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1 Introduction

KODAMA (Knowledge Discovery by Accuracy Maximization) is a novel learning algorithm for unsupervised
feature extraction, specifically designed for analysing noisy and high-dimensional data sets (Cacciatore et

al., 2014).The core idea of the original algorithm is to use an iteration procedure to produce a hypothetical
classification through maximization of cross-validated predictive accuracy. Using only the data set as input
(no a priori knowledge is needed), an iterative procedure permits classification with a high cross-validated
accuracy. Two different classifiers are implemented in this package for the computation of cross-validated
predictive accuracy: k-nearest neighbors (kNN) and Partial Least Squares - Discriminant Analysis (PLS-DA).
This procedure is repeated several times to average the effects owing to the randomness of the iterative
procedure. After each run of the procedure, a classification vector with high cross-validated accuracy is
obtained. KODAMA subsequently collects and processes these results by constructing a dissimilarity matrix
to provide a holistic view of the data. This documentation introduces the usage of KODAMA.

2 Installation

2.1 Installation via CRAN

The R package KODAMA (current version 1.1) is part of the Comprehensive R Archive Network
(CRAN)1. The simplest way to install the package is to enter the following command into your R session:
install.packages("KODAMA"). We suggest to install the R package rgl for the data visualization in 3D
interactive plots.

2.2 Manual installation from source

To compile the C/C++ code included in the package for customization or installation on alternative operating
systems the package can be manually installed from source. To this end, open the package’s page at CRAN
(Cacciatore et al., 2014) and then proceed as follows:

• Download KODAMA.tar.gz and save it to your hard disk
• Open a shell/terminal/command prompt window and change to the desired directory for installation of

KODAMA.tar.gz. Enter R CMD INSTALL KODAMA.tar.gz to install the package. Note that this may
require additional software on some platforms. Windows requires Rtools2 to be installed and to be
available in the default search path (environment variable PATH). MAC OS X requires installation of
Xcode developers and command line tools.

2.3 Compatibility issues

All versions downloadable from CRAN have been built using R version, R.3.2.3. The package should work
without major issues on R versions > 3.0.0.

1https://cran.r-project.org/
2https://developer.apple.com/xcode/
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3 Getting Started

To load the package, enter the following instruction in your R session:

library("KODAMA")

If this command terminates without any error messages, you can be sure that the package has been installed
successfully. The KODAMA package is now ready for use.

The package includes both a user manual (this document) and a reference manual (help pages for each
function). To view the user manual, enter vignette("KODAMA"). Help pages can be viewed using the help
command help(package="KODAMA").
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4 Datasets

4.1 Swiss Roll

The function swissroll computes the Swiss Roll dataset of a given sample size. The following example
computes a Swiss Roll dataset containing 1,000 samples.

require("rgl")

x=swissroll()

open3d()

plot3d(x, col=rainbow(1000),box=FALSE,type="s",size=1)
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Figure 1: Three dimensional Swiss Roll dataset.
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4.2 Ulisse Dini’s surface

The function dinisurface computes the Ulisse Dini’s surface dataset of a given sample size. The following
example computes a Ulisse Dini’s surface dataset containing 1,000 samples.

require("rgl")

x=dinisurface()

open3d()

plot3d(x, col=rainbow(1000),box=FALSE,type="s",size=1)
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Figure 2: Three dimensional Ulisse Dini’s surface dataset.
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4.3 Helicoid

The function helicoid computes the Helicoid dataset of a given sample size. The following example computes
a Helicoid dataset containing 1,000 samples.

require("rgl")

x=helicoid()

open3d()

plot3d(x, col=rainbow(1000),box=FALSE,type="s",size=1)
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Figure 3: Three dimensional Helicoid dataset.
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4.4 Spirals

The function spirals computes the Spirals dataset of a given sample size. The following example computes
a Spirals dataset containing 1,000 samples.

par(mfrow=c(2,2),mai=c(0,0,0,0))

v1=spirals(c(100,100,100),c(0.1,0.1,0.1))

plot(v1,col=rep(2:4,each=100))

v2=spirals(c(100,100,100),c(0.1,0.2,0.3))

plot(v2,col=rep(2:4,each=100))

v3=spirals(c(100,100,100,100,100),c(0,0,0.2,0,0))

plot(v3,col=rep(2:6,each=100))

v4=spirals(c(20,40,60,80,100),c(0.1,0.1,0.1,0.1,0.1))

plot(v4,col=rep(2:6,c(20,40,60,80,100)))

●
●●

●

●
●
●●

●●●
●●●

●
●●●●●

●
● ●●

●●●
●
●●
●
● ●

●
●
●
●

●
●
●
●

●
●
●
●
●

●
●

●
●
●
●●

●
●
●●

●
●●●

●
●●●●

●●●
●●●

●●●●●●●●
●●

●●●●
●

●
●

●●
●●

●●●
●●●●

●
●
●
●
●
●
●
●
●●

●
●
●
●●
●●●

●●
●●●

●●●●●
●●●

●●
●●●●●●●

●●●
●●●

●
●●●●●●●

●●●
●

●●
●

●
●

●
●
●
●

●
●

●
●
●
●
●

●●
● ●

●
●
● ●

●●
●
● ●

●●

●
● ●

●●
●
● ●

●●●

●
●
●

●●●●●●●
●

●●
●●●

●
●
●

●
●
●
●●

●
●

●●
● ●

●
●●
● ●

●●
●●

●●
●●●

●●●
●●●

●●●
●

●●●●
●

●
●●● ●

● ●●●●●●
●●●●

●●
●
● ●

●●
●●

●
●●

●
●●

●
● ●

●
●
●
●

●
●

●

−6 −4 −2 0 2 4 6

●
●
●
●●

●
●●●

●●●●
●●●●●

●●● ●
●●

● ●
● ● ●

●
●●

●●●
●
●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●●●

●
●●

●●
●●

●●
●

●
●●

●●●
●●●●

●●
●

●●●●●●●●●●
●●●●●●

●●
●●

●●●

● ●
●

●
●

●
●
●
●●

●
●●

●
●

●
●

●
●●

●●
●

●●●
●

●●●●●

●
●●●

●
●

●●●
●

●●
●●●

●●
●●●●

●●●
●●

●
●

●●●
●

●
●

●
●

●
●

● ●
●

●
●
●●●

●
●●●

●●
● ●

●
●●●

●●●
●●

● ●●

●●

●
●

●●
●

●
●

●●
●●

●●●

●●
●
●

●
●
●
●
●
●

●
●
●

●
● ●

● ●

●
●

●

● ●●●
●
●
●

●

●
●●

●

●

●
●

●●●
●

●●

●

●

●
●

●
●●

●●
●● ●●

●
●

●
● ●

●

●●

●
●

●
●
●
●

● ●

●
●

●●
●

● ● ● ●
●

● ●
● ●

●

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●●
●●

●●
●●

●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
● ●

●
● ●

●
●

●
●
●●

●
●

●
●
●●

●
●
●

●●
●●●

●
●●

●
●

●

●
●

●
●

●●
●

●●●●●●●●
●●●●●

●●
●

●●
●

●●●
●

●●

●●●
●
●●

●
●●
●●

●
●
●

●
●
●
●

●
●
●●
●●

●
●●

● ●●
●
●
●●
●

●
●
●
●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●

●●
●●

●

●●

●
●

●

●
●

●
●
●

●
●
●
●

●
●

●
●

●
●●

●●

●●●
●●●●

●
●

●
●●●●

●●
●●●

●
●
●

●
●

●
●
●

●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●

●
●●

●
●●

●●●●●
●●●●●●

●●●●
●●●●

●
●

●
●

●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
● ●

●● ●
●
●●

●
● ●● ●

● ●
● ●●●●●●●●●●

●●●

●

●

●●
●●●●●

●●●
●●

●
●

●
●

●
●
●

●●
●●
●
●●
●
●
●
●●●

●
● ●

●●● ●

●
●
●
●●●●

●●●●
●●●●●

●●●
●
●

●
●●●●●

●●
●●●

● ●
●●●

●●●
●
● ●

●
●●
● ●

●
●●
●●
●
●
●
●

●
●

−
6

−
4

−
2

0
2

4
6

Figure 4: Four different two dimensional Spirals datasets.
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4.5 Lymphoma

The lymphoma dataset consists of gene expression profiles of the three most prevalent adult lymphoid malig-
nancies: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and B-cell chronic lymphocytic
leukemia (B-CLL). The dataset consists of 4,682 mRNA genes for 62 samples (42 samples of DLBCL, 9
samples of FL and 11 samples of B-CLL). Missing values are imputed and data are standardized as described
in Dudoit, et al. (2002).

4.6 MetRef

The data of belong to a cohort of 22 healthy donors (11 male and 11 female) where each provided about 40
urine samples over the time course of approximately 2 months, for a total of 873 samples. Each sample was
analyzed by Nuclear Magnetic Resonance Spectroscopy. Each spectrum was divided in 450 spectral bins.

4.7 State of the Union

The USA dataset consists of the spoken, not written, presidential addresses from 1900 until the sixth address
by Barack Obama in 2014. Punctuation characters, numbers, words shorter than three characters, and
stop-words (e.g., “that”, “and”, and “which”) were removed from the dataset. This resulted in a dataset of
86 speeches containing 834 different meaningful words each. Term frequency-inverse document frequency
(TF-IDF) was used to obtain feature vectors. It is often used as a weighting factor in information retrieval
and text mining. The TF-IDF value increases proportionally to the number of times a word appears in the
document, but is offset by the frequency of the word in the corpus, which helps to control for the fact that
some words are generally more common than others.

4.8 Iris

This famous Fisher’s (aka Anderson’s) iris data set gives the measurements (centimetres) of the variables
sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.
The species are Iris setosa, I. versicolor, and I. virginica. iris is a data frame with 150 cases (rows) and 5
variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width and Species.
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5 Starting with KODAMA

We suggest KODAMA is first tested with the Iris dataset using the default parameters (i.e., kNN classifier
with k=2). The KODAMA function automatically performs the fast T-distributed Stochastic Neighbor
Embedding (van der Maaten 2014) on the KODAMA dissimilarity matrix. The results can be visualized with
the plot function.

data(iris)

data=iris[,-5]

labels=iris[,5]

kodama_knn_5=KODAMA.matrix(data,FUN="KNN",f.par = 2)

cc=KODAMA.visualization(kk,"t-SNE")

plot(cc,pch=21,bg=as.numeric(labels)+1)
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Figure 5: KODAMA on the Iris dataset.
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5.2 Evaluation of the Monte Carlo iterative process

The mcplot function can be used to extract the values of cross-validated accuracy obtained from each iterative
step of the Monte Carlo procedures of maximization of the cross-validated accuracy.

mcplot(kodama_knn_5)

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Numer of interatation

A
cc

ur
ac

y

Figure 6: Cross-validated accuracy.
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5.1 Adjusting Input Preferences

KODAMA can be run with different input settings. The two different classifiers, kNN and PLS-DA, are
tested. The classifier and its parameter can be changed by modifying FUN and f.par, respectively. The kNN
classifier is tested with k=2, 5, 10 and the PLS-DA classifier is tested with 2, 3 and 4 components.

kodama_knn_2 =KODAMA.matrix(data,FUN="KNN",f.par=2)

cc_knn_2=KODAMA.visualization(kodama_knn_2,"t-SNE")

kodama_knn_5 =KODAMA.matrix(data,FUN="KNN",f.par=5)

cc_knn_5=KODAMA.visualization(kodama_knn_5,"t-SNE")

kodama_knn_10=KODAMA.matrix(data,FUN="KNN",f.par=10)

cc_knn_10=KODAMA.visualization(kodama_knn_10,"t-SNE")

kodama_pls_2 =KODAMA.matrix(data,FUN="PLS-DA",f.par=2)

cc_pls_2=KODAMA.visualization(kodama_pls_2,"t-SNE")

kodama_pls_3 =KODAMA.matrix(data,FUN="PLS-DA",f.par=3)

cc_pls_3=KODAMA.visualization(kodama_pls_3,"t-SNE")

kodama_pls_4 =KODAMA.matrix(data,FUN="PLS-DA",f.par=4)

cc_pls_4=KODAMA.visualization(kodama_pls_4,"t-SNE")

After the KODAMA analyses, the different solutions can be visualized for comparative purposes.

par(mfrow=c(2,3))

plot(cc_knn_2 ,pch=21,bg=as.numeric(labels)+1,main="KODAMA with kNN (k=2)")

plot(cc_knn_5 ,pch=21,bg=as.numeric(labels)+1,main="KODAMA with kNN (k=5)")

plot(cc_knn_10,pch=21,bg=as.numeric(labels)+1,main="KODAMA with kNN (k=10)")

plot(cc_pls_2 ,pch=21,bg=as.numeric(labels)+1,main="KODAMA with PLS (ncomp=2)")

plot(cc_pls_3 ,pch=21,bg=as.numeric(labels)+1,main="KODAMA with PLS (ncomp=3)")

plot(cc_pls_4 ,pch=21,bg=as.numeric(labels)+1,main="KODAMA with PLS (ncomp=4)")
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Figure 7: KODAMA results obtained with different input settings.

The Shannon Entropy (H) (Shannon, 1948), a measure of unpredictability of information content, can be
used to choose the best classifier and optimize its relative parameters. H is given by:

H =

∑
i

∑
j vij × log vij

where vij is the proximity value between the sample i and the sample j divided by the sum of overall
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proximities.

Different classifiers can lead to solutions that represent different interpretation of the data. A lower H value
can be indicative of the solution that best characterizes the data.

Classifier parameter Entropy

kNN 2 9.371
kNN 5 9.362
kNN 10 9.381
PLS-DA 2 9.976
PLS-DA 3 9.933
PLS-DA 4 9.977

5.3 k-test

The k.test function performs a statistical test to assess association between the KODAMA output and any
additional related parameters such as clinical metadata. The coefficient of determination (R2) is used to
assess the proportion of the variance in the dependent variable (KODAMA output) that is predictable from
the independent variable and can be thus used as a measure of the goodness of fit (Cameron et al., 1997). A
permutation test is performed by randomly sampling the value of the labels to estimate the significance of
the observed association.

5.2 Loadings

The loads function can be used to extract the variable ranking. After each maximization of the cross-validated
accuracy the final label set is used to calculate the loadings of PLS-DA or the p-value from the Kruskal-Wallis
Rank Sum test. The output of the loads function is the average of these values for each variable.

5.3 Unsupervised and semi-supervised

In the next example, MetRef dataset is used to show all possibilities offered by KODAMA performing the
analysis in unsupervised or semi-supervised fashion. Firstly the MetRef dataset is pre-processed. This involves
removing zero values from the MetRef dataset matrix and correcting for variations in urine concentration
using Probabilistic Quotient Normalization (Dieterle et al. 2006).

data(MetRef)

# Zero values are removed.

MetRef$data=MetRef$data[,-which(colSums(MetRef$data)==0)]

# Normalization of the data set with the Probabilistic Quotient Normalization method.

MetRef$data=normalization(MetRef$data)$newXtrain

# Centers the mean to zero and scales data by dividing each variable by the variance.

MetRef$data=scaling(MetRef$data)$newXtrain

donor=as.numeric(as.factor(MetRef$donor))

gender=as.numeric(as.factor(MetRef$gender))

KODAMA is performed using different input settings.

kk1=KODAMA.matrix(MetRef$data,FUN = "PLS-DA",f.par = 2)

kk2=KODAMA.matrix(MetRef$data,FUN = "PLS-DA",f.par = 5)

kk3=KODAMA.matrix(MetRef$data,FUN = "PLS-DA",f.par = 10)

kk4=KODAMA.matrix(MetRef$data,FUN = "PLS-DA",f.par = 20)

kk5=KODAMA.matrix(MetRef$data,FUN = "PLS-DA",f.par = 50)

kk6=KODAMA.matrix(MetRef$data,FUN = "PLS-DA",f.par = 100)

kk7=KODAMA.matrix(MetRef$data,FUN = "KNN",f.par = 2)
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kk8=KODAMA.matrix(MetRef$data,FUN = "KNN",f.par = 3)

kk9=KODAMA.matrix(MetRef$data,FUN = "KNN",f.par = 5)

kk10=KODAMA.matrix(MetRef$data,FUN = "KNN",f.par = 10)

kk11=KODAMA.matrix(MetRef$data,FUN = "KNN",f.par = 15)

kk12=KODAMA.matrix(MetRef$data,FUN = "KNN",f.par = 20)

The most informative solution is represented by KODAMA using the PLS-DA with 100 components as the
internal classifier as can be seen in the table below, which presents all Entropy values of each solution.

Classifier parameter Entropy

kNN 2 12.847
kNN 3 12.228
kNN 5 12.129
kNN 10 12.432
kNN 15 12.783
kNN 20 13.137
PLS-DA 2 13.37
PLS-DA 5 13.416
PLS-DA 10 13.322
PLS-DA 20 12.637
PLS-DA 50 11.327
PLS-DA 100 11.307

Principal Component Analysis, performed on this data set, is shown in the figure. Colors are indicative of
donor specificity (left plot) and gender of donor (right plot).

par(mfrow=c(1,2))

plot(pca(MetRef$data)$x,

bg=rainbow(22)[donor],pch=21,cex=1.5)

plot(pca(MetRef$data)$x,

bg=c("#2c7ac8","#e3b80f")[gender],pch=21,cex=1.5)
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Figure 8: Principal Component Analysis.
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The result of KODAMA with PLS-DA using 100 components as the classifier is subsequently shown. The
KODAMA output saved in the variable kk6 is transformed by t-SNE in a low-dimensional space.

cc6=KODAMA.visualization(kk6,"t-SNE")

par(mfrow=c(1,2))

plot(cc6,bg=rainbow(22)[donor],pch=21,cex=1.5)

plot(cc6,bg=c("#2c7ac8","#e3b80f")[gender],pch=21,cex=1.5)
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Figure 9: KODAMA with PLS-DA with 100 components as classifier.

KODAMA can also use external information to work in a semi-supervised way. Supervised constraints can be
imposed by linking some samples in such a way that if one of them is changed the linked ones must change in
the same way (i.e., they are forced to belong to the same class). This will produce solutions where linked
samples are forced to have the lowest values in the KODAMA dissimilarity matrix.
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In the next example, urine samples from the same donor are linked by providing class (donor) information to
the algorithm before performing the iterative procedure thereby undertaking a “semi-supervised approach” to
highlight otherwise hidden features.

kkA=KODAMA.matrix(MetRef$data,FUN="PLS-DA",f.par = 100,constrain=donor )

ccA=KODAMA.visualization(kkA,"t-SNE")

par(mfrow=c(1,2))

plot(ccA,bg=rainbow(22)[donor],pch=21,cex=1.5)

plot(ccA,bg=c("#2c7ac8","#e3b80f")[gender],pch=21,cex=1.5)
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Figure 10: Semi-supervised KODAMA with constrain.

Additional external information can be provided through fixing labels of vector W on the KODAMA algorithm.
The value of the vector fix must be TRUE or FALSE. By default all elements are FALSE. Samples with the
TRUE fix value will not change the class label defined in W during the maximization of the cross-validated
accuracy procedure.

Here, gender information for the first ten donors is provided. Color coding indicates gender in the figures.
Square data points indicate samples with supervised information. Circle data points indicate samples without
any supervised information.
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FIX=sample(c(TRUE,FALSE),873,T)

inform=gender

inform[!FIX]=NA

kkB=KODAMA.matrix(MetRef$data,FUN="PLS-DA",f.par = 100,W=inform,fix=FIX)

ccB=KODAMA.visualization(kkB,"t-SNE")

par(mfrow=c(1,2))

plot(ccB,bg=rainbow(22)[donor],pch=21,cex=1.5)

plot(ccB,bg=c("#2c7ac8","#e3b80f")[gender],pch=21,cex=1.5)
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Figure 11: Semi-supervised KODAMA with fixed samples.

Here, information of the last two examples are provided together.

FIX=donor>10

inform=gender

inform[!FIX]=NA

kkC=KODAMA.matrix(MetRef$data,FUN="PLS-DA",f.par = 100,W= inform,constrain=donor,fix=FIX)

ccC=KODAMA.visualization(kkC,"t-SNE")

par(mfrow=c(1,2))

plot(ccC,bg=rainbow(22)[donor],pch=21,cex=1.5)

plot(ccC,bg=c("#2c7ac8","#e3b80f")[gender],pch=21,cex=1.5)
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Figure 12: Semi-supervised KODAMA with fixed samples and constrain.
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6 Special Notes for Users Upgrading from Previous Version

Version 2.3 separate the previous function KODAMA in two distint function: KODAMA.matrix and
KODAMA.visualization. The first one is to perform the KODAMA analysis. The second is to transform the
KODAMA dissimilarity matrix in a low-dimensional space using t-SNE, MDS or UMAP.

Version 2.0 has introduced a few novelty to the KODAMA algorithm and some small changes in the output
structure of the functions. We tried to ensure backward compatibility with the previous version where
possible. Sammon’s Non-Linear Mapping (Sammon 1969) used in the previous version to transform the
KODAMA dissimilarity matrix in a space dimensionality has been replaced by t-SNE (van der Maaten 2008)
with Tree-Based implementation (van der Maaten 2014) using the Rtsne package.

Version 1.1 has brought several fundamental changes to the architecture of the package. We tried to ensure
backward compatibility with the previous version where possible. However, there are still some caveats the
users should take into account.

Users who upgrade to version 1.1 from the older version (0.0.1) should be aware that the pack-
age requires the new version of Rcpp and RcppArmadillo packages. This issue can simply be
solved by installing Rcpp and RcppArmadillo from CRAN using install.packages("Rcpp") and
install.packages("RcppArmadillo").

7 Errors and Solutions

7.1 Rcpp, RcppArmadillo and OS X Mavericks “-lgfortran” and “-lquadmath” error

Compiling the source R package, we reported the following error:

ld: warning: directory not found for option '-L/usr/local/lib/gcc/x86_64-apple-darwin13.0.0/4.8.2'

ld: library not found for -lquadmath

clang: error: linker command failed with exit code 1 (use -v to see invocation)

make: *** [KODAMA.so] Error 1

ERROR: compilation failed for package ‘KODAMA’

* removing ‘/Users/dmacinty/Library/R/3.3/library/KODAMA’

Mainly, R for OS X Maverick was compiled using gfortran-4.8. The Solution is to go to the optional libraries,
frameworks and applications for Mac OS X on r.research.att.com and download gfortran-4.8.2-darwin13.tar.bz2.
Extract the package in ~/, which is root. The files should be unpacked into /usr/local/. . .

Alternatively, open terminal and type:

curl -O http://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2

sudo tar fvxz gfortran-4.8.2-darwin13.tar.bz2 -C /

8 How to Cite this Package

Cacciatore S, Tenori L, Luchinat C, Bennett P, and MacIntyre DA. KODAMA: an updated R package for
knowledge discovery and data mining. Bioinformatics. Submitted.

Moreover, the original paper in which KODAMA was introduced should also be cited as follows:

Cacciatore S, Luchinat C, Tenori L. Knowledge discovery by accuracy maximization. Proc Natl Acad Sci U S
A 2014;111(14):5117-22.

To obtain BibTex entries of the two references, you can enter the following into your R session to Bibtex
citation("KODAMA").
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