quality of the random forest estimates via
calibration.

Description

Test calibration of the forest. Computes the best linear fit of the target estimand using the forest
prediction (on held-out data) as well as the mean forest prediction as the sole two regressors. A co-
efficient of 1 for ‘mean.forest.prediction‘ suggests that the mean forest prediction is correct, whereas
a coefficient of 1 for ‘differential.forest.prediction‘ additionally suggests that the heterogeneity es-
timates from the forest are well calibrated. The p-value of the ‘differential.forest.prediction‘ coeffi-
cient also acts as an omnibus test for the presence of heterogeneity: If the coefficient is significantly
greater than 0, then we can reject the null of no heterogeneity. For another class of omnnibus tests
see rank_average_treatment_effect.

Usage

test_calibration(forest, vcov.type = "HC3")

Arguments

forest The trained forest.
vcov.type Optional covariance type for standard errors. The possible options are HC0, ...,

HC3. The default is "HC3", which is recommended in small samples and corre-
sponds to the "shortcut formula" for the jackknife (see MacKinnon & White for
more discussion, and Cameron & Miller for a review). For large data sets with
clusters, "HC0" or "HC1" are significantly faster to compute.

Value

A heteroskedasticity-consistent test of calibration.

References

Cameron, A. Colin, and Douglas L. Miller. "A practitioner’s guide to cluster-robust inference."
Journal of Human Resources 50, no. 2 (2015): 317-372.

Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Ivan Fernandez-Val. "Generic Machine
Learning Inference on Heterogenous Treatment Effects in Randomized Experiments." arXiv preprint
arXiv:1712.04802 (2017).

MacKinnon, James G., and Halbert White. "Some heteroskedasticity-consistent covariance matrix
estimators with improved finite sample properties." Journal of Econometrics 29.3 (1985): 305-325.

88 variable_importance

Examples

n <- 800
p <- 5
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.25 + 0.5 * (X[, 1] > 0))
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
forest <- causal_forest(X, Y, W)
test_calibration(forest)

variable_importance Calculate a simple measure of ’importance’ for each feature.

Description

A simple weighted sum of how many times feature i was split on at each depth in the forest.

Usage

variable_importance(forest, decay.exponent = 2, max.depth = 4)

Arguments

forest The trained forest.

decay.exponent A tuning parameter that controls the importance of split depth.

max.depth Maximum depth of splits to consider.

Value

A list specifying an ’importance value’ for each feature.

Examples

Train a quantile forest.
n <- 250
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Calculate the 'importance' of each feature.
variable_importance(q.forest)

Index

average_treatment_effect, 3

best_linear_projection, 6
boosted_regression_forest, 8

causal_forest, 11
causal_survival_forest, 15

generate_causal_data, 19
generate_causal_survival_data, 20
get_forest_weights, 22, 23
get_leaf_node, 23
get_scores, 24
get_scores.causal_forest, 24, 26
get_scores.causal_survival_forest, 25
get_scores.instrumental_forest, 26
get_scores.multi_arm_causal_forest, 27
get_tree, 28
grf_options, 29

instrumental_forest, 30

ll_regression_forest, 33
lm_forest, 36

merge_forests, 39
multi_arm_causal_forest, 40
multi_regression_forest, 44

options, 29

plot.grf_tree, 47
plot.rank_average_treatment_effect, 48
predict.boosted_regression_forest, 48
predict.causal_forest, 49
predict.causal_survival_forest, 51
predict.instrumental_forest, 53
predict.ll_regression_forest, 54
predict.lm_forest, 56
predict.multi_arm_causal_forest, 57
predict.multi_regression_forest, 60

predict.probability_forest, 61
predict.quantile_forest, 62
predict.regression_forest, 63
predict.survival_forest, 65
print.boosted_regression_forest, 67
print.grf, 67
print.grf_tree, 68
print.rank_average_treatment_effect,

68
print.tuning_output, 69
probability_forest, 69

quantile_forest, 72

rank_average_treatment_effect, 74, 78,
87

rank_average_treatment_effect.fit, 76,
78

regression_forest, 80

split_frequencies, 83
survival_forest, 84

test_calibration, 87

variable_importance, 88

89

	average_treatment_effect
	best_linear_projection
	boosted_regression_forest
	causal_forest
	causal_survival_forest
	generate_causal_data
	generate_causal_survival_data
	get_forest_weights
	get_leaf_node
	get_scores
	get_scores.causal_forest
	get_scores.causal_survival_forest
	get_scores.instrumental_forest
	get_scores.multi_arm_causal_forest
	get_tree
	grf_options
	instrumental_forest
	ll_regression_forest
	lm_forest
	merge_forests
	multi_arm_causal_forest
	multi_regression_forest
	plot.grf_tree
	plot.rank_average_treatment_effect
	predict.boosted_regression_forest
	predict.causal_forest
	predict.causal_survival_forest
	predict.instrumental_forest
	predict.ll_regression_forest
	predict.lm_forest
	predict.multi_arm_causal_forest
	predict.multi_regression_forest
	predict.probability_forest
	predict.quantile_forest
	predict.regression_forest
	predict.survival_forest
	print.boosted_regression_forest
	print.grf
	print.grf_tree
	print.rank_average_treatment_effect
	print.tuning_output
	probability_forest
	quantile_forest
	rank_average_treatment_effect
	rank_average_treatment_effect.fit
	regression_forest
	split_frequencies
	survival_forest
	test_calibration
	variable_importance
	Index

