params <- list(EVAL = TRUE) ## ----SETTINGS-knitr, include=FALSE------------------------------------------------------ stopifnot(require(knitr)) options(width = 90) opts_chunk$set( comment = NA, message = FALSE, warning = FALSE, eval = if (isTRUE(exists("params"))) params$EVAL else FALSE, dev = "jpeg", dpi = 100, fig.asp = 0.8, fig.width = 5, out.width = "60%", fig.align = "center" ) library(brms) ggplot2::theme_set(theme_default()) ## ----data------------------------------------------------------------------------------- data("BTdata", package = "MCMCglmm") head(BTdata) ## ----fit1, message=FALSE, warning=FALSE, results='hide'--------------------------------- bform1 <- bf(mvbind(tarsus, back) ~ sex + hatchdate + (1|p|fosternest) + (1|q|dam)) + set_rescor(TRUE) fit1 <- brm(bform1, data = BTdata, chains = 2, cores = 2) ## ----summary1, warning=FALSE------------------------------------------------------------ fit1 <- add_criterion(fit1, "loo") summary(fit1) ## ----pp_check1, message=FALSE----------------------------------------------------------- pp_check(fit1, resp = "tarsus") pp_check(fit1, resp = "back") ## ----R2_1------------------------------------------------------------------------------- bayes_R2(fit1) ## ----fit2, message=FALSE, warning=FALSE, results='hide'--------------------------------- bf_tarsus <- bf(tarsus ~ sex + (1|p|fosternest) + (1|q|dam)) bf_back <- bf(back ~ hatchdate + (1|p|fosternest) + (1|q|dam)) fit2 <- brm(bf_tarsus + bf_back + set_rescor(TRUE), data = BTdata, chains = 2, cores = 2) ## ----summary2, warning=FALSE------------------------------------------------------------ fit2 <- add_criterion(fit2, "loo") summary(fit2) ## ----loo12------------------------------------------------------------------------------ loo(fit1, fit2) ## ----fit3, message=FALSE, warning=FALSE, results='hide'--------------------------------- bf_tarsus <- bf(tarsus ~ sex + (1|p|fosternest) + (1|q|dam)) + lf(sigma ~ 0 + sex) + skew_normal() bf_back <- bf(back ~ s(hatchdate) + (1|p|fosternest) + (1|q|dam)) + gaussian() fit3 <- brm( bf_tarsus + bf_back + set_rescor(FALSE), data = BTdata, chains = 2, cores = 2, control = list(adapt_delta = 0.95) ) ## ----summary3, warning=FALSE------------------------------------------------------------ fit3 <- add_criterion(fit3, "loo") summary(fit3) ## ----me3-------------------------------------------------------------------------------- conditional_effects(fit3, "hatchdate", resp = "back")