LIBINT  2.1.0-stable
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 Clibint2::AbstractPurgeableStackPurgeableStack is a container that can be purged by calling purge() method
 Clibint2::anyEmulates boost::any
 Clibint2::tr1::array::array< T, N >Array idential to C++0X arrays
 Clibint2::tr1::array::array< LIBINT2_UINT_LEAST64, libint2::CGShell::max_qn+1 >
 Clibint2::tr1::array::array< LIBINT2_UINT_LEAST64, libint2::OriginDerivative::max_deriv+1 >
 Clibint2::tr1::array::array< real_t, 3 >
 Clibint2::tr1::array::array< T, 0 >
 Clibint2::ArrayBraket< BFS, NP >ArrayBraket is a lightweight implementation of Braket concept
 Clibint2::Atom
 CBasicKernel< Real, >
 Clibint2::BraketPair< BFS, BKType >BraketPair is a trimmed down version of ArrayBraket specialized for same-particle or different-particle pairs of functions
 Clibint2::CGShellInfo< OrderingData >Ordering maps for up to angular momentum lmax and ordering specified by CGShellOrderingSpec
 Clibint2::CGShellOrderingData< Ord, lmax >
 Clibint2::CGShellOrderingGenerator< Ord, lmax >
 Clibint2::CGShellOrderingGenerator< CGShellOrdering_GAMESS, lmax >
 Clibint2::CGShellOrderingGenerator< CGShellOrdering_ORCA, lmax >
 Clibint2::CGShellOrderingGenerator< CGShellOrdering_Standard, lmax >
 Clibint2::ChildFactory< GenRR, ChildType >Helps GenericRecurrenceRelation to work around the compiler problem with make_child
 Clibint2::TwoBodyEngine< Kernel >::class_id
 Clibint2::TwoBodyEngine< Kernel >::class_profile
 Clibint2::ClassInfo< T >Objects of this type provide limited information about the class at runtime
 Clibint2::ClassRegistryThis is a unique registry of classes
 Clibint2::CodeBlock
 Clibint2::CodeContextCodeContext provides context for generating code
 Clibint2::CodeSymbolsClass CodeSymbols specifies a set of symbols used in a code
 Clibint2::CompilationParametersThese are the parameters received by the compiler
 Clibint2::ConstructablePolymorphicallyConstructablePolymorphically is a base for all objects which can be constructed using a SafePtr to a base or a SafePtr to ConstructablePolymorphically
 Clibint2::Contractable< Derived >Use this as a base to add to Derived a "contracted()" attribute
 Clibint2::Contractable< CartesianMultipole_Descr< NDIM > >
 Clibint2::Contractable< CGF >
 Clibint2::Contractable< CGF1d< Axis > >
 Clibint2::Contractable< CGShell >
 Clibint2::Contractable< CGShell1d< Axis > >
 Clibint2::Contractable< GenMultSymmOper_Descr< N > >
 Clibint2::Contractable< GTG_1d_Descr >
 Clibint2::Contractable< R12_k_G12_Descr >
 Clibint2::Contractable< R12k_R12l_G12_Descr >
 Clibint2::Contractable< SHGF >
 Clibint2::Contractable< SHGShell >
 Clibint2::Contractable< Ti_G12_Descr >
 Clibint2::Contractable< TwoPRep_Descr >
 Clibint2::Shell::ContractionContracted Gaussian = angular momentum + sph/cart flag + contraction coefficients
 Ccore_eval_scratch_type
 Clibint2::detail::CoreEvalScratch< CoreEval >Some evaluators need thread-local scratch, but most don't
 Clibint2::detail::CoreEvalScratch< GaussianGmEval< Real,-1 > >GaussianGmEval<Real,-1> needs extra scratch data
 Clibint2::CR_DerivGauss_GenericInstantiator
 Clibint2::algebra::CTimeEntity< T >
 Clibint2::prefactor::CTimeSingletons< T >
 Clibint2::prefactor::CTimeVector3< T >Auxiliary class that write expressions with compile-time cartesian vectors
 Clibint2::Shell::defaultable_boolean
 Clibint2::DefaultOnePBraket< BFS >This is the implementation of the Braket concept used by GenIntegralSet_1_1
 Clibint2::DefaultPurgingPolicy< T >Determines whether an object should be purged from a stack
 Clibint2::DefaultQuantumNumbers< T, N >Default implementation of QuantumNumbers
 Clibint2::DefaultTwoPBraket< BFS >This is the implementation of the Braket concept used by GenIntegralSet_11_11
 Clibint2::delta_gm_eval
 Clibint2::DerivIndexIterator< NCenters >Iterates over unique derivative indices
 Clibint2::DGArcClass DGArc describes arcs in a directed graph
 Clibint2::DIIS< D >DIIS (``direct inversion of iterative subspace'') extrapolation
 Clibint2::DummyRandomizePolicy
 Clibint2::chemistry::element
 CEnableSafePtrFromThis
 Clibint2::EntityEntity is a base class for all objects that exist at compile or runtime of the generated code
 Clibint2::EntityTypes::EntityType< TypeIndex >
 CExpensiveMath
 Clibint2::ExpensiveNumbers< Real >Holds tables of expensive quantities
 Clibint2::ExpensiveNumbers< double >
 Clibint2::ExtractExternSymbolsThis class collects labels of all external non-compile-time constants
 Clibint2::ExtractRRThis class collects all unique RRs. It uses RRStack to get their InstanceID
 Clibint2::FmEval_Chebyshev3< Real >Computes the Boys function, $ F_m (T) = ^1 u^{2m} (-T u^2) \, { d}u $, using 3-rd order Chebyshev interpolation
 Clibint2::FmEval_Chebyshev7< Real >Computes the Boys function, $ F_m (T) = ^1 u^{2m} (-T u^2) \, { d}u $, using 7-th order Chebyshev interpolation
 Clibint2::FmEval_Reference< Real >Computes the Boys function, $ F_m (T) = \int_0^1 u^{2m} \exp(-T u^2) \, {\rm d}u $, using single algorithm (asymptotic expansion)
 Clibint2::FmEval_Reference2< Real >Computes the Boys function, $ F_m (T) = ^1 u^{2m} (-T u^2) \, { d}u $, using multi-algorithm approach (upward precision for T>=30, and asymptotic summation for T<30)
 Clibint2::FmEval_Taylor< Real, INTERPOLATION_ORDER >Computes the Boys function, $ F_m (T) = ^1 u^{2m} (-T u^2) \, { d}u $, using Taylor interpolation of up to 8-th order
 Clibint2::FNVStringHashFNVStringHash uses Fowler/Noll/Vo algorithm to hash a char string to a 64-bit integer
 Clibint2::GaussianGmEval< Real, k >
 Clibint2::GenericGaussDeriv< L, vectorize >Builds ( ..
 Clibint2::GraphRegistryExternally accessible registry of information about a graph
 Clibint2::Hashable< KeyType, KeyMP >Objects of Hashable<T> class provide hashing function key() which computes keys of type KeyType
 Clibint2::Hashable< KeyTypes::InstanceID, ComputeKey >
 Clibint2::Hashable< LIBINT2_UINT_LEAST64, ComputeKey >
 Clibint2::Hashable< LIBINT2_UINT_LEAST64, ReferToKey >
 Clibint2::Hashable< unsigned, ComputeKey >
 Clibint2::Hashable< unsigned, ReferToKey >
 Clibint2::ImplicitDimensionsImplicitDimensions describes basis functions or other "degrees of freedom" not actively engaged in a recurrence relation
 Clibint2::IntegralSet< BasisFunctionSet >This is an abstract base for sets of all types of integrals
 Clibint2::IntegralSet< BFS >
 Clibint2::IntegralSet_to_Integrals_baseIntegralSet_to_Integrals_base is dummy class used for dynamic casts only
 Clibint2::InternalGraphRegistryInternal registry of information
 Clibint2::is_vector< T >
 Clibint2::is_vector< simd::Vector< N, T > >
 Clibint2::is_vector< simd::VectorAVXDouble >
 Clibint2::is_vector< simd::VectorFP2Double >
 Clibint2::is_vector< simd::VectorQPXDouble >
 Clibint2::is_vector< simd::VectorSSEDouble >
 Clibint2::is_vector< simd::VectorSSEFloat >
 CIsSafePtr< T >Can be used to determine whether a type is a SafePtr
 CIsSafePtr< const SafePtr< T > & >
 CIsSafePtr< const SafePtr< T > >
 CIsSafePtr< SafePtr< T > & >
 CIsSafePtr< SafePtr< T > >
 Clibint2::ITR_xs_xs< part, La, Lc, InBra, vectorize >
 Clibint2::ITR_xs_xs< 0, La, Lc, InBra, vectorize >Builds (a 0|c0) from src0 = (a-1 0|c 0) src1 = (a-1 0|c+1 0) src2 = (a-2 0|c 0) src3 = (a-1 0|c-1 0)
 Clibint2::ITR_xs_xs< 1, La, Lc, InBra, vectorize >Builds (a 0|c0) from src0 = (a 0|c-1 0) src1 = (a+1 0|c-1 0) src2 = (a 0|c-2 0) src3 = (a-1 0|c-1 0)
 Clibint2::KeyStore< T, HasAKey >If OwnsKey is true then KeyStore<T> has the key of type T, otherwise it's empty
 Clibint2::KeyStore< KeyType, libint2::OwnKey< KeyMP >::result >
 Clibint2::KeyStore< KeyTypes::InstanceID, libint2::OwnKey< KeyMP >::result >
 Clibint2::KeyStore< LIBINT2_UINT_LEAST64, libint2::OwnKey< KeyMP >::result >
 Clibint2::KeyStore< T, false >
 Clibint2::KeyStore< T, true >
 Clibint2::KeyStore< unsigned, libint2::OwnKey< KeyMP >::result >
 Clibint2::KeyTraits< T >KeyTraits<T> describes following properties of type T: 1) how to return objects of type T
 Clibint2::KeyTraits< std::string >Std::string should be returned by const reference
 Clibint2::KeyTraits< T[Size]>Arrays should be returned by const reference also
 Clibint2::KeyTypesCollection of types used for constructing keys in libint2
 Clibint2::Libint2IfaceLibint2Iface is used to generate Libint2 interfaces
 CLibint_t
 Clibint2::LibraryTaskA key idea introduced here is that of "task"
 Clibint2::LibraryTaskManagerManages tasks. This is a Singleton
 Clibint2::LinearCombination< C, T >Linear combination of objects of type T with coefficients of type C
 Clogic_error
 Clibint2::MemoryBlock< A, S >MemoryBlock<Address,Size> describes a block of raw memory addressed via Address and size described by Size
 Clibint2::MemoryManagerClass MemoryManager handles allocation and deallocation of raw memory (stack) provided at runtime of the library
 Clibint2::MemoryManagerFactoryMemoryManagerFactory is a very dumb factory for MemoryManagers
 Clibint2::OneBodyEngineOneBodyEngine computes integrals of operators (or operator sets) given by OneBodyOperator::operator_type
 Clibint2::OneBodyEngine::operator_traits< Op >::oper_params_type
 Clibint2::TwoBodyEngineTraits< Coulomb >::oper_params_type
 Clibint2::TwoBodyEngineTraits< Delta >::oper_params_type
 Clibint2::OneBodyEngine::operator_traits< Op >Describes operator sets given by OneBodyOperator
 Clibint2::OneBodyEngine::operator_traits< OneBodyEngine::emultipole1 >
 Clibint2::OneBodyEngine::operator_traits< OneBodyEngine::emultipole2 >
 Clibint2::OneBodyEngine::operator_traits< OneBodyEngine::emultipole3 >
 Clibint2::OneBodyEngine::operator_traits< OneBodyEngine::nuclear >
 Clibint2::OperatorProperties< NP, multi, psymmetry >OperatorProperties describes various properties of an operator or operator set np – number of particles multi – true if multiplicative psymmetry – symmetry with respect to permutation of bra and ket
 Clibint2::algebra::OperatorTypes
 Clibint2::OSAVRR_sx_sx< part, Lb, Ld, vectorize >
 Clibint2::OSAVRR_sx_sx< 0, Lb, Ld, vectorize >Builds (0b|0d)^(m) src1 = (0b-1|0d)^(m+1) src4 = (0b-1|0d-1)^(m+1)
 Clibint2::OSAVRR_sx_sx_deriv< part, Lb, Ld, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, vectorize >Ahlrichs version
 Clibint2::OSAVRR_sx_sx_deriv< 0, Lb, Ld, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, vectorize >Builds (a 0|c0)^(m) src1 = (a-10|c0)^(m+1) src4 = (a-10|c-10)^(m+1)
 Clibint2::OSAVRR_xs_xs< part, La, Lc, vectorize >
 Clibint2::OSAVRR_xs_xs< 0, La, Lc, vectorize >Builds (a 0|c0)^(m) src1 = (a-10|c0)^(m+1) src4 = (a-10|c-10)^(m+1)
 Clibint2::OSAVRR_xs_xs_deriv< part, La, Lc, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, vectorize >
 Clibint2::OSAVRR_xs_xs_deriv< 0, La, Lc, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, vectorize >Builds (a 0|c0)^(m) src1 = (a-10|c0)^(m+1) src4 = (a-10|c-10)^(m+1)
 Clibint2::OSVRR_sx_sx< part, Lb, Ld, unit_a, vectorize >
 Clibint2::OSVRR_sx_sx< 0, Lb, Ld, unit_a, vectorize >Builds (0b|0d)^(m) src0 = (0b-1|0d)^(m) // ignored if unit_a = true src1 = (0b-1|0d)^(m+1) src2 = (0b-2|0d)^(m) src3 = (0b-2|0d)^(m+1) src4 = (0b-1|0d-1)^(m+1)
 Clibint2::OSVRR_sx_sx< 1, Lb, Ld, vectorize >Builds (0b|0d)^(m) src0 = (0b|0d-1)^(m) src1 = (0b|0d-1)^(m+1) src2 = (0b|0d-2)^(m) src3 = (0b|0d-2)^(m+1) src4 = (0b-1|0d-1)^(m+1)
 Clibint2::OSVRR_sx_sx_deriv< part, Lb, Ld, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, unit_a, vectorize >
 Clibint2::OSVRR_sx_sx_deriv< 0, Lb, Ld, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, unit_a, vectorize >Builds (a 0|c0)^(m) src0 = (a-10|c0)^(m) // ignored if unit_a is true src1 = (a-10|c0)^(m+1) src2 = (a-20|c0)^(m) src3 = (a-20|c0)^(m+1) src4 = (a-10|c-10)^(m+1)
 Clibint2::OSVRR_xs_xs< part, La, Lc, unit_b, vectorize >
 Clibint2::OSVRR_xs_xs< 0, La, Lc, unit_b, vectorize >Builds (a 0|c0)^(m) src0 = (a-10|c0)^(m) // ignored if unit_b is true src1 = (a-10|c0)^(m+1) src2 = (a-20|c0)^(m) src3 = (a-20|c0)^(m+1) src4 = (a-10|c-10)^(m+1)
 Clibint2::OSVRR_xs_xs_deriv< part, La, Lc, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, unit_b, vectorize >
 Clibint2::OSVRR_xs_xs_deriv< 0, La, Lc, Da_x, Da_y, Da_z, Db_x, Db_y, Db_z, Dc_x, Dc_y, Dc_z, Dd_x, Dd_y, Dd_z, unit_b, vectorize >Builds (a 0|c0)^(m) src0 = (a-10|c0)^(m) // not used if unit_b is true src1 = (a-10|c0)^(m+1) src2 = (a-20|c0)^(m) src3 = (a-20|c0)^(m+1) src4 = (a-10|c-10)^(m+1)
 Clibint2::OwnKey< KeyManage >Use OwnKey to figure out whether the key should be stored in Hashable
 Clibint2::OwnKey< CacheKey >
 Clibint2::VectorBraket< BFS >::parent_type
 Clibint2::ArrayBraket< BFS, NP >::parent_typeThere's no parent
 Clibint2::Parser_prefixNParses the symbol if it is composed of a prefix followed by a number
 Clibint2::PermutationalSymmetryPermutational symmetries: antisymmetric(anti), symmetric(symm), nonsymmetric (nonsymm), some more complicated symmetry (nonstd)
 Clibint2::PrefactorsPrefactors is a collection of common quantities which appear as prefactors in recurrence relations for Gaussian integrals
 Clibint2::PrerequisitesExtractor
 Clibint2::ShellPair::PrimPairData
 Clibint2::ProductType< T, U >Product of 2 types
 Clibint2::ProductType< double, double >
 Clibint2::ProductType< double, EntityTypes::FP >
 Clibint2::ProductType< double, EntityTypes::Int >
 Clibint2::ProductType< double, int >
 Clibint2::ProductType< EntityTypes::FP, double >
 Clibint2::ProductType< EntityTypes::FP, EntityTypes::FP >
 Clibint2::ProductType< EntityTypes::FP, EntityTypes::Int >
 Clibint2::ProductType< EntityTypes::FP, int >
 Clibint2::ProductType< EntityTypes::Int, double >
 Clibint2::ProductType< EntityTypes::Int, EntityTypes::FP >
 Clibint2::ProductType< EntityTypes::Int, EntityTypes::Int >
 Clibint2::ProductType< EntityTypes::Int, int >
 Clibint2::ProductType< int, double >
 Clibint2::ProductType< int, EntityTypes::FP >
 Clibint2::ProductType< int, EntityTypes::Int >
 Clibint2::ProductType< int, int >
 Clibint2::PtrEquiv< T >PtrEquiv<T> provides a set of comparison functions named 'equiv' which take as arguments a mix of references, regular pointers, and smart pointers to T and it's various expected relatives
 Clibint2::PurgeableStacksCollection of AbstractPurgeableStack objects
 Clibint2::detail::R12_K_G12_to_Kernel< K >
 Clibint2::detail::R12_K_G12_to_Kernel< 0 >
 Clibint2::detail::R12_K_G12_to_Kernel< 2 >
 Clibint2::detail::R12_K_G12_to_Kernel<-1 >
 Clibint2::R12kG12_11_11< BFS, K >
 CRandomDie
 CRandomShellSet< N >
 Clibint2::ReturnTypeAnalog< Ref, Base >Converts Base to a type of the same signature as Ref. For example, if Ref is SafePtr<T> then Base is converted to SafePtr<Base>
 Clibint2::ReturnTypeAnalog< SafePtr< Ref >, Base >
 Clibint2::algebra::RTimeEntity< T >
 Clibint2::prefactor::RTimeSingletons< T >
 Clibint2::prefactor::RTimeVector3< T >Auxiliary class that write expressions with runtime cartesian vectors
 Cshared_ptr
 Clibint2::ShellGenerally-contracted Solid-Harmonic/Cartesion Gaussian Shell
 Clibint2::ShellPairShellPair pre-computes shell-pair data, primitive pairs are screened to finite precision
 CShellQuartetSetPredicate< ShSet >
 CShellQuartetSetPredicate< ShellSetType_ORCA >
 CShellQuartetSetPredicate< ShellSetType_Standard >
 CShellTripletSetPredicate< ShSet >
 CShellTripletSetPredicate< ShellSetType_ORCA >
 CShellTripletSetPredicate< ShellSetType_Standard >
 Clibint2::solidharmonics::SolidHarmonicsCoefficients< Real >Transformation coefficients from unnormalized Cartesian Gaussians (rows) to unit-normalized real Solid Harmonics Gaussians
 Clibint2::StaticDefinitionsStatic parameters
 Clibint2::StdLibintTDPolicy< CGShell1d< Axis > >StdLibintTDPolicy<CGShell1d>::init_subobj initializes CGF1d's in canonical order
 Clibint2::StdLibintTDPolicy< GenIntegralSet< Oper, BFS, BraSetType, KetSetType, AuxQuanta > >StdLibintTDPolicy<GenIntegralSet> describes how integral sets are composed of integrals in canonical order
 Clibint2::StdLibintTDPolicy< GenIntegralSet_11_11< BFS, Oper, AuxQuanta > >
 Clibint2::StdLibintTDPolicy< GenIntegralSet_1_1< BFS, Oper, AuxQuanta > >
 Clibint2::StdLibintTDPolicy< R12kG12_11_11< BFS, K > >StdLibintTDPolicy<R12kG12_11_11> should go away soon
 Clibint2::StdLibintTDPolicy< R1dotR1G12_11_11< BFS > >StdLibintTDPolicy<R1dotR1G12_11_11> should go away soon
 Clibint2::StdLibintTDPolicy< R1dotR2G12_11_11< BFS > >StdLibintTDPolicy<R1dotR2G12_11_11> should go away soon
 Clibint2::StdLibintTDPolicy< R2dotR2G12_11_11< BFS > >StdLibintTDPolicy<R2dotR2G12_11_11> should go away soon
 Clibint2::StdLibintTDPolicy< TiG12_11_11< BFS, K > >StdLibintTDPolicy<TiG12_11_11> should go away soon
 Clibint2::StdLibintTDPolicy< TwoPRep_11_11< BFS > >StdLibintTDPolicy<TwoPRep_11_11> should go away soon
 Clibint2::StdRandomizePolicyThe shift parameter is computed as follows: delta = floor(nrrs*scale*random()/RAND_MAX) where nrrs is the number of possibilities, scale is the user-specified parameter
 Clibint2::StorageTraits< T >
 Clibint2::StorageTraits< CGF >
 Clibint2::StorageTraits< CGF1d< Axis > >
 Clibint2::StorageTraits< CGShell >
 Clibint2::StorageTraits< CGShell1d< Axis > >
 Clibint2::StrategyStrategy specifies how to apply recurrence relations
 Clibint2::SubIteratorIterator provides a base class for all object iterator classes
 Clibint2::TacticTactic is used to choose the optimal (in some sense) recurrence relation to reduce a vertex
 Clibint2::TaskExternSymbolsThis class maintains code symbols provided by the user, e.g
 Clibint2::TaskParametersThis class maintains various parameters for each task type which can only be determined during the source generation (max stack size, etc.)
 Clibint2::Tensor< T >
 Clibint2::TesterCmdLine< N >Command-line parser for the standard build tester – N is the number of centers, i.e. 4 for 4-center ERI
 Clibint2::TiG12_11_11< BFS, K >
 Clibint2::Timers< N >Timers aggregates N C++11 "timers"; used to high-resolution profile stages of integral computation
 Clibint2::Timers< 3 >
 Clibint2::diis::traits< D >
 Clibint2::diis::traits< Eigen::Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >
 Clibint2::CGShellOrderingData< Ord, lmax >::Triple
 Clibint2::TrivialBFSet< T >TrivialBFSet<T> defines static member result, which is true if T is a basis function set consisting of 1 function
 Clibint2::TrivialBFSet< CGF >
 Clibint2::TrivialBFSet< CGF1d< Axis > >
 Clibint2::TrivialBFSet< CGShell >
 Clibint2::TrivialBFSet< CGShell1d< Axis > >
 Clibint2::TrivialBFSet< SHGF >
 Clibint2::TrivialBFSet< SHGShell >
 Clibint2::TwoBodyEngine< Kernel >TwoBodyEngine computes (ab|O|cd) (i.e
 Clibint2::detail::TwoBodyEngineDispatcher< Kernel >
 Clibint2::detail::TwoBodyEngineDispatcher< cGTG >
 Clibint2::detail::TwoBodyEngineDispatcher< cGTG_times_Coulomb >
 Clibint2::detail::TwoBodyEngineDispatcher< Coulomb >
 Clibint2::detail::TwoBodyEngineDispatcher< DelcGTG_square >
 Clibint2::detail::TwoBodyEngineDispatcher< Delta >
 Clibint2::TwoBodyEngineTraits< Kernel >
 Clibint2::TwoBodyEngineTraits< cGTG >
 Clibint2::TwoBodyEngineTraits< cGTG_times_Coulomb >
 Clibint2::TwoBodyEngineTraits< Coulomb >
 Clibint2::TwoBodyEngineTraits< DelcGTG_square >
 Clibint2::TwoBodyEngineTraits< Delta >
 Clibint2::TwoPRep_11_11< BFS >
 Clibint2::TypeAndInstance< T, I >Type/Instance combination serves as a key to quickly compare 2 polymorphic Singletons
 Clibint2::TypeTraits< T >
 Cunary_function
 Clibint2::Uncontract_Integral_baseUncontract_Integral_base is dummy class used for dynamic casts only
 Clibint2::simd::Vector< N, T >Vector<N,T> is used by vectorized Libint library as fixed-length vectors amenable for SIMD-style parallelism Vectorization via this class should be the last-resort measure if no specialized implementation is available
 Clibint2::vector_traits< T >
 Clibint2::vector_traits< LIBINT2_REALTYPE >
 Clibint2::vector_traits< simd::Vector< N, T > >
 Clibint2::vector_traits< simd::VectorAVXDouble >
 Clibint2::vector_traits< simd::VectorFP2Double >
 Clibint2::vector_traits< simd::VectorQPXDouble >
 Clibint2::vector_traits< simd::VectorSSEDouble >
 Clibint2::vector_traits< simd::VectorSSEFloat >
 Clibint2::simd::VectorAVXDoubleSIMD vector of 4 double-precision floating-point real numbers, operations on which use AVX instructions available on recent x86 hardware from Intel (starting with Sandy Bridge processors released in 2011) and AMD (starting with Bulldozer released in 2011)
 Clibint2::simd::VectorFP2DoubleSIMD vector of 2 double-precision floating-point real numbers, operations on which use FP2 (Double Hummer) instructions available on some PowerPC hardware, e.g
 Clibint2::VectorN< T, N >Vector of N elements of type T
 Clibint2::VectorN< int, 3 >
 CVectorOpKernel< Real >
 CVectorOpKernel< double >
 Clibint2::simd::VectorQPXDoubleSIMD vector of 4 double-precision floating-point real numbers, operations on which use QPX instructions available on some recent PowerPC hardware, e.g
 Clibint2::simd::VectorSSEDoubleSIMD vector of 2 double-precision floating-point real numbers, operations on which use SSE2 instructions available on all recent x86 hardware
 Clibint2::simd::VectorSSEFloatSIMD vector of 4 single-precision floating-point real numbers, operations on which use SSE instructions available on all recent x86 hardware
 Clibint2::VertexPrinter
 Clibint2::VRR_GTG_1d_xx_xx< CartesianAxis, La, Lb, Lc, Ld, vectorize >Builds (ab| GTG_1d |cd), the shell set of 2-dimensional integrals needed for Rys quadrature evaluation of 2-body ints
 Clibint2::VRR_r12kg12_xs_xs< part, La, Lc, K, vectorize >
 Clibint2::VRR_r12kg12_xs_xs< 0, La, Lc, K, vectorize >Builds (a0| G_K |c0), where G_K = r12^K * G12, for K >= 0
 Clibint2::algebra::Wedge< L, R >Wedge is a typeholder for the result of a wedge product
 Clibint2::YukawaGmEval< Real >Core integral for Yukawa and exponential interactions
 CT1
 CT2