## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(DataMetProcess) ## ----------------------------------------------------------------------------- file.down <- tempfile() info.inmet <- DataMetProcess::list_inmet( year="2000", filename = file.down ) head(info.inmet) ## ----eval=FALSE--------------------------------------------------------------- # # file.save <- tempfile() # # unzip.file <- # utils::unzip( # zipfile = file.down, #or info.inmet$Saved # exdir = file.save # ) # # #specific file # unzip.file <- # utils::unzip( # zipfile = file.down, #or info.inmet$Saved # files = info.inmet$Adresses[2,], # exdir = file.save # ) ## ----------------------------------------------------------------------------- address <- base::system.file("extdata", "ex1_inmet.CSV", package = "DataMetProcess") df <- read.table( address, h=TRUE, sep = ";", dec = ",", skip = 8, na.strings = -9999, check.names = FALSE ) #see ?read.table for more details... #Converting to R standard (when necessary) df$Data = as.Date(df$Data,format = "%d/%m/%Y") head(df[1:3]) #We are only viewing a part of it. df <- adjustDate(df, colnames(df)[1], colnames(df)[2], fuso = "America/Bahia") #date and time are now in a single column head(df[1:2]) #We are only viewing a part of it. ## ----------------------------------------------------------------------------- df.new <- df df.new$Date_Hour <- as.Date(df$Date_Hour) ## ----------------------------------------------------------------------------- df.daily <- calculateDMY( data = df.new, col_date = colnames(df)[c(1)], col_sum = colnames(df)[c(2,6)], #simplest way to pass column names as string col_mean = colnames(df)[-c(1,2,6)], #remove the previous steps in the parameter above type = "Daily" ) head(df.daily[1:2]) #We are only viewing a part of it. ## ----------------------------------------------------------------------------- df.monthly <- calculateDMY( data = df.daily, col_date = colnames(df.daily)[c(1)], col_sum = colnames(df.daily)[c(2)], col_mean = colnames(df.daily)[-c(1,2)], type = "Monthly" ) head(df.monthly[1:2]) #We are only viewing a part of it. ## ----------------------------------------------------------------------------- df.yearly <- calculateDMY( data = df.monthly, col_date = colnames(df.monthly)[c(1)], col_sum = colnames(df.monthly)[c(2)], col_mean = colnames(df.monthly)[-c(1,2)], type = "Yearly" ) head(df.yearly[1:2]) #We are only viewing a part of it. ## ----------------------------------------------------------------------------- address <- base::system.file("extdata", "ex2_daily.CSV", package = "DataMetProcess") df <- read.table( address, h = TRUE, sep = ";" ) #converting to Mj/m df$radiacao_global_kj_m <- df$radiacao_global_kj_m/1000 colnames(df)[3] <- "radiacao_global_mj_m" df.Eto <- calculateETrefPM( data = df, lat = -21.980353, alt = 859.29, za = 10, DAP = 1, date = colnames(df)[1], Ta = colnames(df)[7], G = NULL, RH = colnames(df)[15], Rg = colnames(df)[3], AP = colnames(df)[4], WS = colnames(df)[18], Kc = NULL ) head(df.Eto)