The Z Shell Manual

Version 5.0.2
Updated December 21, 2012

Original documentation by Paul Falstad

This is a texinfo version of the documentation for the Z Shell, originally by Paul Falstad.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Chapter 2: Introduction 1

1 The Z Shell Manual

This document has been produced from the texinfo file zsh.texi, included in the Doc sub-
directory of the Zsh distribution.

1.1 Producing documentation from zsh.texi
The texinfo source may be converted into several formats:

The Info manual
The Info format allows searching for topics, commands, functions, etc. from the
many Indices. The command ‘makeinfo zsh.texi’ is used to produce the Info
documentation.

The printed manual
The command ‘texi2dvi zsh.texi’ will output zsh.dvi which can then be pro-
cessed with dvips and optionally gs (Ghostscript) to produce a nicely formatted
printed manual.

The HTML manual
An HTML version of this manual is available at the Zsh web site via:

http://zsh.sourceforge.net/Doc/.

(The HTML version is produced with texi2html, which may be obtained from
http://www.nongnu.org/texi2html/. The command is ‘texi2html --output .
—--ifinfo --split=chapter --node-files zsh.texi’. If necessary, upgrade to
version 1.78 of texi2html.)

For those who do not have the necessary tools to process texinfo, precompiled documentation
(PostScript, dvi, info and HTML formats) is available from the zsh archive site or its mirrors,
in the file zsh-doc.tar.gz. (See Section 2.2 [Availability], page 1 for a list of sites.)

2 Introduction

Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a shell
script command processor. Of the standard shells, zsh most closely resembles ksh but includes
many enhancements. Zsh has command line editing, builtin spelling correction, programmable
command completion, shell functions (with autoloading), a history mechanism, and a host of
other features.

2.1 Author

Zsh was originally written by Paul Falstad <pf@zsh.org>. Zsh is now maintained by the
members of the zsh-workers mailing list <zsh-workers@zsh.org>. The development is cur-
rently coordinated by Peter Stephenson <pws@zsh.org>. The coordinator can be contacted at
<coordinator@zsh.org>, but matters relating to the code should generally go to the mailing
list.

2.2 Availability

Zsh is available from the following anonymous F'TP sites. These mirror sites are kept frequently
up to date. The sites marked with (H) may be mirroring ftp.cs.elte.hu instead of the primary
site.

Chapter 2: Introduction 2

Primary site
ftp://ftp.zsh.org/pub/
http://www.zsh.org/pub/

Australia ftp://ftp.zsh.org/pub/
http://wuw.zsh.org/pub/
http://mirror.dejanseo.com.au/pub/zsh/

Hungary ftp://ftp.cs.elte.hu/pub/zsh/
http://www.cs.elte.hu/pub/zsh/

The up-to-date source code is available via anonymous CVS and Git from Sourceforge. See
http://sourceforge.net/projects/zsh/ for details. A summary of instructions for the CVS
and Git archives can be found at http://zsh.sourceforget.net/.

2.3 Mailing Lists
Zsh has 3 mailing lists:

<zsh-announce@zsh.org>
Announcements about releases, major changes in the shell and the monthly posting
of the Zsh FAQ. (moderated)

<zsh-users@zsh.org>
User discussions.

<zsh-workers@zsh.org>
Hacking, development, bug reports and patches.

To subscribe or unsubscribe, send mail to the associated administrative address for the mailing
list.

<zsh-announce-subscribe@zsh.org>
<zsh-users—-subscribe@zsh.org>
<zsh-workers-subscribe@zsh.org>

<zsh-announce-unsubscribe@zsh.org>
<zsh-users-unsubscribe@zsh.org>
<zsh-workers-unsubscribe@zsh.org>

YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED.
All submissions to zsh-announce are automatically forwarded to zsh-users. All submissions to
zsh-users are automatically forwarded to zsh-workers.

If you have problems subscribing/unsubscribing to any of the mailing lists, send mail
to <listmaster@zsh.org>. The mailing lists are maintained by Karsten Thygesen
<karthy@kom.auc.dk>.

The mailing lists are archived; the archives can be accessed via the administrative addresses
listed above. There is also a hypertext archive, maintained by Geoff Wing <gcw@zsh.org>,
available at http://www.zsh.org/mla/.

2.4 The Zsh FAQ

Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson
<pws@zsh.org>. It is regularly posted to the newsgroup comp.unix.shell and the
zsh-announce mailing list. The latest version can be found at any of the Zsh FTP
sites, or at http://www.zsh.org/FAQ/. The contact address for FAQ-related matters is
<fagmaster@zsh.org>.

Chapter 3: Roadmap 3

2.5 The Zsh Web Page

Zsh has a web page which is located at http://www.zsh.org/. This is maintained by Karsten
Thygesen <karthy@zsh.org>, of SunSITE Denmark. The contact address for web-related mat-
ters is <webmaster@zsh.org>.

2.6 The Zsh Userguide

A userguide is currently in preparation. It is intended to complement the manual, with expla-
nations and hints on issues where the manual can be cabbalistic, hierographic, or downright
mystifying (for example, the word ‘hierographic’ does not exist). It can be viewed in its current
state at http://zsh.sourceforge.net/Guide/. At the time of writing, chapters dealing with
startup files and their contents and the new completion system were essentially complete.

2.7 The Zsh Wiki

A ‘wiki” website for zsh has been created at http://www.zshwiki.org/. This is a site which
can be added to and modified directly by users without any special permission. You can add
your own zsh tips and configurations.

2.8 See Also

man page sh(1), man page csh(1), man page tcsh(1), man page rc(1), man page bash(1), man
page ksh(1)

IEEE Standard for information Technology - Portable Operating System Interface (POSIX) -
Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN 1-55937-255-9.

3 Roadmap

The Zsh Manual, like the shell itself, is large and often complicated. This section of the manual
provides some pointers to areas of the shell that are likely to be of particular interest to new
users, and indicates where in the rest of the manual the documentation is to be found.

3.1 When the shell starts

When it starts, the shell reads commands from various files. These can be created or edited to
customize the shell. See Chapter 5 [Files], page 8.

If no personal initialization files exist for the current user, a function is run to help you
change some of the most common settings. It won’t appear if your administrator has dis-
abled the zsh/newuser module. The function is designed to be self-explanatory. You can run
it by hand with ‘autoload -Uz zsh-newuser-install; zsh-newuser-install -f’. See also
Section 26.10 [User Configuration Functions], page 376.

3.2 Interactive Use

Interaction with the shell uses the builtin Zsh Line Editor, ZLE. This is described in detail in
Chapter 18 [Zsh Line Editor], page 138.

The first decision a user must make is whether to use the Emacs or Vi editing mode as the
keys for editing are substantially different. Emacs editing mode is probably more natural for
beginners and can be selected explicitly with the command bindkey -e.

A history mechanism for retrieving previously typed lines (most simply with the Up or Down
arrow keys) is available; note that, unlike other shells, zsh will not save these lines when the shell

Chapter 3: Roadmap 4

exits unless you set appropriate variables, and the number of history lines retained by default is
quite small (30 lines). See the description of the shell variables (referred to in the documentation
as parameters) HISTFILE, HISTSIZE and SAVEHIST in Section 15.6 [Parameters Used By The
Shell], page 77.

The shell now supports the UTF-8 character set (and also others if supported by the oper-
ating system). This is (mostly) handled transparently by the shell, but the degree of sup-
port in terminal emulators is variable. There is some discussion of this in the shell FAQ),
http://zsh.dotsrc.org/FAQ/ . Note in particular that for combining characters to be handled
the option COMBINING_CHARS needs to be set. Because the shell is now more sensitive to the
definition of the character set, note that if you are upgrading from an older version of the shell
you should ensure that the appropriate variable, either LANG (to affect all aspects of the shell’s
operation) or LC_CTYPE (to affect only the handling of character sets) is set to an appropriate
value. This is true even if you are using a single-byte character set including extensions of
ASCII such as IS0-8859-1 or IS0-8859-15. See the description of LC_CTYPE in Chapter 15
[Parameters], page 67.

3.2.1 Completion

Completion is a feature present in many shells. It allows the user to type only a part (usually
the prefix) of a word and have the shell fill in the rest. The completion system in zsh is
programmable. For example, the shell can be set to complete email addresses in arguments to
the mail command from your ~/.abook/addressbook; usernames, hostnames, and even remote
paths in arguments to scp, and so on. Anything that can be written in or glued together with
zsh can be the source of what the line editor offers as possible completions.

Zsh has two completion systems, an old, so called compctl completion (named after the builtin
command that serves as its complete and only user interface), and a new one, referred to as
compsys, organized as library of builtin and user-defined functions. The two systems differ in
their interface for specifying the completion behavior. The new system is more customizable and
is supplied with completions for many commonly used commands; it is therefore to be preferred.

The completion system must be enabled explicitly when the shell starts. For more information
see Chapter 20 [Completion System], page 184.

3.2.2 Extending the line editor

Apart from completion, the line editor is highly extensible by means of shell functions. Some
useful functions are provided with the shell; they provide facilities such as:

insert-composed-char
composing characters not found on the keyboard

match-words-by-style
configuring what the line editor considers a word when moving or deleting by word

history-beginning-search-backward-end, etc.
alternative ways of searching the shell history

replace-string, replace-pattern
functions for replacing strings or patterns globally in the command line

edit-command-line
edit the command line with an external editor.

See Section 26.6 [ZLE Functions], page 353 for descriptions of these.

Chapter 3: Roadmap 5

3.3 Options

The shell has a large number of options for changing its behaviour. These cover all aspects of
the shell; browsing the full documentation is the only good way to become acquainted with the
many possibilities. See Chapter 16 [Options|, page 85.

3.4 Pattern Matching

The shell has a rich set of patterns which are available for file matching (described in the
documentation as ‘filename generation’ and also known for historical reasons as ‘globbing’) and
for use when programming. These are described in Section 14.8 [Filename Generation], page 57.

Of particular interest are the following patterns that are not commonly supported by other
systems of pattern matching:

*x for matching over multiple directories

S the ability to exclude patterns from matching when the EXTENDED_GLOB option is
set

.. glob qualifiers, included in parentheses at the end of the pattern, which select files
by type (such as directories) or attribute (such as size).

3.5 General Comments on Syntax

Although the syntax of zsh is in ways similar to the Korn shell, and therefore more remotely to
the original UNIX shell, the Bourne shell, its default behaviour does not entirely correspond to
those shells. General shell syntax is introduced in Chapter 6 [Shell Grammar]|, page 9.

One commonly encountered difference is that variables substituted onto the command line are
not split into words. See the description of the shell option SH_WORD_SPLIT in Section 14.3
[Parameter Expansion|, page 42. In zsh, you can either explicitly request the splitting (e.g.
${=foo}) or use an array when you want a variable to expand to more than one word. See
Section 15.2 [Array Parameters|, page 68.

3.6 Programming

The most convenient way of adding enhancements to the shell is typically by writing a shell
function and arranging for it to be autoloaded. Functions are described in Chapter 9 [Functions],
page 20. Users changing from the C shell and its relatives should notice that aliases are less
used in zsh as they don’t perform argument substitution, only simple text replacement.

A few general functions, other than those for the line editor described above, are provided with
the shell and are described in Chapter 26 [User Contributions], page 330. Features include:

promptinit
a prompt theme system for changing prompts easily, see Section 26.5 [Prompt
Themes]|, page 352

zsh-mime-setup
a MIME-handling system which dispatches commands according to the suffix of a
file as done by graphical file managers

zcalc a calculator
zargs a version of xargs that makes the find command redundant

zZmv a command for renaming files by means of shell patterns.

Chapter 4: Invocation 6

4 Invocation

4.1 Invocation

The following flags are interpreted by the shell when invoked to determine where the shell will
read commands from:

-c Take the first argument as a command to execute, rather than reading commands
from a script or standard input. If any further arguments are given, the first one is
assigned to $0, rather than being used as a positional parameter.

-i Force shell to be interactive. It is still possible to specify a script to execute.

-s Force shell to read commands from the standard input. If the —s flag is not present
and an argument is given, the first argument is taken to be the pathname of a script
to execute.

If there are any remaining arguments after option processing, and neither of the options -c or -s
was supplied, the first argument is taken as the file name of a script containing shell commands
to be executed. If the option PATH_SCRIPT is set, and the file name does not contain a directory
path (i.e. there is no ‘/’ in the name), first the current directory and then the command path
given by the variable PATH are searched for the script. If the option is not set or the file name
contains a ‘/’ it is used directly.

After the first one or two arguments have been appropriated as described above, the remaining
arguments are assigned to the positional parameters.

For further options, which are common to invocation and the set builtin, see Chapter 16 [Op-
tions], page 85.

Options may be specified by name using the -o option. -o acts like a single-letter option, but
takes a following string as the option name. For example,

zsh -x -o shwordsplit scr

runs the script scr, setting the XTRACE option by the corresponding letter ‘-x’ and the
SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of -o.
-o can be stacked up with preceding single-letter options, so for example ‘-xo shwordsplit’ or
‘-xoshwordsplit’ is equivalent to ‘-x -o shwordsplit’.

¢

Options may also be specified by name in GNU long option style, ‘--option-name’. When this
is done, ‘=’ characters in the option name are permitted: they are translated into ‘_’, and thus
ignored. So, for example, ‘zsh --sh-word-split’ invokes zsh with the SH_WORD_SPLIT option
turned on. Like other option syntaxes, options can be turned off by replacing the initial ‘-’
with a ‘+’; thus ‘+-sh-word-split’ is equivalent to ‘--no-sh-word-split’. Unlike other option
syntaxes, GNU-style long options cannot be stacked with any other options, so for example
‘-x-shwordsplit’ is an error, rather than being treated like ‘-x --shwordsplit’.

¢

The special GNU-style option ‘--version’ is handled; it sends to standard output the shell’s
version information, then exits successfully. ‘~-help’ is also handled; it sends to standard output
a list of options that can be used when invoking the shell, then exits successfully.

Option processing may be finished, allowing following arguments that start with ‘=’ or ‘+’ to be
treated as normal arguments, in two ways. Firstly, a lone ‘=’ (or ‘+’) as an argument by itself
ends option processing. Secondly, a special option ‘==’ (or ‘+-’), which may be specified on its
own (which is the standard POSIX usage) or may be stacked with preceding options (so ‘-x-’ is
equivalent to ‘-x --’). Options are not permitted to be stacked after ‘--’ (so ‘-x-f’ is an error),
but note the GNU-style option form discussed above, where ‘~-shwordsplit’ is permitted and
does not end option processing.

Chapter 4: Invocation 7

Except when the sh/ksh emulation single-letter options are in effect, the option ‘-b’ (or ‘+b’)
ends option processing. ‘-b’ is like ‘-=’, except that further single-letter options can be stacked
after the ‘-b’ and will take effect as normal.

4.2 Compatibility

Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more precisely, it
looks at the first letter of the name by which it was invoked, excluding any initial ‘r’ (assumed to
stand for ‘restricted’), and if that is ‘s’ or ‘k’ it will emulate sh or ksh. Furthermore, if invoked
as su (which happens on certain systems when the shell is executed by the su command), the
shell will try to find an alternative name from the SHELL environment variable and perform
emulation based on that.

In sh and ksh compatibility modes the following parameters are not special and not initialized
by the shell: ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, manpath,
path, prompt, PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.

The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile
followed by $HOME/.profile. If the ENV environment variable is set on invocation, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expansion, command
substitution, and arithmetic expansion before being interpreted as a pathname. Note that the
PRIVILEGED option also affects the execution of startup files.

The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,
NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERO, GLOB_SUBST,
NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MULTIOS,
NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS, NO_PROMPT_PERCENT, RM_STAR_SILENT,
SH_FILE_EXPANSION, SH_GLOB, SH_OPTION_LETTERS, SH_WORD_SPLIT. Additionally
the BSD_ECHO and IGNORE_BRACES options are set if zsh is invoked as sh. Also, the
KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG, PROMPT_SUBST and SINGLE_LINE_ZLE
options are set if zsh is invoked as ksh.

4.3 Restricted Shell

When the basename of the command used to invoke zsh starts with the letter ‘r’ or the ‘-r’
command line option is supplied at invocation, the shell becomes restricted. Emulation mode is
determined after stripping the letter ‘r’ from the invocation name. The following are disabled
in restricted mode:

3

e changing directories with the cd builtin

e changing or unsetting the PATH, path, MODULE_PATH, module_path, SHELL, HISTFILE,
HISTSIZE, GID, EGID, UID, EUID, USERNAME, LD_LIBRARY_PATH, LD_AOUT_LIBRARY_PATH,
LD_PRELOAD and LD_AOUT_PRELOAD parameters

e specifying command names containing /
e specifying command pathnames using hash
e redirecting output to files
e using the exec builtin command to replace the shell with another command
e using jobs -Z to overwrite the shell process’ argument and environment space
e using the ARGVO parameter to override argv[0] for external commands
e turning off restricted mode with set +r or unsetopt RESTRICTED
These restrictions are enforced after processing the startup files. The startup files should set

up PATH to point to a directory of commands which can be safely invoked in the restricted
environment. They may also add further restrictions by disabling selected builtins.

Chapter 5: Files 8

Restricted mode can also be activated any time by setting the RESTRICTED option. This imme-
diately enables all the restrictions described above even if the shell still has not processed all
startup files.

5 Files

5.1 Startup/Shutdown Files

Commands are first read from /etc/zshenv; this cannot be overridden. Subsequent behaviour
is modified by the RCS and GLOBAL_RCS options; the former affects all startup files, while the
second only affects global startup files (those shown here with an path starting with a /). If one
of the options is unset at any point, any subsequent startup file(s) of the corresponding type
will not be read. It is also possible for a file in $ZDOTDIR to re-enable GLOBAL_RCS. Both RCS
and GLOBAL_RCS are set by default.

Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are
read from /etc/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interactive,
commands are read from /etc/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a login
shell, /etc/zlogin and $ZDOTDIR/.zlogin are read.

When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zlogout are read. This
happens with either an explicit exit via the exit or logout commands, or an implicit exit by
reading end-of-file from the terminal. However, if the shell terminates due to exec’ing another
process, the logout files are not read. These are also affected by the RCS and GLOBAL_RCS options.
Note also that the RCS option affects the saving of history files, i.e. if RCS is unset when the
shell exits, no history file will be saved.

If ZDOTDIR is unset, HOME is used instead. Files listed above as being in /etc may be in another
directory, depending on the installation.

As /etc/zshenv is run for all instances of zsh, it is important that it be kept as small as possible.
In particular, it is a good idea to put code that does not need to be run for every single shell
behind a test of the form ‘if [[-o rcs]]; then ...’ so that it will not be executed when
zsh is invoked with the ‘-’ option.

5.2 Files

$ZDOTDIR/ .zshenv
$ZDOTDIR/.zprofile

$ZDOTDIR/ .zshrc

$ZDOTDIR/ .zlogin

$ZDOTDIR/ .zlogout

${TMPPREFIX}* (default is /tmp/zsh*)
/etc/zshenv

/etc/zprofile

/etc/zshrc

/etc/zlogin

/etc/zlogout (installation-specific - /etc is the default)

Any of these files may be pre-compiled with the zcompile builtin command (Chapter 17 [Shell
Builtin Commands|, page 107). If a compiled file exists (named for the original file plus the
.zwc extension) and it is newer than the original file, the compiled file will be used instead.

Chapter 6: Shell Grammar 9

6 Shell Grammar

6.1 Simple Commands & Pipelines

A simple command is a sequence of optional parameter assignments followed by blank-separated
words, with optional redirections interspersed. The first word is the command to be executed,
and the remaining words, if any, are arguments to the command. If a command name is given,
the parameter assignments modify the environment of the command when it is executed. The
value of a simple command is its exit status, or 128 plus the signal number if terminated by a
signal. For example,

echo foo
is a simple command with arguments.

A pipeline is either a simple command, or a sequence of two or more simple commands where
each command is separated from the next by ‘|’ or ‘|&. Where commands are separated by |’,
the standard output of the first command is connected to the standard input of the next. ‘|&’
is shorthand for ‘2>&1 |’, which connects both the standard output and the standard error of
the command to the standard input of the next. The value of a pipeline is the value of the last
command, unless the pipeline is preceded by ‘!’ in which case the value is the logical inverse of
the value of the last command. For example,

echo foo | sed ’s/foo/bar/’

is a pipeline, where the output (‘foo’ plus a newline) of the first command will be passed to the
input of the second.

If a pipeline is preceded by ‘coproc’, it is executed as a coprocess; a two-way pipe is established
between it and the parent shell. The shell can read from or write to the coprocess by means of
the *>&p’ and ‘<&p’ redirection operators or with ‘print -p’ and ‘read -p’. A pipeline cannot
be preceded by both ‘coproc’ and ‘!’. If job control is active, the coprocess can be treated in
other than input and output as an ordinary background job.

A sublist is either a single pipeline, or a sequence of two or more pipelines separated by ‘&&’
or ‘| |’. If two pipelines are separated by ‘&&’, the second pipeline is executed only if the first
succeeds (returns a zero status). If two pipelines are separated by ‘| |, the second is executed
only if the first fails (returns a nonzero status). Both operators have equal precedence and are
left associative. The value of the sublist is the value of the last pipeline executed. For example,

dmesg | grep panic && print yes

is a sublist consisting of two pipelines, the second just a simple command which will be executed
if and only if the grep command returns a zero status. If it does not, the value of the sublist is
that return status, else it is the status returned by the print (almost certainly zero).

A list is a sequence of zero or more sublists, in which each sublist is terminated by *;’, ‘&’, ‘&|’,
‘&!’, or a newline. This terminator may optionally be omitted from the last sublist in the list
when the list appears as a complex command inside ‘(...) " or ‘{...}’. When a sublist is terminated
by ¢;’ or newline, the shell waits for it to finish before executing the next sublist. If a sublist
is terminated by a ‘&’, ‘&|’, or ‘&!’, the shell executes the last pipeline in it in the background,
and does not wait for it to finish (note the difference from other shells which execute the whole
sublist in the background). A backgrounded pipeline returns a status of zero.

More generally, a list can be seen as a set of any shell commands whatsoever, including the
complex commands below; this is implied wherever the word ‘list’ appears in later descriptions.
For example, the commands in a shell function form a special sort of list.

Chapter 6: Shell Grammar 10

6.2 Precommand Modifiers

A simple command may be preceded by a precommand modifier, which will alter how the
command is interpreted. These modifiers are shell builtin commands with the exception of
nocorrect which is a reserved word.

- The command is executed with a ‘=’ prepended to its argv[0] string.

builtin The command word is taken to be the name of a builtin command, rather than a
shell function or external command.

command [-pvV]
The command word is taken to be the name of an external command, rather than
a shell function or builtin. If the POSIX_BUILTINS option is set, builtins will also be
executed but certain special properties of them are suppressed. The -p flag causes
a default path to be searched instead of that in $path. With the -v flag, command
is similar to whence and with -V, it is equivalent to whence -v.

exec [-cl] [-a argv0]
The following command together with any arguments is run in place of the current
process, rather than as a sub-process. The shell does not fork and is replaced. The
shell does not invoke TRAPEXIT, nor does it source zlogout files. The options are
provided for compatibility with other shells.

The -c option clears the environment.
The -1 option is equivalent to the - precommand modifier, to treat the replacement

command as a login shell; the command is executed with a - prepended to its
argv [0] string. This flag has no effect if used together with the -a option.

The -a option is used to specify explicitly the argv[0] string (the name of the
command as seen by the process itself) to be used by the replacement command
and is directly equivalent to setting a value for the ARGVO environment variable.

nocorrect
Spelling correction is not done on any of the words. This must appear before any
other precommand modifier, as it is interpreted immediately, before any parsing is
done. It has no effect in non-interactive shells.

noglob Filename generation (globbing) is not performed on any of the words.

6.3 Complex Commands
A complexr command in zsh is one of the following:

if list then list [elif list then list | ... [else list | fi
The if list is executed, and if it returns a zero exit status, the then list is executed.
Otherwise, the elif list is executed and if its status is zero, the then list is executed.
If each elif list returns nonzero status, the else list is executed.

for name ... [in word ... | term do list done
where term is at least one newline or ;. Expand the list of words, and set the
parameter name to each of them in turn, executing list each time. If the in word
is omitted, use the positional parameters instead of the words.

More than one parameter name can appear before the list of words. If N names
are given, then on each execution of the loop the next N words are assigned to
the corresponding parameters. If there are more names than remaining words, the
remaining parameters are each set to the empty string. Execution of the loop ends
when there is no remaining word to assign to the first name. It is only possible for

Chapter 6: Shell Grammar 11

in to appear as the first name in the list, else it will be treated as marking the end
of the list.

for (([exprl] ; [expr2] ; [expr3])) do list done
The arithmetic expression exprl is evaluated first (see Chapter 11 [Arithmetic Eval-
uation], page 26). The arithmetic expression expr2 is repeatedly evaluated until it
evaluates to zero and when non-zero, list is executed and the arithmetic expression
expr3 evaluated. If any expression is omitted, then it behaves as if it evaluated to
1.

while list do list done
Execute the do list as long as the while list returns a zero exit status.

until list do list done
FExecute the do list as long as until list returns a nonzero exit status.

repeat word do list done
word is expanded and treated as an arithmetic expression, which must evaluate to
a number n. list is then executed n times.

The repeat syntax is disabled by default when the shell starts in a mode emulating
another shell. It can be enabled with the command ‘enable -r repeat’

case word in [[(] pattern [| pattern] ...) Iist (;;1;&l;1)] ... esac
Execute the list associated with the first pattern that matches word, if any. The form
of the patterns is the same as that used for filename generation. See Section 14.8
[Filename Generation], page 57.
If the list that is executed is terminated with ;& rather than ;;, the following list
is also executed. The rule for the terminator of the following list ;;, ;& or ;| is
applied unless the esac is reached.

If the Iist that is executed is terminated with ;| the shell continues to scan the
patterns looking for the next match, executing the corresponding list, and applying
the rule for the corresponding terminator ;;, ;& or ;|. Note that word is not

re-expanded; all applicable patterns are tested with the same word.

select name | in word ... term | do list done

where term is one or more newline or ; to terminate the words. Print the set of
words, each preceded by a number. If the in word is omitted, use the positional
parameters. The PROMPT3 prompt is printed and a line is read from the line editor if
the shell is interactive and that is active, or else standard input. If this line consists
of the number of one of the listed words, then the parameter name is set to the
word corresponding to this number. If this line is empty, the selection list is printed
again. Otherwise, the value of the parameter name is set to null. The contents of
the line read from standard input is saved in the parameter REPLY. list is executed
for each selection until a break or end-of-file is encountered.

(list) Execute list in a subshell. Traps set by the trap builtin are reset to their default
values while executing list.

{ Iist } Execute list.

{ try-list } always { always-list }
First execute try-list. Regardless of errors, or break, continue, or return com-
mands encountered within try-list, execute always-list. Execution then continues
from the result of the execution of try-list; in other words, any error, or break,
continue, or return command is treated in the normal way, as if always-list were
not present. The two chunks of code are referred to as the ‘try block’ and the ‘always
block’.

Chapter 6: Shell Grammar 12

Optional newlines or semicolons may appear after the always; note, however, that
they may not appear between the preceding closing brace and the always.

An ‘error’ in this context is a condition such as a syntax error which causes the shell
to abort execution of the current function, script, or list. Syntax errors encountered
while the shell is parsing the code do not cause the always-list to be executed. For
example, an erroneously constructed if block in try-1list would cause the shell
to abort during parsing, so that always-1list would not be executed, while an
erroneous substitution such as ${*foo*} would cause a run-time error, after which
always-1list would be executed.

An error condition can be tested and reset with the special integer variable
TRY_BLOCK_ERROR. Outside an always-list the value is irrelevant, but it is ini-
tialised to -1. Inside always-1list, the value is 1 if an error occurred in the try-
list, else 0. If TRY_BLOCK_ERROR is set to 0 during the always-1list, the error
condition caused by the try-1list is reset, and shell execution continues normally
after the end of always-1list. Altering the value during the try-1list is not useful
(unless this forms part of an enclosing always block).

Regardless of TRY_BLOCK_ERROR, after the end of always-1list the normal shell
status $7 is the value returned from always-list. This will be non-zero if there
was an error, even if TRY_BLOCK_ERROR was set to zero.

The following executes the given code, ignoring any errors it causes. This is an
alternative to the usual convention of protecting code by executing it in a subshell.

{
code which may cause an error
} always {
This code is executed regardless of the error.
(C TRY_BLOCK_ERROR = 0))
b

The error condition has been reset.

An exit command (or a return command executed at the outermost function level
of a script) encountered in try-list does not cause the execution of always-list.
Instead, the shell exits immediately after any EXIT trap has been executed.

function word ... [() | [term | { Iist }
word ... () [term | { list }
word ... () [term | command

where term is one or more newline or ;. Define a function which is referenced by
any one of word. Normally, only one word is provided; multiple words are usually
only useful for setting traps. The body of the function is the list between the { and
}. See Chapter 9 [Functions], page 20.

If the option SH_GLOB is set for compatibility with other shells, then whitespace
may appear between between the left and right parentheses when there is a single
word; otherwise, the parentheses will be treated as forming a globbing pattern in
that case.

time [pipeline |

[[exp 1]

The pipeline is executed, and timing statistics are reported on the standard error in
the form specified by the TIMEFMT parameter. If pipeline is omitted, print statistics
about the shell process and its children.

Evaluates the conditional expression exp and return a zero exit status if it is true.
See Chapter 12 [Conditional Expressions|, page 29 for a description of exp.

Chapter 6: Shell Grammar 13

6.4 Alternate Forms For Complex Commands

Many of zsh’s complex commands have alternate forms. These are non-standard and are likely
not to be obvious even to seasoned shell programmers; they should not be used anywhere that
portability of shell code is a concern.

The short versions below only work if sublist is of the form ‘{ Ilist }’ or if the SHORT_LOOPS
option is set. For the if, while and until commands, in both these cases the test part of the
loop must also be suitably delimited, such as by ‘[[... 11 or ‘(C ...))’, else the end of the
test will not be recognized. For the for, repeat, case and select commands no such special
form for the arguments is necessary, but the other condition (the special form of sublist or use
of the SHORT_LOOPS option) still applies.

if list { list } [elif list { list }] ... [else { list } |
An alternate form of if. The rules mean that
if [[-o ignorebraces 1] {
print yes
}
works, but
if true { # Does not work!
print yes

}

does not, since the test is not suitably delimited.

if list sublist
A short form of the alternate ‘if’. The same limitations on the form of list apply as
for the previous form.

for name ... (word ...) sublist
A short form of for.

for name ... [in word ... | term sublist
where term is at least one newline or ;. Another short form of for.

for (([exprl] ; [expr2] ; [expr3])) sublist
A short form of the arithmetic for command.

foreach name ... (word ...) list end
Another form of for.

while list { list }
An alternative form of while. Note the limitations on the form of list mentioned
above.

until list { list }
An alternative form of until. Note the limitations on the form of list mentioned
above.

repeat word sublist
This is a short form of repeat.

case word { [[(] pattern [| pattern | ...) list (;;1;&l;1)] ... }
An alternative form of case.

select name | in word term | sublist
where term is at least one newline or ;. A short form of select.

Chapter 6: Shell Grammar 14

6.5 Reserved Words

The following words are recognized as reserved words when used as the first word of a command
unless quoted or disabled using disable -r:

do done esac then elif else fi for case if while function repeat time until
select coproc nocorrect foreach end ! [[{ }

Additionally, ‘}’ is recognized in any position if neither the IGNORE_BRACES option nor the
IGNORE_CLOSE_BRACES option is set.

6.6 Errors

Certain errors are treated as fatal by the shell: in an interactive shell, they cause control to
return to the command line, and in a non-interactive shell they cause the shell to be aborted.
In older versions of zsh, a non-interactive shell running a script would not abort completely, but
would resume execution at the next command to be read from the script, skipping the remainder
of any functions or shell constructs such as loops or conditions; this somewhat illogical behaviour
can be recovered by setting the option CONTINUE_ON_ERROR.

Fatal errors found in non-interactive shells include:

Failure to parse shell options passed when invoking the shell

Failure to change options with the set builtin

Parse errors of all sorts, including failures to parse
mathematical expressions

Failures to set or modify variable behaviour with typeset,
local, declare, export, integer, float

Execution of incorrectly positioned loop control structures
(continue, break)

Attempts to use regular expression with no regular expression
module available

Disallowed operations when the RESTRICTED options is set

Failure to create a pipe needed for a pipeline

Failure to create a multio

Failure to autoload a module needed for a declared shell feature

Errors creating command or process substitutions

Syntax errors in glob qualifiers

File generation errors where not caught by the option BAD_PATTERN

All bad patterns used for matching within case statements

File generation failures where not caused by NO_MATCH or

All file generation errors where the pattern was used to create a
multio

Memory errors where detected by the shell
Invalid subscripts to shell variables
Attempts to assign read-only variables
Logical errors with variables such as assignment to the wrong type
Use of invalid variable names
Errors in variable substitution syntax
Failure to convert characters in $’...° expressions
similar options

If the POSIX_BUILTINS option is set, more errors associated with shell builtin commands are
treated as fatal, as specified by the POSIX standard.

Chapter 6: Shell Grammar 15

6.7 Comments

In non-interactive shells, or in interactive shells with the INTERACTIVE_COMMENTS option set,
a word beginning with the third character of the histchars parameter (‘4 by default) causes
that word and all the following characters up to a newline to be ignored.

6.8 Aliasing

Every token in the shell input is checked to see if there is an alias defined for it. If so, it is
replaced by the text of the alias if it is in command position (if it could be the first word of a
simple command), or if the alias is global. If the text ends with a space, the next word in the
shell input is treated as though it were in command position for purposes of alias expansion.
An alias is defined using the alias builtin; global aliases may be defined using the -g option to
that builtin.

Alias expansion is done on the shell input before any other expansion except history expansion.
Therefore, if an alias is defined for the word foo, alias expansion may be avoided by quoting part
of the word, e.g. \foo. Any form of quoting works, although there is nothing to prevent an alias
being defined for the quoted form such as \foo as well. For use with completion, which would
remove an initial backslash followed by a character that isn’t special, it may be more convenient
to quote the word by starting with a single quote, i.e. ’>foo; completion will automatically add
the trailing single quote.

There is a commonly encountered problem with aliases illustrated by the following code:
alias echobar=’echo bar’; echobar

This prints a message that the command echobar could not be found. This happens because
aliases are expanded when the code is read in; the entire line is read in one go, so that when
echobar is executed it is too late to expand the newly defined alias. This is often a problem in
shell scripts, functions, and code executed with ‘source’ or ‘.’. Consequently, use of functions
rather than aliases is recommended in non-interactive code.

Note also the unhelpful interaction of aliases and function definitions:

alias func=’noglob func’
func() {
echo Do something with $*

}

Because aliases are expanded in function definitions, this causes the following command to be
executed:

noglob func() {
echo Do something with $*

}

which defines noglob as well as func as functions with the body given. To avoid this, either
quote the name func or use the alternative function definition form ‘function func’. Ensuring
the alias is defined after the function works but is problematic if the code fragment might be
re-executed.

6.9 Quoting

A character may be quoted (that is, made to stand for itself) by preceding it with a ‘\’. ‘\’
followed by a newline is ignored.

A string enclosed between ‘$°’ and *’’ is processed the same way as the string arguments of the
print builtin, and the resulting string is considered to be entirely quoted. A literal ‘>’ character
can be included in the string by using the ‘\’’ escape.

Chapter 7: Redirection 16

All characters enclosed between a pair of single quotes (’?) that is not preceded by a ‘$’ are
quoted. A single quote cannot appear within single quotes unless the option RC_QUOTES is set,
in which case a pair of single quotes are turned into a single quote. For example,

print))y
outputs nothing apart from a newline if RC_QUOTES is not set, but one single quote if it is set.

Inside double quotes (""), parameter and command substitution occur, and ‘\” quotes the char-
acters ‘\’, <7, ‘" and ‘$’.

7 Redirection

If a command is followed by & and job control is not active, then the default standard input
for the command is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified by input/output
specifications.

The following may appear anywhere in a simple command or may precede or follow a complex
command. Expansion occurs before word or digit is used except as noted below. If the result
of substitution on word produces more than one filename, redirection occurs for each separate
filename in turn.

< word Open file word for reading as standard input.

<> word Open file word for reading and writing as standard input. If the file does not exist
then it is created.

> word Open file word for writing as standard output. If the file does not exist then it is
created. If the file exists, and the CLOBBER option is unset, this causes an error;
otherwise, it is truncated to zero length.

>| word
>! word Same as >, except that the file is truncated to zero length if it exists, even if CLOBBER
is unset.

>> word Open file word for writing in append mode as standard output. If the file does not
exist, and the CLOBBER option is unset, this causes an error; otherwise, the file is

created.

>>| word

>>! word Same as >>, except that the file is created if it does not exist, even if CLOBBER is
unset.

<<[-] word

The shell input is read up to a line that is the same as word, or to an end-of-file.
No parameter expansion, command substitution or filename generation is performed
on word. The resulting document, called a here-document, becomes the standard
input.

If any character of word is quoted with single or double quotes or a ‘\’, no inter-
pretation is placed upon the characters of the document. Otherwise, parameter and
command substitution occurs, ‘\’ followed by a newline is removed, and ‘\’ must be
used to quote the characters ‘\’, ‘$’, *“” and the first character of word.

Note that word itself does not undergo shell expansion. Backquotes in word do
not have their usual effect; instead they behave similarly to double quotes, except
that the backquotes themselves are passed through unchanged. (This information is
given for completeness and it is not recommended that backquotes be used.) Quotes

Chapter 7: Redirection 17

in the form $’...> have their standard effect of expanding backslashed references to
special characters.

If <<~ is used, then all leading tabs are stripped from word and from the document.
<<< word Perform shell expansion on word and pass the result to standard input. This is

known as a here-string. Compare the use of word in here-documents above, where
word does not undergo shell expansion.

<& number

>& number
The standard input/output is duplicated from file descriptor number (see man page
dup2(2)).

<& -

>& - Close the standard input/output.

<& p

> p The input/output from/to the coprocess is moved to the standard input/output.

>& word

&> word (Except where ‘>& word’ matches one of the above syntaxes; ‘&>’ can always be
used to avoid this ambiguity.) Redirects both standard output and standard error
(file descriptor 2) in the manner of ‘> word’. Note that this does not have the same
effect as *> word 2>&1’ in the presence of multios (see the section below).

>&| word
>&! word
&>| word

&>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of >| word’.

>>& word
&>> word Redirects both standard output and standard error (file descriptor 2) in the manner
of >> word’.

>>&| word

>>&! word

&>>| word

&>>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of *>>| word’.

If one of the above is preceded by a digit, then the file descriptor referred to is that specified by
the digit instead of the default 0 or 1. The order in which redirections are specified is significant.
The shell evaluates each redirection in terms of the (file descriptor, file) association at the time
of evaluation. For example:

. 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections were reversed, file
descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname.

The ‘& command separator described in Section 6.1 [Simple Commands & Pipelines]|, page 9
is a shorthand for ‘2>&1 |’.

The various forms of process substitution, ‘<(list)’, and ‘=(list())’ for input and ‘>(list)’ for
output, are often used together with redirection. For example, if word in an output redirection
is of the form ‘>(list)’ then the output is piped to the command represented by list. See
Section 14.2 [Process Substitution|, page 40.

Chapter 7: Redirection 18

7.1 Opening file descriptors using parameters

When the shell is parsing arguments to a command, and the shell option IGNORE_BRACES is
not set, a different form of redirection is allowed: instead of a digit before the operator there
is a valid shell identifier enclosed in braces. The shell will open a new file descriptor that is
guaranteed to be at least 10 and set the parameter named by the identifier to the file descriptor
opened. No whitespace is allowed between the closing brace and the redirection character. For
example:

.. {myfd}>&1

This opens a new file descriptor that is a duplicate of file descriptor 1 and sets the parameter
myfd to the number of the file descriptor, which will be at least 10. The new file descriptor can
be written to using the syntax >&$myfd.

The syntax {varid}>&-, for example {myfd}>&-, may be used to close a file descriptor opened in
this fashion. Note that the parameter given by varid must previously be set to a file descriptor
in this case.

It is an error to open or close a file descriptor in this fashion when the parameter is readonly.
However, it is not an error to read or write a file descriptor using <&$param or >&$param if
param is readonly.

If the option CLOBBER is unset, it is an error to open a file descriptor using a parameter that
is already set to an open file descriptor previously allocated by this mechanism. Unsetting the
parameter before using it for allocating a file descriptor avoids the error.
Note that this mechanism merely allocates or closes a file descriptor; it does not perform any
redirections from or to it. It is usually convenient to allocate a file descriptor prior to use as an
argument to exec. The syntax does not in any case work when used around complex commands
such as parenthesised subshells or loops, where the opening brace is interpreted as part of a
command list to be executed in the current shell.
The following shows a typical sequence of allocation, use, and closing of a file descriptor:

integer myfd

exec {myfd}>~/logs/mylogfile.txt

print This is a log message. >&$myfd

exec {myfd}>&-
Note that the expansion of the variable in the expression >&$myfd occurs at the point the redi-
rection is opened. This is after the expansion of command arguments and after any redirections
to the left on the command line have been processed.

7.2 Multios

If the user tries to open a file descriptor for writing more than once, the shell opens the file
descriptor as a pipe to a process that copies its input to all the specified outputs, similar to tee,
provided the MULTIOS option is set, as it is by default. Thus:

date >foo >bar

writes the date to two files, named ‘foo’ and ‘bar’. Note that a pipe is an implicit redirection;
thus

date >foo | cat
writes the date to the file ‘foo’, and also pipes it to cat.

If the MULTIOS option is set, the word after a redirection operator is also subjected to filename
generation (globbing). Thus

D> %

Chapter 7: Redirection 19

will truncate all files in the current directory, assuming there’s at least one. (Without the
MULTIOS option, it would create an empty file called ‘*’.) Similarly, you can do

echo exit 0 >> x.sh

If the user tries to open a file descriptor for reading more than once, the shell opens the file
descriptor as a pipe to a process that copies all the specified inputs to its output in the order
specified, similar to cat, provided the MULTIOS option is set. Thus

sort <foo <fubar
or even
sort <f{oo,ubar}
is equivalent to ‘cat foo fubar | sort’.

Expansion of the redirection argument occurs at the point the redirection is opened, at the point
described above for the expansion of the variable in >&$myfd.

Note that a pipe is an implicit redirection; thus
cat bar | sort <foo
is equivalent to ‘cat bar foo | sort’ (note the order of the inputs).
If the MULTIOS option is unset, each redirection replaces the previous redirection for that file
descriptor. However, all files redirected to are actually opened, so
echo foo > bar > baz
when MULTIOS is unset will truncate bar, and write ‘foo’ into baz.
There is a problem when an output multio is attached to an external program. A simple example
shows this:
cat file >filel >file2
cat filel file2

Here, it is possible that the second ‘cat’ will not display the full contents of filel and file2
(i.e. the original contents of file repeated twice).
The reason for this is that the multios are spawned after the cat process is forked from the parent
shell, so the parent shell does not wait for the multios to finish writing data. This means the
command as shown can exit before filel and file2 are completely written. As a workaround,
it is possible to run the cat process as part of a job in the current shell:

{ cat file } >file >file2

Here, the {...} job will pause to wait for both files to be written.

7.3 Redirections with no command

When a simple command consists of one or more redirection operators and zero or more param-
eter assignments, but no command name, zsh can behave in several ways.
If the parameter NULLCMD is not set or the option CSH_NULLCMD is set, an error is caused. This
is the csh behavior and CSH_NULLCMD is set by default when emulating csh.
If the option SH_NULLCMD is set, the builtin ‘:’ is inserted as a command with the given redirec-
tions. This is the default when emulating sh or ksh.
Otherwise, if the parameter NULLCMD is set, its value will be used as a command with the given
redirections. If both NULLCMD and READNULLCMD are set, then the value of the latter will be used
instead of that of the former when the redirection is an input. The default for NULLCMD is ‘cat’
and for READNULLCMD is ‘more’. Thus

< file

shows the contents of file on standard output, with paging if that is a terminal. NULLCMD and
READNULLCMD may refer to shell functions.

Chapter 9: Functions 20

8 Command Execution

If a command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, the function is invoked as described in Chapter 9 [Functions|, page 20.
If there exists a shell builtin by that name, the builtin is invoked.

Otherwise, the shell searches each element of $path for a directory containing an executable
file by that name. If the search is unsuccessful, the shell prints an error message and returns a
nonzero exit status.

If execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be a shell script. /bin/sh is spawned to execute it. If the program is a file beginning
with ‘#!’, the remainder of the first line specifies an interpreter for the program. The shell will
execute the specified interpreter on operating systems that do not handle this executable format
in the kernel.

If no external command is found but a function command_not_found_handler exists the shell
executes this function with all command line arguments. The function should return status
zero if it successfully handled the command, or non-zero status if it failed. In the latter case
the standard handling is applied: ‘command not found’ is printed to standard error and the
shell exits with status 127. Note that the handler is executed in a subshell forked to execute
an external command, hence changes to directories, shell parameters, etc. have no effect on the
main shell.

9 Functions

Shell functions are defined with the function reserved word or the special syntax ‘funcname
()’. Shell functions are read in and stored internally. Alias names are resolved when the
function is read. Functions are executed like commands with the arguments passed as positional
parameters. (See Chapter 8 [Command Execution], page 20.)

Functions execute in the same process as the caller and share all files and present working
directory with the caller. A trap on EXIT set inside a function is executed after the function
completes in the environment of the caller.

The return builtin is used to return from function calls.

Function identifiers can be listed with the functions builtin. Functions can be undefined with
the unfunction builtin.

9.1 Autoloading Functions

A function can be marked as undefined using the autoload builtin (or ‘functions -u’ or ‘type-
set -fu’). Such a function has no body. When the function is first executed, the shell searches
for its definition using the elements of the fpath variable. Thus to define functions for autoload-
ing, a typical sequence is:

fpath=("/myfuncs $fpath)

autoload myfuncl myfunc2 ...
The usual alias expansion during reading will be suppressed if the autoload builtin or its
equivalent is given the option -U. This is recommended for the use of functions supplied with
the zsh distribution. Note that for functions precompiled with the zcompile builtin command
the flag =U must be provided when the .zwc file is created, as the corresponding information is
compiled into the latter.

For each element in fpath, the shell looks for three possible files, the newest of which is used to
load the definition for the function:

Chapter 9: Functions 21

element . zwc
A file created with the zcompile builtin command, which is expected to contain the
definitions for all functions in the directory named element. The file is treated in
the same manner as a directory containing files for functions and is searched for the
definition of the function. If the definition is not found, the search for a definition
proceeds with the other two possibilities described below.

If element already includes a .zwc extension (i.e. the extension was explicitly
given by the user), element is searched for the definition of the function without
comparing its age to that of other files; in fact, there does not need to be any
directory named element without the suffix. Thus including an element such as
‘/usr/local/funcs.zwc’ in fpath will speed up the search for functions, with the
disadvantage that functions included must be explicitly recompiled by hand before
the shell notices any changes.

element/ function.zwc
A file created with zcompile, which is expected to contain the definition for function.
It may include other function definitions as well, but those are neither loaded nor
executed; a file found in this way is searched only for the definition of function.

element/ function
A file of zsh command text, taken to be the definition for function.

In summary, the order of searching is, first, in the parents of directories in fpath for the newer
of either a compiled directory or a directory in £path; second, if more than one of these contains
a definition for the function that is sought, the leftmost in the fpath is chosen; and third, within
a directory, the newer of either a compiled function or an ordinary function definition is used.

If the KSH_AUTOLOAD option is set, or the file contains only a simple definition of the function,
the file’s contents will be executed. This will normally define the function in question, but may
also perform initialization, which is executed in the context of the function execution, and may
therefore define local parameters. It is an error if the function is not defined by loading the file.

Otherwise, the function body (with no surrounding ‘funcname () {...}’) is taken to be the com-
plete contents of the file. This form allows the file to be used directly as an executable shell
script. If processing of the file results in the function being re-defined, the function itself is not
re-executed. To force the shell to perform initialization and then call the function defined, the
file should contain initialization code (which will be executed then discarded) in addition to a
complete function definition (which will be retained for subsequent calls to the function), and a
call to the shell function, including any arguments, at the end.

For example, suppose the autoload file func contains

func() { print This is func; }
print func is initialized

then ‘func; func’ with KSH_AUTOLOAD set will produce both messages on the first call, but only
the message ‘This is func’ on the second and subsequent calls. Without KSH_AUTOLOAD set,
it will produce the initialization message on the first call, and the other message on the second
and subsequent calls.

It is also possible to create a function that is not marked as autoloaded, but which loads its own
definition by searching fpath, by using ‘autoload -X’ within a shell function. For example, the
following are equivalent:

myfunc() {
autoload -X
}

myfunc args...

Chapter 9: Functions 22

and

unfunction myfunc # if myfunc was defined
autoload myfunc
myfunc args...

In fact, the functions command outputs ‘builtin autoload -X’ as the body of an autoloaded
function. This is done so that

eval "$(functions)"

produces a reasonable result. A true autoloaded function can be identified by the presence
of the comment ‘# undefined’ in the body, because all comments are discarded from defined
functions.

To load the definition of an autoloaded function myfunc without executing myfunc, use:

autoload +X myfunc

9.2 Anonymous Functions

If no name is given for a function, it is ‘anonymous’ and is handled specially. Either form of
function definition may be used: a ‘()’ with no preceding name, or a ‘function’ with an im-
mediately following open brace. The function is executed immediately at the point of definition
and is not stored for future use. The function name is set to ‘(anon)’.

Arguments to the function may be specified as words following the closing brace defining the
function, hence if there are none no arguments (other than $0) are set. This is a difference
from the way other functions are parsed: normal function definitions may be followed by certain
keywords such as ‘else’ or ‘fi’, which will be treated as arguments to anonymous functions, so
that a newline or semicolon is needed to force keyword interpretation.

Note also that the argument list of any enclosing script or function is hidden (as would be the
case for any other function called at this point).

Redirections may be applied to the anonymous function in the same manner as to a current-shell
structure enclosed in braces. The main use of anonymous functions is to provide a scope for
local variables. This is particularly convenient in start-up files as these do not provide their own
local variable scope.

For example,

variable=outside
function {
local variable=inside
print "I am $variable with arguments $x"
} this and that
print "I am $variable"

outputs the following:

I am inside with arguments this and that
I am outside

Note that function definitions with arguments that expand to nothing, for example ‘name=;
function $name { ... 1}, are not treated as anonymous functions. Instead, they are treated
as normal function definitions where the definition is silently discarded.

9.3 Special Functions

Certain functions, if defined, have special meaning to the shell.

Chapter 9: Functions 23

9.3.1 Hook Functions

For the functions below, it is possible to define an array that has the same name as the func-
tion with ‘_functions’ appended. Any element in such an array is taken as the name of a
function to execute; it is executed in the same context and with the same arguments as the
basic function. For example, if $chpwd_functions is an array containing the values ‘mychpwd’,
‘chpwd_save_dirstack’, then the shell attempts to execute the functions ‘chpwd’, ‘mychpwd’
and ‘chpwd_save_dirstack’, in that order. Any function that does not exist is silently ignored.
A function found by this mechanism is referred to elsewhere as a ‘hook function’. An error in
any function causes subsequent functions not to be run. Note further that an error in a precmd
hook causes an immediately following periodic function not to run (though it may run at the
next opportunity).

chpwd Executed whenever the current working directory is changed.

periodic If the parameter PERIOD is set, this function is executed every $PERIOD seconds,
just before a prompt. Note that if multiple functions are defined using the array
periodic_functions only one period is applied to the complete set of functions,
and the scheduled time is not reset if the list of functions is altered. Hence the set
of functions is always called together.

precmd Executed before each prompt. Note that precommand functions are not re-executed
simply because the command line is redrawn, as happens, for example, when a
notification about an exiting job is displayed.

preexec Executed just after a command has been read and is about to be executed. If
the history mechanism is active (and the line was not discarded from the history
buffer), the string that the user typed is passed as the first argument, otherwise it
is an empty string. The actual command that will be executed (including expanded
aliases) is passed in two different forms: the second argument is a single-line, size-
limited version of the command (with things like function bodies elided); the third
argument contains the full text that is being executed.

zshaddhistory
Executed when a history line has been read interactively, but before it is executed.
The sole argument is the complete history line (so that any terminating newline will
still be present).

If any of the hook functions return a non-zero value the history line will not be
saved, although it lingers in the history until the next line is executed allow you to
reuse or edit it immediately.

A hook function may call ‘fc -p ...” to switch the history context so that the history
is saved in a different file from the that in the global HISTFILE parameter. This is
handled specially: the history context is automatically restored after the processing
of the history line is finished.

The following example function first adds the history line to the normal history
with the newline stripped, which is usually the correct behaviour. Then it switches
the history context so that the line will be written to a history file in the current
directory.
zshaddhistory() {
print -sr -- ${1%%$’\n’}
fc -p .zsh_local_history
}

Chapter 9: Functions 24

zshexit

Executed at the point where the main shell is about to exit normally. This is not
called by exiting subshells, nor when the exec precommand modifier is used before
an external command. Also, unlike TRAPEXIT, it is not called when functions exit.

9.3.2 Trap Functions

The functions below are treated specially but do not have corresponding hook arrays.

TRAPNAL

TRAPDEBUG

TRAPEXIT

TRAPZERR

If defined and non-null, this function will be executed whenever the shell catches a
signal SIGNAL, where NAL is a signal name as specified for the kill builtin. The
signal number will be passed as the first parameter to the function.

If a function of this form is defined and null, the shell and processes spawned by it
will ignore SIGNAL.

The return status from the function is handled specially. If it is zero, the signal is
assumed to have been handled, and execution continues normally. Otherwise, the
shell will behave as interrupted except that the return status of the trap is retained.

Programs terminated by uncaught signals typically return the status 128 plus the
signal number. Hence the following causes the handler for SIGINT to print a message,
then mimic the usual effect of the signal.

TRAPINT() {
print "Caught SIGINT, aborting."
return $((128 + $1))

}

The functions TRAPZERR, TRAPDEBUG and TRAPEXIT are never executed inside other
traps.

If the option DEBUG_BEFORE_CMD is set (as it is by default), executed before each
command; otherwise executed after each command. See the description of the trap
builtin in Chapter 17 [Shell Builtin Commands|, page 107 for details of additional
features provided in debug traps.

Executed when the shell exits, or when the current function exits if defined inside a
function. The value of $7 at the start of execution is the exit status of the shell or
the return status of the function exiting.

Executed whenever a command has a non-zero exit status. However, the function
is not executed if the command occurred in a sublist followed by ‘&€&’ or ‘| |’; only
the final command in a sublist of this type causes the trap to be executed. The
function TRAPERR acts the same as TRAPZERR on systems where there is no SIGERR
(this is the usual case).

The functions beginning ‘TRAP’ may alternatively be defined with the trap builtin: this may be
preferable for some uses. Setting a trap with one form removes any trap of the other form for
the same signal; removing a trap in either form removes all traps for the same signal. The forms

TRAPN
co

¥

ALQO {
de

("function traps’) and

trap
co
’ NAL

(’list traps’)

)

de

are equivalent in most ways, the exceptions being the following:

Chapter 10: Jobs & Signals 25

e Function traps have all the properties of normal functions, appearing in the list of functions
and being called with their own function context rather than the context where the trap
was triggered.

e The return status from function traps is special, whereas a return from a list trap causes
the surrounding context to return with the given status.

e Function traps are not reset within subshells, in accordance with zsh behaviour; list traps
are reset, in accordance with POSIX behaviour.

10 Jobs & Signals

10.1 Jobs

If the MONITOR option is set, an interactive shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and assigns them small integer numbers.
When a job is started asynchronously with ‘&’, the shell prints a line to standard error which
looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had one (top-
level) process, whose process ID was 1234.

If a job is started with ‘&|’ or ‘&!’, then that job is immediately disowned. After startup, it does
not have a place in the job table, and is not subject to the job control features described here.

If you are running a job and wish to do something else you may hit the key ~Z (control-Z)
which sends a TSTP signal to the current job: this key may be redefined by the susp option
of the external stty command. The shell will then normally indicate that the job has been
‘suspended’, and print another prompt. You can then manipulate the state of this job, putting
it in the background with the bg command, or run some other commands and then eventually
bring the job back into the foreground with the foreground command fg. A ~Z takes effect
immediately and is like an interrupt in that pending output and unread input are discarded
when it is typed.

A job being run in the background will suspend if it tries to read from the terminal.

Note that if the job running in the foreground is a shell function, then suspending it will have
the effect of causing the shell to fork. This is necessary to separate the function’s state from
that of the parent shell performing the job control, so that the latter can return to the command
line prompt. As a result, even if fg is used to continue the job the function will no longer be
part of the parent shell, and any variables set by the function will not be visible in the parent
shell. Thus the behaviour is different from the case where the function was never suspended.
Zsh is different from many other shells in this regard.

The same behaviour is found when the shell is executing code as the right hand side of a pipeline
or any complex shell construct such as if, for, etc., in order that the entire block of code can be
managed as a single job. Background jobs are normally allowed to produce output, but this can
be disabled by giving the command ‘stty tostop’. If you set this tty option, then background
jobs will suspend when they try to produce output like they do when they try to read input.

When a command is suspended and continued later with the fg or wait builtins, zsh restores
tty modes that were in effect when it was suspended. This (intentionally) does not apply if the
command is continued via ‘kill -CONT’, nor when it is continued with bg.

There are several ways to refer to jobs in the shell. A job can be referred to by the process 1D
of any process of the job or by one of the following:

%number The job with the given number.

Chapter 11: Arithmetic Evaluation 26

hstring Any job whose command line begins with string.

%7string Any job whose command line contains string.

YA Current job.
bt Equivalent to ‘%%’
h= Previous job.

The shell learns immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible. If the NOTIFY option is not
set, it waits until just before it prints a prompt before it informs you. All such notifications are
sent directly to the terminal, not to the standard output or standard error.

When the monitor mode is on, each background job that completes triggers any trap set for
CHLD.

When you try to leave the shell while jobs are running or suspended, you will be warned that
‘You have suspended (running) jobs’. You may use the jobs command to see what they are.
If you do this or immediately try to exit again, the shell will not warn you a second time; the
suspended jobs will be terminated, and the running jobs will be sent a SIGHUP signal, if the HUP
option is set.

To avoid having the shell terminate the running jobs, either use the nohup command (see man
page nohup(1)) or the disown builtin.

10.2 Signals

The INT and QUIT signals for an invoked command are ignored if the command is followed by ‘&’
and the MONITOR option is not active. The shell itself always ignores the QUIT signal. Otherwise,
signals have the values inherited by the shell from its parent (but see the TRAPNAL special
functions in Chapter 9 [Functions|, page 20).

11 Arithmetic Evaluation

The shell can perform integer and floating point arithmetic, either using the builtin let, or via
a substitution of the form $((...)). For integers, the shell is usually compiled to use 8-byte
precision where this is available, otherwise precision is 4 bytes. This can be tested, for example,
by giving the command ‘print - $((12345678901))’; if the number appears unchanged,
the precision is at least 8 bytes. Floating point arithmetic always uses the ‘double’ type with
whatever corresponding precision is provided by the compiler and the library.

The let builtin command takes arithmetic expressions as arguments; each is evaluated sepa-
rately. Since many of the arithmetic operators, as well as spaces, require quoting, an alternative
form is provided: for any command which begins with a ‘((’, all the characters until a matching
))’ are treated as a quoted expression and arithmetic expansion performed as for an argument of
let. More precisely, ‘((...))’" is equivalent to ‘let "..."’. The return status is O if the arithmetic
value of the expression is non-zero, 1 if it is zero, and 2 if an error occurred.
For example, the following statement

(Cval =2+ 1))
is equivalent to

let "val = 2 + 1"
both assigning the value 3 to the shell variable val and returning a zero status.

Integers can be in bases other than 10. A leading ‘0x’ or ‘0X’ denotes hexadecimal. Integers
may also be of the form ‘base#n’, where base is a decimal number between two and thirty-six

Chapter 11: Arithmetic Evaluation 27

representing the arithmetic base and n is a number in that base (for example, ‘16#£f’ is 255 in
hexadecimal). The base# may also be omitted, in which case base 10 is used. For backwards
compatibility the form ‘[base]ln’ is also accepted.

An integer expression or a base given in the form ‘base#n’ may contain underscores (‘_’) after

the leading digit for visual guidance; these are ignored in computation. Examples are 1_000_000
or Oxffff_ffff which are equivalent to 1000000 and Oxffffffff respectively.

It is also possible to specify a base to be used for output in the form ‘[#base]’, for example
‘[#16]°. This is used when outputting arithmetical substitutions or when assigning to scalar
parameters, but an explicitly defined integer or floating point parameter will not be affected. If
an integer variable is implicitly defined by an arithmetic expression, any base specified in this
way will be set as the variable’s output arithmetic base as if the option ‘~i base’ to the typeset
builtin had been used. The expression has no precedence and if it occurs more than once in
a mathematical expression, the last encountered is used. For clarity it is recommended that it
appear at the beginning of an expression. As an example:

typeset -i 16 y

print $(([#8] x = 32, y = 32))

print $x $y

outputs first ‘8#40°, the rightmost value in the given output base, and then ‘8#40 16#20’,
because y has been explicitly declared to have output base 16, while x (assuming it does not

already exist) is implicitly typed by the arithmetic evaluation, where it acquires the output base
8.

If the C_BASES option is set, hexadecimal numbers in the standard C format, for example OxFF
instead of the usual ‘16#FF’. If the option OCTAL_ZEROES is also set (it is not by default), octal
numbers will be treated similarly and hence appear as ‘077’ instead of ‘8#77’. This option has
no effect on the output of bases other than hexadecimal and octal, and these formats are always
understood on input.

When an output base is specified using the ‘ [#base]’ syntax, an appropriate base prefix will be
output if necessary, so that the value output is valid syntax for input. If the # is doubled, for
example ‘ [##16]’, then no base prefix is output.

Floating point constants are recognized by the presence of a decimal point or an exponent. The
decimal point may be the first character of the constant, but the exponent character e or E may
not, as it will be taken for a parameter name. All numeric parts (before and after the decimal
point and in the exponent) may contain underscores after the leading digit for visual guidance;
these are ignored in computation.

An arithmetic expression uses nearly the same syntax and associativity of expressions as in C.

In the native mode of operation, the following operators are supported (listed in decreasing
order of precedence):
R i =

unary plus/minus, logical NOT, complement, {pre,post}{in,de}crement

<< >> bitwise shift left, right

& bitwise AND

- bitwise XOR

| bitwise OR

*% exponentiation

x /% multiplication, division, modulus (remainder)

+ - addition, subtraction

Chapter 11: Arithmetic Evaluation 28

< > <= >=
comparison

= I= equality and inequality
&& logical AND
[l -~ logical OR, XOR

? ternary operator
= 4= —= %= [= Y= &= "= |= <<= >>= &&= ||= "= *%=
assignment
s comma operator
The operators ‘&&’, ‘| |’, ‘&&=", and ‘| |=" are short-circuiting, and only one of the latter two

expressions in a ternary operator is evaluated. Note the precedence of the bitwise AND, OR,
and XOR operators.

With the option C_PRECEDENCES the precedences (but no other properties) of the operators are
altered to be the same as those in most other languages that support the relevant operators:
L s

unary plus/minus, logical NOT, complement, {pre,post}{in,de}crement

*% exponentiation
* /% multiplication, division, modulus (remainder)
+ - addition, subtraction
<< >> bitwise shift left, right
< > <= >=
comparison

== I= equality and inequality

& bitwise AND

" bitwise XOR

| bitwise OR

&& logical AND

~" logical XOR

I logical OR

? ternary operator

= 4= —= %= /= Y= &= "= |= <<= >>= &&= ||= ""= xx*=
assignment

s comma operator

Note the precedence of exponentiation in both cases is below that of unary operators, hence
‘=3**2’ evaluates as ‘9’, not -9. Use parentheses where necessary: ‘-(3%%2)’. This is for
compatibility with other shells.

Mathematical functions can be called with the syntax ‘func(args)’, where the function decides
if the args is used as a string or a comma-separated list of arithmetic expressions. The shell
currently defines no mathematical functions by default, but the module zsh/mathfunc may be
loaded with the zmodload builtin to provide standard floating point mathematical functions.

Chapter 12: Conditional Expressions 29

An expression of the form ‘##x’ where x is any character sequence such as ‘a’, ‘"A’, or ‘\M-\C-x’
gives the value of this character and an expression of the form ‘#foo’ gives the value of the first
character of the contents of the parameter foo. Character values are according to the character
set used in the current locale; for multibyte character handling the option MULTIBYTE must be
set. Note that this form is different from ‘$#foo’, a standard parameter substitution which gives
the length of the parameter foo. ‘#\’ is accepted instead of ‘##’, but its use is deprecated.

Named parameters and subscripted arrays can be referenced by name within an arithmetic
expression without using the parameter expansion syntax. For example,

((val2 = vall * 2))
assigns twice the value of $vall to the parameter named val2.

An internal integer representation of a named parameter can be specified with the integer
builtin. Arithmetic evaluation is performed on the value of each assignment to a named param-
eter declared integer in this manner. Assigning a floating point number to an integer results in
rounding down to the next integer.

Likewise, floating point numbers can be declared with the float builtin; there are two types,
differing only in their output format, as described for the typeset builtin. The output format
can be bypassed by using arithmetic substitution instead of the parameter substitution, i.e.
‘${float}’ uses the defined format, but ‘$((float))’ uses a generic floating point format.

Promotion of integer to floating point values is performed where necessary. In addition, if any
operator which requires an integer (‘~’, ‘&’, ‘|7, **7) ‘%7, ‘<<’, >>’ and their equivalents with
assignment) is given a floating point argument, it will be silently rounded down to the next
integer.

Scalar variables can hold integer or floating point values at different times; there is no memory
of the numeric type in this case.

If a variable is first assigned in a numeric context without previously being declared, it will be
implicitly typed as integer or float and retain that type either until the type is explicitly
changed or until the end of the scope. This can have unforeseen consequences. For example, in
the loop

for ((£ =0; £f<1; f +=0.1)); do
use $f
done

if £ has not already been declared, the first assignment will cause it to be created as an integer,
and consequently the operation ‘f += 0.1’ will always cause the result to be truncated to zero,
so that the loop will fail. A simple fix would be to turn the initialization into ‘f = 0.0’. It is
therefore best to declare numeric variables with explicit types.

12 Conditional Expressions

A conditional expression is used with the [[compound command to test attributes of files and
to compare strings. Each expression can be constructed from one or more of the following unary
or binary expressions:

-a file true if file exists.

-b file true if file exists and is a block special file.

-c file true if file exists and is a character special file.
-q file true if file exists and is a directory.

-e file true if file exists.

Chapter 12: Conditional Expressions 30

-f file true if file exists and is a regular file.

-g file true if file exists and has its setgid bit set.
-h file true if file exists and is a symbolic link.
-k file true if file exists and has its sticky bit set.

-n string true if length of string is non-zero.

-o option true if option named option is on. option may be a single character, in which case
it is a single letter option name. (See Section 16.1 [Specifying Options], page 85.)

-p file true if file exists and is a FIFO special file (named pipe).

-r file true if file exists and is readable by current process.

-s file true if file exists and has size greater than zero.

-t fd true if file descriptor number fd is open and associated with a terminal device. (note:

fd is not optional)

-u file true if file exists and has its setuid bit set.
-w file true if file exists and is writable by current process.
-x file true if file exists and is executable by current process. If file exists and is a directory,

then the current process has permission to search in the directory.

-z string true if length of string is zero.

-L file true if file exists and is a symbolic link.

-0 file true if file exists and is owned by the effective user ID of this process.

-G file true if file exists and its group matches the effective group ID of this process.
=S file true if file exists and is a socket.

-N file true if file exists and its access time is not newer than its modification time.

filel -nt file2
true if filel exists and is newer than file2.

filel -ot file2
true if filel exists and is older than file2.

filel —ef file2
true if filel and file2 exist and refer to the same file.

string = pattern

string == pattern
true if string matches pattern. The ‘==" form is the preferred one. The ‘=’ form is
for backward compatibility and should be considered obsolete.

string !'= pattern
true if string does not match pattern.

string =" regexp
true if string matches the regular expression regexp. If the option RE_MATCH_PCRE is
set regexp is tested as a PCRE regular expression using the zsh/pcre module, else
it is tested as a POSIX extended regular expression using the zsh/regex module.
Upon successful match, some variables will be updated; no variables are changed if
the matching fails.

If the option BASH_REMATCH is not set the scalar parameter MATCH is set to the
substring that matched the pattern and the integer parameters MBEGIN and MEND to

Chapter 12: Conditional Expressions 31

the index of the start and end, respectively, of the match in string, such that if string
is contained in variable var the expression ‘${var[SMBEGIN,$MEND]}’ is identical
to ‘SMATCH’. The setting of the option KSH_ARRAYS is respected. Likewise, the
array match is set to the substrings that matched parenthesised subexpressions and
the arrays mbegin and mend to the indices of the start and end positions, respectively,
of the substrings within string. The arrays are not set if there were no parenthesised
subexpresssions. For example, if the string ‘a short string’ is matched against
the regular expression ‘s(...)t’, then (assuming the option KSH_ARRAYS is not set)
MATCH, MBEGIN and MEND are ‘short’, 3 and 7, respectively, while match, mbegin and
mend are single entry arrays containing the strings ‘hor’, ‘4’ and ‘6, respectively.

If the option BASH_REMATCH is set the array BASH_REMATCH is set to the substring
that matched the pattern followed by the substrings that matched parenthesised
subexpressions within the pattern.

stringl < string2

true if stringl comes before string2 based on ASCII value of their characters.

stringl > string2

true if stringl comes after string2 based on ASCII value of their characters.

expl -eq exp2

expl

expl

expl

expl

expl

(exp)

I exp

true if expl is numerically equal to exp2. Note that for purely numeric comparisons
use of the ((...)) builtin described in Chapter 11 [Arithmetic Evaluation], page 26
is more convenient than conditional expressions.

-ne exp2

true if expl is numerically not equal to exp2.

-1t exp2

true if expl is numerically less than exp2.

-gt exp2

true if expl is numerically greater than exp2.

-le exp2

true if expl is numerically less than or equal to exp2.

-ge exp2

true if expl is numerically greater than or equal to exp2.
true if exp is true.

true if exp is false.

expl && exp2

true if expl and exp2 are both true.

expl || exp2

true if either expl or exp?2 is true.

Normal shell expansion is performed on the file, string and pattern arguments, but the result
of each expansion is constrained to be a single word, similar to the effect of double quotes.
Filename generation is not performed on any form of argument to conditions. However, pattern
metacharacters are active for the pattern arguments; the patterns are the same as those used
for filename generation, see Section 14.8 [Filename Generation], page 57, but there is no special
behaviour of ‘/’ nor initial dots, and no glob qualifiers are allowed.

In each of the above expressions, if file is of the form ‘/dev/fd/n’, where n is an integer, then
the test applied to the open file whose descriptor number is n, even if the underlying system
does not support the /dev/fd directory.

Chapter 13: Prompt Expansion 32

In the forms which do numeric comparison, the expressions exp undergo arithmetic expansion
as if they were enclosed in $((...)).

For example, the following;:
[[(-f foo || -f bar) && $report = y*]] && print File exists.

tests if either file foo or file bar exists, and if so, if the value of the parameter report begins
with ‘y’; if the complete condition is true, the message ‘File exists.’ is printed.

13 Prompt Expansion

13.1 Expansion of Prompt Sequences
Prompt sequences undergo a special form of expansion. This type of expansion is also available
using the -P option to the print builtin.

If the PROMPT_SUBST option is set, the prompt string is first subjected to parameter expansion,
command substitution and arithmetic expansion. See Chapter 14 [Expansion], page 36.

Certain escape sequences may be recognised in the prompt string.

If the PROMPT_BANG option is set, a ‘!’ in the prompt is replaced by the current history event
number. A literal ‘!’ may then be represented as ‘!!’.

If the PROMPT_PERCENT option is set, certain escape sequences that start with ‘%’ are expanded.
Many escapes are followed by a single character, although some of these take an optional integer
argument that should appear between the ‘%’ and the next character of the sequence. More
complicated escape sequences are available to provide conditional expansion.

13.2 Simple Prompt Escapes

13.2.1 Special characters
hh A
h) A9

13.2.2 Login information

yal The line (tty) the user is logged in on, without ‘/dev/’ prefix. If the name starts
with ‘/dev/tty’, that prefix is stripped.

yAUl The full machine hostname.

Jm The hostname up to the first *.”. An integer may follow the ‘%’ to specify how

many components of the hostname are desired. With a negative integer, trailing
components of the hostname are shown.

%n $USERNAME.

hy The line (tty) the user is logged in on, without ‘/dev/’ prefix. This does not treat
‘/dev/tty’ names specially.

13.2.3 Shell state

yA: A ‘# if the shell is running with privileges, a ‘%’ if not. Equivalent to ‘%(!.#.%%)’.
The definition of ‘privileged’, for these purposes, is that either the effective user 1D
is zero, or, if POSIX.le capabilities are supported, that at least one capability is
raised in either the Effective or Inheritable capability vectors.

Chapter 13: Prompt Expansion 33

%?
/.

hd

oy~

%h
%!

hi

%I

%]

%L
A

%x

%c
%
%C

The return status of the last command executed just before the prompt.

The status of the parser, i.e. the shell constructs (like ‘if’ and ‘for’) that have been
started on the command line. If given an integer number that many strings will be
printed; zero or negative or no integer means print as many as there are. This is
most useful in prompts PS2 for continuation lines and PS4 for debugging with the
XTRACE option; in the latter case it will also work non-interactively.

Current working directory. If an integer follows the ‘%’, it specifies a number of
trailing components of the current working directory to show; zero means the whole
path. A negative integer specifies leading components, i.e. %-1d specifies the first
component.

As %d and %/, but if the current working directory has a named directory as its
prefix, that part is replaced by a ‘~’ followed by the name of the directory. If it
starts with $HOME, that part is replaced by a ‘™.

Current history event number.

The line number currently being executed in the script, sourced file, or shell function
given by %N. This is most useful for debugging as part of $PS4.

The line number currently being executed in the file %x. This is similar to %i, but
the line number is always a line number in the file where the code was defined, even
if the code is a shell function.

The number of jobs.
The current value of $SHLVL.

The name of the script, sourced file, or shell function that zsh is currently executing,
whichever was started most recently. If there is none, this is equivalent to the
parameter $0. An integer may follow the ‘%’ to specify a number of trailing path
components to show; zero means the full path. A negative integer specifies leading
components.

The name of the file containing the source code currently being executed. This
behaves as %N except that function and eval command names are not shown, instead
the file where they were defined.

Trailing component of the current working directory. An integer may follow the ‘%’
to get more than one component. Unless ‘%C’ is used, tilde contraction is performed
first. These are deprecated as %c and %C are equivalent to %1~ and %1/, respectively,
while explicit positive integers have the same effect as for the latter two sequences.

13.2.4 Date and time

%D
hT

%t
%@

VAS

Yw

The date in yy-mm-dd format.

Current time of day, in 24-hour format.

Current time of day, in 12-hour, am/pm format.
Current time of day in 24-hour format, with seconds.

The date in day-dd format.

Chapter 13: Prompt Expansion 34

AUl
%D{string}

The date in mm/dd/yy format.

string is formatted using the strftime function. See man page strftime(3) for more
details. Various zsh extensions provide numbers with no leading zero or space if the
number is a single digit:

hE a day of the month

yAS the hour of the day on the 24-hour clock

yAR the hour of the day on the 12-hour clock

The GNU extension that a ‘-’ between the % and the format character causes a

leading zero or space to be stripped is handled directly by the shell for the format
characters d, £, H, k, 1, m, M, S and y; any other format characters are provided
to strftime () with any leading ‘-’, present, so the handling is system dependent.
Further GNU extensions are not supported at present.

13.2.5 Visual effects

%B (%b)
hE

WU (%u)
%S (%s)
WE (%E)

hK (%k)

AW

hG

Start (stop) boldface mode.
Clear to end of line.

Start (stop) underline mode.
Start (stop) standout mode.

Start (stop) using a different foreground colour, if supported by the terminal. The
colour may be specified two ways: either as a numeric argument, as normal, or by
a sequence in braces following the %F, for example %F{red}. In the latter case the
values allowed are as described for the fg zle_highlight attribute; Section 18.7
[Character Highlighting], page 167. This means that numeric colours are allowed in
the second format also.

Start (stop) using a different bacKground colour. The syntax is identical to that for
%F and %f.

Include a string as a literal escape sequence. The string within the braces should
not change the cursor position. Brace pairs can nest.

A positive numeric argument between the % and the { is treated as described for %G
below.

Within a %{...%} sequence, include a ‘glitch’: that is, assume that a single character
width will be output. This is useful when outputting characters that otherwise
cannot be correctly handled by the shell, such as the alternate character set on
some terminals. The characters in question can be included within a %{...%} sequence
together with the appropriate number of %G sequences to indicate the correct width.
An integer between the ‘%’ and ‘G’ indicates a character width other than one.
Hence %{seq%2G%} outputs seq and assumes it takes up the width of two standard
characters.

Multiple uses of %G accumulate in the obvious fashion; the position of the %G is
unimportant. Negative integers are not handled.

Note that when prompt truncation is in use it is advisable to divide up output into
single characters within each %{...%} group so that the correct truncation point can
be found.

Chapter 13: Prompt Expansion 35

13.3 Conditional Substrings in Prompts

hv The value of the first element of the psvar array parameter. Following the ‘%’ with
an integer gives that element of the array. Negative integers count from the end of
the array.

% (x.true-text.false-text)
Specifies a ternary expression. The character following the x is arbitrary; the same
character is used to separate the text for the ‘true’ result from that for the ‘false’
result. This separator may not appear in the true-text, except as part of a %-
escape sequence. A ‘)’ may appear in the false-text as ‘%)’. true-text and false-
text may both contain arbitrarily-nested escape sequences, including further ternary
expressions.

The left parenthesis may be preceded or followed by a positive integer n, which
defaults to zero. A negative integer will be multiplied by -1. The test character x
may be any of the following:

! True if the shell is running with privileges.
True if the effective uid of the current process is n.
? True if the exit status of the last command was n.

True if at least n shell constructs were started.

C
/ True if the current absolute path has at least n elements relative to the
root directory, hence / is counted as 0 elements.
c
- True if the current path, with prefix replacement, has at least n elements
relative to the root directory, hence / is counted as 0 elements.
D True if the month is equal to n (January = 0).
d True if the day of the month is equal to n.
g True if the effective gid of the current process is n.
j True if the number of jobs is at least n.
L True if the SHLVL parameter is at least n.
1 True if at least n characters have already been printed on the current
line.
S True if the SECONDS parameter is at least n.
T True if the time in hours is equal to n.
t True if the time in minutes is equal to n.
v True if the array psvar has at least n elements.
True if element n of the array psvar is set and non-empty.
W True if the day of the week is equal to n (Sunday = 0).
%h<string<
%h>string>
% [xstring]

Specifies truncation behaviour for the remainder of the prompt string. The third,
deprecated, form is equivalent to ‘Yxstringx’, i.e. x may be ‘<’ or ‘>’. The numeric

Chapter 14: Expansion 36

argument, which in the third form may appear immediately after the ‘[’, specifies
the maximum permitted length of the various strings that can be displayed in the
prompt. The string will be displayed in place of the truncated portion of any string;
note this does not undergo prompt expansion.

The forms with ‘<’ truncate at the left of the string, and the forms with ‘>’ truncate
at the right of the string. For example, if the current directory is ‘/home/pike’,
the prompt ‘%8<..<%/’ will expand to ‘. .e/pike’. In this string, the terminating
character (‘<’, > or ‘1’), or in fact any character, may be quoted by a preceding
‘\’; note when using print -P, however, that this must be doubled as the string is
also subject to standard print processing, in addition to any backslashes removed
by a double quoted string: the worst case is therefore ‘print -P "7%<\\\\<<...".

If the string is longer than the specified truncation length, it will appear in full,
completely replacing the truncated string.

The part of the prompt string to be truncated runs to the end of the string, or to
the end of the next enclosing group of the ‘% (’ construct, or to the next truncation
encountered at the same grouping level (i.e. truncations inside a ‘%, (’ are separate),
which ever comes first. In particular, a truncation with argument zero (e.g. ‘%<<’)
marks the end of the range of the string to be truncated while turning off truncation
from there on. For example, the prompt '%10<...<%~%<<%+# * will print a trun-
cated representation of the current directory, followed by a ‘%’ or ‘#’, followed by a
space. Without the ‘%<<’, those two characters would be included in the string to
be truncated.

14 Expansion

The following types of expansions are performed in the indicated order in five steps:

History Expansion
This is performed only in interactive shells.

Alias Expansion
Aliases are expanded immediately before the command line is parsed as explained
in Section 6.8 [Aliasing], page 15.

Process Substitution

Parameter Expansion

Command Substitution

Arithmetic Expansion

Brace Expansion
These five are performed in one step in left-to-right fashion. After these expansions,
all unquoted occurrences of the characters ‘\’, >’ and ‘"’ are removed.

Filename Expansion
If the SH_FILE_EXPANSION option is set, the order of expansion is modified for com-
patibility with sh and ksh. In that case filename expansion is performed immediately
after alias expansion, preceding the set of five expansions mentioned above.

Filename Generation
This expansion, commonly referred to as globbing, is always done last.

The following sections explain the types of expansion in detail.

Chapter 14: Expansion 37

14.1 History Expansion

History expansion allows you to use words from previous command lines in the command line
you are typing. This simplifies spelling corrections and the repetition of complicated commands
or arguments. Immediately before execution, each command is saved in the history list, the size
of which is controlled by the HISTSIZE parameter. The one most recent command is always
retained in any case. Each saved command in the history list is called a history event and is
assigned a number, beginning with 1 (one) when the shell starts up. The history number that
you may see in your prompt (see Chapter 13 [Prompt Expansion], page 32) is the number that
is to be assigned to the next command.

14.1.1 Overview

A history expansion begins with the first character of the histchars parameter, which is ‘!’ by
default, and may occur anywhere on the command line; history expansions do not nest. The
‘17 can be escaped with ‘\” or can be enclosed between a pair of single quotes (’?) to suppress
its special meaning. Double quotes will not work for this. Following this history character is
an optional event designator (Section 14.1.2 [Event Designators|, page 37) and then an optional
word designator (Section 14.1.3 [Word Designators|, page 38); if neither of these designators is
present, no history expansion occurs.

Input lines containing history expansions are echoed after being expanded, but before any other
expansions take place and before the command is executed. It is this expanded form that is
recorded as the history event for later references.

By default, a history reference with no event designator refers to the same event as any preceding
history reference on that command line; if it is the only history reference in a command, it refers
to the previous command. However, if the option CSH_JUNKIE_HISTORY is set, then every history
reference with no event specification always refers to the previous command.

For example, ‘!’ is the event designator for the previous command, so ‘!'!:1’ always refers to
the first word of the previous command, and ‘! !'$’ always refers to the last word of the previous
command. With CSH_JUNKIE_HISTORY set, then ‘!:1’ and ‘!'$’ function in the same manner as
“11:17 and ‘11§, respectively. Conversely, if CSH_JUNKIE_HISTORY is unset, then ‘!:1” and ‘!'$’
refer to the first and last words, respectively, of the same event referenced by the nearest other
history reference preceding them on the current command line, or to the previous command if
there is no preceding reference.

The character sequence ‘~foo~bar’ (where ‘~’ is actually the second character of the histchars
parameter) repeats the last command, replacing the string foo with bar. More precisely,
the sequence ‘~foo~bar™’ is synonymous with ‘!'!:s~foo~bar™~’, hence other modifiers (see
Section 14.1.4 [Modifiers|, page 38) may follow the final ‘*’. In particular, ‘~foo~bar~:G’ per-
forms a global substitution.

~9

If the shell encounters the character sequence ‘!"’ in the input, the history mechanism is tem-
porarily disabled until the current list (see Chapter 6 [Shell Grammar], page 9) is fully parsed.
The ‘1" is removed from the input, and any subsequent ‘!’ characters have no special signifi-
cance.

A less convenient but more comprehensible form of command history support is provided by the
fc¢ builtin.

14.1.2 Event Designators

An event designator is a reference to a command-line entry in the history list. In the list below,
remember that the initial ‘!’ in each item may be changed to another character by setting the
histchars parameter.

[P

! Start a history expansion, except when followed by a blank, newline, ‘=" or ‘(.
If followed immediately by a word designator (Section 14.1.3 [Word Designators|,

Chapter 14: Expansion 38

page 38), this forms a history reference with no event designator (Section 14.1.1
[Overview|, page 37).

I Refer to the previous command. By itself, this expansion repeats the previous

command.
'n Refer to command-line n.
I-n Refer to the current command-line minus n.
Istr Refer to the most recent command starting with str.
17str[?] Refer to the most recent command containing str. The trailing ‘?” is necessary if

this reference is to be followed by a modifier or followed by any text that is not to
be considered part of str.

4 Refer to the current command line typed in so far. The line is treated as if it were
complete up to and including the word before the one with the ‘!#’ reference.

1{...} Insulate a history reference from adjacent characters (if necessary).

14.1.3 Word Designators

A word designator indicates which word or words of a given command line are to be included in
a history reference. A ‘:’ usually separates the event specification from the word designator. It

may be omitted only if the word designator begins with a *~’, ‘§’, ‘*’, ‘=" or ‘%’. Word designators
include:

0 The first input word (command).

n The nth argument.

- The first argument. That is, 1.

$ The last argument.

% The word matched by (the most recent) ?str search.

X=y A range of words; x defaults to 0.

* All the arguments, or a null value if there are none.

Xk Abbreviates ‘x-$’.

x= Like ‘x*’ but omitting word $.

Note that a ‘%’ word designator works only when used in one of ‘1%’ “1:% or ‘!?str?:%’, and

only when used after a !? expansion (possibly in an earlier command). Anything else results in
an error, although the error may not be the most obvious one.

14.1.4 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’. These modifiers also work on the result of filename generation
and parameter expansion, except where noted.

a Turn a file name into an absolute path: prepends the current directory, if necessary,
and resolves any use of ‘. .” and ‘.’ in the path. Note that the transformation takes
place even if the file or any intervening directories do not exist.

A As ‘a’, but also resolve use of symbolic links where possible. Note that resolution
of ‘. .7 occurs before resolution of symbolic links. This call is equivalent to a unless
your system has the realpath system call (modern systems do).

Chapter 14: Expansion 39

c Resolve a command name into an absolute path by searching the command path
given by the PATH variable. This does not work for commands containing directory
parts. Note also that this does not usually work as a glob qualifier unless a file of
the same name is found in the current directory.

e Remove all but the part of the filename extension following the ‘.’; see the definition
of the filename extension in the description of the r modifier below. Note that
according to that definition the result will be empty if the string ends with a *.’.

h Remove a trailing pathname component, leaving the head. This works like
‘dirname’.

1 Convert the words to all lowercase.

P Print the new command but do not execute it. Only works with history expansion.

q Quote the substituted words, escaping further substitutions. Works with history

expansion and parameter expansion, though for parameters it is only useful if the
resulting text is to be re-evaluated such as by eval.

Q Remove one level of quotes from the substituted words.
r Remove a filename extension leaving the root name. Strings with no filename ex-
tension are not altered. A filename extension is a ‘.’ followed by any number of

characters (including zero) that are neither ‘.’ nor ‘/’” and that continue to the end
of the string. For example, the extension of ‘foo.orig.c’ is ‘.c’, and ‘dir.c/foo’
has no extension.

s/1/r[/] Substitute r for I as described below. The substitution is done only for the first
string that matches I. For arrays and for filename generation, this applies to each
word of the expanded text. See below for further notes on substitutions.

The forms ‘gs/1/r’ and ‘s/1/r/:G perform global substitution, i.e. substitute every
occurrence of r for I. Note that the g or :G must appear in exactly the position
shown.

See further notes on this form of substitution below.
& Repeat the previous s substitution. Like s, may be preceded immediately by a g.

In parameter expansion the & must appear inside braces, and in filename generation
it must be quoted with a backslash.

t Remove all leading pathname components, leaving the tail. This works like
‘basename’.

u Convert the words to all uppercase.

X Like g, but break into words at whitespace. Does not work with parameter expan-
sion.

The s/1/r/ substitution works as follows. By default the left-hand side of substitutions are not
patterns, but character strings. Any character can be used as the delimiter in place of ‘/°. A
backslash quotes the delimiter character. The character ‘&’, in the right-hand-side r, is replaced
by the text from the left-hand-side I. The ‘&’ can be quoted with a backslash. A null I uses
the previous string either from the previous I or from the contextual scan string s from ‘!7s’.
You can omit the rightmost delimiter if a newline immediately follows r; the rightmost ‘?’ in a
context scan can similarly be omitted. Note the same record of the last I and r is maintained
across all forms of expansion.

Note that if a ‘&’ is used within glob qualifers an extra backslash is needed as a & is a special
character in this case.

Chapter 14: Expansion 40

If the option HIST_SUBST_PATTERN is set, | is treated as a pattern of the usual form described in
Section 14.8 [Filename Generation|, page 57. This can be used in all the places where modifiers
are available; note, however, that in globbing qualifiers parameter substitution has already taken
place, so parameters in the replacement string should be quoted to ensure they are replaced at
the correct time. Note also that complicated patterns used in globbing qualifiers may need the
extended glob qualifier notation (#q:s/.../.../) in order for the shell to recognize the expression
as a glob qualifier. Further, note that bad patterns in the substitution are not subject to the
NO_BAD_PATTERN option so will cause an error.

When HIST_SUBST_PATTERN is set, | may start with a # to indicate that the pattern must match
at the start of the string to be substituted, and a % may appear at the start or after an # to
indicate that the pattern must match at the end of the string to be substituted. The % or # may
be quoted with two backslashes.

For example, the following piece of filename generation code with the EXTENDED_GLOB option:
print *.c(#q:s/#%(#b)s(x).c/’S${match[1]}.C’/)

takes the expansion of *.c and applies the glob qualifiers in the (#q...) expression, which consists
of a substitution modifier anchored to the start and end of each word (#%). This turns on
backreferences ((#b)), so that the parenthesised subexpression is available in the replacement
string as ${match[1]}. The replacement string is quoted so that the parameter is not substituted
before the start of filename generation.

The following £, F, w and W modifiers work only with parameter expansion and filename gener-
ation. They are listed here to provide a single point of reference for all modifiers.

f Repeats the immediately (without a colon) following modifier until the resulting
word doesn’t change any more.

F:expr: Like £, but repeats only n times if the expression expr evaluates to n. Any character
can be used instead of the :7; if ‘C’, ‘[, or ‘{’ is used as the opening delimiter, the
closing delimiter should be ’)’, ‘1’, or ‘}’, respectively.

W Makes the immediately following modifier work on each word in the string.
W:sep: Like w but words are considered to be the parts of the string that are separated by
sep. Any character can be used instead of the ‘:’; opening parentheses are handled

specially, see above.

14.2 Process Substitution

Each part of a command argument that takes the form ‘< (list)’, *>(list)’ or ‘=(list)’ is subject to
process substitution. The expression may be preceded or followed by other strings except that,
to prevent clashes with commonly occurring strings and patterns, the last form must occur at
the start of a command argument, and the forms are only expanded when first parsing command
or assignment arguments. Process substitutions may be used following redirection operators; in
this case, the substitution must appear with no trailing string.

In the case of the < or > forms, the shell runs the commands in list as a subprocess of the job
executing the shell command line. If the system supports the /dev/fd mechanism, the command
argument is the name of the device file corresponding to a file descriptor; otherwise, if the system
supports named pipes (FIFOs), the command argument will be a named pipe. If the form with
> is selected then writing on this special file will provide input for Iist. If < is used, then the file
passed as an argument will be connected to the output of the list process. For example,

paste <(cut -f1 filel) <(cut -f3 file2) |
tee >(processl) >(process2) >/dev/null

cuts fields 1 and 3 from the files filel and file2 respectively, pastes the results together, and
sends it to the processes processl and process2.

Chapter 14: Expansion 41

If =(...) is used instead of <(...), then the file passed as an argument will be the name of a
temporary file containing the output of the list process. This may be used instead of the < form
for a program that expects to lseek (see man page Iseek(2)) on the input file.

There is an optimisation for substitutions of the form =(<<<arg), where arg is a single-word
argument to the here-string redirection <<<. This form produces a file name containing the value
of arg after any substitutions have been performed. This is handled entirely within the current
shell. This is effectively the reverse of the special form $(<arg) which treats arg as a file name
and replaces it with the file’s contents.

The = form is useful as both the /dev/fd and the named pipe implementation of <(...) have
drawbacks. In the former case, some programmes may automatically close the file descriptor
in question before examining the file on the command line, particularly if this is necessary
for security reasons such as when the programme is running setuid. In the second case, if
the programme does not actually open the file, the subshell attempting to read from or write
to the pipe will (in a typical implementation, different operating systems may have different
behaviour) block for ever and have to be killed explicitly. In both cases, the shell actually
supplies the information using a pipe, so that programmes that expect to lseek (see man page
Iseek(2)) on the file will not work.
Also note that the previous example can be more compactly and efficiently written (provided
the MULTIOS option is set) as:

paste <(cut -f1 filel) <(cut -f3 file2) > >(processl) > >(process2)
The shell uses pipes instead of FIFOs to implement the latter two process substitutions in the
above example.
There is an additional problem with >(process); when this is attached to an external command,
the parent shell does not wait for process to finish and hence an immediately following command
cannot rely on the results being complete. The problem and solution are the same as described
in the section MULTIOS in Chapter 7 [Redirection|, page 16. Hence in a simplified version of
the example above:

paste <(cut -f1 filel) <(cut -f3 file2) > >(process)
(note that no MULTIOS are involved), process will be run asynchronously as far as the parent
shell is concerned. The workaround is:

{ paste <(cut -f1 filel) <(cut -f3 file2) } > >(process)
The extra processes here are spawned from the parent shell which will wait for their completion.
Another problem arises any time a job with a substitution that requires a temporary file is
disowned by the shell, including the case where ‘&!” or ‘&|’ appears at the end of a command
containing a subsitution. In that case the temporary file will not be cleaned up as the shell no
longer has any memory of the job. A workaround is to use a subshell, for example,

(mycmd =(myoutput)) &!
as the forked subshell will wait for the command to finish then remove the temporary file.
A general workaround to ensure a process substitution endures for an appropriate length of time
is to pass it as a parameter to an anonymous shell function (a piece of shell code that is run
immediately with function scope). For example, this code:

O 1

print File $1:
cat $1

} =(print This be the verse)
outputs something resembling the following

File /tmp/zsh6nU0kS:

This be the verse

The temporary file created by the process substitution will be deleted when the function exits.

Chapter 14: Expansion 42

14.3 Parameter Expansion

The character ‘¢’ is used to introduce parameter expansions. See Chapter 15 [Parameters],
page 67 for a description of parameters, including arrays, associative arrays, and subscript
notation to access individual array elements.

Note in particular the fact that words of unquoted parameters are not automatically split on
whitespace unless the option SH_WORD_SPLIT is set; see references to this option below for more
details. This is an important difference from other shells.

In the expansions discussed below that require a pattern, the form of the pattern is the same
as that used for filename generation; see Section 14.8 [Filename Generation], page 57. Note
that these patterns, along with the replacement text of any substitutions, are themselves sub-
ject to parameter expansion, command substitution, and arithmetic expansion. In addition to
the following operations, the colon modifiers described in Section 14.1.4 [Modifiers|, page 38
in Section 14.1 [History Expansion]|, page 37 can be applied: for example, ${i:s/foo/bar/?}
performs string substitution on the expansion of parameter $i.

${name} The value, if any, of the parameter name is substituted. The braces are required
if the expansion is to be followed by a letter, digit, or underscore that is not to be
interpreted as part of name. In addition, more complicated forms of substitution
usually require the braces to be present; exceptions, which only apply if the option
KSH_ARRAYS is not set, are a single subscript or any colon modifiers appearing after
the name, or any of the characters ‘~7, ‘=", *™7 ‘#’ or ‘+’ appearing before the name,
all of which work with or without braces.

If name is an array parameter, and the KSH_ARRAYS option is not set, then the
value of each element of name is substituted, one element per word. Otherwise, the
expansion results in one word only; with KSH_ARRAYS, this is the first element of an
array. No field splitting is done on the result unless the SH_WORD_SPLIT option is
set. See also the flags = and s:string:.

${+name} If name is the name of a set parameter ‘1’ is substituted, otherwise ‘0’ is substituted.

${name-word}

${name:-word}
If name is set, or in the second form is non-null, then substitute its value; otherwise
substitute word. In the second form name may be omitted, in which case word is
always substituted.

${name+word}

${name:+word}
If name is set, or in the second form is non-null, then substitute word; otherwise
substitute nothing.

${name=word}

${name:=word}

${name: :=word}
In the first form, if name is unset then set it to word; in the second form, if name
is unset or null then set it to word; and in the third form, unconditionally set name
to word. In all forms, the value of the parameter is then substituted.

${name?word}

${name: ?word}
In the first form, if name is set, or in the second form if name is both set and
non-null, then substitute its value; otherwise, print word and exit from the shell.
Interactive shells instead return to the prompt. If word is omitted, then a standard
message is printed.

Chapter 14: Expansion 43

In any of the above expressions that test a variable and substitute an alternate word, note that
you can use standard shell quoting in the word value to selectively override the splitting done
by the SH_WORD_SPLIT option and the = flag, but not splitting by the s:string: flag.

In the following expressions, when name is an array and the substitution is not quoted, or if the
‘(@) flag or the name[@] syntax is used, matching and replacement is performed on each array
element separately.

${name#pattern}

${name#t#tpatternt
If the pattern matches the beginning of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

${namey,pattern}

${namel}pattern}
If the pattern matches the end of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

${name:#pattern’
If the pattern matches the value of name, then substitute the empty string; oth-
erwise, just substitute the value of name. If name is an array the matching array
elements are removed (use the ‘(M)’ flag to remove the non-matched elements).

${name: | arrayname}
If arrayname is the name (N.B., not contents) of an array variable, then any ele-
ments contained in arrayname are removed from the substitution of name. If the
substitution is scalar, either because name is a scalar variable or the expression is
quoted, the elements of arrayname are instead tested against the entire expression.

${name:*arrayname}
Similar to the preceding subsitution, but in the opposite sense, so that entries present
in both the original substitution and as elements of arrayname are retained and
others removed.

${name: offset}

${name: offset: length}
This syntax gives effects similar to parameter subscripting in the form
$name [start,end], but is compatible with other shells; note that both offset and
length are interpreted differently from the components of a subscript.

If offset is non-negative, then if the variable name is a scalar substitute the contents
starting offset characters from the first character of the string, and if name is an
array substitute elements starting offset elements from the first element. If length
is given, substitute that many characters or elements, otherwise the entire rest of
the scalar or array.

A positive offset is always treated as the offset of a character or element in name
from the first character or element of the array (this is different from native zsh
subscript notation). Hence 0 refers to the first character or element regardless of
the setting of the option KSH_ARRAYS.

A negative offset counts backwards from the end of the scalar or array, so that -1
corresponds to the last character or element, and so on.

Chapter 14: Expansion 44

When positive, length counts from the offset position toward the end of the scalar or
array. When negative, length counts back from the end. If this results in a position
smaller than offset, a diagnostic is printed and nothing is substituted.

The option MULTIBYTE is obeyed, i.e. the offset and length count multibyte charac-
ters where appropriate.

offset and length undergo the same set of shell substitutions as for scalar assignment;
in addition, they are then subject to arithmetic evaluation. Hence, for example

print ${foo:3}

print ${foo: 1 + 2}

print ${foo:$((1 + 2))%}
print ${foo:$(echo 1 + 2)}

all have the same effect, extracting the string starting at the fourth character of $foo
if the substution would otherwise return a scalar, or the array starting at the fourth
element if $foo would return an array. Note that with the option KSH_ARRAYS $foo
always returns a scalar (regardless of the use of the offset syntax) and a form such
as $foo[*] :3 is required to extract elements of an array named foo.

If offset is negative, the - may not appear immediately after the : as this indicates
the ${name:-word} form of substitution. Instead, a space may be inserted before
the —. Furthermore, neither offset nor length may begin with an alphabetic character
or & as these are used to indicate history-style modifiers. To substitute a value from
a variable, the recommended approach is to precede it with a $ as this signifies
the intention (parameter substitution can easily be rendered unreadable); however,
as arithmetic substitution is performed, the expression ${var: offs} does work,
retrieving the offset from $offs.

For further compatibility with other shells there is a special case for array offset 0.
This usually accesses to the first element of the array. However, if the substitution
refers the positional parameter array, e.g. $@ or $*, then offset 0 instead refers
to $0, offset 1 refers to $1, and so on. In other words, the positional parameter
array is effectively extended by prepending $0. Hence ${*:0:13} substitutes $0 and
${*:1:1} substitutes $1.

${name/pattern/repl}

${name//pattern/repl}
Replace the longest possible match of pattern in the expansion of parameter name
by string repl. The first form replaces just the first occurrence, the second form
all occurrences. Both pattern and repl are subject to double-quoted substitution,
so that expressions like ${name/$opat/$npat} will work, but note the usual rule
that pattern characters in $opat are not treated specially unless either the option
GLOB_SUBST is set, or $opat is instead substituted as ${ opat}.

The pattern may begin with a ‘#’, in which case the pattern must match at the
start of the string, or ‘%’, in which case it must match at the end of the string, or
‘#%’ in which case the pattern must match the entire string. The repl may be an
empty string, in which case the final ‘/’ may also be omitted. To quote the final </’
in other cases it should be preceded by a single backslash; this is not necessary if
the ¢/7 occurs inside a substituted parameter. Note also that the ‘#’, ‘%’ and ‘#% are
not active if they occur inside a substituted parameter, even at the start.

The first */” may be preceded by a ‘:’, in which case the match will only succeed if
it matches the entire word. Note also the effect of the I and S parameter expansion
flags below; however, the flags M, R, B, E and N are not useful.

For example,

Chapter 14: Expansion 45

foo="twinkle twinkle little star" sub="t*e" rep="spy"
print ${foo//${"sub}/$rep’
print ${(S)foo//${ subl}/$rep’}

Here, the **7 ensures that the text of $sub is treated as a pattern rather than a plain
string. In the first case, the longest match for t*e is substituted and the result is
‘spy star’, while in the second case, the shortest matches are taken and the result
is ‘spy spy lispy star’.

${#tspec}t If spec is one of the above substitutions, substitute the length in characters of the
result instead of the result itself. If spec is an array expression, substitute the
number of elements of the result. Note that ‘*’, ‘=", and ‘~’, below, must appear to
the left of ‘#’ when these forms are combined.

${"spec} Turn on the RC_EXPAND_PARAM option for the evaluation of spec; if the ‘*” is doubled,
turn it off. When this option is set, array expansions of the form foo${xx}bar, where
the parameter xx is set to (a b ¢), are substituted with ‘fooabar foobbar foocbar’
instead of the default ‘fooa b cbar’. Note that an empty array will therefore cause
all arguments to be removed.

Internally, each such expansion is converted into the equivalent list for brace expan-
sion. E.g., ${"var} becomes {$var[1],$var[2],...}, and is processed as described
in Section 14.6 [Brace Expansion], page 54 below. If word splitting is also in effect
the $var [N] may themselves be split into different list elements.

${=spec} Perform word splitting using the rules for SH_WORD_SPLIT during the evaluation of
spec, but regardless of whether the parameter appears in double quotes; if the ‘=’
is doubled, turn it off. This forces parameter expansions to be split into separate
words before substitution, using IFS as a delimiter. This is done by default in most
other shells.

Note that splitting is applied to word in the assignment forms of spec before the
assignment to name is performed. This affects the result of array assignments with
the A flag.

${"spec} Turn on the GLOB_SUBST option for the evaluation of spec; if the ‘~’ is doubled,
turn it off. When this option is set, the string resulting from the expansion will be
interpreted as a pattern anywhere that is possible, such as in filename expansion
and filename generation and pattern-matching contexts like the right hand side of
the ‘=" and ‘!=’ operators in conditions.

In nested substitutions, note that the effect of the = applies to the result of the
current level of substitution. A surrounding pattern operation on the result may
cancel it. Hence, for example, if the parameter foo is set to *, ${"foo//*/*.c}
is substituted by the pattern *.c, which may be expanded by filename generation,
but ${${ "foo}//*/*.c} substitutes to the string *.c, which will not be further
expanded.

If a ${...} type parameter expression or a $(...) type command substitution is used in place of
name above, it is expanded first and the result is used as if it were the value of name. Thus it
is possible to perform nested operations: ${${foo#thead}¥%taill} substitutes the value of $foo
with both ‘head’ and ‘tail’ deleted. The form with $(...) is often useful in combination with
the flags described next; see the examples below. Each name or nested ${...} in a parameter
expansion may also be followed by a subscript expression as described in Section 15.2 [Array
Parameters]|, page 68.

Note that double quotes may appear around nested expressions, in which case only the part
inside is treated as quoted; for example, ${(£)"$(fo0)"} quotes the result of $(foo), but the
flag ‘(£)’ (see below) is applied using the rules for unquoted expansions. Note further that

Chapter 14: Expansion 46

quotes are themselves nested in this context; for example, in "${(@f)"$(foo) "}", there are two
sets of quotes, one surrounding the whole expression, the other (redundant) surrounding the
$(foo) as before.

14.3.1 Parameter Expansion Flags

If the opening brace is directly followed by an opening parenthesis, the string up to the matching
closing parenthesis will be taken as a list of flags. In cases where repeating a flag is meaningful,
the repetitions need not be consecutive; for example, ‘(q%q%q)’ means the same thing as the
more readable ‘(%%qqq)’. The following flags are supported:

#

b

Evaluate the resulting words as numeric expressions and output the characters cor-
responding to the resulting integer. Note that this form is entirely distinct from use
of the # without parentheses.

If the MULTIBYTE option is set and the number is greater than 127 (i.e. not an ASCII
character) it is treated as a Unicode character.

Expand all % escapes in the resulting words in the same way as in prompts
(see Chapter 13 [Prompt Expansion|, page 32). If this flag is given twice, full
prompt expansion is done on the resulting words, depending on the setting of the
PROMPT_PERCENT, PROMPT_SUBST and PROMPT_BANG options.

In double quotes, array elements are put into separate words. E.g., ‘"${(@)foo}"’
is equivalent to ‘"${foo[@]}" and ‘"${(@)foo[1,2]}" is the same as ‘"$foo[1]"
"$foo[2]"’. This is distinct from field splitting by the £, s or z flags, which still
applies within each array element.

Create an array parameter with ‘${...=...}", ‘${...:=...}" or ‘${...::=...}". If this
flag is repeated (as in ‘AA’), create an associative array parameter. Assignment is
made before sorting or padding. The name part may be a subscripted range for
ordinary arrays; the word part must be converted to an array, for example by using
‘${(AA)=name=...} " to activate field splitting, when creating an associative array.

Sort in array index order; when combined with ‘0’ sort in reverse array index order.
Note that ‘a’ is therefore equivalent to the default but ‘0a’ is useful for obtaining
an array’s elements in reverse order.

With ${#name}, count the total number of characters in an array, as if the elements
were concatenated with spaces between them.

Capitalize the resulting words. ‘Words’ in this case refers to sequences of alphanu-
meric characters separated by non-alphanumerics, not to words that result from
field splitting.

Assume the string or array elements contain directories and attempt to substitute
the leading part of these by names. The remainder of the path (the whole of it if
the leading part was not subsituted) is then quoted so that the whole string can be
used as a shell argument. This is the reverse of ‘=’ substitution: see Section 14.7
[Filename Expansion|, page 54.

Perform parameter expansion, command substitution and arithmetic expansion on
the result. Such expansions can be nested but too deep recursion may have unpre-
dictable effects.

Split the result of the expansion at newlines. This is a shorthand for ‘ps:\n:’.

Join the words of arrays together using newline as a separator. This is a shorthand
for ‘pj:\n:".

Chapter 14: Expansion 47

g:opts:

Process escape sequences like the echo builtin when no options are given (g::).
With the o option, octal escapes don’t take a leading zero. With the c option,
sequences like ‘"X’ are also processed. With the e option, processes ‘\M-t’ and
similar sequences like the print builtin. With both of the o and e options, behaves
like the print builtin except that in none of these modes is ‘\c’ interpreted.

Sort case-insensitively. May be combined with ‘n’ or ‘0’.

If name refers to an associative array, substitute the keys (element names) rather
than the values of the elements. Used with subscripts (including ordinary arrays),
force indices or keys to be substituted even if the subscript form refers to values.
However, this flag may not be combined with subscript ranges.

Convert all letters in the result to lower case.

Sort decimal integers numerically; if the first differing characters of two test strings
are not digits, sorting is lexical. Integers with more initial zeroes are sorted before
those with fewer or none. Hence the array ‘fool f0002 foo02 foo3 f0020 f0023’
is sorted into the order shown. May be combined with ‘i’ or ‘0’.

Sort the resulting words in ascending order; if this appears on its own the sorting
is lexical and case-sensitive (unless the locale renders it case-insensitive). Sorting
in ascending order is the default for other forms of sorting, so this is ignored if

7l

combined with ‘a’, ‘i’ or ‘n’.

Sort the resulting words in descending order; ‘0’ without ‘a’, ‘i’ or ‘n’ sorts in reverse
lexical order. May be combined with ‘a’; ‘i’ or ‘n’ to reverse the order of sorting.

This forces the value of the parameter name to be interpreted as a further parameter
name, whose value will be used where appropriate. Note that flags set with one of
the typeset family of commands (in particular case transformations) are not applied
to the value of name used in this fashion.

If used with a nested parameter or command substitution, the result of that will be
taken as a parameter name in the same way. For example, if you have ‘foo=bar’
and ‘bar=baz’, the strings ${(P)foo}, ${(P)${fool}}, and ${(P)$(echo bar)} will
be expanded to ‘baz’.

Quote characters that are special to the shell in the resulting words with backslashes;
unprintable or invalid characters are quoted using the $>\NNN’ form, with separate
quotes for each octet.

If this flag is given twice, the resulting words are quoted in single quotes and if it is
given three times, the words are quoted in double quotes; in these forms no special
handling of unprintable or invalid characters is attempted. If the flag is given four
times, the words are quoted in single quotes preceded by a $. Note that in all three
of these forms quoting is done unconditionally, even if this does not change the way
the resulting string would be interpreted by the shell.

If a g- is given (only a single q may appear), a minimal form of single quoting is
used that only quotes the string if needed to protect special characters. Typically
this form gives the most readable output.

Remove one level of quotes from the resulting words.

Use a string describing the type of the parameter where the value of the parameter
would usually appear. This string consists of keywords separated by hyphens (‘-’).
The first keyword in the string describes the main type, it can be one of ‘scalar’,
‘array’, ‘integer’, ‘float’ or ‘association’. The other keywords describe the type

in more detail:

Chapter 14: Expansion 48

0

local for local parameters
left for left justified parameters

right_blanks
for right justified parameters with leading blanks

right_zeros
for right justified parameters with leading zeros

lower for parameters whose value is converted to all lower case when it is
expanded

upper for parameters whose value is converted to all upper case when it is
expanded

readonly for readonly parameters

tag for tagged parameters

export for exported parameters

unique for arrays which keep only the first occurrence of duplicated values

hide for parameters with the ‘hide’ flag

special for special parameters defined by the shell
Expand only the first occurrence of each unique word.
Convert all letters in the result to upper case.

Used with k, substitute (as two consecutive words) both the key and the value of
each associative array element. Used with subscripts, force values to be substituted
even if the subscript form refers to indices or keys.

Make any special characters in the resulting words visible.

With ${#name}, count words in arrays or strings; the s flag may be used to set a
word delimiter.

Similar to w with the difference that empty words between repeated delimiters are
also counted.

With this flag, parsing errors occurring with the Q, e and # flags or the pattern
matching forms such as ‘${name#tpattern}’ are reported. Without the flag, errors
are silently ignored.

Split the result of the expansion into words using shell parsing to find the words, i.e.
taking into account any quoting in the value. Comments are not treated specially
but as ordinary strings, similar to interactive shells with the INTERACTIVE_COMMENTS
option unset (however, see the Z flag below for related options)

Note that this is done very late, even later than the ‘(s)’ flag. So to access single
words in the result use nested expansions as in ‘${${(z)foo}[2]}’. Likewise, to
remove the quotes in the resulting words use ‘${(Q)${(z)foo}}’.

Split the result of the expansion on null bytes. This is a shorthand for ‘ps:\0:’.

The following flags (except p) are followed by one or more arguments as shown. Any character,
or the matching pairs ‘(...)", ‘“{...}’, ‘[...]7, or ‘<...>’, may be used in place of a colon as delimiters,
but note that when a flag takes more than one argument, a matched pair of delimiters must
surround each argument.

p

Recognize the same escape sequences as the print builtin in string arguments to
any of the flags described below that follow this argument.

Chapter 14: Expansion 49

j:string:

Force string arguments to any of the flags below that follow within the parentheses
to be treated as patterns. Compare with a ~ outside parentheses, which forces the
entire substituted string to be treated as a pattern. Hence, for example,

(L "?" = ${("j.|.)array} 1]
with the EXTENDED_GLOB option set succeeds if and only if $array contains the string

‘?” as an element. The argument may be repeated to toggle the behaviour; its effect
only lasts to the end of the parenthesised group.

Join the words of arrays together using string as a separator. Note that this occurs
before field splitting by the s:string: flag or the SH_WORD_SPLIT option.

l:expr: :stringl : :string2:

Pad the resulting words on the left. Each word will be truncated if required and
placed in a field expr characters wide.

The arguments :stringl : and :string2: are optional; neither, the first, or both may
be given. Note that the same pairs of delimiters must be used for each of the three
arguments. The space to the left will be filled with stringl (concatenated as often
as needed) or spaces if stringl is not given. If both stringl and string2 are given,
string?2 is inserted once directly to the left of each word, truncated if necessary,
before stringl is used to produce any remaining padding.

If the MULTIBYTE option is in effect, the flag m may also be given, in which case
widths will be used for the calculation of padding; otherwise individual multibyte
characters are treated as occupying one unit of width.

If the MULTIBYTE option is not in effect, each byte in the string is treated as occupying
one unit of width.

Control characters are always assumed to be one unit wide; this allows the mecha-
nism to be used for generating repetitions of control characters.

Only useful together with one of the flags 1 or r or with the # length operator when
the MULTIBYTE option is in effect. Use the character width reported by the system
in calculating how much of the string it occupies or the overall length of the string.
Most printable characters have a width of one unit, however certain Asian character
sets and certain special effects use wider characters; combining characters have zero
width. Non-printable characters are arbitrarily counted as zero width; how they
would actually be displayed will vary.

If the m is repeated, the character either counts zero (if it has zero width), else
one. For printable character strings this has the effect of counting the number of
glyphs (visibly separate characters), except for the case where combining characters
themselves have non-zero width (true in certain alphabets).

r:expr: :stringl : :string2:

s:string:

As 1, but pad the words on the right and insert string2 immediately to the right of
the string to be padded.

Left and right padding may be used together. In this case the strategy is to apply
left padding to the first half width of each of the resulting words, and right padding
to the second half. If the string to be padded has odd width the extra padding is
applied on the left.

Force field splitting at the separator string. Note that a string of two or more
characters means that all of them must match in sequence; this differs from the
treatment of two or more characters in the IFS parameter. See also the = flag and
the SH_WORD_SPLIT option. An empty string may also be given in which case every
character will be a separate element.

Chapter 14: Expansion 50

Z:opts:

_:flags:

For historical reasons, the usual behaviour that empty array elements are retained
inside double quotes is disabled for arrays generated by splitting; hence the following:

line="one: :three"
print -1 "${(s.:.)line}"

produces two lines of output for one and three and elides the empty field. To
override this behaviour, supply the "(@)" flag as well, i.e. "${(@s.:.)1line}".

As z but takes a combination of option letters between a following pair of delimiter
characters. With no options the effect is identical to z. (Z+c+) causes comments
to be parsed as a string and retained; any field in the resulting array beginning
with an unquoted comment character is a comment. (Z+C+) causes comments to be
parsed and removed. The rule for comments is standard: anything between a word
starting with the third character of $HISTCHARS, default #, up to the next newline is
a comment. (Z+n+) causes unquoted newlines to be treated as ordinary whitespace,
else they are treated as if they are shell code delimiters and converted to semicolons.
Options are combined within the same set of delimiters, e.g. (Z+Cn+).

The underscore (_) flag is reserved for future use. As of this revision of zsh, there
are no valid flags; anything following an underscore, other than an empty pair of
delimiters, is treated as an error, and the flag itself has no effect.

The following flags are meaningful with the ${...#...} or ${...%...} forms. The S and I flags may
also be used with the ${.../...} forms.

S

I:expr:

o= 2 M w

Search substrings as well as beginnings or ends; with # start from the beginning and
with