/* $NetBSD: route.c,v 1.235.2.2 2023/06/08 11:15:26 martin Exp $ */ /*- * Copyright (c) 1998, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Kevin M. Lahey of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1980, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.c 8.3 (Berkeley) 1/9/95 */ #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_route.h" #include "opt_net_mpsafe.h" #endif #include __KERNEL_RCSID(0, "$NetBSD: route.c,v 1.235.2.2 2023/06/08 11:15:26 martin Exp $"); #include #ifdef RTFLUSH_DEBUG #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #endif #include #include #define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK) #ifdef RTFLUSH_DEBUG #define rtcache_debug() __predict_false(_rtcache_debug) #else /* RTFLUSH_DEBUG */ #define rtcache_debug() 0 #endif /* RTFLUSH_DEBUG */ #ifdef RT_DEBUG #define RT_REFCNT_TRACE(rt) printf("%s:%d: rt=%p refcnt=%d\n", \ __func__, __LINE__, (rt), (rt)->rt_refcnt) #else #define RT_REFCNT_TRACE(rt) do {} while (0) #endif #ifdef RT_DEBUG #define dlog(level, fmt, args...) log(level, fmt, ##args) #else #define dlog(level, fmt, args...) do {} while (0) #endif struct rtstat rtstat; static int rttrash; /* routes not in table but not freed */ static struct pool rtentry_pool; static struct pool rttimer_pool; static struct callout rt_timer_ch; /* callout for rt_timer_timer() */ static struct workqueue *rt_timer_wq; static struct work rt_timer_wk; static void rt_timer_init(void); static void rt_timer_queue_remove_all(struct rttimer_queue *); static void rt_timer_remove_all(struct rtentry *); static void rt_timer_timer(void *); /* * Locking notes: * - The routing table is protected by a global rwlock * - API: RT_RLOCK and friends * - rtcaches are NOT protected by the framework * - Callers must guarantee a rtcache isn't accessed simultaneously * - How the constraint is guaranteed in the wild * - Protect a rtcache by a mutex (e.g., inp_route) * - Make rtcache per-CPU and allow only accesses from softint * (e.g., ipforward_rt_percpu) * - References to a rtentry is managed by reference counting and psref * - Reference counting is used for temporal reference when a rtentry * is fetched from the routing table * - psref is used for temporal reference when a rtentry is fetched * from a rtcache * - struct route (rtcache) has struct psref, so we cannot obtain * a reference twice on the same struct route * - Before destroying or updating a rtentry, we have to wait for * all references left (see below for details) * - APIs * - An obtained rtentry via rtalloc1 or rtrequest* must be * unreferenced by rt_unref * - An obtained rtentry via rtcache_* must be unreferenced by * rtcache_unref * - TODO: once we get a lockless routing table, we should use only * psref for rtentries * - rtentry destruction * - A rtentry is destroyed (freed) only when we call rtrequest(RTM_DELETE) * - If a caller of rtrequest grabs a reference of a rtentry, the caller * has a responsibility to destroy the rtentry by itself by calling * rt_free * - If not, rtrequest itself does that * - If rt_free is called in softint, the actual destruction routine is * deferred to a workqueue * - rtentry update * - When updating a rtentry, RTF_UPDATING flag is set * - If a rtentry is set RTF_UPDATING, fetching the rtentry from * the routing table or a rtcache results in either of the following * cases: * - if the caller runs in softint, the caller fails to fetch * - otherwise, the caller waits for the update completed and retries * to fetch (probably succeed to fetch for the second time) * - rtcache invalidation * - There is a global generation counter that is incremented when * any routes have been added or deleted * - When a rtcache caches a rtentry into itself, it also stores * a snapshot of the generation counter * - If the snapshot equals to the global counter, the cache is valid, * otherwise the cache is invalidated */ /* * Global lock for the routing table. */ static krwlock_t rt_lock __cacheline_aligned; #ifdef NET_MPSAFE #define RT_RLOCK() rw_enter(&rt_lock, RW_READER) #define RT_WLOCK() rw_enter(&rt_lock, RW_WRITER) #define RT_UNLOCK() rw_exit(&rt_lock) #define RT_WLOCKED() rw_write_held(&rt_lock) #define RT_ASSERT_WLOCK() KASSERT(rw_write_held(&rt_lock)) #define RT_WQ_FLAGS WQ_MPSAFE #else #define RT_RLOCK() do {} while (0) #define RT_WLOCK() do {} while (0) #define RT_UNLOCK() do {} while (0) #define RT_WLOCKED() true #define RT_ASSERT_WLOCK() do {} while (0) #define RT_WQ_FLAGS 0 #endif static uint64_t rtcache_generation; /* * mutex and cv that are used to wait for references to a rtentry left * before updating the rtentry. */ static struct { kmutex_t lock; kcondvar_t cv; bool ongoing; const struct lwp *lwp; } rt_update_global __cacheline_aligned; /* * A workqueue and stuff that are used to defer the destruction routine * of rtentries. */ static struct { struct workqueue *wq; struct work wk; kmutex_t lock; SLIST_HEAD(, rtentry) queue; bool enqueued; } rt_free_global __cacheline_aligned; /* psref for rtentry */ static struct psref_class *rt_psref_class __read_mostly; #ifdef RTFLUSH_DEBUG static int _rtcache_debug = 0; #endif /* RTFLUSH_DEBUG */ static kauth_listener_t route_listener; static int rtdeletemsg(struct rtentry *); static void rt_maskedcopy(const struct sockaddr *, struct sockaddr *, const struct sockaddr *); static void rtcache_invalidate(void); static void rt_ref(struct rtentry *); static struct rtentry * rtalloc1_locked(const struct sockaddr *, int, bool, bool); static struct ifaddr *rt_getifa(struct rt_addrinfo *, struct psref *); static struct ifnet *rt_getifp(struct rt_addrinfo *, struct psref *); static struct ifaddr *ifa_ifwithroute_psref(int, const struct sockaddr *, const struct sockaddr *, struct psref *); static void rtcache_ref(struct rtentry *, struct route *); #ifdef NET_MPSAFE static void rt_update_wait(void); #endif static bool rt_wait_ok(void); static void rt_wait_refcnt(const char *, struct rtentry *, int); static void rt_wait_psref(struct rtentry *); #ifdef DDB static void db_print_sa(const struct sockaddr *); static void db_print_ifa(struct ifaddr *); static int db_show_rtentry(struct rtentry *, void *); #endif #ifdef RTFLUSH_DEBUG static void sysctl_net_rtcache_setup(struct sysctllog **); static void sysctl_net_rtcache_setup(struct sysctllog **clog) { const struct sysctlnode *rnode; if (sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtcache", SYSCTL_DESCR("Route cache related settings"), NULL, 0, NULL, 0, CTL_NET, CTL_CREATE, CTL_EOL) != 0) return; if (sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Debug route caches"), NULL, 0, &_rtcache_debug, 0, CTL_CREATE, CTL_EOL) != 0) return; } #endif /* RTFLUSH_DEBUG */ static inline void rt_destroy(struct rtentry *rt) { if (rt->_rt_key != NULL) sockaddr_free(rt->_rt_key); if (rt->rt_gateway != NULL) sockaddr_free(rt->rt_gateway); if (rt_gettag(rt) != NULL) sockaddr_free(rt_gettag(rt)); rt->_rt_key = rt->rt_gateway = rt->rt_tag = NULL; } static inline const struct sockaddr * rt_setkey(struct rtentry *rt, const struct sockaddr *key, int flags) { if (rt->_rt_key == key) goto out; if (rt->_rt_key != NULL) sockaddr_free(rt->_rt_key); rt->_rt_key = sockaddr_dup(key, flags); out: rt->rt_nodes->rn_key = (const char *)rt->_rt_key; return rt->_rt_key; } struct ifaddr * rt_get_ifa(struct rtentry *rt) { struct ifaddr *ifa; ifa = rt->rt_ifa; if (ifa->ifa_getifa == NULL) return ifa; #if 0 else if (ifa->ifa_seqno != NULL && *ifa->ifa_seqno == rt->rt_ifa_seqno) return ifa; #endif else { ifa = (*ifa->ifa_getifa)(ifa, rt_getkey(rt)); if (ifa == NULL) return NULL; rt_replace_ifa(rt, ifa); return ifa; } } static void rt_set_ifa1(struct rtentry *rt, struct ifaddr *ifa) { rt->rt_ifa = ifa; if (ifa->ifa_seqno != NULL) rt->rt_ifa_seqno = *ifa->ifa_seqno; } /* * Is this route the connected route for the ifa? */ static int rt_ifa_connected(const struct rtentry *rt, const struct ifaddr *ifa) { const struct sockaddr *key, *dst, *odst; struct sockaddr_storage maskeddst; key = rt_getkey(rt); dst = rt->rt_flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr; if (dst == NULL || dst->sa_family != key->sa_family || dst->sa_len != key->sa_len) return 0; if ((rt->rt_flags & RTF_HOST) == 0 && ifa->ifa_netmask) { odst = dst; dst = (struct sockaddr *)&maskeddst; rt_maskedcopy(odst, (struct sockaddr *)&maskeddst, ifa->ifa_netmask); } return (memcmp(dst, key, dst->sa_len) == 0); } void rt_replace_ifa(struct rtentry *rt, struct ifaddr *ifa) { struct ifaddr *old; if (rt->rt_ifa == ifa) return; if (rt->rt_ifa != ifa && rt->rt_ifa->ifa_flags & IFA_ROUTE && rt_ifa_connected(rt, rt->rt_ifa)) { RT_DPRINTF("rt->_rt_key = %p, ifa = %p, " "replace deleted IFA_ROUTE\n", (void *)rt->_rt_key, (void *)rt->rt_ifa); rt->rt_ifa->ifa_flags &= ~IFA_ROUTE; if (rt_ifa_connected(rt, ifa)) { RT_DPRINTF("rt->_rt_key = %p, ifa = %p, " "replace added IFA_ROUTE\n", (void *)rt->_rt_key, (void *)ifa); ifa->ifa_flags |= IFA_ROUTE; } } ifaref(ifa); old = rt->rt_ifa; rt_set_ifa1(rt, ifa); ifafree(old); } static void rt_set_ifa(struct rtentry *rt, struct ifaddr *ifa) { ifaref(ifa); rt_set_ifa1(rt, ifa); } static int route_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, void *arg0, void *arg1, void *arg2, void *arg3) { struct rt_msghdr *rtm; int result; result = KAUTH_RESULT_DEFER; rtm = arg1; if (action != KAUTH_NETWORK_ROUTE) return result; if (rtm->rtm_type == RTM_GET) result = KAUTH_RESULT_ALLOW; return result; } static void rt_free_work(struct work *, void *); void rt_init(void) { int error; #ifdef RTFLUSH_DEBUG sysctl_net_rtcache_setup(NULL); #endif mutex_init(&rt_free_global.lock, MUTEX_DEFAULT, IPL_SOFTNET); SLIST_INIT(&rt_free_global.queue); rt_free_global.enqueued = false; rt_psref_class = psref_class_create("rtentry", IPL_SOFTNET); error = workqueue_create(&rt_free_global.wq, "rt_free", rt_free_work, NULL, PRI_SOFTNET, IPL_SOFTNET, RT_WQ_FLAGS); if (error) panic("%s: workqueue_create failed (%d)\n", __func__, error); mutex_init(&rt_update_global.lock, MUTEX_DEFAULT, IPL_SOFTNET); cv_init(&rt_update_global.cv, "rt_update"); pool_init(&rtentry_pool, sizeof(struct rtentry), 0, 0, 0, "rtentpl", NULL, IPL_SOFTNET); pool_init(&rttimer_pool, sizeof(struct rttimer), 0, 0, 0, "rttmrpl", NULL, IPL_SOFTNET); rn_init(); /* initialize all zeroes, all ones, mask table */ rtbl_init(); route_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, route_listener_cb, NULL); } static void rtcache_invalidate(void) { RT_ASSERT_WLOCK(); if (rtcache_debug()) printf("%s: enter\n", __func__); rtcache_generation++; } #ifdef RT_DEBUG static void dump_rt(const struct rtentry *rt) { char buf[512]; log(LOG_DEBUG, "rt: "); log(LOG_DEBUG, "p=%p ", rt); if (rt->_rt_key == NULL) { log(LOG_DEBUG, "dst=(NULL) "); } else { sockaddr_format(rt->_rt_key, buf, sizeof(buf)); log(LOG_DEBUG, "dst=%s ", buf); } if (rt->rt_gateway == NULL) { log(LOG_DEBUG, "gw=(NULL) "); } else { sockaddr_format(rt->_rt_key, buf, sizeof(buf)); log(LOG_DEBUG, "gw=%s ", buf); } log(LOG_DEBUG, "flags=%x ", rt->rt_flags); if (rt->rt_ifp == NULL) { log(LOG_DEBUG, "if=(NULL) "); } else { log(LOG_DEBUG, "if=%s ", rt->rt_ifp->if_xname); } log(LOG_DEBUG, "\n"); } #endif /* RT_DEBUG */ /* * Packet routing routines. If success, refcnt of a returned rtentry * will be incremented. The caller has to rtfree it by itself. */ struct rtentry * rtalloc1_locked(const struct sockaddr *dst, int report, bool wait_ok, bool wlock) { rtbl_t *rtbl; struct rtentry *rt; int s; #ifdef NET_MPSAFE retry: #endif s = splsoftnet(); rtbl = rt_gettable(dst->sa_family); if (rtbl == NULL) goto miss; rt = rt_matchaddr(rtbl, dst); if (rt == NULL) goto miss; if (!ISSET(rt->rt_flags, RTF_UP)) goto miss; #ifdef NET_MPSAFE if (ISSET(rt->rt_flags, RTF_UPDATING) && /* XXX updater should be always able to acquire */ curlwp != rt_update_global.lwp) { if (!wait_ok || !rt_wait_ok()) goto miss; RT_UNLOCK(); splx(s); /* We can wait until the update is complete */ rt_update_wait(); if (wlock) RT_WLOCK(); else RT_RLOCK(); goto retry; } #endif /* NET_MPSAFE */ rt_ref(rt); RT_REFCNT_TRACE(rt); splx(s); return rt; miss: rtstat.rts_unreach++; if (report) { struct rt_addrinfo info; memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = dst; rt_missmsg(RTM_MISS, &info, 0, 0); } splx(s); return NULL; } struct rtentry * rtalloc1(const struct sockaddr *dst, int report) { struct rtentry *rt; RT_RLOCK(); rt = rtalloc1_locked(dst, report, true, false); RT_UNLOCK(); return rt; } static void rt_ref(struct rtentry *rt) { KASSERTMSG(rt->rt_refcnt >= 0, "rt_refcnt=%d", rt->rt_refcnt); atomic_inc_uint(&rt->rt_refcnt); } void rt_unref(struct rtentry *rt) { KASSERT(rt != NULL); KASSERTMSG(rt->rt_refcnt > 0, "refcnt=%d", rt->rt_refcnt); atomic_dec_uint(&rt->rt_refcnt); if (!ISSET(rt->rt_flags, RTF_UP) || ISSET(rt->rt_flags, RTF_UPDATING)) { mutex_enter(&rt_free_global.lock); cv_broadcast(&rt->rt_cv); mutex_exit(&rt_free_global.lock); } } static bool rt_wait_ok(void) { /* * This originally returned !cpu_softintr_p(), but that doesn't * work: the caller may hold a lock (probably softnet lock) * that a softint is waiting for, in which case waiting here * would cause a deadlock. See https://gnats.netbsd.org/56844 * for details. For now, until the locking paths are sorted * out, we just disable the waiting option altogether and * always defer to workqueue. */ KASSERT(!cpu_intr_p()); return false; } void rt_wait_refcnt(const char *title, struct rtentry *rt, int cnt) { mutex_enter(&rt_free_global.lock); while (rt->rt_refcnt > cnt) { dlog(LOG_DEBUG, "%s: %s waiting (refcnt=%d)\n", __func__, title, rt->rt_refcnt); cv_wait(&rt->rt_cv, &rt_free_global.lock); dlog(LOG_DEBUG, "%s: %s waited (refcnt=%d)\n", __func__, title, rt->rt_refcnt); } mutex_exit(&rt_free_global.lock); } void rt_wait_psref(struct rtentry *rt) { psref_target_destroy(&rt->rt_psref, rt_psref_class); psref_target_init(&rt->rt_psref, rt_psref_class); } static void _rt_free(struct rtentry *rt) { struct ifaddr *ifa; /* * Need to avoid a deadlock on rt_wait_refcnt of update * and a conflict on psref_target_destroy of update. */ #ifdef NET_MPSAFE rt_update_wait(); #endif RT_REFCNT_TRACE(rt); KASSERTMSG(rt->rt_refcnt >= 0, "refcnt=%d", rt->rt_refcnt); rt_wait_refcnt("free", rt, 0); #ifdef NET_MPSAFE psref_target_destroy(&rt->rt_psref, rt_psref_class); #endif rt_assert_inactive(rt); rttrash--; ifa = rt->rt_ifa; rt->rt_ifa = NULL; ifafree(ifa); rt->rt_ifp = NULL; cv_destroy(&rt->rt_cv); rt_destroy(rt); pool_put(&rtentry_pool, rt); } static void rt_free_work(struct work *wk, void *arg) { for (;;) { struct rtentry *rt; mutex_enter(&rt_free_global.lock); if ((rt = SLIST_FIRST(&rt_free_global.queue)) == NULL) { rt_free_global.enqueued = false; mutex_exit(&rt_free_global.lock); return; } SLIST_REMOVE_HEAD(&rt_free_global.queue, rt_free); mutex_exit(&rt_free_global.lock); atomic_dec_uint(&rt->rt_refcnt); _rt_free(rt); } } void rt_free(struct rtentry *rt) { KASSERTMSG(rt->rt_refcnt > 0, "rt_refcnt=%d", rt->rt_refcnt); if (rt_wait_ok()) { atomic_dec_uint(&rt->rt_refcnt); _rt_free(rt); return; } mutex_enter(&rt_free_global.lock); /* No need to add a reference here. */ SLIST_INSERT_HEAD(&rt_free_global.queue, rt, rt_free); if (!rt_free_global.enqueued) { workqueue_enqueue(rt_free_global.wq, &rt_free_global.wk, NULL); rt_free_global.enqueued = true; } mutex_exit(&rt_free_global.lock); } #ifdef NET_MPSAFE static void rt_update_wait(void) { mutex_enter(&rt_update_global.lock); while (rt_update_global.ongoing) { dlog(LOG_DEBUG, "%s: waiting lwp=%p\n", __func__, curlwp); cv_wait(&rt_update_global.cv, &rt_update_global.lock); dlog(LOG_DEBUG, "%s: waited lwp=%p\n", __func__, curlwp); } mutex_exit(&rt_update_global.lock); } #endif int rt_update_prepare(struct rtentry *rt) { dlog(LOG_DEBUG, "%s: updating rt=%p lwp=%p\n", __func__, rt, curlwp); RT_WLOCK(); /* If the entry is being destroyed, don't proceed the update. */ if (!ISSET(rt->rt_flags, RTF_UP)) { RT_UNLOCK(); return ESRCH; } rt->rt_flags |= RTF_UPDATING; RT_UNLOCK(); mutex_enter(&rt_update_global.lock); while (rt_update_global.ongoing) { dlog(LOG_DEBUG, "%s: waiting ongoing updating rt=%p lwp=%p\n", __func__, rt, curlwp); cv_wait(&rt_update_global.cv, &rt_update_global.lock); dlog(LOG_DEBUG, "%s: waited ongoing updating rt=%p lwp=%p\n", __func__, rt, curlwp); } rt_update_global.ongoing = true; /* XXX need it to avoid rt_update_wait by updater itself. */ rt_update_global.lwp = curlwp; mutex_exit(&rt_update_global.lock); rt_wait_refcnt("update", rt, 1); rt_wait_psref(rt); return 0; } void rt_update_finish(struct rtentry *rt) { RT_WLOCK(); rt->rt_flags &= ~RTF_UPDATING; RT_UNLOCK(); mutex_enter(&rt_update_global.lock); rt_update_global.ongoing = false; rt_update_global.lwp = NULL; cv_broadcast(&rt_update_global.cv); mutex_exit(&rt_update_global.lock); dlog(LOG_DEBUG, "%s: updated rt=%p lwp=%p\n", __func__, rt, curlwp); } /* * Force a routing table entry to the specified * destination to go through the given gateway. * Normally called as a result of a routing redirect * message from the network layer. * * N.B.: must be called at splsoftnet */ void rtredirect(const struct sockaddr *dst, const struct sockaddr *gateway, const struct sockaddr *netmask, int flags, const struct sockaddr *src, struct rtentry **rtp) { struct rtentry *rt; int error = 0; uint64_t *stat = NULL; struct rt_addrinfo info; struct ifaddr *ifa; struct psref psref; /* verify the gateway is directly reachable */ if ((ifa = ifa_ifwithnet_psref(gateway, &psref)) == NULL) { error = ENETUNREACH; goto out; } rt = rtalloc1(dst, 0); /* * If the redirect isn't from our current router for this dst, * it's either old or wrong. If it redirects us to ourselves, * we have a routing loop, perhaps as a result of an interface * going down recently. */ if (!(flags & RTF_DONE) && rt && (sockaddr_cmp(src, rt->rt_gateway) != 0 || rt->rt_ifa != ifa)) error = EINVAL; else { int s = pserialize_read_enter(); struct ifaddr *_ifa; _ifa = ifa_ifwithaddr(gateway); if (_ifa != NULL) error = EHOSTUNREACH; pserialize_read_exit(s); } if (error) goto done; /* * Create a new entry if we just got back a wildcard entry * or the lookup failed. This is necessary for hosts * which use routing redirects generated by smart gateways * to dynamically build the routing tables. */ if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2)) goto create; /* * Don't listen to the redirect if it's * for a route to an interface. */ if (rt->rt_flags & RTF_GATEWAY) { if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) { /* * Changing from route to net => route to host. * Create new route, rather than smashing route to net. */ create: if (rt != NULL) rt_unref(rt); flags |= RTF_GATEWAY | RTF_DYNAMIC; memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; info.rti_ifa = ifa; info.rti_flags = flags; rt = NULL; error = rtrequest1(RTM_ADD, &info, &rt); if (rt != NULL) flags = rt->rt_flags; if (error == 0) rt_newmsg_dynamic(RTM_ADD, rt); stat = &rtstat.rts_dynamic; } else { /* * Smash the current notion of the gateway to * this destination. Should check about netmask!!! */ #ifdef NET_MPSAFE KASSERT(!cpu_softintr_p()); error = rt_update_prepare(rt); if (error == 0) { #endif RT_WLOCK(); error = rt_setgate(rt, gateway); if (error == 0) { rt->rt_flags |= RTF_MODIFIED; flags |= RTF_MODIFIED; } RT_UNLOCK(); #ifdef NET_MPSAFE rt_update_finish(rt); } else { /* * If error != 0, the rtentry is being * destroyed, so doing nothing doesn't * matter. */ } #endif stat = &rtstat.rts_newgateway; } } else error = EHOSTUNREACH; done: if (rt) { if (rtp != NULL && !error) *rtp = rt; else rt_unref(rt); } out: if (error) rtstat.rts_badredirect++; else if (stat != NULL) (*stat)++; memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; info.rti_info[RTAX_AUTHOR] = src; rt_missmsg(RTM_REDIRECT, &info, flags, error); ifa_release(ifa, &psref); } /* * Delete a route and generate a message. * It doesn't free a passed rt. */ static int rtdeletemsg(struct rtentry *rt) { int error; struct rt_addrinfo info; struct rtentry *retrt; /* * Request the new route so that the entry is not actually * deleted. That will allow the information being reported to * be accurate (and consistent with route_output()). */ memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = rt_getkey(rt); info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_flags = rt->rt_flags; error = rtrequest1(RTM_DELETE, &info, &retrt); rt_missmsg(RTM_DELETE, &info, info.rti_flags, error); return error; } static struct ifaddr * ifa_ifwithroute_psref(int flags, const struct sockaddr *dst, const struct sockaddr *gateway, struct psref *psref) { struct ifaddr *ifa = NULL; if ((flags & RTF_GATEWAY) == 0) { /* * If we are adding a route to an interface, * and the interface is a pt to pt link * we should search for the destination * as our clue to the interface. Otherwise * we can use the local address. */ if ((flags & RTF_HOST) && gateway->sa_family != AF_LINK) ifa = ifa_ifwithdstaddr_psref(dst, psref); if (ifa == NULL) ifa = ifa_ifwithaddr_psref(gateway, psref); } else { /* * If we are adding a route to a remote net * or host, the gateway may still be on the * other end of a pt to pt link. */ ifa = ifa_ifwithdstaddr_psref(gateway, psref); } if (ifa == NULL) ifa = ifa_ifwithnet_psref(gateway, psref); if (ifa == NULL) { int s; struct rtentry *rt; rt = rtalloc1_locked(gateway, 0, true, true); if (rt == NULL) return NULL; if (rt->rt_flags & RTF_GATEWAY) { rt_unref(rt); return NULL; } /* * Just in case. May not need to do this workaround. * Revisit when working on rtentry MP-ification. */ s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, rt->rt_ifp) { if (ifa == rt->rt_ifa) break; } if (ifa != NULL) ifa_acquire(ifa, psref); pserialize_read_exit(s); rt_unref(rt); if (ifa == NULL) return NULL; } if (ifa->ifa_addr->sa_family != dst->sa_family) { struct ifaddr *nifa; int s; s = pserialize_read_enter(); nifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); if (nifa != NULL) { ifa_release(ifa, psref); ifa_acquire(nifa, psref); ifa = nifa; } pserialize_read_exit(s); } return ifa; } /* * If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented. * The caller has to rtfree it by itself. */ int rtrequest(int req, const struct sockaddr *dst, const struct sockaddr *gateway, const struct sockaddr *netmask, int flags, struct rtentry **ret_nrt) { struct rt_addrinfo info; memset(&info, 0, sizeof(info)); info.rti_flags = flags; info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; return rtrequest1(req, &info, ret_nrt); } static struct ifnet * rt_getifp(struct rt_addrinfo *info, struct psref *psref) { const struct sockaddr *ifpaddr = info->rti_info[RTAX_IFP]; if (info->rti_ifp != NULL) return NULL; /* * ifp may be specified by sockaddr_dl when protocol address * is ambiguous */ if (ifpaddr != NULL && ifpaddr->sa_family == AF_LINK) { struct ifaddr *ifa; int s = pserialize_read_enter(); ifa = ifa_ifwithnet(ifpaddr); if (ifa != NULL) info->rti_ifp = if_get_byindex(ifa->ifa_ifp->if_index, psref); pserialize_read_exit(s); } return info->rti_ifp; } static struct ifaddr * rt_getifa(struct rt_addrinfo *info, struct psref *psref) { struct ifaddr *ifa = NULL; const struct sockaddr *dst = info->rti_info[RTAX_DST]; const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY]; const struct sockaddr *ifaaddr = info->rti_info[RTAX_IFA]; int flags = info->rti_flags; const struct sockaddr *sa; if (info->rti_ifa == NULL && ifaaddr != NULL) { ifa = ifa_ifwithaddr_psref(ifaaddr, psref); if (ifa != NULL) goto got; } sa = ifaaddr != NULL ? ifaaddr : (gateway != NULL ? gateway : dst); if (sa != NULL && info->rti_ifp != NULL) ifa = ifaof_ifpforaddr_psref(sa, info->rti_ifp, psref); else if (dst != NULL && gateway != NULL) ifa = ifa_ifwithroute_psref(flags, dst, gateway, psref); else if (sa != NULL) ifa = ifa_ifwithroute_psref(flags, sa, sa, psref); if (ifa == NULL) return NULL; got: if (ifa->ifa_getifa != NULL) { /* FIXME ifa_getifa is NOMPSAFE */ ifa = (*ifa->ifa_getifa)(ifa, dst); if (ifa == NULL) return NULL; ifa_acquire(ifa, psref); } info->rti_ifa = ifa; if (info->rti_ifp == NULL) info->rti_ifp = ifa->ifa_ifp; return ifa; } /* * If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented. * The caller has to rtfree it by itself. */ int rtrequest1(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt) { int s = splsoftnet(), ss; int error = 0, rc; struct rtentry *rt; rtbl_t *rtbl; struct ifaddr *ifa = NULL; struct sockaddr_storage maskeddst; const struct sockaddr *dst = info->rti_info[RTAX_DST]; const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY]; const struct sockaddr *netmask = info->rti_info[RTAX_NETMASK]; int flags = info->rti_flags; struct psref psref_ifp, psref_ifa; int bound = 0; struct ifnet *ifp = NULL; bool need_to_release_ifa = true; bool need_unlock = true; #define senderr(x) { error = x ; goto bad; } RT_WLOCK(); bound = curlwp_bind(); if ((rtbl = rt_gettable(dst->sa_family)) == NULL) senderr(ESRCH); if (flags & RTF_HOST) netmask = NULL; switch (req) { case RTM_DELETE: if (netmask) { rt_maskedcopy(dst, (struct sockaddr *)&maskeddst, netmask); dst = (struct sockaddr *)&maskeddst; } if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL) senderr(ESRCH); if ((rt = rt_deladdr(rtbl, dst, netmask)) == NULL) senderr(ESRCH); rt->rt_flags &= ~RTF_UP; ifa = rt->rt_ifa; if (ifa->ifa_flags & IFA_ROUTE && rt_ifa_connected(rt, ifa)) { RT_DPRINTF("rt->_rt_key = %p, ifa = %p, " "deleted IFA_ROUTE\n", (void *)rt->_rt_key, (void *)ifa); ifa->ifa_flags &= ~IFA_ROUTE; } if (ifa->ifa_rtrequest) ifa->ifa_rtrequest(RTM_DELETE, rt, info); ifa = NULL; rttrash++; if (ret_nrt) { *ret_nrt = rt; rt_ref(rt); RT_REFCNT_TRACE(rt); } rtcache_invalidate(); RT_UNLOCK(); need_unlock = false; rt_timer_remove_all(rt); #if defined(INET) || defined(INET6) if (netmask != NULL) lltable_prefix_free(dst->sa_family, dst, netmask, 0); #endif if (ret_nrt == NULL) { /* Adjust the refcount */ rt_ref(rt); RT_REFCNT_TRACE(rt); rt_free(rt); } break; case RTM_ADD: if (info->rti_ifa == NULL) { ifp = rt_getifp(info, &psref_ifp); ifa = rt_getifa(info, &psref_ifa); if (ifa == NULL) senderr(ENETUNREACH); } else { /* Caller should have a reference of ifa */ ifa = info->rti_ifa; need_to_release_ifa = false; } rt = pool_get(&rtentry_pool, PR_NOWAIT); if (rt == NULL) senderr(ENOBUFS); memset(rt, 0, sizeof(*rt)); rt->rt_flags = RTF_UP | (flags & ~RTF_DONTCHANGEIFA); LIST_INIT(&rt->rt_timer); RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); if (netmask) { rt_maskedcopy(dst, (struct sockaddr *)&maskeddst, netmask); rt_setkey(rt, (struct sockaddr *)&maskeddst, M_NOWAIT); } else { rt_setkey(rt, dst, M_NOWAIT); } RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); if (rt_getkey(rt) == NULL || rt_setgate(rt, gateway) != 0) { pool_put(&rtentry_pool, rt); senderr(ENOBUFS); } rt_set_ifa(rt, ifa); if (info->rti_info[RTAX_TAG] != NULL) { const struct sockaddr *tag; tag = rt_settag(rt, info->rti_info[RTAX_TAG]); if (tag == NULL) senderr(ENOBUFS); } RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); ss = pserialize_read_enter(); if (info->rti_info[RTAX_IFP] != NULL) { struct ifaddr *ifa2; ifa2 = ifa_ifwithnet(info->rti_info[RTAX_IFP]); if (ifa2 != NULL) rt->rt_ifp = ifa2->ifa_ifp; else rt->rt_ifp = ifa->ifa_ifp; } else rt->rt_ifp = ifa->ifa_ifp; pserialize_read_exit(ss); cv_init(&rt->rt_cv, "rtentry"); psref_target_init(&rt->rt_psref, rt_psref_class); RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); rc = rt_addaddr(rtbl, rt, netmask); RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); if (rc != 0) { ifafree(ifa); /* for rt_set_ifa above */ cv_destroy(&rt->rt_cv); rt_destroy(rt); pool_put(&rtentry_pool, rt); senderr(rc); } RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); if (ifa->ifa_rtrequest) ifa->ifa_rtrequest(req, rt, info); if (need_to_release_ifa) ifa_release(ifa, &psref_ifa); ifa = NULL; if_put(ifp, &psref_ifp); ifp = NULL; RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); if (ret_nrt) { *ret_nrt = rt; rt_ref(rt); RT_REFCNT_TRACE(rt); } rtcache_invalidate(); RT_UNLOCK(); need_unlock = false; break; case RTM_GET: if (netmask != NULL) { rt_maskedcopy(dst, (struct sockaddr *)&maskeddst, netmask); dst = (struct sockaddr *)&maskeddst; } if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL) senderr(ESRCH); if (ret_nrt != NULL) { *ret_nrt = rt; rt_ref(rt); RT_REFCNT_TRACE(rt); } break; } bad: if (need_to_release_ifa) ifa_release(ifa, &psref_ifa); if_put(ifp, &psref_ifp); curlwp_bindx(bound); if (need_unlock) RT_UNLOCK(); splx(s); return error; } int rt_setgate(struct rtentry *rt, const struct sockaddr *gate) { struct sockaddr *new, *old; KASSERT(RT_WLOCKED()); KASSERT(rt->_rt_key != NULL); RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); new = sockaddr_dup(gate, M_ZERO | M_NOWAIT); if (new == NULL) return ENOMEM; old = rt->rt_gateway; rt->rt_gateway = new; if (old != NULL) sockaddr_free(old); KASSERT(rt->_rt_key != NULL); RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); if (rt->rt_flags & RTF_GATEWAY) { struct rtentry *gwrt; gwrt = rtalloc1_locked(gate, 1, false, true); /* * If we switched gateways, grab the MTU from the new * gateway route if the current MTU, if the current MTU is * greater than the MTU of gateway. * Note that, if the MTU of gateway is 0, we will reset the * MTU of the route to run PMTUD again from scratch. XXX */ if (gwrt != NULL) { KASSERT(gwrt->_rt_key != NULL); RT_DPRINTF("gwrt->_rt_key = %p\n", gwrt->_rt_key); if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && rt->rt_rmx.rmx_mtu && rt->rt_rmx.rmx_mtu > gwrt->rt_rmx.rmx_mtu) { rt->rt_rmx.rmx_mtu = gwrt->rt_rmx.rmx_mtu; } rt_unref(gwrt); } } KASSERT(rt->_rt_key != NULL); RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key); return 0; } static struct ifaddr * rt_update_get_ifa(const struct rt_addrinfo *info, const struct rtentry *rt, struct ifnet **ifp, struct psref *psref_ifp, struct psref *psref) { struct ifaddr *ifa = NULL; *ifp = NULL; if (info->rti_info[RTAX_IFP] != NULL) { ifa = ifa_ifwithnet_psref(info->rti_info[RTAX_IFP], psref); if (ifa == NULL) goto next; if (ifa->ifa_ifp->if_flags & IFF_UNNUMBERED) { ifa_release(ifa, psref); ifa = NULL; goto next; } *ifp = ifa->ifa_ifp; if_acquire(*ifp, psref_ifp); if (info->rti_info[RTAX_IFA] == NULL && info->rti_info[RTAX_GATEWAY] == NULL) goto out; ifa_release(ifa, psref); if (info->rti_info[RTAX_IFA] == NULL) { /* route change -ifp */ ifa = ifaof_ifpforaddr_psref( info->rti_info[RTAX_GATEWAY], *ifp, psref); } else { /* route change -ifp -ifa */ ifa = ifa_ifwithaddr_psref(info->rti_info[RTAX_IFA], psref); if (ifa != NULL) goto out; ifa = ifaof_ifpforaddr_psref(info->rti_info[RTAX_IFA], *ifp, psref); } goto out; } next: if (info->rti_info[RTAX_IFA] != NULL) { /* route change -ifa */ ifa = ifa_ifwithaddr_psref(info->rti_info[RTAX_IFA], psref); if (ifa != NULL) goto out; } if (info->rti_info[RTAX_GATEWAY] != NULL) { /* route change */ ifa = ifa_ifwithroute_psref(rt->rt_flags, rt_getkey(rt), info->rti_info[RTAX_GATEWAY], psref); } out: if (ifa != NULL && *ifp == NULL) { *ifp = ifa->ifa_ifp; if_acquire(*ifp, psref_ifp); } if (ifa == NULL && *ifp != NULL) { if_put(*ifp, psref_ifp); *ifp = NULL; } return ifa; } int rt_update(struct rtentry *rt, struct rt_addrinfo *info, void *rtm) { int error = 0; struct ifnet *ifp = NULL, *new_ifp = NULL; struct ifaddr *ifa = NULL, *new_ifa; struct psref psref_ifa, psref_new_ifa, psref_ifp, psref_new_ifp; bool newgw, ifp_changed = false; RT_WLOCK(); /* * New gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ newgw = info->rti_info[RTAX_GATEWAY] != NULL && sockaddr_cmp(info->rti_info[RTAX_GATEWAY], rt->rt_gateway) != 0; if (newgw || info->rti_info[RTAX_IFP] != NULL || info->rti_info[RTAX_IFA] != NULL) { ifp = rt_getifp(info, &psref_ifp); /* info refers ifp so we need to keep a reference */ ifa = rt_getifa(info, &psref_ifa); if (ifa == NULL) { error = ENETUNREACH; goto out; } } if (newgw) { error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY]); if (error != 0) goto out; } if (info->rti_info[RTAX_TAG]) { const struct sockaddr *tag; tag = rt_settag(rt, info->rti_info[RTAX_TAG]); if (tag == NULL) { error = ENOBUFS; goto out; } } /* * New gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ new_ifa = rt_update_get_ifa(info, rt, &new_ifp, &psref_new_ifp, &psref_new_ifa); if (new_ifa != NULL) { ifa_release(ifa, &psref_ifa); ifa = new_ifa; } if (ifa) { struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa && !ifa_is_destroying(ifa) && new_ifp != NULL && !if_is_deactivated(new_ifp)) { if (oifa && oifa->ifa_rtrequest) oifa->ifa_rtrequest(RTM_DELETE, rt, info); rt_replace_ifa(rt, ifa); rt->rt_ifp = new_ifp; ifp_changed = true; } if (new_ifa == NULL) ifa_release(ifa, &psref_ifa); /* To avoid ifa_release below */ ifa = NULL; } ifa_release(new_ifa, &psref_new_ifa); if (new_ifp && rt->rt_ifp != new_ifp && !if_is_deactivated(new_ifp)) { rt->rt_ifp = new_ifp; ifp_changed = true; } rt_setmetrics(rtm, rt); if (rt->rt_flags != info->rti_flags) { rt->rt_flags = (info->rti_flags & ~PRESERVED_RTF) | (rt->rt_flags & PRESERVED_RTF); } if (rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info); #if defined(INET) || defined(INET6) if (ifp_changed && rt_mask(rt) != NULL) lltable_prefix_free(rt_getkey(rt)->sa_family, rt_getkey(rt), rt_mask(rt), 0); #else (void)ifp_changed; /* XXX gcc */ #endif out: ifa_release(ifa, &psref_ifa); if_put(new_ifp, &psref_new_ifp); if_put(ifp, &psref_ifp); RT_UNLOCK(); return error; } static void rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst, const struct sockaddr *netmask) { const char *netmaskp = &netmask->sa_data[0], *srcp = &src->sa_data[0]; char *dstp = &dst->sa_data[0]; const char *maskend = (char *)dst + MIN(netmask->sa_len, src->sa_len); const char *srcend = (char *)dst + src->sa_len; dst->sa_len = src->sa_len; dst->sa_family = src->sa_family; while (dstp < maskend) *dstp++ = *srcp++ & *netmaskp++; if (dstp < srcend) memset(dstp, 0, (size_t)(srcend - dstp)); } /* * Inform the routing socket of a route change. */ void rt_newmsg(const int cmd, const struct rtentry *rt) { struct rt_addrinfo info; memset((void *)&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = rt_getkey(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); if (rt->rt_ifp) { info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr; info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; } rt_missmsg(cmd, &info, rt->rt_flags, 0); } /* * Inform the routing socket of a route change for RTF_DYNAMIC. */ void rt_newmsg_dynamic(const int cmd, const struct rtentry *rt) { struct rt_addrinfo info; struct sockaddr *gateway = rt->rt_gateway; if (gateway == NULL) return; switch(gateway->sa_family) { #ifdef INET case AF_INET: { extern bool icmp_dynamic_rt_msg; if (!icmp_dynamic_rt_msg) return; break; } #endif #ifdef INET6 case AF_INET6: { extern bool icmp6_dynamic_rt_msg; if (!icmp6_dynamic_rt_msg) return; break; } #endif default: return; } memset((void *)&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = rt_getkey(rt); info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); if (rt->rt_ifp) { info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr; info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; } rt_missmsg(cmd, &info, rt->rt_flags, 0); } /* * Set up or tear down a routing table entry, normally * for an interface. */ int rtinit(struct ifaddr *ifa, int cmd, int flags) { struct rtentry *rt; struct sockaddr *dst, *odst; struct sockaddr_storage maskeddst; struct rtentry *nrt = NULL; int error; struct rt_addrinfo info; dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr; if (cmd == RTM_DELETE) { if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) { /* Delete subnet route for this interface */ odst = dst; dst = (struct sockaddr *)&maskeddst; rt_maskedcopy(odst, dst, ifa->ifa_netmask); } if ((rt = rtalloc1(dst, 0)) != NULL) { if (rt->rt_ifa != ifa) { rt_unref(rt); return (flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH; } rt_unref(rt); } } memset(&info, 0, sizeof(info)); info.rti_ifa = ifa; info.rti_flags = flags | ifa->ifa_flags | RTF_DONTCHANGEIFA; info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; /* * XXX here, it seems that we are assuming that ifa_netmask is NULL * for RTF_HOST. bsdi4 passes NULL explicitly (via intermediate * variable) when RTF_HOST is 1. still not sure if i can safely * change it to meet bsdi4 behavior. */ if (cmd != RTM_LLINFO_UPD) info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; error = rtrequest1((cmd == RTM_LLINFO_UPD) ? RTM_GET : cmd, &info, &nrt); if (error != 0) return error; rt = nrt; RT_REFCNT_TRACE(rt); switch (cmd) { case RTM_DELETE: rt_newmsg(cmd, rt); rt_free(rt); break; case RTM_LLINFO_UPD: if (cmd == RTM_LLINFO_UPD && ifa->ifa_rtrequest != NULL) ifa->ifa_rtrequest(RTM_LLINFO_UPD, rt, &info); rt_newmsg(RTM_CHANGE, rt); rt_unref(rt); break; case RTM_ADD: KASSERT(rt->rt_ifa == ifa); rt_newmsg(cmd, rt); rt_unref(rt); RT_REFCNT_TRACE(rt); break; } return error; } /* * Create a local route entry for the address. * Announce the addition of the address and the route to the routing socket. */ int rt_ifa_addlocal(struct ifaddr *ifa) { struct rtentry *rt; int e; /* If there is no loopback entry, allocate one. */ rt = rtalloc1(ifa->ifa_addr, 0); #ifdef RT_DEBUG if (rt != NULL) dump_rt(rt); #endif if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { struct rt_addrinfo info; struct rtentry *nrt; memset(&info, 0, sizeof(info)); info.rti_flags = RTF_HOST | RTF_LOCAL | RTF_DONTCHANGEIFA; info.rti_info[RTAX_DST] = ifa->ifa_addr; info.rti_info[RTAX_GATEWAY] = (const struct sockaddr *)ifa->ifa_ifp->if_sadl; info.rti_ifa = ifa; nrt = NULL; e = rtrequest1(RTM_ADD, &info, &nrt); rt_addrmsg_rt(RTM_ADD, ifa, e, nrt); if (nrt != NULL) { KASSERT(nrt->rt_ifa == ifa); #ifdef RT_DEBUG dump_rt(nrt); #endif rt_unref(nrt); RT_REFCNT_TRACE(nrt); } } else { e = 0; rt_addrmsg(RTM_NEWADDR, ifa); } if (rt != NULL) rt_unref(rt); return e; } /* * Remove the local route entry for the address. * Announce the removal of the address and the route to the routing socket. */ int rt_ifa_remlocal(struct ifaddr *ifa, struct ifaddr *alt_ifa) { struct rtentry *rt; int e = 0; rt = rtalloc1(ifa->ifa_addr, 0); /* * Before deleting, check if a corresponding loopbacked * host route surely exists. With this check, we can avoid * deleting an interface direct route whose destination is * the same as the address being removed. This can happen * when removing a subnet-router anycast address on an * interface attached to a shared medium. */ if (rt != NULL && (rt->rt_flags & RTF_HOST) && (rt->rt_ifp->if_flags & IFF_LOOPBACK)) { /* If we cannot replace the route's ifaddr with the equivalent * ifaddr of another interface, I believe it is safest to * delete the route. */ if (alt_ifa == NULL) { e = rtdeletemsg(rt); if (e == 0) { rt_unref(rt); rt_free(rt); rt = NULL; } rt_addrmsg(RTM_DELADDR, ifa); } else { #ifdef NET_MPSAFE int error = rt_update_prepare(rt); if (error == 0) { rt_replace_ifa(rt, alt_ifa); rt_update_finish(rt); } else { /* * If error != 0, the rtentry is being * destroyed, so doing nothing doesn't * matter. */ } #else rt_replace_ifa(rt, alt_ifa); #endif rt_newmsg(RTM_CHANGE, rt); } } else rt_addrmsg(RTM_DELADDR, ifa); if (rt != NULL) rt_unref(rt); return e; } /* * Route timer routines. These routes allow functions to be called * for various routes at any time. This is useful in supporting * path MTU discovery and redirect route deletion. * * This is similar to some BSDI internal functions, but it provides * for multiple queues for efficiency's sake... */ LIST_HEAD(, rttimer_queue) rttimer_queue_head; static int rt_init_done = 0; /* * Some subtle order problems with domain initialization mean that * we cannot count on this being run from rt_init before various * protocol initializations are done. Therefore, we make sure * that this is run when the first queue is added... */ static void rt_timer_work(struct work *, void *); static void rt_timer_init(void) { int error; assert(rt_init_done == 0); /* XXX should be in rt_init */ rw_init(&rt_lock); LIST_INIT(&rttimer_queue_head); callout_init(&rt_timer_ch, CALLOUT_MPSAFE); error = workqueue_create(&rt_timer_wq, "rt_timer", rt_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, RT_WQ_FLAGS); if (error) panic("%s: workqueue_create failed (%d)\n", __func__, error); callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL); rt_init_done = 1; } struct rttimer_queue * rt_timer_queue_create(u_int timeout) { struct rttimer_queue *rtq; if (rt_init_done == 0) rt_timer_init(); R_Malloc(rtq, struct rttimer_queue *, sizeof *rtq); if (rtq == NULL) return NULL; memset(rtq, 0, sizeof(*rtq)); rtq->rtq_timeout = timeout; TAILQ_INIT(&rtq->rtq_head); RT_WLOCK(); LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link); RT_UNLOCK(); return rtq; } void rt_timer_queue_change(struct rttimer_queue *rtq, long timeout) { rtq->rtq_timeout = timeout; } static void rt_timer_queue_remove_all(struct rttimer_queue *rtq) { struct rttimer *r; RT_ASSERT_WLOCK(); while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) { LIST_REMOVE(r, rtt_link); TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); rt_ref(r->rtt_rt); /* XXX */ RT_REFCNT_TRACE(r->rtt_rt); RT_UNLOCK(); (*r->rtt_func)(r->rtt_rt, r); pool_put(&rttimer_pool, r); RT_WLOCK(); if (rtq->rtq_count > 0) rtq->rtq_count--; else printf("rt_timer_queue_remove_all: " "rtq_count reached 0\n"); } } void rt_timer_queue_destroy(struct rttimer_queue *rtq) { RT_WLOCK(); rt_timer_queue_remove_all(rtq); LIST_REMOVE(rtq, rtq_link); RT_UNLOCK(); /* * Caller is responsible for freeing the rttimer_queue structure. */ } unsigned long rt_timer_count(struct rttimer_queue *rtq) { return rtq->rtq_count; } static void rt_timer_remove_all(struct rtentry *rt) { struct rttimer *r; RT_WLOCK(); while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) { LIST_REMOVE(r, rtt_link); TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); if (r->rtt_queue->rtq_count > 0) r->rtt_queue->rtq_count--; else printf("rt_timer_remove_all: rtq_count reached 0\n"); pool_put(&rttimer_pool, r); } RT_UNLOCK(); } int rt_timer_add(struct rtentry *rt, void (*func)(struct rtentry *, struct rttimer *), struct rttimer_queue *queue) { struct rttimer *r; KASSERT(func != NULL); RT_WLOCK(); /* * If there's already a timer with this action, destroy it before * we add a new one. */ LIST_FOREACH(r, &rt->rt_timer, rtt_link) { if (r->rtt_func == func) break; } if (r != NULL) { LIST_REMOVE(r, rtt_link); TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); if (r->rtt_queue->rtq_count > 0) r->rtt_queue->rtq_count--; else printf("rt_timer_add: rtq_count reached 0\n"); } else { r = pool_get(&rttimer_pool, PR_NOWAIT); if (r == NULL) { RT_UNLOCK(); return ENOBUFS; } } memset(r, 0, sizeof(*r)); r->rtt_rt = rt; r->rtt_time = time_uptime; r->rtt_func = func; r->rtt_queue = queue; LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link); TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next); r->rtt_queue->rtq_count++; RT_UNLOCK(); return 0; } static void rt_timer_work(struct work *wk, void *arg) { struct rttimer_queue *rtq; struct rttimer *r; RT_WLOCK(); LIST_FOREACH(rtq, &rttimer_queue_head, rtq_link) { while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL && (r->rtt_time + rtq->rtq_timeout) < time_uptime) { LIST_REMOVE(r, rtt_link); TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); /* * Take a reference to avoid the rtentry is freed * accidentally after RT_UNLOCK. The callback * (rtt_func) must rt_unref it by itself. */ rt_ref(r->rtt_rt); RT_REFCNT_TRACE(r->rtt_rt); RT_UNLOCK(); (*r->rtt_func)(r->rtt_rt, r); pool_put(&rttimer_pool, r); RT_WLOCK(); if (rtq->rtq_count > 0) rtq->rtq_count--; else printf("rt_timer_timer: rtq_count reached 0\n"); } } RT_UNLOCK(); callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL); } static void rt_timer_timer(void *arg) { workqueue_enqueue(rt_timer_wq, &rt_timer_wk, NULL); } static struct rtentry * _rtcache_init(struct route *ro, int flag) { struct rtentry *rt; rtcache_invariants(ro); KASSERT(ro->_ro_rt == NULL); if (rtcache_getdst(ro) == NULL) return NULL; rt = rtalloc1(rtcache_getdst(ro), flag); if (rt != NULL) { RT_RLOCK(); if (ISSET(rt->rt_flags, RTF_UP)) { ro->_ro_rt = rt; ro->ro_rtcache_generation = rtcache_generation; rtcache_ref(rt, ro); } RT_UNLOCK(); rt_unref(rt); } rtcache_invariants(ro); return ro->_ro_rt; } struct rtentry * rtcache_init(struct route *ro) { return _rtcache_init(ro, 1); } struct rtentry * rtcache_init_noclone(struct route *ro) { return _rtcache_init(ro, 0); } struct rtentry * rtcache_update(struct route *ro, int clone) { ro->_ro_rt = NULL; return _rtcache_init(ro, clone); } void rtcache_copy(struct route *new_ro, struct route *old_ro) { struct rtentry *rt; int ret; KASSERT(new_ro != old_ro); rtcache_invariants(new_ro); rtcache_invariants(old_ro); rt = rtcache_validate(old_ro); if (rtcache_getdst(old_ro) == NULL) goto out; ret = rtcache_setdst(new_ro, rtcache_getdst(old_ro)); if (ret != 0) goto out; RT_RLOCK(); new_ro->_ro_rt = rt; new_ro->ro_rtcache_generation = rtcache_generation; RT_UNLOCK(); rtcache_invariants(new_ro); out: rtcache_unref(rt, old_ro); return; } #if defined(RT_DEBUG) && defined(NET_MPSAFE) static void rtcache_trace(const char *func, struct rtentry *rt, struct route *ro) { char dst[64]; sockaddr_format(ro->ro_sa, dst, 64); printf("trace: %s:\tdst=%s cpu=%d lwp=%p psref=%p target=%p\n", func, dst, cpu_index(curcpu()), curlwp, &ro->ro_psref, &rt->rt_psref); } #define RTCACHE_PSREF_TRACE(rt, ro) rtcache_trace(__func__, (rt), (ro)) #else #define RTCACHE_PSREF_TRACE(rt, ro) do {} while (0) #endif static void rtcache_ref(struct rtentry *rt, struct route *ro) { KASSERT(rt != NULL); #ifdef NET_MPSAFE RTCACHE_PSREF_TRACE(rt, ro); ro->ro_bound = curlwp_bind(); /* XXX Use a real caller's address */ PSREF_DEBUG_FILL_RETURN_ADDRESS(&ro->ro_psref); psref_acquire(&ro->ro_psref, &rt->rt_psref, rt_psref_class); #endif } void rtcache_unref(struct rtentry *rt, struct route *ro) { if (rt == NULL) return; #ifdef NET_MPSAFE psref_release(&ro->ro_psref, &rt->rt_psref, rt_psref_class); curlwp_bindx(ro->ro_bound); RTCACHE_PSREF_TRACE(rt, ro); #endif } struct rtentry * rtcache_validate(struct route *ro) { struct rtentry *rt = NULL; #ifdef NET_MPSAFE retry: #endif rtcache_invariants(ro); RT_RLOCK(); if (ro->ro_rtcache_generation != rtcache_generation) { /* The cache is invalidated */ rt = NULL; goto out; } rt = ro->_ro_rt; if (rt == NULL) goto out; if ((rt->rt_flags & RTF_UP) == 0) { rt = NULL; goto out; } #ifdef NET_MPSAFE if (ISSET(rt->rt_flags, RTF_UPDATING)) { if (rt_wait_ok()) { RT_UNLOCK(); /* We can wait until the update is complete */ rt_update_wait(); goto retry; } else { rt = NULL; } } else #endif rtcache_ref(rt, ro); out: RT_UNLOCK(); return rt; } struct rtentry * rtcache_lookup2(struct route *ro, const struct sockaddr *dst, int clone, int *hitp) { const struct sockaddr *odst; struct rtentry *rt = NULL; odst = rtcache_getdst(ro); if (odst == NULL) goto miss; if (sockaddr_cmp(odst, dst) != 0) { rtcache_free(ro); goto miss; } rt = rtcache_validate(ro); if (rt == NULL) { ro->_ro_rt = NULL; goto miss; } rtcache_invariants(ro); if (hitp != NULL) *hitp = 1; return rt; miss: if (hitp != NULL) *hitp = 0; if (rtcache_setdst(ro, dst) == 0) rt = _rtcache_init(ro, clone); rtcache_invariants(ro); return rt; } void rtcache_free(struct route *ro) { ro->_ro_rt = NULL; if (ro->ro_sa != NULL) { sockaddr_free(ro->ro_sa); ro->ro_sa = NULL; } rtcache_invariants(ro); } int rtcache_setdst(struct route *ro, const struct sockaddr *sa) { KASSERT(sa != NULL); rtcache_invariants(ro); if (ro->ro_sa != NULL) { if (ro->ro_sa->sa_family == sa->sa_family) { ro->_ro_rt = NULL; sockaddr_copy(ro->ro_sa, ro->ro_sa->sa_len, sa); rtcache_invariants(ro); return 0; } /* free ro_sa, wrong family */ rtcache_free(ro); } KASSERT(ro->_ro_rt == NULL); if ((ro->ro_sa = sockaddr_dup(sa, M_ZERO | M_NOWAIT)) == NULL) { rtcache_invariants(ro); return ENOMEM; } rtcache_invariants(ro); return 0; } static void rtcache_percpu_init_cpu(void *p, void *arg __unused, struct cpu_info *ci __unused) { struct route **rop = p; /* * We can't have struct route as percpu data because it can be destroyed * over a memory enlargement processing of percpu. */ *rop = kmem_zalloc(sizeof(**rop), KM_SLEEP); } percpu_t * rtcache_percpu_alloc(void) { return percpu_create(sizeof(struct route *), rtcache_percpu_init_cpu, NULL, NULL); } const struct sockaddr * rt_settag(struct rtentry *rt, const struct sockaddr *tag) { if (rt->rt_tag != tag) { if (rt->rt_tag != NULL) sockaddr_free(rt->rt_tag); rt->rt_tag = sockaddr_dup(tag, M_ZERO | M_NOWAIT); } return rt->rt_tag; } struct sockaddr * rt_gettag(const struct rtentry *rt) { return rt->rt_tag; } int rt_check_reject_route(const struct rtentry *rt, const struct ifnet *ifp) { if ((rt->rt_flags & RTF_REJECT) != 0) { /* Mimic looutput */ if (ifp->if_flags & IFF_LOOPBACK) return (rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH; else if (rt->rt_rmx.rmx_expire == 0 || time_uptime < rt->rt_rmx.rmx_expire) return (rt->rt_flags & RTF_GATEWAY) ? EHOSTUNREACH : EHOSTDOWN; } return 0; } void rt_delete_matched_entries(sa_family_t family, int (*f)(struct rtentry *, void *), void *v, bool notify) { for (;;) { int s; int error; struct rtentry *rt, *retrt = NULL; RT_RLOCK(); s = splsoftnet(); rt = rtbl_search_matched_entry(family, f, v); if (rt == NULL) { splx(s); RT_UNLOCK(); return; } rt_ref(rt); RT_REFCNT_TRACE(rt); splx(s); RT_UNLOCK(); error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, &retrt); if (error == 0) { KASSERT(retrt == rt); KASSERT((retrt->rt_flags & RTF_UP) == 0); if (notify) rt_newmsg(RTM_DELETE, retrt); retrt->rt_ifp = NULL; rt_unref(rt); RT_REFCNT_TRACE(rt); rt_free(retrt); } else if (error == ESRCH) { /* Someone deleted the entry already. */ rt_unref(rt); RT_REFCNT_TRACE(rt); } else { log(LOG_ERR, "%s: unable to delete rtentry @ %p, " "error = %d\n", rt->rt_ifp->if_xname, rt, error); /* XXX how to treat this case? */ } } } static int rt_walktree_locked(sa_family_t family, int (*f)(struct rtentry *, void *), void *v) { return rtbl_walktree(family, f, v); } void rt_replace_ifa_matched_entries(sa_family_t family, int (*f)(struct rtentry *, void *), void *v, struct ifaddr *ifa) { for (;;) { int s; #ifdef NET_MPSAFE int error; #endif struct rtentry *rt; RT_RLOCK(); s = splsoftnet(); rt = rtbl_search_matched_entry(family, f, v); if (rt == NULL) { splx(s); RT_UNLOCK(); return; } rt_ref(rt); RT_REFCNT_TRACE(rt); splx(s); RT_UNLOCK(); #ifdef NET_MPSAFE error = rt_update_prepare(rt); if (error == 0) { rt_replace_ifa(rt, ifa); rt_update_finish(rt); rt_newmsg(RTM_CHANGE, rt); } else { /* * If error != 0, the rtentry is being * destroyed, so doing nothing doesn't * matter. */ } #else rt_replace_ifa(rt, ifa); rt_newmsg(RTM_CHANGE, rt); #endif rt_unref(rt); RT_REFCNT_TRACE(rt); } } int rt_walktree(sa_family_t family, int (*f)(struct rtentry *, void *), void *v) { int error; RT_RLOCK(); error = rt_walktree_locked(family, f, v); RT_UNLOCK(); return error; } #ifdef DDB #include #include #include #define rt_expire rt_rmx.rmx_expire static void db_print_sa(const struct sockaddr *sa) { int len; const u_char *p; if (sa == NULL) { db_printf("[NULL]"); return; } p = (const u_char *)sa; len = sa->sa_len; db_printf("["); while (len > 0) { db_printf("%d", *p); p++; len--; if (len) db_printf(","); } db_printf("]\n"); } static void db_print_ifa(struct ifaddr *ifa) { if (ifa == NULL) return; db_printf(" ifa_addr="); db_print_sa(ifa->ifa_addr); db_printf(" ifa_dsta="); db_print_sa(ifa->ifa_dstaddr); db_printf(" ifa_mask="); db_print_sa(ifa->ifa_netmask); db_printf(" flags=0x%x,refcnt=%d,metric=%d\n", ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric); } /* * Function to pass to rt_walktree(). * Return non-zero error to abort walk. */ static int db_show_rtentry(struct rtentry *rt, void *w) { db_printf("rtentry=%p", rt); db_printf(" flags=0x%x refcnt=%d use=%"PRId64" expire=%"PRId64"\n", rt->rt_flags, rt->rt_refcnt, rt->rt_use, (uint64_t)rt->rt_expire); db_printf(" key="); db_print_sa(rt_getkey(rt)); db_printf(" mask="); db_print_sa(rt_mask(rt)); db_printf(" gw="); db_print_sa(rt->rt_gateway); db_printf(" ifp=%p ", rt->rt_ifp); if (rt->rt_ifp) db_printf("(%s)", rt->rt_ifp->if_xname); else db_printf("(NULL)"); db_printf(" ifa=%p\n", rt->rt_ifa); db_print_ifa(rt->rt_ifa); db_printf(" gwroute=%p llinfo=%p\n", rt->rt_gwroute, rt->rt_llinfo); return 0; } /* * Function to print all the route trees. * Use this from ddb: "show routes" */ void db_show_routes(db_expr_t addr, bool have_addr, db_expr_t count, const char *modif) { /* Taking RT_LOCK will fail if LOCKDEBUG is enabled. */ rt_walktree_locked(AF_INET, db_show_rtentry, NULL); } #endif