## ----setup, include=FALSE, message=FALSE-------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(NNS) library(data.table) data.table::setDTthreads(2L) options(mc.cores = 1) Sys.setenv("OMP_THREAD_LIMIT" = 2) ## ----setup2, message=FALSE, warning=FALSE------------------------------------- library(NNS) library(data.table) require(knitr) require(rgl) ## ----linear------------------------------------------------------------------- x = seq(-5, 5, .05); y = x ^ 3 for(i in 1 : 4){NNS.part(x, y, order = i, Voronoi = TRUE, obs.req = 0)} ## ----x part,results='hide'---------------------------------------------------- for(i in 1 : 4){NNS.part(x, y, order = i, type = "XONLY", Voronoi = TRUE)} ## ----res2, echo=FALSE--------------------------------------------------------- NNS.part(x,y,order = 4, type = "XONLY") ## ----depreg},results='hide'--------------------------------------------------- for(i in 1 : 3){NNS.part(x, y, order = i, obs.req = 0, Voronoi = TRUE, type = "XONLY") ; NNS.reg(x, y, order = i, ncores = 1)} ## ----nonlinear,fig.width=5,fig.height=3,fig.align = "center"------------------ NNS.reg(x, y, ncores = 1) ## ----nonlinear multi,fig.width=5,fig.height=3,fig.align = "center"------------ f = function(x, y) x ^ 3 + 3 * y - y ^ 3 - 3 * x y = x ; z <- expand.grid(x, y) g = f(z[ , 1], z[ , 2]) NNS.reg(z, g, order = "max", plot = FALSE, ncores = 1) ## ----nonlinear_class,fig.width=5,fig.height=3,fig.align = "center", message = FALSE---- NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", location = "topleft", ncores = 1)$equation ## ----nonlinear_class2,fig.width=5,fig.height=3,fig.align = "center", message = FALSE, echo=FALSE---- a = NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", location = "topleft", ncores = 1, plot = FALSE)$equation ## ----nonlinear class threshold,fig.width=5,fig.height=3,fig.align = "center"---- NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", threshold = .75, location = "topleft", ncores = 1)$equation ## ----nonlinear class threshold 2,fig.width=5,fig.height=3,fig.align = "center", echo=FALSE---- a = NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", threshold = .75, location = "topleft", ncores = 1, plot = FALSE)$equation ## ----final,fig.width=5,fig.height=3,fig.align = "center"---------------------- NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", threshold = .75, point.est = iris[1 : 10, 1 : 4], location = "topleft", ncores = 1)$Point.est ## ----class,fig.width=5,fig.height=3,fig.align = "center", message=FALSE------- NNS.reg(iris[ , 1 : 4], iris[ , 5], type = "CLASS", point.est = iris[1 : 10, 1 : 4], location = "topleft", ncores = 1)$Point.est ## ----stack,fig.width=5,fig.height=3,fig.align = "center", message=FALSE, eval=FALSE---- # NNS.stack(IVs.train = iris[ , 1 : 4], # DV.train = iris[ , 5], # IVs.test = iris[1 : 10, 1 : 4], # dim.red.method = "cor", # obj.fn = expression( mean(round(predicted) == actual) ), # objective = "max", type = "CLASS", # folds = 1, ncores = 1) ## ----stackevalres, eval = FALSE----------------------------------------------- # Folds Remaining = 0 # Current NNS.reg(... , threshold = 0.935 ) MAX Iterations Remaining = 2 # Current NNS.reg(... , threshold = 0.795 ) MAX Iterations Remaining = 1 # Current NNS.reg(... , threshold = 0.44 ) MAX Iterations Remaining = 0 # Current NNS.reg(... , n.best = 1 ) MAX Iterations Remaining = 12 # Current NNS.reg(... , n.best = 2 ) MAX Iterations Remaining = 11 # Current NNS.reg(... , n.best = 3 ) MAX Iterations Remaining = 10 # Current NNS.reg(... , n.best = 4 ) MAX Iterations Remaining = 9 # $OBJfn.reg # [1] 1 # # $NNS.reg.n.best # [1] 4 # # $probability.threshold # [1] 0.43875 # # $OBJfn.dim.red # [1] 0.9666667 # # $NNS.dim.red.threshold # [1] 0.935 # # $reg # [1] 1 1 1 1 1 1 1 1 1 1 # # $reg.pred.int # NULL # # $dim.red # [1] 1 1 1 1 1 1 1 1 1 1 # # $dim.red.pred.int # NULL # # $stack # [1] 1 1 1 1 1 1 1 1 1 1 # # $pred.int # NULL ## ----stack2, message = FALSE,fig.width=5,fig.height=3,fig.align = "center",results='hide', eval = FALSE---- # set.seed(123) # x = rnorm(100); y = rnorm(100) # # nns.params = NNS.stack(IVs.train = cbind(x, x), # DV.train = y, # method = 1, ncores = 1) ## ----stack2optim, echo = FALSE------------------------------------------------ set.seed(123) x = rnorm(100); y = rnorm(100) nns.params = list() nns.params$NNS.reg.n.best = 100 ## ----stack2res, fig.width=5,fig.height=3,fig.align = "center",results='hide'---- NNS.reg(cbind(x, x), y, n.best = nns.params$NNS.reg.n.best, point.est = cbind(x, x), residual.plot = TRUE, ncores = 1, confidence.interval = .95) ## ----threads, echo = FALSE---------------------------------------------------- Sys.setenv("OMP_THREAD_LIMIT" = "")