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Abstract

Markov chains are well-established probabilistic models of a wide variety of real sys-
tems that evolve along the time. Countless examples of applications of Markov chains
that successfully capture the probabilistic nature of real problems include areas as diverse
as biology, medicine, social science, and engineering. One interesting feature of a kind of
Markov chains is their stationary distribution, which stands for the global fraction of time
the system spends in each state. The computation of the stationary distribution requires
precise knowledge of the transition probabilities. When the only information available
is a sequence of observations drawn from the system, such probabilities have to be es-
timated. Here we review an existing method to estimate fuzzy transition probabilities
from observations and, with them, obtain the fuzzy stationary distribution of the result-
ing fuzzy Markov chain. The method also works when the user directly provides fuzzy
transition probabilities. We provide an implementation in the R environment that is the
first available to the community and serves as a proof of concept. We demonstrate the
usefulness of our proposal with computational experiments on a toy problem, namely a
time-homogeneous Markov chain that guides the randomized movement of an autonomous
robot that patrols a small area.

Keywords: fuzzy probabilities, Markov chain, stationary probabilities, R.

1. Introduction

Assume we observe the state of a system at certain time points (i.e., time is discretized for
our observations). An observation Xt obtained at time t represents one state the system can
be in. In fact, the collection of observations X0, X1, ..., Xn represent an indexed sequence of
random variables, each of which can take values within the system state space S = {1, ..., r},
which we will assume finite and countable as well. Such indexed sequence {Xt, t = 0, 1, 2, ...}
is known as a stochastic process (Medhi 2002) in discrete time and discrete state space S.

A stochastic process {Xt, t = 0, 1, 2, ...} with discrete state space and discrete time is a Markov
chain if, and only if, it has the Markov property, which can be stated in simple terms as the
fact that the state of the system at the next time point depends only on the state at the
current time, and it is independent of the succession of states reached in the past. Formally,
this independence from the past is expressed as

P [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ..., X0 = x0] = P [Xt+1 = xt+1|Xt = xt] (1)
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When the probabilities P [Xt+1 = xt+1|Xt = xt] do not depend on the time points t, t + 1
but only on the time difference h between them, the chain is said to be homogeneous (in the
preceding example, h = 1). In that case, it is usual to collect the transition probabilities in a

(stochastic) transition matrix P (h) = (p
(h)
ij ) with dimensions r× r representing the transition

probabilities in h steps, p
(h)
ij = P [Xt+h = j|Xt = i]. In general, P (h) = P h.

Markov chains are well-established probabilistic models of a wide variety of real systems that
evolve along the time. Countless examples of applications of Markov chains to successfully
capture the probabilistic nature of real problems include areas as diverse as biology (Abundo
and Caramellino 1995), medicine and particularly disease expansion models (Gentleman, Law-
less, Lindsey, and Yan 1994; Satten and Longini 1996; Ivanek, Grohn, Ho, and Wiedmann
2007; Gomez, Arenas, Borge-Holthoefer, Meloni, and Moreno 2010; Newton, Mason, Bethel,
Bazhenova, Nieva, and Kuhn 2012), economy (Jones 1997) -with emphasis on market mod-
elling (van der Hoek and Elliott 2012)-, social science and many other engineering problems
such as wind speed modeling (Sahin and Sen 2001). They are also the basis for Hidden
Markov models, which constitute themselves another active research field with important ap-
plications in such problems as speech recognition (Juang and Rabiner 1991) and automatic
music generation (Schulze and van der Merwe 2011), just to cite a few. A broader survey can
be found in Ching and Ng (2006).

One of the features that characterize certain kinds of Markov chains is the stationary dis-
tribution, which represents the probability of the chain being at each state after an infinite
number of time steps. It can also be thought of as the percentage of time the chain spends at
each of its states. The computation of such probabilities requires an accurate knowledge of
the transition matrix of the chain. If it is not available for some reason, it has to be estimated
in some way, possibly from a set of observations of the chain, with the uncertainty that any
estimation procedure involves.

Several methods have been proposed to estimate transition probabilities, see Dent and Ballintine
(1971) and more recently Welton and Ades (2005). Other works have addressed the problem
of computing stationary probabilities with uncertain data from a mathematical programming
point of view (Blanc and Hertog 2008). The approach adopted in the remainder of this work
is based on using fuzzy sets (Zadeh 1965, 1975a) to cope with uncertainty, thus considering
fuzzy transition probabilities that constitute a fuzzy Markov chain.

Quite a lot of research has been conducted on fuzzy Markov chains. Zadeh himself envisaged
their potential importance in fuzzy Markov algorithms in Zadeh (1998). Other recent success-
ful applications of fuzzy Markov chains are Kruse, Buck-Emden, and Cordes (1987) which
deals with processor power, Tran and Wagner (1999) for speech recognition, and Feitosa,
Costa, Mota, and Feijó (2011); Alves, Mota, Costa, and Feitosa (2012) for multitemporal
image classification. Some works consider a fuzzy state space (Kleyle and de Korvin 1997).
On the contrary, in our proposal we consider crisp states but fuzzy probabilities. In Kurano,
Yasuda, Nakagami, and Yoshida (1992); Avrachenkov and Sanchez (2002) and in most of
the works mentioned previously on fuzzy Markov chains, the uncertain transition matrix is
modeled as a fuzzy relation between the states. Hence there is no restriction on the values
it can take, as far as they are membership grades in the closed interval [0, 1] that in fact
represent a perception of a classical Markov chain (Kruse et al. 1987).

Another, more restrictive approach presented in a series of more general works on fuzzy
probability theory (Buckley 2004, 2005; Buckley and Eslami 2003, 2004, 2008) consists in
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defining fuzzy numbers for the transition matrix, subject to the crisp constraint that they
must add to 1, no matter how uncertain they are. Operations with the fuzzy transition matrix
are carried using a restricted fuzzy matrix multiplication. Little work has been done in this
line regarding Markov chains, and the author’s ideas still remain as a theoretically feasible
procedure whose practical applicability has not been investigated. It may be suitable when
the input is a sequence of crisp observations of the chain. For those reasons we have chosen
to implement it in the FuzzyStatProb package for the R environment (R Core Team 2012).
Moreover, to the best of our knowledge, currently there are no implementations available
-either free or proprietary- of any of the fuzzy Markov chain approaches, so this aims to be
the first one and pave the way for further programming efforts in this field.

The method can be summarized as follows: the fuzzy probabilities of the fuzzy transition
matrix will be first decomposed in their α-cuts, which will be used to solve the problem in
separate pieces, and finally the results will be aggregated to re-construct the fuzzy stationary
probabilities we are searching for. The starting point of the problem is a finite sequence of
observations of the system state at each step. This is the input required by the FuzzyStatProb
package we have developed. The output is provided as a list of fuzzy numbers, one for each
state of the input Markov chain, using the FuzzyNumbers package described in Gagolewski
(2012) that provides plotting functionality and is currently under active development.

The paper is structured as follows. In Section 2, the mathematical background and the method
implemented in the package are formally developed. Section 3 describes implementation
details and the signature and options of the public function of the package. Section 4 shows
use examples. Finally, Section 5 is devoted to conclusions and further work.

2. A method to compute fuzzy stationary probabilities

An homogeneous Markov chain is said to be irreducible if all states form a single group so
that every state is accessible from every other state, be it in one or more than one step. Every
finite, irreducible Markov chain with transition matrix P has a stationary distribution π such
that π = πP (Medhi 2002). The FuzzyStatProb package is aimed at computing a vector of
fuzzy stationary probabilities π̃ = (π̃1, ..., π̃r) departing from an uncertain (fuzzy) transition
matrix P̃ . The remainder of this section briefly summarizes the ideas on fuzzy Markov chains
presented in Buckley (2005), as they lie at the very core of our package.

2.1. Fuzzy numbers

Let us consider an uncertain transition matrix P̃ = (p̃ij) in which one or more elements are
uncertain. We capture the uncertainty regarding some of the elements by substituing them by
fuzzy numbers, which are a special case of fuzzy set (Zadeh 1965; Negoita and Ralescu 1975).
Roughly speaking, a fuzzy set Ã over a universe U is a set whose characteristic function is not
binary, f : U → {0, 1} as in a classic set, but takes values in the unit interval, µ : U → [0, 1],
so that µÃ(x) is the degree to which element x ∈ U belongs to the fuzzy set Ã. A fuzzy
number is a fuzzy set over R representing a number with uncertainty (Dubois and Prade
1978). For instance the uncertain quantity about 2 may be represented as a fuzzy number Ã
whose membership function reaches its maximum value 1 at x = 2, but also assigns non-zero
membership degrees to other values close to 2, since a value of, say, 1.8 is also (‘belongs also
to’) about 2, not with degree 1 but a bit less, say, 0.6. Then µÃ(2) = 1 and µÃ(1.8) = 0.6.
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We now explain this concept formally as it is the mathematical structure used in our package
to cope with uncertainty in the transition and stationary probabilities.

Definition 1. The α-cut of a fuzzy set Ã for any α ∈ [0, 1] is defined as the set of elements
that belong to Ã with degree α or greater:

Ã(α) = {x ∈ U : µÃ(x) ≥ α}

Definition 2. A fuzzy number Ã is a fuzzy set on R such that

(i) Ã(α) are nonempty convex sets ∀α ∈ [0, 1]

(ii) Ã(α) are compact sets ∀α ∈ [0, 1]

(iii) Ã(α) satisfy:

(a) Ã(α) ⊆ Ã(β) for α > β

(b) Ã(α) =
⋂
β<α Ã(β) for α ∈ (0, 1]

Since α-cuts of a fuzzy number are closed intervals of R, they can be written as Ã(α) =
[ÃL(α), ÃR(α)].

The first two conditions are basically equivalent to the fact that the membership function of a
fuzzy number must be continuous and monotone, which are two features of the output fuzzy
numbers computed by our method as will be shown later.

2.2. Construction of fuzzy transition probabilities from observations

As stated in Section 1, our data consists of a finite sequence of observations drawn from the
system at consecutive time points. Each observation is the state of the system at that time
point, represented as an integer belonging to the state space of the chain. In such sequence,
an estimation of the transition probability pij can be computed as the number of times Nij

that state i was followed by j in our data, divided by the number of transitions Ni observed
from i to another state (including i itself). However, this would be just a point estimate and
does not capture the uncertainty associated to it. Interval estimation would be the next step
as it also takes into account the sample size and variance of the data, but it calculates an
interval only for a significance level that is fixed beforehand.

Our aim is to model each uncertain transition probability as a fuzzy number that properly
captures all the uncertainty of the data, regardless external parameters such as the confidence
level. For this purpose, the fuzzy number is obtained by the superposition of confidence inter-
vals for the true transition probabilities at different confidence levels, one on top of another,
as done in Buckley (2005). Although the significance level and the membership degree are
numerically the same in this case, it should be noticed that they are completely different
concepts for which the letter α is commonly used. Such intervals are in fact simultaneous
confidence intervals for multinomial proportions, since the problem of estimating the tran-
sition probabilities from a given state can be reduced to that of estimating the parameters
(proportions) of a multinomial distribution. The method applied was introduced by Sison and
Glaz (Sison and Glaz 1995; May and Johnson 2000) although many others had been proposed
before.
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2.3. Fuzzy Markov chains and restricted matrix multiplication

As we have said, fuzzy numbers are used in those entries of the transition matrix on which
there is uncertainty. The rest of the elements could be crisp since a crisp number is a special
case of fuzzy number. However, the uncertainty is on the probabilities but not on the fact that
every row must add to 1. Now assume a Markov chain with r states and fuzzy transition matrix
P̃ , then for a given α ∈ [0, 1], P̃ (α) = (p̃ij(α)) represents a matrix of intervals. Such matrix
can also be thought of as the set of all r × r matrices M such that their elements fall inside
their corresponding interval, mij ∈ p̃ij(α), and every row adds to 1,

∑r
j=1mij = 1, i = 1, ..., r.

The domain of row i for a given α value is defined as the set of r-dimensional vectors that
simultaneously fulfill those two constraints for row i, i.e., the set of probability distributions
that row i could take in our uncertain transition matrix when we take its α-cuts for that α.
If we call ∆r = {(x1, ..., xr) : xi ≥ 0 and

∑r
i=1 xi = 1}, then

Domi(α) =
(
×rj=1p̃ij(α)

)⋂
∆r (2)

The domain of the matrix for a fixed α, Dom(α) is defined as the Cartesian product of the
domain of every row and represents the space of matrices we admit when the uncertainty
level is α. Dom(α) is closed and bounded (compact) because it is the cartesian product
of compact sets, so any continuous function applied to its elements will have a compact
image. In particular, as explained in (Buckley 2005, Chapter 6), the pow to exponent n
of the r × r transition matrix (which is done as successive matrix multiplications) can be

thought of as a collection of r2 independent functions f
(n)
ij : Rr2 → R, each of which cal-

culates the value of one entry of the resulting matrix by operating with the entries of P :

p
(n)
ij = f

(n)
ij (p11, ..., p1r, p21, ..., p2r, ..., pr1, ..., prr). Such functions are continuous and thus,

when applied on a compact set like Dom(α) for a concrete α, the image of all of them is
another compact set (a closed interval) of R. Such interval can be viewed as an α-cut of the

fuzzy number p̃
(n)
ij , i.e., p̃

(n)
ij (α) = f

(n)
ij (Dom(α)). By the representation theorem (Negoita and

Ralescu 1975), it is possible to reconstruct the fuzzy number p̃
(n)
ij as the union of its α-cuts

which, in theory, can be computed using the restricted fuzzy multiplication described before
with different values of α. For our problem, we will use the superior of the α values as the
union operator.

In particular, the stationary distribution π matches any of the (identical) rows of a matrix Π
such that Π = limn→∞ P

n, which means that theoretically, π can be computed using matrix
multiplication. We are thus in the same case explained above which guarantees that the
resulting images are compact sets over R, or more precisely the α-cuts of the fuzzy stationary
probabilities we aim to calculate.

2.4. User-specified fuzzy transition probabilities

The package also supports user-specified fuzzy transition probabilities. Instead of departing
from a sequence of observations of the state of the chain at consecutive time instants, the user
provides a fuzzy transition matrix composed of fuzzy numbers that constitute the transition
probabilities. As explained before, despite being fuzzy, these numbers must form a probability
distribution for each row. According to previous works (Halliwell and Shen 2008), this can be
formalized by imposing the constraint that p̃i1 ⊕ p̃i2 ⊕ ...⊕ p̃in ⊇ 1χ for each row i = 1, ..., n.
Here, Ã ⊇ B̃ ↔ µÃ(x) ≥ µB̃(x)∀x ∈ R, the symbol ⊕ stands for the fuzzy sum, and 1χ is the
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real number 1 represented as a fuzzy number (singleton). Note this is a necessary condition
to ensure that Dom(α) is not empty, as proved in Villacorta, Verdegay, and Pelta (2013) and,
therefore, our code first checks this condition and stops if it is not fulfilled.

One of the main applications of fuzzy probabilities is related to linguistic probabilities (Hal-
liwell and Shen 2008), as we explain next. In case no data of the chain are available, we may
have to elicit the transition probabilities from a human expert or group of experts. However,
it can be difficult for them to express their expertise using numeric probabilities which, in
addition, must fulfill the requirement of adding exactly 1. Therefore, natural language can
help express probabilities in a more natural way. The transition probability becomes a linguis-
tic variable whose possible values are linguistic terms (Zadeh 1975b), such as Very unlikely,
Most likely, It may, Extremely likely and so on. Each linguistic term has an underlying fuzzy
number that captures the vagueness inherent to natural language. The input information
would consist of subjective statements like The robot goes very often to location 6 when it is
in location 1, it almost never goes from there to location 2, when it is placed in location 5 it
seems to go to state 8 almost surely, etc.

It is not relevant for our implementation whether the fuzzy transition probabilities have an
associated linguistic term or not, but each fuzzy number of the input transition matrix must
be referred by a name when calling the function (see the next section).

2.5. Computation of fuzzy stationary probabilities

The approach outlined in Section 2.3 did not make direct use of the membership functions
of the fuzzy transition probabilities, but worked only with their α-cuts to establish Dom(α).
Thus it is not necessary to fully reconstruct such fuzzy numbers; it suffices to compute their
α-cuts for the desired levels of α. Each of those levels provides us with an interval transition
matrix that defines a domain, i.e., a space in which we admit our uncertain transition matrix
lies.

Now, in order to find the α-cuts of the fuzzy stationary probabilities for a certain α, we just
have to find, for each state of the chain, a pair of matrices within Dom(α) which respectively
minimize and maximize the stationary probability of that state. This is repeated indepen-
dently for every state. In other words, assuming a Markov chain with r different states, and
focusing on a significance level α, we have to solve r independent minimization problems and
r independent maximization problems in order to compute r different α-cuts of the fuzzy
stationary probabilities we are looking for. Note that the search space is the same for all
the problems, Dom(α), but the objective function is not: for each state sj whose stationary
probability π̃j is being computed, it is the expression which yields that stationary probability
as a function of the entries of the transition matrix. The function is first minimized to find
the lower bound of the α-cut π̃j(α), and then maximized to find the upper bound. It seems
clear that a general expression cannot be calculated for any r-state chain to apply conven-
tional optimization techniques, since such function (in which all the matrix coefficients pij
will be symbolic as well) would be too complicated for chains with more than 5 or 6 states.
Furthermore, R symbolic capabilities are very poor and make it unsuitable. For both reasons,
heuristic search (optimization) algorithms will be employed, as suggested in Buckley (2005).

The α-cuts can be written as follows. Let gj : Rr2 → R be a function that represents the
calculation of the j-th component of the stationary distribution of an r-state Markov chain
whose transition matrix is expressed as an r2-dimensional vector (p11, ..., prr). As explained
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in the previous section, such distribution can be obtained by means of matrix multiplication
that converges to a matrix Π with identical rows that are indeed the stationary distribution.
Using the same notation and assuming we are only interested in the first row of Π, we can

set gj = limn→∞ f
(n)
1j , i.e., gj is the function that computes the element Π1j . Such function

only applies sums and products during the calculation process, so it is continuous and hence
gj(Dom(α)) is a compact set on R, i.e., an α-cut. Then

π̃j(α) = [πjL(α), πjR(α)], j = 1, ..., r (3)

πjL(α) = min{wj |wj = gj(p11, ..., prr), (p11, ..., prr) ∈ Dom(α)} (4)

πjR(α) = max{wj |wj = gj(p11, ..., prr), (p11, ..., prr) ∈ Dom(α)} (5)

Equations 4 and 5 state that, in order to compute the lower and upper bounds of an α-cut of
π̃j (the j-th fuzzy component of the fuzzy stationary distribution vector π̃), we must find the
minimum and the maximum of the j-th component of all the crisp stationary distributions
corresponding to feasible crisp matrices, understanding feasibility as belonging to the space
Dom(α) for that α. In practice, the condition wj = gj(p11, ..., prr) is implemented as w = wP .

The final step is to calculate an analytical expression for the membership function of the fuzzy
stationary probabilities. If the above α-cuts were exact, i.e., if we could guarantee that the
solutions for the optimization problems are global optima, then the adequate way to proceed
would be to interpolate the lower and upper bounds for every sampled α to separately obtain
expressions for the left and the right sides of the membership function. The number of points
depends on how much precision we need for the membership function. If the membership
function has to be reconstructed very accurately, we should probably sample α values in [0,
1] in steps of, say, 0.01, which yields 100 points in each side. A larger step size of about 0.05
(20 points) is probably enough for most real problems and is less time consuming.

However, since we have no guarantee that the α-cuts are exact because they have been
obtained by heuristic optimization procedures, regression may also be a good choice, and
the loss of precision is globally quite small. The form of the regression function depends on
what the points look like. In order to allow for the maximum flexibility, it is the user who can
choose between spline interpolation or some kind of regression to be applied. More details
are provided in Section 3.

Numerical example The first part of the example does not use data from observations but
serves to illustrate the mathematical procedure. Let Ã = (a, b, c), where a, b, c ∈ R, a ≤ b ≤ c,
be a Triangular Fuzzy Number (TFN), which can be viewed as a particular case of fuzzy
number with the following membership function:

µÃ(x) =


(x− a)/(b− a) a ≤ x < b
(c− x)/(c− b) b < x ≤ c
0 otherwise

Now consider the fuzzy transition matrix depicted on the left, formed by TFNs which, in this
particular case, are symmetric (although they do not have to). Note some of them carry more
uncertainty than others. Focusing on a concrete value for α, for instance α = 0.5, this matrix
yields the interval matrix P̃ (0.5) = (p̃ij(0.5)) on the right, constituted by the 0.5-cuts of the
fuzzy transition probabilities of P̃ .

P̃ =

(
(0.6, 0.7, 0.8) (0.2, 0.4, 0.6)
(0.3, 0.4, 0.5) (0.55, 0.6, 0.65)

)
P̃ (0.5) =

(
[0.65, 0.75] [0.3, 0.5]
[0.35, 0.45] [0.575, 0.625]

)
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Dom1(0.5) = {(x, y) ∈ R2 : x+ y = 1, x ∈ [0.65, 0.75], y ∈ [0.3, 0.5]}
Dom2(0.5) = {(x, y) ∈ R2 : x+ y = 1, x ∈ [0.35, 0.45], y ∈ [0.575, 0.625]}
Dom(0.5) = {(p11, p12, p21, p22) ∈ R4 : (p11, p12) ∈ Dom1(0.5), (p21, p22) ∈ Dom2(0.5)}

Let g1, g2 be the functions that, for the given α = 0.5, compute the elements Π11 and Π12

of the (crisp) stationary matrix Π corresponding to each of the 2 × 2 feasible matrices
{P = (p11, ..., p22) ∈ Dom(0.5)}. Let us rename the crisp stationary distribution (Π11,Π12)
of a feasible matrix as w = (w1, w2). We are interested in finding four feasible matrices
P1, P2, P3, P4 ∈ Dom(0.5) which, respectively, minimize and maximize w1, and minimize and
maximize w2. The minimum and maximum w1 act as the lower and upper bounds of the
0.5-cut π̃1(0.5), and the same applies to w2 with respect to the 0.5-cut π̃2(0.5):

π1L(0.5) = min{w1|w1 = g1(P ), P ∈ Dom(0.5)} = min{w1|w = wP, P ∈ Dom(0.5)}
π1R(0.5) = max{w1|w1 = g1(P ), P ∈ Dom(0.5)} = min{w1|w = wP, P ∈ Dom(0.5)}
π2L(0.5) = min{w2|w2 = g2(P ), P ∈ Dom(0.5)} = min{w2|w = wP, P ∈ Dom(0.5)}
π2R(0.5) = max{w2|w2 = g2(P ), P ∈ Dom(0.5)} = min{w2|w = wP, P ∈ Dom(0.5)}

This procedure should be repeated by sampling α in [0, 1] with a step size that depends on
the precision desired to reconstruct the fuzzy stationary vector from its α-cuts.

Now, suppose we do not depart from a fuzzy transition matrix (provided by a human expert,
for instance) as in the example above, but from a collection of observations of the state of
the chain at several consecutive time instants, e.g. {1, 3, 2, 3, 4, 4, 2, 3...}. Then, in order
to estimate the α-cuts of the fuzzy transition probabilities that are needed to establish the
domains for each α, we resort to simultaneous confidence intervals at level α of multinomial
proportions, using the number of times that the chain transitioned from one state to any
other as the input. Once the CIs for the transition probabilities have been computed to
compose the interval matrices P̃ (α) for each α, we can define the domains and go on with
the rest of the process as it remains unchanged. In this case, matrix P̃ is never constructed
explicitly because we are only interested in the α-cuts of the fuzzy entries, as they constitute
the constraints of the optimization problems.

3. Implementation in the FuzzyStatProb package

The signature of the only public function is

fuzzyStationaryProb(data,options,step=0.05,...)

where:

� data: This argument can be: (a) an array of either strings or natural numbers repre-
senting the observed states of the chain at consecutive time points. The function first
coerces the elements to a factor integer. (b) A 2D square matrix of strings representing
fuzzy transition probabilities directly given by the user. Each string should be contained
in names(fuzzynumbers) and refers to the corresponding FuzzyNumber object in the
fuzzynumbers vector (see below). When the transition probability from state i to j is
0 (in the crisp sense), then entry (i, j) must be NA. The matrix should have colnames

and rownames set.
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� options: a tagged list containing the following parameters:

– verbose: boolean, set to TRUE if progress information should be printed during the
process. It is set to FALSE if this option is not specified.

– states: an array of strings indicating the states for which the stationary distri-
bution should be computed. The values should match those specified in the data

argument. If this option is not specified, the fuzzy stationary probabilities are
computed for every state of the chain.

– acutsonly: boolean, set to TRUE if no regression should be done after computing
the α-cuts. This option is set to FALSE if not specified.

– regression: a string with the type of the regression to be applied at the end of
the algorithm for fitting the membership functions of the fuzzy stationary prob-
abilities. Possible values are ‘linear’, ‘quadratic’, ‘cubic’, ‘gaussian’, ‘spline’ and
‘piecewise’ (piecewise linear). In all cases (including the gaussian), a different
curve is fitted for each side of the fuzzy number. The gaussian option fits curves
of the form µ(x) = exp

(
−1

2

∣∣x−c
s

∣∣m). The spline option performs interpolation
by a monotone cubic spline according to the Hyman method (see splinefun docu-
mentation) while piecewise computes a piecewise linear membership function by
connecting consecutive points of the α-cuts with straight lines, using the built-in
PiecewiseLinearFuzzyNumber subclass of the FuzzyNumbers package. If this op-
tion is not specified, quadratic regression is carried out by default. If acutsonly
is set to true, this option is ignored.

– ncores: positive integer representing the maximum number of cores that can be
used when running in parallel. If set to more than 1, then each processor takes care
of all the computations involving one of the values of α that have to be sampled,
via parLapply function of the parallel package. Defaults to 1 (sequential) if not
specified. If ncores is greater than the actual number of cores in the computer,
all available cores are used.

– fuzzynumbers: a tagged list with all the different FuzzyNumber objects that appear
in data when data is a matrix of labels; ignored otherwise. Every element of the
list must have a name, referenced in at least one entry of data.

� step: step size for sampling α when computing the α-cuts. The smallest α is always
present and equals 0.001, and the rest of values are calculated as α = k·step for k ≥ 1.
The greatest sampled value that is always present as well is α = 0.999. It is set to 0.05
when this option is not specified.

� ... Further arguments to be passed to DEoptim.control to customize the algorithm
that finds the lower and upper bounds of the α-cuts by solving a minimization and a
maximization problem.

The value returned by the function is a tagged list that belongs to a new S3 class called
FuzzyStatObj. This class has only two specific methods, print and summary, and both
print exactly the same: a brief summary of the processing that has been done, including the
number of states, number of observations, regression type, step size and time elapsed, and
information about the names of the two tags that should be queried to retrieve the results,
namely $fuzzyStatProb and $acuts. The former is a tagged list of FuzzyNumber objects
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Figure 1: Diagram of the function workflow and the R packages used in each phase.

(see the FuzzyNumbers package cited before) whose length equals length(options$states)
and whose names match those in options$nstates. The latter is another tagged list with
the same length and names, consisting of data frame objects that contain the α-cuts of every
output stationary probability, represented as pairs (π̃jL(α), α) and (π̃jR(α), α). The object
at each position represents the fuzzy stationary probabilities and α-cuts of the element of the
options$states list that is in the same position. Note that in case the user specifies within
options$state a state that is not found among the elements of the data argument, then the
corresponding position of $fuzzyStatProb and $acuts will be NA. When setting acutsonly

= TRUE, the returned object does not have a $fuzzyStatProb tag but only $acuts. Section
4 contains a fragment of code and the R output showing how our function should be called.

3.1. Implementation issues

This section describes how each step of the mathematical process explained before has been
implemented in R and the external packages used. A general scheme of the package is depicted
in Figure 1, which has two possible starting points depending on whether the user provides a
sequence of observations or a fuzzy transition matrix.

Confidence intervals The first step is to build the fuzzy numbers of the fuzzy transition
matrix, as the superposition of confidence intervals. The procedure samples several α from 0 to
1; the step size of the sampling is specified by the user in the step argument of the function.
For each α and for each state si of the chain, the method builds as many simultaneous
confidence intervals as transitions to other states sj have been observed from si. The procedure
makes use of the MultinomialCI package created by the first author (Villacorta 2012) which
implements the Sison and Glaz method (Sison and Glaz 1995) to calculate simultaneous
confidence intervals for multinomial proportions. It is a direct R translation of the SAS code
published in May and Johnson (2000). The FuzzyStatProb loads this package during the
execution.

If the user has provided directly the fuzzy transition probabilities, this step is omitted and
the α-cuts are taken directly from the fuzzy numbers passed to the function.
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Computation of α-cuts of stationary probabilities The second (and main) step of
the method is to solve the optimization problems of Equations 4 and 5, using some heuristic
optimization technique. As explained in Section 2.5, the confidence intervals which are the
α-cuts of the fuzzy entries of the transition matrix are used in this step as box-constraints
for the optimization that searches for the minimum and maximum value of each stationary
probability within Dom(α). The DEoptim package (Mullen, Ardia, Gil, Windover, and Cline
2011) was employed for this purpose. It is an implementation of the Differential Evolution
(DE) algorithm (Storn and Price 1997; Price, Storn, and Lampinen 2005) that has exhib-
ited excellent performance in a wide variety of hard continuous optimization problems. The
package provides built-in capabilities to specify box-constraints for every variable but cannot
handle equality constraints (in this case, the probabilities of every row of the matrix being
evaluated must add to 1), so they have to be controlled directly in the objective function.

Computation of membership functions via regression The third and last step is to
reconstruct the membership function of the fuzzy stationary probabilities whose α-cuts were
computed in the preceding step. Focusing on regression, the user can choose among linear,
quadratic, cubic and gaussian regression. When fitting a quadratic or cubic membership
function, care should be put to avoid non-monotonous functions, not allowed in this context
for fuzzy numbers. To be precise:

� Since the membership function has to be continuous, it should intersect with the hor-
izontal axis in at least one point between 0 and the central (core) point of the fuzzy
number for the left-side function, and between the central point and 1 for the right-side
function. If the function cuts the X axis in more than one point, only the greatest of
those between 0 and the central point is considered, as well as the smallest of those
between the central point and 1.

� The function only needs to be monotonic in those intervals so local minima cannot exist
within them.

� The left and right functions (before normalizing to [0, 1]) must satisfy f(core) = g(core)
= 1, so the degrees of freedom decrease in one because it is possible to write one of the
curve parameters as a function of the others.

It is clear that the problem can be viewed as a constrained minimization of the squared error
function with respect to the cloud of points representing the α-cuts. First, the nls function for
Non-linear least squares regression is called. The diminished degrees of freedom are expressed
in the formula passed to nls, in which one of the parameters of the curve is expressed as a
function of the others. This function yields a solution satisfying f(core) = 1, but the rest of
the conditions are not guaranteed by nls so they have to be checked in the obtained solution.
If they are fulfilled, the solution is accepted and returned.

If they are not fulfilled, and taking into account that regression accuracy at this stage is not
as fundamental as the satisfaction of all the constraints, again Differential Evolution is used
to minimize the total quadratic regression error function for gaussian, quadratic and cubic
regression. Constraints were implemented in the objective function of DE. For quadratic
regression, the vertex must not fall between the horizontal cut-points and the core, and such
cut-points cannot be negative nor greater than 1. For cubic regression, a turning point must
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not exist between the cut-points and the core. Linear and gaussian regression are themselves
monotonic so the only constraint to be considered is the intersection with the horizontal axis.
By definition, the gaussian function does not intersect the horizontal axis at any point but
for practical purposes, it can be rounded to 0 when the membership degree is smaller than,
say, 0.01.

Computation of membership functions via interpolation This option always yields
good and fast results, although the expression of the solution is a bit more complicated.
Interpolation with cubic spline functions can be applied to the α-cuts to obtain a membership
functions with a soft shape, yet continuous. Monotonicity is guaranteed by the use of the
hyman option of the splinefun function of the stats package; see the associated vignette
for details. An alternative interpolation method supported is linear piecewise interpolation,
provided by the FuzzyNumbers package in the PiecewiseLinearFuzzyNumber subclass. The
membership function is built by connecting a monotone1 sequence of points (xi, µ(xi)) with
straight lines.

Parallelism The most computationally demanding task is the calculation of the α-cuts
of fuzzy stationary probabilities. It requires running DE twice per each α value, and it is
expected that any user samples at least ten α values, which yields 20 full executions of the
optimization process for each state whose stationary probability has to be calculated. In
our implementation, when α has been set, the α-cuts are computed for all the chain states
indicated by the user, which means that lengthy computations have to be done before moving
to another α value. For this reason, and since the computations with each α are independent
of the rest, we have introduced parallelism at this level by using the built-in parLapply

function of the parallel package over a vector containing all the α values to be sampled. Each
physical core thus takes care of all the computations for a given α, i.e., runs a minimization
and a maximization for every state of the chain. With this approach, possibly all the cores
available will be engaged in heavy computations since the number of sampled α’s will most
likely be greater than the number of processors. Such coarse grain parallelization is enough,
although the DEoptim function provides a built-in option to run in parallel as well. Parallelism
is disabled initially in our package (ncores = 1 by defult) to prevent a sudden slowdown of
the computer when getting all the available processors engaged in our computations, but can
be enabled by setting ncores to a higher number, which is strongly recommended to keep
computation times within affordable limits.

4. The package in use

Now we will show how the package can be used with a toy example. We will generate
a realization of a 10-state Markov chain which controls the randomized movement of an
autonomous robot that patrols an area, modeled as a two-dimensional grid (Figure 2). Each
cell of the grid is a state of the chain, and the robot can only move to an adjacent cell at a
turn (a discrete time instant). The movement is based on a probability distribution over the
adjacent cells. Such distribution depends only on the current cell, and not on the trajectory
followed by the robot in the past to reach that cell, so clearly it is a Markovian movement. It

1xi < xi+1 ⇔ µ(xi) ≤ µ(xi+1) for the left side function and xi < xi+1 ⇔ µ(xi) ≥ µ(xi+1) for the right side
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The general case is an easy extension. Our solving algorithm

develops into two stages.

In the first stage we check if there exists at least one

patroller’s strategy such that stay-out is a best response for

the intruder. If such a strategy exists, then the patroller

will follow it, being its payoff maximum when the intruder

abstains from the intrusion (recall that X0 ≥ Xi for all i).
This stage is formulated as the following bilinear feasibility

problem in which αi,js are the unknown variables (C \ i is

the set obtained by removing the element i from C):

αi,j ≥ 0 ∀i, j ∈ C (1)
X

j∈C

αi,j = 1 ∀i ∈ C (2)

αi,j ≤ ti,j ∀i, j ∈ C (3)

γ1,w
i,j = αi,j ∀w, i, j ∈ C, j 6= w (4)

γh,w
i,j =

X

x∈C\w

“

αx,jγ
h−1,w
i,x

” ∀h ∈ {2, . . . , d},
∀w, i, j ∈ C, j 6= w

(5)

Y0

0

@1 −
X

i∈C\w
γd,w
z,i

1

A + Yw

X

i∈C\w
γd,w
z,i ≤ 0 ∀z, w ∈ C (6)

Constraints (1)-(2) express that probabilities αi,js are well

defined; constraints (3) express that the patroller can only

move between two adjacent free cells; constraints (4)-

(5) express the Markovian hypothesis over the patroller’s

decision policy; constraints (6) express that no action

enter-when(w, z) gives to the intruder an expected utility

larger than that of stay-out. Notice that the non-linearity is

due to the constraints (5). If the above problem admits a

solution, the resulting αi,js are the optimal patrolling strategy

for the robot. When the above problem is unfeasible, we pass

to the second stage of the algorithm.

In the second stage we find the best response i of the

intruder such that the patroller’s expected utility is maximum.

This is formulated as a multi bilinear programming problem,

where the single bilinear problem in which enter-when(q, s)
is the best response for the intruder is defined as follows:

max Xq

X

i∈C\q
γd,q
s,i + X0

0

@1 −
X

i∈C\r
γd,q
s,i

1

A

s.t.

constraints (1)-(5)

Y0

0

@1 −
X

i∈C\q
γd,q
s,i

1

A + Yq

X

i∈C\q
γd,q
s,i ≥

≥ Y0

0

@1 −
X

i∈C\w
γd,w
z,i

1

A + Yw

X

i∈C\w
γd,w
z,i

∀z, w ∈ C (7)

The objective function is the maximization of the pa-

troller’s expected utility. Constraints (7) express that no

action enter-when(w, z) gives a larger value to the intruder

than action enter-when(q, s). We can formulate n2 above

problems, for all the possible enter-when(q, s) actions (q, s ∈
{1, 2, . . . , n}). If a problem is feasible, its solution is a set

of αi,js, namely a possible patrolling strategy for the robot.

From all the solutions of feasible problems, we pick out the

one that gives the patroller the maximum expected utility.

We report in Fig. 2 the optimal patroller’s strategy for the

setting of Fig. 1, as calculated with the algorithm described

here. The expected utility for the patroller is 0.805 and

the corresponding induced best response for the intruder is

enter-when(04,01), namely to enter cell 04 when the patroller

is in 01. Cells 05, 08, and 13 are excluded from the route

of the patroller. Indeed, visiting these cells would allow the

intruder to perform an always successful action, for example

enter-when(06,08) (see Fig. 1).

01 02 03 04 05

06 07 08

09 10 11 12 13

0.05

0.95
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1
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0.35
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0.450.53

0.47 0.52

0.48 0.35

0.35

0.3

1

0

0

0

0

0

0

0

0

Fig. 2. Patroller’s optimal strategies in the setting of Fig. 1

D. Augmenting Patroller’s Sensing Capabilities

In this section we extend the sensing model of the pa-

trolling robot by considering that it can sense the presence

of the intruder beyond its current cell. We introduce a matrix

V (n × n) where vi,j = 1 if cell j can be sensed by the

patroller from cell i and vi,j = 0 otherwise. Matrix V
embeds a model of the detecting sensor of the robot. A

general sensing model of the patroller can be considered in

our approach by substituting constraints (4)-(5) above with:

γ1,w
i,j = αi,j (1 − vj,w) ∀w, i, j ∈ C, j 6= w (8)

γh,w
i,j = (1 − vj,w)

X

x∈C\w

“

αx
j γ

h−1,w
i,x

” ∀h ∈ {2, . . . , d},
∀w, i, j ∈ C, j 6= w

(9)

In this case γh,w
i,j is the probability that the patroller reaches

cell j in h steps, starting from cell i and not having sensed

cell w. For example, let us consider that the patroller is able

to sense its current cell and the free cells that are one cell

away from it (r = 2). For instance, in Fig. 1, from cell 05, it

can sense cells 04 and 08; from cell 06, it can sense cells 01

and 09; from cell 11, it can sense cells 07, 10, and 12; and

so on. With this sensor model, the optimal patrolling strategy

for the robot is reported in Fig. 3. Comparing with Fig. 2,

cells 04 and 12 have been excluded from the patrol route.

This makes sense, since the patroller, due to the augmented

sensing capabilities, is able to patrol them from adjacent cells

that are more “central” (03 and 11, respectively).

IV. A SYNCHRONIZED MULTIROBOT SETTING

In this section we show (a) that our model can easily

capture settings with multiple synchronized robots and (b)

that the patroller’s strategy produced by our approach, when

the patroller and the intruder have no preferences over the

cells, and by the approach presented in [3] are the same.

Hence, since our approach is able to capture more general

(a)

01 02 03 04 06 07 09 10 11 12

01 0 0.05 0 0 0.95 0 0 0 0 0
02 0.41 0 0.59 0 0 0 0 0 0 0
03 0 0.23 0 0.44 0 0.33 0 0 0 0
04 0 0 1 0 0 0 0 0 0 0
06 0.65 0 0 0 0 0 0.35 0 0 0
07 0 0 0.55 0 0 0 0 0 0.45 0
09 0 0 0 0 0.53 0 0 0.47 0 0
10 0 0 0 0 0 0 0.48 0 0.52 0
11 0 0 0 0 0 0.35 0 0.35 0 0.3
12 0 0 0 0 0 0 0 0 1 0

(b)

Figure 2: (a) Optimal Markovian patrolling strategy according to game-theoretic techniques
for a map with 13 cells. Reproduced from Amigoni et al. (2009). Non-reachable states 5, 8
and 13 were not considered for the Markov chain. (b) The 10x10 transition matrix.

is time-homogeneous as well, since the probabilities used by the robot do not change along the
time. Such models are very common in the field of autonomous robotic patrolling (Agmon,
Kraus, and Kaminka 2008; Amigoni et al. 2009). There are two main reasons that justify the
randomness of this kind of strategies:

� The area is large enough to prevent full coverage with a deterministic patrolling scheme,
since some locations would remain uncovered in the sense that the time between two
consecutive visits is larger than the time needed by the intruder to successfully penetrate
that location.

� The robotic movement should be unpredictable when facing a full-knowledge opponent,
i.e., one that has perfectly learnt the robot’s patrolling scheme. This situation arises
when the opponent has been observing the robot’s movement for a long time before
choosing the cell to attack. A randomized movement leads to maximizing the robot
payoff even in this case, since the only knowledge the intruder may acquire is the exact
probability distribution employed by the robot, not the actual trajectory he will follow
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at each walk. Note that considering the strongest adversary is the common assumption
in game theory as it is the worst case one may face.

Although the problem is usually solved with game-theoretic techniques2, it represents indeed
a good example of a Markov chain with very large state space (actually, proportional to the
extension of the area under consideration). The concept of stationary distribution becomes
relevant since it gives an idea of the locations in which the robot spends less time or, in other
words, the places that have less coverage and are thus the most promising to be attacked3.
If the assumption of perfect adversarial knowledge is eliminated, i.e., if we consider a more
realistic situation in which the adversary only has a sequence of observations of the robot’s
movement, then what the opponent does is actually an estimation of stationary probabilities
based on the observations from an unknown Markov chain that guides the robot’s movement.
A fuzzy estimation captures more information about the observations than a point estimate.

4.1. Departing from a sequence of observations

The Markov chain of Figure 2 depicts the game-theoretic solution (Amigoni et al. 2009)
against a full knowledge opponent in a map with 13 cells, three of which are not reachable
and thus discarded for our Markov chain. Assume the adversary observes a realization of 200
time instants of this chain. The R code that generates such sequence of observations and then
computes the fuzzy stationary probabilities is shown below. robotStates = c("01", "02",

..., "12") is a 10-component string vector with the names of the states, and transRobot is
the transition matrix of Figure 2. Both variables are defined in an .Rda file attached to the
package. The states argument is not specified in the call to fuzzyStationaryProb, which
means the fuzzy stationary probabilities of all the states should be computed.

R> library(markovchain) # for simulating from a known crisp Markov chain

R> mcPatrol <- new("markovchain", states = robotStates, byrow = TRUE,

+ transitionMatrix = transRobot, name = "Patrolling") # Markov chain object

R> set.seed(666);

R> simulatedData <- rmarkovchain(n = 200, object = mcPatrol,

+ t0 = sample(robotStates, 1)) # 200 obs starting in a random state

R> mcfit = markovchainFit(simulatedData) # Fit with markovchain package

R> vsteady = steadyStates(mcfit$estimate) # 1 x n matrix of stat. probs

R> quadratic = fuzzyStationaryProb(simulatedData, list(verbose = TRUE,

+ regression = "quadratic", ncores = 4), step = 0.1);

Parallel computation of a-cuts in progress...finished successfully

(elapsed: 194.04 s.)

Applying quadratic regression to obtain the membership functions of fuzzy

stationary probabilities...

Fitting memb.func. for state: 01 02 03 04 06 07 09 10 11 12

Now we demonstrate different types of regression to fit the membership function of the fuzzy
stationary probabilities.

2Most often the equilibrium strategy in security games is computed using bi-level non-linear programming.
3This deserves further discussion since a poorly covered location may not be worth attacking if the benefits

of a successful attack are low for the attacker, but intuitively coverage is modeled by the stationary distribution.
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R> linear = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression="linear", ncores = 4), step=0.1)

R> cubic = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression = "cubic", ncores = 4), step = 0.1)

R> gaussian = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression = "gaussian", ncores = 4), step = 0.1)

R> splines = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression = "spline", ncores = 4), step = 0.1)

R> pwlinear = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression = "piecewise", ncores = 4), step = 0.1)

Finally we are going to depict in a figure the α-cuts of the fuzzy stationary probabilities
computed by our program, and the functions fitted to them. The code relies on the plot
function for FuzzyNumber objects that were created for each state as a result of the regression.
In order to compare to the output given by the steadyStates function of the markovchain
package, dashed lines have been drawn at the stationary probabilities calculated by that
function, using function abline.

R> m <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 11), nrow = 4, ncol = 3,

+ byrow = TRUE) # layout for multiple plots in one figure

R> layout(mat = m, heights = c(0.25, 0.25, 0.25, 0.25))

R> for (i in robotStates){ # i is a string with the state name

+ par(mar = c(4, 4, 2, 1)) # set margin of this cell

+ plot(linear$fuzzyStatProb[[i]], col = "blue", main = paste("State ", i),

+ cex.lab = 1.1, lwd = 2); # linear regression line in blue

+ plot(quadratic$fuzzyStatProb[[i]], col = "red", cex.lab = 1.1, lwd = 2,

+ add = TRUE); # quadratic regression curve in red

+ plot(cubic$fuzzyStatProb[[i]], col = "springgreen4", cex.lab = 1.1, lwd = 2,

+ add = TRUE); # cubic regression curve in green

+ plot(gaussian$fuzzyStatProb[[i]], col = "black", cex.lab = 1.1, lwd = 2,

+ add = TRUE); # gaussian regression curve in black

+ plot(splines$fuzzyStatProb[[i]], col = "orange", cex.lab = 1.1, lwd = 1,

+ add = TRUE); # cubic spline regression curve in orange

+ abline(v = vsteady[1,i], lty = "dashed"); # vertical dashed line

+ points(linear$acuts[[i]]); # alpha-cuts of this state stat.probability

+ } # Finally, we add a legend box to the figure:

R> plot(1, type = "n", axes = FALSE, xlab = "", ylab = "")

R> plot_colors <- c("blue", "red", "springgreen4", "black", "orange")

R> legend(x = "top", inset = 0,

+ legend = c("Linear", "Quadratic", "Cubic", "gaussian", "Spline"),

+ col = plot_colors, lwd = 2, cex = 1, bty = "n", horiz = FALSE)

R> summary(quadratic)

. Fuzzy stationary probabilities of a Markov chain with 10 states

. Probabilities have been computed for states: 01

. Number of input observations: 200

. Parameters:
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Step size: 0.1

Execution was done in parallel ( 4 cores used )

Regression curve for output membership functions: quadratic .

To retrieve the results use $fuzzyStatProb and $acuts with this

object

. Computation of alpha-cuts took 194.04 seconds

. Membership functions regression took 34.71 seconds

Let us retrieve the FuzzyNumber object corresponding to the stationary probability of state 01,
and the α-cuts from which such number was built. The α-cuts are returned as a data.frame

object in which the first column represents the probability and the second, the membership
degree α. Note there are always two rows (rows 1 and 10, 2 and 11, etc) with the same y
(membership) value, one for the lower bound and the other for the upper bound of that α-cut.
This way, the limits of the α-cuts can be plotted as if they were 2D points.

R> quadratic$fuzzyStatProb[["01"]] # FuzzyNumber object of state 01

Fuzzy number with:

support=[0, 0.294939],

core=[0.15054, 0.15054].

R> quadratic$acuts[["01"]]

x y

1 0.0001480569 0.001 # a-cuts of the fuzzy stationary probability of

2 0.0336437600 0.100 # state named "01"

3 0.0510534166 0.200

4 0.0725788506 0.300

5 0.0936139309 0.400

6 0.1111090020 0.500

7 0.1300688992 0.600

8 0.1387885412 0.700

9 0.1505397380 0.999

10 0.3822915287 0.001

11 0.3046761228 0.100

12 0.2549764457 0.200

13 0.2434278879 0.300

14 0.2104871378 0.400

15 0.1949950486 0.500

16 0.1763232720 0.600

17 0.1625293319 0.700

18 0.1505397380 0.999

An important remark should be made here. There are no output α-cuts for α = 0.8 and
α = 0.9. This is due to the fact that the intervals of the input interval matrices were very
small, and thus the minimization and maximization problems for each of these values have all
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Figure 3: Fuzzy stationary distribution of the Markov chain of Figure 2, computed using
200 observations (several fitting curves available are shown). Dashed lines correspond to
stationary probabilities returned by the function steadyStates of markovchain.
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the same solution. It is because the multinomial confidence intervals are very small when the
required confidence level is also very low. This happens for α = 0.8, 0.9 and 0.999. In practice,
the corresponding output α-cuts are points rather than intervals, and actually it is the same
point for those three values of α. By the representation theorem (Negoita and Ralescu 1975),
the membership degree of all the elements within such very small output α-cuts is actually
the greatest of them, i.e., 0.999, so the others can be discarded and the 0.999 is the only one
retained. In our implementation, before carrying the regression we always discard those α-
cuts such that the distance from the lower or upper bounds of the α-cut to the fuzzy number
vertex (which is the point estimate of the stationary probability) is less than 0.005.

The graphical output of the above code is the plot of Figure 3. A number of details can be
observed. The gaussian curve usually provides the best fit, and this is actually the reason
for which it was included as an option in our package. However, it has the most complicated
expression. Cubic fitting also fits quite well. Regarding the shape of the figures, it is clear
that the fuzzy numbers are in general not symmetric around the point estimate as the vertex
is sometimes very close to 0 or 1 so the points cannot spread much in that side.

Moreover, fuzzy stationary probabilities provide more information than a point estimate based
on the transition proportions from the sequence of observations. A comparison between
stationary probabilities of states 6 and 8 serves to illustrate how beneficial it is to have
fuzzy estimations. According to point estimates (which are the central point of the output
fuzzy numbers), the stationary probability of being at state 6 is smaller than that of state
8. However, the α-cuts of fuzzy stationary probability for state 6 are wider and the fuzzy
number is more right-skewed than state 8, indicating there is more uncertainty on this value
and suggesting that it could be actually greater. In fact, the true stationary probabilities
are π6 = 0.1946, π8 = 0.1154, and therefore π6 > π8. Note, additionally, that the output
of the function steadyStates from markovchain consists of punctual estimates of stationary
probabilities. The package is able to compute bootstrap confidence intervals for the transition
probabilities but not for the stationary probabilities. Therefore fuzzy transition probabilities
are more informative. As could be expected, the point estimates of stationary probabilities
given by steadyStates match the 1-cuts of our fuzzy stationary probabilities.

4.2. Departing from user-specified fuzzy transition probabilities

Now we depart from a matrix of fuzzy numbers that constitute the fuzzy transition probabili-
ties and are given directly by the user. In this case we assume they are linguistic probabilities
as each of them is represented by a (meaningful) linguistic term. However, we could have
chosen the names to be meaningless labels like ”L1”, ”L2”, ..., ”Ll” where l stands for the
number of different fuzzy numbers employed in the matrix. The linguistic transition ma-
trix created for our problem (Figure 4(a)) is similar to that in Figure 2(a). We have used
Trapezoidal Fuzzy Numbers (TrFNs) in accordance to previous studies about the probabil-
ity ranges that human people associate with each linguistic expression (Bonissone and Decker
1985) (Figure 4(b)). Every row of the fuzzy matrix fulfills the condition of being a well-formed
probability distribution in the sense stated in Section 2.4.

The code to compute the fuzzy stationary probabilities from this matrix is the following.
Variable linguisticTransitions is a matrix of labels (strings) defined in an .Rdata file of the
package. Its entries should match the names of allnumbers, which is a list of FuzzyNumbers.

R> EU = TrapezoidalFuzzyNumber(0,0,0.02,0.07); # Extremely unlikely
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1 2 3 4 5 6 7 8 9 10
1 - VLC - - ML - - - - -
2 IM - IM - - - - - - -
3 - SC - SC - IM - - - -
4 - - EL - - - - - - -
5 MC - - - - - SC - - -
6 - - IM - - - - - IM -
7 - - - - IM - - IM - -
8 - - - - - - IM - IM -
9 - - - - - SC - IM - SC
10 - - - - - - - - EL -

0,0

0,5

1,0

0 0,2 0,4 0,6 0,8 1

Very low 
chance
(VLC)

Small 
chance
(SC)

It may
(IM)

Meaningful 
chance
(MC)

Most 
likely
(ML)

Extremely 
unlikely (EU)

Extremely 
likely (EL)

Figure 4: (a) Linguistic transition matrix specified by the user. (b) Associated TrFNs.

R> VLC = TrapezoidalFuzzyNumber(0.04,0.1,0.18,0.23); # Very low chance

R> SC = TrapezoidalFuzzyNumber(0.17,0.22,0.36,0.42); # Small chance

R> IM = TrapezoidalFuzzyNumber(0.32,0.41,0.58,0.65); # It may

R> MC = TrapezoidalFuzzyNumber(0.58,0.63,0.8,0.86); # Meaningful chance

R> ML = TrapezoidalFuzzyNumber(0.72,0.78,0.92,0.97); # Most likely

R> EL = TrapezoidalFuzzyNumber(0.93,0.98,1,1); # Extremely likely

R> allnumbers = c(EU,VLC,SC,IM,MC,ML,EL);

+ # The names should match the entries of the linguistic matrix

R> names(allnumbers) = c("EU","VLC","SC","IM","MC","ML","EL");

R> rownames(linguisticTransitions) = robotStates;

R> colnames(linguisticTransitions) = robotStates;

R> linear = fuzzyStationaryProb(linguisticTransitions, list(verbose=TRUE,

+ regression="linear", ncores = 4, fuzzynumbers = allnumbers),step=0.1)

The code that plots the results (Figure 5) is similar to the previous section so we will not
reproduce it again. Notice the perfectly trapezoidal shape of the output fuzzy sets defined by
its α-cuts, mirroring the shape of the input probabilities. In this case, package markovchain
cannot deal with uncertain transition probabilities directly, in absence of data.

As a concluding remark concerning the uncertainty represented by a fuzzy number, it should
be pointed out that, in some cases, fuzzy numbers are asymmetric as they tend to indicate
where the true value could be located. This can be observed in some of the plots of Figure 3,
specially in states 2 and 4. In both cases, the α-cuts have very large upper bounds at the
base, indicating that values greater than the center are more likely than those smaller than
it, i.e., the possibility that values located in the right side are the true stationary probability
is greater. This is the kind of information that crisp numbers cannot provide.

5. Conclusions and further work

We have addressed the problem of estimating stationary probabilities of an unknown Markov
chain from a sequence of observations. We first decided to estimate the transition probabilities
by using fuzzy numbers, and carry all the computations with them, to obtain fuzzy stationary
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Figure 5: Fuzzy stationary distribution of the Markov chain of Figure 2, computed from
user-specified fuzzy transition probabilities.
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probabilities. Our work serves as a proof of concept of the method proposed in Buckley (2005)
and, at the same time, provides the first freely available, ready-to-use implementation of a
fuzzy Markov chain estimation procedure in a widely extended programming environment,
namely the R language.

The R package developed for this purpose, FuzzyStatProb, has a number of advantages. The
main of them is the ease of use: it just requires to have a sequence of observations represented
as integers. In addition, it provides great flexibility as it allows the user to specify the
kind of regression to be used for the output membership functions, and it can run in parallel,
thus exploiting the computational facilities of modern multi-core architectures of conventional
computers without any additional software requirement for parallelism. The results rely on
the FuzzyNumbers package that has been recently published, is under active development
and will most likely be adopted by the fuzzy community working on the R implementation of
other fuzzy tools and methods.

The implementation has demonstrated the usefulness of the method, and the advantages
of having fuzzy estimations for stationary probabilities. Fuzzy numbers are able to better
capture uncertainty on the output, and this is indicated by the asymmetric, wider α-cuts.
Defuzzification can better approximate the true crisp stationary probabilities. Furthermore,
the method paves the way to the computation of linguistic stationary probabilities, which are
more intuitive than crisp values and may be in turn the only type of output suitable when
the input information about the chain is given in a linguistic manner, which is inherently
uncertain.

Further work in this line may include the implementation of other fuzzy Markov chain ap-
proaches, mainly those based on fuzzy relations for the transition matrix, and establishing a
comparison in the computational effort, usefulness and meaningfulness of the results.
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Models of Decision and Optimization (MODO) Research Group
CITIC-UGR, Department of Computer Science and Artificial Intelligence
University of Granada
18071 Granada, Spain
E-mail: pjvi@decsai.ugr.es, verdegay@decsai.ugr.es
URL: http://decsai.ugr.es/~pjvi, http://decsai.ugr.es/~verdegay,
http://modo.ugr.es

http://cran.r-project.org/web/packages/MultinomialCI/MultinomialCI.pdf
http://cran.r-project.org/web/packages/MultinomialCI/MultinomialCI.pdf
mailto:pjvi@decsai.ugr.es
mailto:verdegay@decsai.ugr.es
http://decsai.ugr.es/~pjvi
http://decsai.ugr.es/~verdegay
http://modo.ugr.es

	Intro
	background
	Fuzzy numbers
	Construction of fuzzy transition probabilities from observations
	Fuzzy Markov chains and restricted matrix multiplication
	User-specified fuzzy transition probabilities
	Computation of fuzzy stationary probabilities

	impl
	dependencies

	The package in use
	Departing from a sequence of observations
	Departing from user-specified fuzzy transition probabilities

	Conclusions and further work

