/* $NetBSD: usbnet.c,v 1.25.2.6 2022/01/31 17:30:21 martin Exp $ */ /* * Copyright (c) 2019 Matthew R. Green * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Common code shared between USB network drivers. */ #include __KERNEL_RCSID(0, "$NetBSD: usbnet.c,v 1.25.2.6 2022/01/31 17:30:21 martin Exp $"); #include #include #include #include #include #include #include struct usbnet_cdata { struct usbnet_chain *uncd_tx_chain; struct usbnet_chain *uncd_rx_chain; int uncd_tx_prod; int uncd_tx_cnt; }; struct usbnet_private { /* * - unp_lock protects most of the structure, and the public one * - unp_miilock must be held to access this device's MII bus * - unp_rxlock protects the rx path and its data * - unp_txlock protects the tx path and its data * - unp_detachcv handles detach vs open references * * the lock ordering is: * ifnet lock -> unp_lock -> unp_rxlock -> unp_txlock * unp_lock -> unp_miilock * and unp_lock may be dropped after taking unp_miilock. */ kmutex_t unp_lock; kmutex_t unp_miilock; kmutex_t unp_rxlock; kmutex_t unp_txlock; kcondvar_t unp_detachcv; struct usbnet_cdata unp_cdata; struct ethercom unp_ec; struct mii_data unp_mii; struct usb_task unp_mcasttask; struct usb_task unp_ticktask; struct callout unp_stat_ch; struct usbd_pipe *unp_ep[USBNET_ENDPT_MAX]; bool unp_dying; bool unp_stopping; bool unp_attached; bool unp_link; int unp_refcnt; int unp_timer; int unp_if_flags; unsigned unp_number; krndsource_t unp_rndsrc; struct timeval unp_rx_notice; struct timeval unp_tx_notice; struct timeval unp_intr_notice; }; #define un_cdata(un) (&(un)->un_pri->unp_cdata) volatile unsigned usbnet_number; static int usbnet_modcmd(modcmd_t, void *); #ifdef USB_DEBUG #ifndef USBNET_DEBUG #define usbnetdebug 0 #else static int usbnetdebug = 0; SYSCTL_SETUP(sysctl_hw_usbnet_setup, "sysctl hw.usbnet setup") { int err; const struct sysctlnode *rnode; const struct sysctlnode *cnode; err = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "usbnet", SYSCTL_DESCR("usbnet global controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (err) goto fail; /* control debugging printfs */ err = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &usbnetdebug, sizeof(usbnetdebug), CTL_CREATE, CTL_EOL); if (err) goto fail; return; fail: aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); } #endif /* USBNET_DEBUG */ #endif /* USB_DEBUG */ #define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(usbnetdebug,1,FMT,A,B,C,D) #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbnetdebug,N,FMT,A,B,C,D) #define USBNETHIST_FUNC() USBHIST_FUNC() #define USBNETHIST_CALLED(name) USBHIST_CALLED(usbnetdebug) #define USBNETHIST_CALLARGS(FMT,A,B,C,D) \ USBHIST_CALLARGS(usbnetdebug,FMT,A,B,C,D) #define USBNETHIST_CALLARGSN(N,FMT,A,B,C,D) \ USBHIST_CALLARGSN(usbnetdebug,N,FMT,A,B,C,D) /* Callback vectors. */ static void uno_stop(struct usbnet *un, struct ifnet *ifp, int disable) { if (un->un_ops->uno_stop) (*un->un_ops->uno_stop)(ifp, disable); } static int uno_ioctl(struct usbnet *un, struct ifnet *ifp, u_long cmd, void *data) { if (un->un_ops->uno_ioctl) return (*un->un_ops->uno_ioctl)(ifp, cmd, data); return 0; } static int uno_override_ioctl(struct usbnet *un, struct ifnet *ifp, u_long cmd, void *data) { return (*un->un_ops->uno_override_ioctl)(ifp, cmd, data); } static int uno_init(struct usbnet *un, struct ifnet *ifp) { return (*un->un_ops->uno_init)(ifp); } static int uno_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val) { return (*un->un_ops->uno_read_reg)(un, phy, reg, val); } static int uno_write_reg(struct usbnet *un, int phy, int reg, uint16_t val) { return (*un->un_ops->uno_write_reg)(un, phy, reg, val); } static void uno_mii_statchg(struct usbnet *un, struct ifnet *ifp) { (*un->un_ops->uno_statchg)(ifp); } static unsigned uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c) { return (*un->un_ops->uno_tx_prepare)(un, m, c); } static void uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len) { (*un->un_ops->uno_rx_loop)(un, c, total_len); } static void uno_tick(struct usbnet *un) { if (un->un_ops->uno_tick) (*un->un_ops->uno_tick)(un); } static void uno_intr(struct usbnet *un, usbd_status status) { if (un->un_ops->uno_intr) (*un->un_ops->uno_intr)(un, status); } /* Interrupt handling. */ static struct mbuf * usbnet_newbuf(size_t buflen) { struct mbuf *m; if (buflen > MCLBYTES) return NULL; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return NULL; if (buflen > MHLEN - ETHER_ALIGN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return NULL; } } m_adj(m, ETHER_ALIGN); m->m_len = m->m_pkthdr.len = buflen; return m; } /* * usbnet_rxeof() is designed to be the done callback for rx completion. * it provides generic setup and finalisation, calls a different usbnet * rx_loop callback in the middle, which can use usbnet_enqueue() to * enqueue a packet for higher levels (or usbnet_input() if previously * using if_input() path.) */ void usbnet_enqueue(struct usbnet * const un, uint8_t *buf, size_t buflen, int csum_flags, uint32_t csum_data, int mbuf_flags) { USBNETHIST_FUNC(); struct ifnet * const ifp = usbnet_ifp(un); struct usbnet_private * const unp __unused = un->un_pri; struct mbuf *m; USBNETHIST_CALLARGSN(5, "%d: enter: len=%zu csf %x mbf %x", unp->unp_number, buflen, csum_flags, mbuf_flags); usbnet_isowned_rx(un); m = usbnet_newbuf(buflen); if (m == NULL) { DPRINTF("%d: no memory", unp->unp_number, 0, 0, 0); ifp->if_ierrors++; return; } m_set_rcvif(m, ifp); m->m_pkthdr.csum_flags = csum_flags; m->m_pkthdr.csum_data = csum_data; m->m_flags |= mbuf_flags; memcpy(mtod(m, uint8_t *), buf, buflen); /* push the packet up */ if_percpuq_enqueue(ifp->if_percpuq, m); } void usbnet_input(struct usbnet * const un, uint8_t *buf, size_t buflen) { USBNETHIST_FUNC(); struct ifnet * const ifp = usbnet_ifp(un); struct usbnet_private * const unp __unused = un->un_pri; struct mbuf *m; USBNETHIST_CALLARGSN(5, "%d: enter: buf %jx len %ju", unp->unp_number, (uintptr_t)buf, buflen, 0); usbnet_isowned_rx(un); m = usbnet_newbuf(buflen); if (m == NULL) { ifp->if_ierrors++; return; } m_set_rcvif(m, ifp); memcpy(mtod(m, char *), buf, buflen); /* push the packet up */ if_input(ifp, m); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void usbnet_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { USBNETHIST_FUNC(); struct usbnet_chain * const c = priv; struct usbnet * const un = c->unc_un; struct usbnet_private * const unp = un->un_pri; struct ifnet * const ifp = usbnet_ifp(un); uint32_t total_len; USBNETHIST_CALLARGSN(5, "%d: enter: status %x xfer %jx", unp->unp_number, status, (uintptr_t)xfer, 0); mutex_enter(&unp->unp_rxlock); if (unp->unp_dying || unp->unp_stopping || status == USBD_INVAL || status == USBD_NOT_STARTED || status == USBD_CANCELLED || !(ifp->if_flags & IFF_RUNNING)) goto out; if (status != USBD_NORMAL_COMPLETION) { if (usbd_ratecheck(&unp->unp_rx_notice)) aprint_error_dev(un->un_dev, "usb errors on rx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); if (total_len > un->un_rx_bufsz) { aprint_error_dev(un->un_dev, "rxeof: too large transfer (%u > %u)\n", total_len, un->un_rx_bufsz); goto done; } uno_rx_loop(un, c, total_len); usbnet_isowned_rx(un); done: if (unp->unp_dying || unp->unp_stopping) goto out; mutex_exit(&unp->unp_rxlock); /* Setup new transfer. */ usbd_setup_xfer(xfer, c, c->unc_buf, un->un_rx_bufsz, un->un_rx_xfer_flags, USBD_NO_TIMEOUT, usbnet_rxeof); usbd_transfer(xfer); return; out: mutex_exit(&unp->unp_rxlock); } static void usbnet_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet_chain * const c = priv; struct usbnet * const un = c->unc_un; struct usbnet_cdata * const cd = un_cdata(un); struct usbnet_private * const unp = un->un_pri; struct ifnet * const ifp = usbnet_ifp(un); USBNETHIST_CALLARGSN(5, "%d: enter: status %x xfer %jx", unp->unp_number, status, (uintptr_t)xfer, 0); mutex_enter(&unp->unp_txlock); if (unp->unp_stopping || unp->unp_dying) { mutex_exit(&unp->unp_txlock); return; } KASSERT(cd->uncd_tx_cnt > 0); cd->uncd_tx_cnt--; unp->unp_timer = 0; switch (status) { case USBD_NOT_STARTED: case USBD_CANCELLED: break; case USBD_NORMAL_COMPLETION: ifp->if_opackets++; break; default: ifp->if_oerrors++; if (usbd_ratecheck(&unp->unp_tx_notice)) aprint_error_dev(un->un_dev, "usb error on tx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_TX]); break; } mutex_exit(&unp->unp_txlock); if (status == USBD_NORMAL_COMPLETION && !IFQ_IS_EMPTY(&ifp->if_snd)) (*ifp->if_start)(ifp); } static void usbnet_pipe_intr(struct usbd_xfer *xfer, void *priv, usbd_status status) { USBNETHIST_FUNC(); struct usbnet * const un = priv; struct usbnet_private * const unp = un->un_pri; struct usbnet_intr * const uni = un->un_intr; struct ifnet * const ifp = usbnet_ifp(un); if (uni == NULL || unp->unp_dying || unp->unp_stopping || status == USBD_INVAL || status == USBD_NOT_STARTED || status == USBD_CANCELLED || !(ifp->if_flags & IFF_RUNNING)) { USBNETHIST_CALLARGS("%d: uni %jx d/s %x status %x", unp->unp_number, (uintptr_t)uni, (unp->unp_dying << 8) | unp->unp_stopping, status); return; } if (status != USBD_NORMAL_COMPLETION) { if (usbd_ratecheck(&unp->unp_intr_notice)) { aprint_error_dev(un->un_dev, "usb error on intr: %s\n", usbd_errstr(status)); } if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(unp->unp_ep[USBNET_ENDPT_INTR]); USBNETHIST_CALLARGS("%d: not normal status %x", unp->unp_number, status, 0, 0); return; } uno_intr(un, status); } static void usbnet_start_locked(struct ifnet *ifp) { USBNETHIST_FUNC(); struct usbnet * const un = ifp->if_softc; struct usbnet_cdata * const cd = un_cdata(un); struct usbnet_private * const unp = un->un_pri; struct mbuf *m; unsigned length; bool done_transmit = false; int idx; USBNETHIST_CALLARGS("%d: tx_cnt %d list_cnt %d link %d", unp->unp_number, cd->uncd_tx_cnt, un->un_tx_list_cnt, unp->unp_link); usbnet_isowned_tx(un); KASSERT(cd->uncd_tx_cnt <= un->un_tx_list_cnt); if (!unp->unp_link || (ifp->if_flags & IFF_RUNNING) == 0) { DPRINTF("start called no link (%x) or running (flags %x)", unp->unp_link, ifp->if_flags, 0, 0); return; } if (cd->uncd_tx_cnt == un->un_tx_list_cnt) { DPRINTF("start called, tx busy (%jx == %jx)", cd->uncd_tx_cnt, un->un_tx_list_cnt, 0, 0); return; } idx = cd->uncd_tx_prod; while (cd->uncd_tx_cnt < un->un_tx_list_cnt) { IFQ_POLL(&ifp->if_snd, m); if (m == NULL) { DPRINTF("start called, queue empty", 0, 0, 0, 0); break; } KASSERT(m->m_pkthdr.len <= un->un_tx_bufsz); struct usbnet_chain *c = &cd->uncd_tx_chain[idx]; length = uno_tx_prepare(un, m, c); if (length == 0) { DPRINTF("uno_tx_prepare gave zero length", 0, 0, 0, 0); ifp->if_oerrors++; break; } if (__predict_false(c->unc_xfer == NULL)) { DPRINTF("unc_xfer is NULL", 0, 0, 0, 0); ifp->if_oerrors++; break; } usbd_setup_xfer(c->unc_xfer, c, c->unc_buf, length, un->un_tx_xfer_flags, 10000, usbnet_txeof); /* Transmit */ usbd_status err = usbd_transfer(c->unc_xfer); if (err != USBD_IN_PROGRESS) { DPRINTF("usbd_transfer on %jx for %ju bytes: %d", (uintptr_t)c->unc_buf, length, err, 0); ifp->if_oerrors++; break; } done_transmit = true; IFQ_DEQUEUE(&ifp->if_snd, m); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(ifp, m, BPF_D_OUT); m_freem(m); idx = (idx + 1) % un->un_tx_list_cnt; cd->uncd_tx_cnt++; } cd->uncd_tx_prod = idx; DPRINTF("finished with start; tx_cnt %d list_cnt %d link %d", cd->uncd_tx_cnt, un->un_tx_list_cnt, unp->unp_link, 0); /* * Set a timeout in case the chip goes out to lunch. */ if (done_transmit) unp->unp_timer = 5; } static void usbnet_start(struct ifnet *ifp) { struct usbnet * const un = ifp->if_softc; struct usbnet_private * const unp = un->un_pri; USBNETHIST_FUNC(); USBNETHIST_CALLARGS("%d, stopping %d", unp->unp_number, unp->unp_stopping, 0, 0); mutex_enter(&unp->unp_txlock); if (!unp->unp_stopping) usbnet_start_locked(ifp); mutex_exit(&unp->unp_txlock); } /* * Chain management. * * RX and TX are identical. Keep them that way. */ /* Start of common RX functions */ static size_t usbnet_rx_list_size(struct usbnet_cdata * const cd, struct usbnet * const un) { return sizeof(*cd->uncd_rx_chain) * un->un_rx_list_cnt; } static void usbnet_rx_list_alloc(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); cd->uncd_rx_chain = kmem_zalloc(usbnet_rx_list_size(cd, un), KM_SLEEP); } static void usbnet_rx_list_free(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); if (cd->uncd_rx_chain) { kmem_free(cd->uncd_rx_chain, usbnet_rx_list_size(cd, un)); cd->uncd_rx_chain = NULL; } } static int usbnet_rx_list_init(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); struct usbnet_private * const unp = un->un_pri; for (size_t i = 0; i < un->un_rx_list_cnt; i++) { struct usbnet_chain *c = &cd->uncd_rx_chain[i]; c->unc_un = un; if (c->unc_xfer == NULL) { int err = usbd_create_xfer(unp->unp_ep[USBNET_ENDPT_RX], un->un_rx_bufsz, un->un_rx_xfer_flags, 0, &c->unc_xfer); if (err) return err; c->unc_buf = usbd_get_buffer(c->unc_xfer); } } return 0; } static void usbnet_rx_list_fini(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); for (size_t i = 0; i < un->un_rx_list_cnt; i++) { struct usbnet_chain *c = &cd->uncd_rx_chain[i]; if (c->unc_xfer != NULL) { usbd_destroy_xfer(c->unc_xfer); c->unc_xfer = NULL; c->unc_buf = NULL; } } } /* End of common RX functions */ static void usbnet_rx_start_pipes(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); struct usbnet_private * const unp = un->un_pri; mutex_enter(&unp->unp_rxlock); mutex_enter(&unp->unp_txlock); unp->unp_stopping = false; for (size_t i = 0; i < un->un_rx_list_cnt; i++) { struct usbnet_chain *c = &cd->uncd_rx_chain[i]; usbd_setup_xfer(c->unc_xfer, c, c->unc_buf, un->un_rx_bufsz, un->un_rx_xfer_flags, USBD_NO_TIMEOUT, usbnet_rxeof); usbd_transfer(c->unc_xfer); } mutex_exit(&unp->unp_txlock); mutex_exit(&unp->unp_rxlock); } /* Start of common TX functions */ static size_t usbnet_tx_list_size(struct usbnet_cdata * const cd, struct usbnet * const un) { return sizeof(*cd->uncd_tx_chain) * un->un_tx_list_cnt; } static void usbnet_tx_list_alloc(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); cd->uncd_tx_chain = kmem_zalloc(usbnet_tx_list_size(cd, un), KM_SLEEP); } static void usbnet_tx_list_free(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); if (cd->uncd_tx_chain) { kmem_free(cd->uncd_tx_chain, usbnet_tx_list_size(cd, un)); cd->uncd_tx_chain = NULL; } } static int usbnet_tx_list_init(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); struct usbnet_private * const unp = un->un_pri; for (size_t i = 0; i < un->un_tx_list_cnt; i++) { struct usbnet_chain *c = &cd->uncd_tx_chain[i]; c->unc_un = un; if (c->unc_xfer == NULL) { int err = usbd_create_xfer(unp->unp_ep[USBNET_ENDPT_TX], un->un_tx_bufsz, un->un_tx_xfer_flags, 0, &c->unc_xfer); if (err) return err; c->unc_buf = usbd_get_buffer(c->unc_xfer); } } return 0; } static void usbnet_tx_list_fini(struct usbnet * const un) { struct usbnet_cdata * const cd = un_cdata(un); for (size_t i = 0; i < un->un_tx_list_cnt; i++) { struct usbnet_chain *c = &cd->uncd_tx_chain[i]; if (c->unc_xfer != NULL) { usbd_destroy_xfer(c->unc_xfer); c->unc_xfer = NULL; c->unc_buf = NULL; } } cd->uncd_tx_prod = cd->uncd_tx_cnt = 0; } /* End of common TX functions */ /* Endpoint pipe management. */ static void usbnet_ep_close_pipes(struct usbnet * const un) { struct usbnet_private * const unp = un->un_pri; for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) { if (unp->unp_ep[i] == NULL) continue; usbd_status err = usbd_close_pipe(unp->unp_ep[i]); if (err) aprint_error_dev(un->un_dev, "close pipe %zu: %s\n", i, usbd_errstr(err)); unp->unp_ep[i] = NULL; } } static usbd_status usbnet_ep_open_pipes(struct usbnet * const un) { struct usbnet_intr * const uni = un->un_intr; struct usbnet_private * const unp = un->un_pri; for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) { usbd_status err; if (un->un_ed[i] == 0) continue; if (i == USBNET_ENDPT_INTR && uni) { err = usbd_open_pipe_intr(un->un_iface, un->un_ed[i], USBD_EXCLUSIVE_USE | USBD_MPSAFE, &unp->unp_ep[i], un, uni->uni_buf, uni->uni_bufsz, usbnet_pipe_intr, uni->uni_interval); } else { err = usbd_open_pipe(un->un_iface, un->un_ed[i], USBD_EXCLUSIVE_USE | USBD_MPSAFE, &unp->unp_ep[i]); } if (err) { usbnet_ep_close_pipes(un); return err; } } return USBD_NORMAL_COMPLETION; } static usbd_status usbnet_ep_stop_pipes(struct usbnet * const un) { struct usbnet_private * const unp = un->un_pri; usbd_status err = USBD_NORMAL_COMPLETION; for (size_t i = 0; i < __arraycount(unp->unp_ep); i++) { if (unp->unp_ep[i] == NULL) continue; usbd_status err2 = usbd_abort_pipe(unp->unp_ep[i]); if (err == USBD_NORMAL_COMPLETION && err2) err = err2; } return err; } int usbnet_init_rx_tx(struct usbnet * const un) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet_private * const unp = un->un_pri; struct ifnet * const ifp = usbnet_ifp(un); usbd_status err; int error = 0; usbnet_isowned(un); if (unp->unp_dying) { return EIO; } unp->unp_refcnt++; /* Open RX and TX pipes. */ err = usbnet_ep_open_pipes(un); if (err) { aprint_error_dev(un->un_dev, "open rx/tx pipes failed: %s\n", usbd_errstr(err)); error = EIO; goto out; } /* Init RX ring. */ if (usbnet_rx_list_init(un)) { aprint_error_dev(un->un_dev, "rx list init failed\n"); error = ENOBUFS; goto out; } /* Init TX ring. */ if (usbnet_tx_list_init(un)) { aprint_error_dev(un->un_dev, "tx list init failed\n"); error = ENOBUFS; goto out; } /* Start up the receive pipe(s). */ usbnet_rx_start_pipes(un); /* Indicate we are up and running. */ #if 0 /* XXX if_mcast_op() can call this without ifnet locked */ KASSERT(ifp->if_softc == NULL || IFNET_LOCKED(ifp)); #endif ifp->if_flags |= IFF_RUNNING; callout_schedule(&unp->unp_stat_ch, hz); out: if (error) { usbnet_rx_list_fini(un); usbnet_tx_list_fini(un); usbnet_ep_close_pipes(un); } if (--unp->unp_refcnt < 0) cv_broadcast(&unp->unp_detachcv); usbnet_isowned(un); return error; } /* MII management. */ /* * Access functions for MII. Take the MII lock to call access MII regs. * Two forms: usbnet (softc) lock currently held or not. */ void usbnet_lock_mii(struct usbnet *un) { struct usbnet_private * const unp = un->un_pri; mutex_enter(&unp->unp_lock); unp->unp_refcnt++; mutex_exit(&unp->unp_lock); mutex_enter(&unp->unp_miilock); } void usbnet_lock_mii_un_locked(struct usbnet *un) { struct usbnet_private * const unp = un->un_pri; usbnet_isowned(un); unp->unp_refcnt++; mutex_enter(&unp->unp_miilock); } void usbnet_unlock_mii(struct usbnet *un) { struct usbnet_private * const unp = un->un_pri; mutex_exit(&unp->unp_miilock); mutex_enter(&unp->unp_lock); if (--unp->unp_refcnt < 0) cv_broadcast(&unp->unp_detachcv); mutex_exit(&unp->unp_lock); } void usbnet_unlock_mii_un_locked(struct usbnet *un) { struct usbnet_private * const unp = un->un_pri; usbnet_isowned(un); mutex_exit(&unp->unp_miilock); if (--unp->unp_refcnt < 0) cv_broadcast(&unp->unp_detachcv); } kmutex_t * usbnet_mutex_mii(struct usbnet *un) { struct usbnet_private * const unp = un->un_pri; return &unp->unp_miilock; } int usbnet_mii_readreg(device_t dev, int phy, int reg, uint16_t *val) { USBNETHIST_FUNC(); struct usbnet * const un = device_private(dev); struct usbnet_private * const unp = un->un_pri; int err; mutex_enter(&unp->unp_lock); if (unp->unp_dying) { mutex_exit(&unp->unp_lock); return EIO; } usbnet_lock_mii_un_locked(un); mutex_exit(&unp->unp_lock); err = uno_read_reg(un, phy, reg, val); usbnet_unlock_mii(un); if (err) { USBNETHIST_CALLARGS("read PHY failed: %d", err, 0, 0, 0); return err; } return 0; } int usbnet_mii_writereg(device_t dev, int phy, int reg, uint16_t val) { USBNETHIST_FUNC(); struct usbnet * const un = device_private(dev); struct usbnet_private * const unp = un->un_pri; int err; mutex_enter(&unp->unp_lock); if (unp->unp_dying) { mutex_exit(&unp->unp_lock); return EIO; } usbnet_lock_mii_un_locked(un); mutex_exit(&unp->unp_lock); err = uno_write_reg(un, phy, reg, val); usbnet_unlock_mii(un); if (err) { USBNETHIST_CALLARGS("write PHY failed: %d", err, 0, 0, 0); return err; } return 0; } void usbnet_mii_statchg(struct ifnet *ifp) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet * const un = ifp->if_softc; uno_mii_statchg(un, ifp); } static int usbnet_media_upd(struct ifnet *ifp) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet * const un = ifp->if_softc; struct usbnet_private * const unp = un->un_pri; struct mii_data * const mii = usbnet_mii(un); if (unp->unp_dying) return EIO; unp->unp_link = false; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } return ether_mediachange(ifp); } /* ioctl */ static int usbnet_ifflags_cb(struct ethercom *ec) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct ifnet *ifp = &ec->ec_if; struct usbnet *un = ifp->if_softc; struct usbnet_private * const unp = un->un_pri; int rv = 0; mutex_enter(&unp->unp_lock); const int changed = ifp->if_flags ^ unp->unp_if_flags; if ((changed & ~(IFF_CANTCHANGE | IFF_DEBUG)) == 0) { unp->unp_if_flags = ifp->if_flags; if ((changed & IFF_PROMISC) != 0) rv = ENETRESET; } else { rv = ENETRESET; } mutex_exit(&unp->unp_lock); return rv; } static int usbnet_ioctl(struct ifnet *ifp, u_long cmd, void *data) { USBNETHIST_FUNC(); struct usbnet * const un = ifp->if_softc; struct usbnet_private * const unp __unused = un->un_pri; int error; USBNETHIST_CALLARGSN(11, "%d: enter %jx data %x", unp->unp_number, cmd, (uintptr_t)data, 0); if (un->un_ops->uno_override_ioctl) return uno_override_ioctl(un, ifp, cmd, data); error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { switch (cmd) { case SIOCADDMULTI: case SIOCDELMULTI: usb_add_task(un->un_udev, &unp->unp_mcasttask, USB_TASKQ_DRIVER); error = 0; break; default: error = uno_ioctl(un, ifp, cmd, data); } } return error; } static void usbnet_mcast_task(void *arg) { USBNETHIST_FUNC(); struct usbnet * const un = arg; struct usbnet_private * const unp = un->un_pri; struct ifnet * const ifp = usbnet_ifp(un); bool dying; struct ifreq ifr; USBNETHIST_CALLARGSN(10, "%d: enter", unp->unp_number, 0, 0, 0); /* * If we're detaching, we must check unp_dying _before_ * touching IFNET_LOCK -- the ifnet may have been detached by * the time this task runs. This is racy -- unp_dying may be * set immediately after we test it -- but nevertheless safe, * because usbnet_detach waits for the task to complete before * issuing if_detach, and necessary, so that we don't touch * IFNET_LOCK after if_detach. See usbnet_detach for details. */ mutex_enter(&unp->unp_lock); dying = unp->unp_dying; mutex_exit(&unp->unp_lock); if (dying) return; /* * Pass a bogus ifr with SIOCDELMULTI -- the goal is to just * notify the driver to reprogram any hardware multicast * filter, according to what's already stored in the ethercom. * None of the drivers actually examine this argument, so it * doesn't change the ABI as far as they can tell. */ IFNET_LOCK(ifp); if (ifp->if_flags & IFF_RUNNING) { memset(&ifr, 0, sizeof(ifr)); (void)uno_ioctl(un, ifp, SIOCDELMULTI, &ifr); } IFNET_UNLOCK(ifp); } /* * Generic stop network function: * - mark as stopping * - call DD routine to stop the device * - turn off running, timer, statchg callout, link * - stop transfers * - free RX and TX resources * - close pipes * * usbnet_stop() is exported for drivers to use, expects lock held. * * usbnet_stop_ifp() is for the if_stop handler. */ void usbnet_stop(struct usbnet *un, struct ifnet *ifp, int disable) { struct usbnet_private * const unp = un->un_pri; USBNETHIST_FUNC(); USBNETHIST_CALLED(); usbnet_isowned(un); mutex_enter(&unp->unp_rxlock); mutex_enter(&unp->unp_txlock); unp->unp_stopping = true; mutex_exit(&unp->unp_txlock); mutex_exit(&unp->unp_rxlock); uno_stop(un, ifp, disable); /* * XXXSMP Would like to * KASSERT(IFNET_LOCKED(ifp)) * here but the locking order is: * ifnet -> unlock -> rxlock -> txlock * and unlock is already held. */ ifp->if_flags &= ~IFF_RUNNING; unp->unp_timer = 0; callout_halt(&unp->unp_stat_ch, &unp->unp_lock); usb_rem_task_wait(un->un_udev, &unp->unp_ticktask, USB_TASKQ_DRIVER, &unp->unp_lock); /* Stop transfers. */ usbnet_ep_stop_pipes(un); /* Free RX/TX resources. */ usbnet_rx_list_fini(un); usbnet_tx_list_fini(un); /* Close pipes. */ usbnet_ep_close_pipes(un); } static void usbnet_stop_ifp(struct ifnet *ifp, int disable) { struct usbnet * const un = ifp->if_softc; struct usbnet_private * const unp = un->un_pri; mutex_enter(&unp->unp_lock); usbnet_stop(un, ifp, disable); mutex_exit(&unp->unp_lock); } /* * Generic tick task function. * * usbnet_tick() is triggered from a callout, and triggers a call to * usbnet_tick_task() from the usb_task subsystem. */ static void usbnet_tick(void *arg) { USBNETHIST_FUNC(); struct usbnet * const un = arg; struct usbnet_private * const unp = un->un_pri; USBNETHIST_CALLARGSN(10, "%d: enter", unp->unp_number, 0, 0, 0); if (unp != NULL && !unp->unp_stopping && !unp->unp_dying) { /* Perform periodic stuff in process context */ usb_add_task(un->un_udev, &unp->unp_ticktask, USB_TASKQ_DRIVER); } } static void usbnet_watchdog(struct ifnet *ifp) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet * const un = ifp->if_softc; struct usbnet_private * const unp = un->un_pri; struct usbnet_cdata * const cd = un_cdata(un); usbd_status err; ifp->if_oerrors++; aprint_error_dev(un->un_dev, "watchdog timeout\n"); if (cd->uncd_tx_cnt > 0) { DPRINTF("uncd_tx_cnt=%u non zero, aborting pipe", 0, 0, 0, 0); err = usbd_abort_pipe(unp->unp_ep[USBNET_ENDPT_TX]); if (err) aprint_error_dev(un->un_dev, "pipe abort failed: %s\n", usbd_errstr(err)); if (cd->uncd_tx_cnt != 0) DPRINTF("uncd_tx_cnt now %u", cd->uncd_tx_cnt, 0, 0, 0); } if (!IFQ_IS_EMPTY(&ifp->if_snd)) (*ifp->if_start)(ifp); } static void usbnet_tick_task(void *arg) { USBNETHIST_FUNC(); struct usbnet * const un = arg; struct usbnet_private * const unp = un->un_pri; if (unp == NULL) return; USBNETHIST_CALLARGSN(8, "%d: enter", unp->unp_number, 0, 0, 0); mutex_enter(&unp->unp_lock); if (unp->unp_stopping || unp->unp_dying) { mutex_exit(&unp->unp_lock); return; } struct ifnet * const ifp = usbnet_ifp(un); struct mii_data * const mii = usbnet_mii(un); KASSERT(ifp != NULL); /* embedded member */ unp->unp_refcnt++; mutex_exit(&unp->unp_lock); if (unp->unp_timer != 0 && --unp->unp_timer == 0) usbnet_watchdog(ifp); DPRINTFN(8, "mii %jx ifp %jx", (uintptr_t)mii, (uintptr_t)ifp, 0, 0); if (mii) { mii_tick(mii); if (!unp->unp_link) (*mii->mii_statchg)(ifp); } /* Call driver if requested. */ uno_tick(un); mutex_enter(&unp->unp_lock); if (--unp->unp_refcnt < 0) cv_broadcast(&unp->unp_detachcv); if (!unp->unp_stopping && !unp->unp_dying) callout_schedule(&unp->unp_stat_ch, hz); mutex_exit(&unp->unp_lock); } static int usbnet_init(struct ifnet *ifp) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet * const un = ifp->if_softc; return uno_init(un, ifp); } /* Various accessors. */ void usbnet_set_link(struct usbnet *un, bool link) { un->un_pri->unp_link = link; } void usbnet_set_dying(struct usbnet *un, bool link) { un->un_pri->unp_dying = link; } struct ifnet * usbnet_ifp(struct usbnet *un) { return &un->un_pri->unp_ec.ec_if; } struct ethercom * usbnet_ec(struct usbnet *un) { return &un->un_pri->unp_ec; } struct mii_data * usbnet_mii(struct usbnet *un) { return un->un_pri->unp_ec.ec_mii; } krndsource_t * usbnet_rndsrc(struct usbnet *un) { return &un->un_pri->unp_rndsrc; } void * usbnet_softc(struct usbnet *un) { return un->un_sc; } bool usbnet_havelink(struct usbnet *un) { return un->un_pri->unp_link; } bool usbnet_isdying(struct usbnet *un) { return un->un_pri == NULL || un->un_pri->unp_dying; } /* Locking. */ void usbnet_lock(struct usbnet *un) { mutex_enter(&un->un_pri->unp_lock); } void usbnet_unlock(struct usbnet *un) { mutex_exit(&un->un_pri->unp_lock); } kmutex_t * usbnet_mutex(struct usbnet *un) { return &un->un_pri->unp_lock; } void usbnet_lock_rx(struct usbnet *un) { mutex_enter(&un->un_pri->unp_rxlock); } void usbnet_unlock_rx(struct usbnet *un) { mutex_exit(&un->un_pri->unp_rxlock); } kmutex_t * usbnet_mutex_rx(struct usbnet *un) { return &un->un_pri->unp_rxlock; } void usbnet_lock_tx(struct usbnet *un) { mutex_enter(&un->un_pri->unp_txlock); } void usbnet_unlock_tx(struct usbnet *un) { mutex_exit(&un->un_pri->unp_txlock); } kmutex_t * usbnet_mutex_tx(struct usbnet *un) { return &un->un_pri->unp_txlock; } /* Autoconf management. */ static bool usbnet_empty_eaddr(struct usbnet * const un) { return (un->un_eaddr[0] == 0 && un->un_eaddr[1] == 0 && un->un_eaddr[2] == 0 && un->un_eaddr[3] == 0 && un->un_eaddr[4] == 0 && un->un_eaddr[5] == 0); } /* * usbnet_attach() and usbnet_attach_ifp() perform setup of the relevant * 'usbnet'. The first is enough to enable device access (eg, endpoints * are connected and commands can be sent), and the second connects the * device to the system networking. * * Always call usbnet_detach(), even if usbnet_attach_ifp() is skippped. * Also usable as driver detach directly. * * To skip ethernet configuration (eg, point-to-point), make sure that * the un_eaddr[] is fully zero. */ void usbnet_attach(struct usbnet *un, const char *detname) /* detach cv name */ { USBNETHIST_FUNC(); USBNETHIST_CALLED(); /* Required inputs. */ KASSERT(un->un_ops->uno_tx_prepare); KASSERT(un->un_ops->uno_rx_loop); KASSERT(un->un_ops->uno_init); KASSERT(un->un_rx_bufsz); KASSERT(un->un_tx_bufsz); KASSERT(un->un_rx_list_cnt); KASSERT(un->un_tx_list_cnt); /* Unfortunate fact. */ KASSERT(un == device_private(un->un_dev)); un->un_pri = kmem_zalloc(sizeof(*un->un_pri), KM_SLEEP); struct usbnet_private * const unp = un->un_pri; usb_init_task(&unp->unp_mcasttask, usbnet_mcast_task, un, USB_TASKQ_MPSAFE); usb_init_task(&unp->unp_ticktask, usbnet_tick_task, un, USB_TASKQ_MPSAFE); callout_init(&unp->unp_stat_ch, CALLOUT_MPSAFE); callout_setfunc(&unp->unp_stat_ch, usbnet_tick, un); mutex_init(&unp->unp_miilock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&unp->unp_txlock, MUTEX_DEFAULT, IPL_SOFTUSB); mutex_init(&unp->unp_rxlock, MUTEX_DEFAULT, IPL_SOFTUSB); mutex_init(&unp->unp_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&unp->unp_detachcv, detname); rnd_attach_source(&unp->unp_rndsrc, device_xname(un->un_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); usbnet_rx_list_alloc(un); usbnet_tx_list_alloc(un); unp->unp_number = atomic_inc_uint_nv(&usbnet_number); unp->unp_attached = true; } static void usbnet_attach_mii(struct usbnet *un, const struct usbnet_mii *unm) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet_private * const unp = un->un_pri; struct mii_data * const mii = &unp->unp_mii; struct ifnet * const ifp = usbnet_ifp(un); KASSERT(un->un_ops->uno_read_reg); KASSERT(un->un_ops->uno_write_reg); KASSERT(un->un_ops->uno_statchg); mii->mii_ifp = ifp; mii->mii_readreg = usbnet_mii_readreg; mii->mii_writereg = usbnet_mii_writereg; mii->mii_statchg = usbnet_mii_statchg; mii->mii_flags = MIIF_AUTOTSLEEP; usbnet_ec(un)->ec_mii = mii; ifmedia_init(&mii->mii_media, 0, usbnet_media_upd, ether_mediastatus); mii_attach(un->un_dev, mii, unm->un_mii_capmask, unm->un_mii_phyloc, unm->un_mii_offset, unm->un_mii_flags); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } void usbnet_attach_ifp(struct usbnet *un, unsigned if_flags, /* additional if_flags */ unsigned if_extflags, /* additional if_extflags */ const struct usbnet_mii *unm) /* additional mii_attach flags */ { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet_private * const unp = un->un_pri; struct ifnet * const ifp = usbnet_ifp(un); KASSERT(unp->unp_attached); strlcpy(ifp->if_xname, device_xname(un->un_dev), IFNAMSIZ); ifp->if_flags = if_flags; ifp->if_extflags = IFEF_MPSAFE | if_extflags; ifp->if_ioctl = usbnet_ioctl; ifp->if_start = usbnet_start; ifp->if_init = usbnet_init; ifp->if_stop = usbnet_stop_ifp; if (unm) usbnet_attach_mii(un, unm); else unp->unp_link = true; /* Attach the interface. */ int rv = if_initialize(ifp); if (rv != 0) { aprint_error_dev(un->un_dev, "if_initialize failed: %d\n", rv); return; } if (ifp->_if_input == NULL) ifp->if_percpuq = if_percpuq_create(ifp); if_register(ifp); /* * If ethernet address is all zero, skip ether_ifattach() and * instead attach bpf here.. */ if (!usbnet_empty_eaddr(un)) { ether_set_ifflags_cb(&unp->unp_ec, usbnet_ifflags_cb); aprint_normal_dev(un->un_dev, "Ethernet address %s\n", ether_sprintf(un->un_eaddr)); ether_ifattach(ifp, un->un_eaddr); } else { if_alloc_sadl(ifp); bpf_attach(ifp, DLT_RAW, 0); } /* Now ready, and attached. */ IFQ_SET_READY(&ifp->if_snd); ifp->if_softc = un; usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, un->un_udev, un->un_dev); if (!pmf_device_register(un->un_dev, NULL, NULL)) aprint_error_dev(un->un_dev, "couldn't establish power handler\n"); } int usbnet_detach(device_t self, int flags) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet * const un = device_private(self); struct usbnet_private * const unp = un->un_pri; /* Detached before attached finished, so just bail out. */ if (unp == NULL || !unp->unp_attached) return 0; struct ifnet * const ifp = usbnet_ifp(un); struct mii_data * const mii = usbnet_mii(un); mutex_enter(&unp->unp_lock); unp->unp_dying = true; mutex_exit(&unp->unp_lock); if (ifp->if_flags & IFF_RUNNING) { IFNET_LOCK(ifp); usbnet_stop_ifp(ifp, 1); IFNET_UNLOCK(ifp); } callout_halt(&unp->unp_stat_ch, NULL); usb_rem_task_wait(un->un_udev, &unp->unp_ticktask, USB_TASKQ_DRIVER, NULL); usb_rem_task_wait(un->un_udev, &unp->unp_mcasttask, USB_TASKQ_DRIVER, NULL); mutex_enter(&unp->unp_lock); unp->unp_refcnt--; while (unp->unp_refcnt >= 0) { /* Wait for processes to go away */ cv_wait(&unp->unp_detachcv, &unp->unp_lock); } mutex_exit(&unp->unp_lock); usbnet_rx_list_free(un); usbnet_tx_list_free(un); callout_destroy(&unp->unp_stat_ch); rnd_detach_source(&unp->unp_rndsrc); if (mii) { mii_detach(mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_delete_instance(&mii->mii_media, IFM_INST_ANY); } if (ifp->if_softc) { if (!usbnet_empty_eaddr(un)) ether_ifdetach(ifp); else bpf_detach(ifp); if_detach(ifp); } usbnet_ec(un)->ec_mii = NULL; /* * We have already waited for the multicast task to complete. * Unfortunately, until if_detach, nothing has prevented it * from running again -- another thread might issue if_mcast_op * between the time of our first usb_rem_task_wait and the time * we actually get around to if_detach. * * Fortunately, the first usb_rem_task_wait ensures that if the * task is scheduled again, it will witness our setting of * unp_dying to true[*]. So after that point, if the task is * scheduled again, it will decline to touch IFNET_LOCK and do * nothing. But we still need to wait for it to complete. * * It would be nice if we could write * * if_pleasestopissuingmcastopsthanks(ifp); * usb_rem_task_wait(..., &unp->unp_mcasttask, ...); * if_detach(ifp); * * and then we would need only one usb_rem_task_wait. * * Unfortunately, there is no such operation available in * sys/net at the moment, and it would require a bit of * coordination with if_mcast_op and doifioctl probably under a * new lock. So we'll use this kludge until that mechanism is * invented. * * [*] This is not exactly a documented property of the API, * but it is implied by the single lock in the task queue * serializing changes to the task state. */ usb_rem_task_wait(un->un_udev, &unp->unp_mcasttask, USB_TASKQ_DRIVER, NULL); cv_destroy(&unp->unp_detachcv); mutex_destroy(&unp->unp_lock); mutex_destroy(&unp->unp_rxlock); mutex_destroy(&unp->unp_txlock); mutex_destroy(&unp->unp_miilock); pmf_device_deregister(un->un_dev); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, un->un_udev, un->un_dev); kmem_free(unp, sizeof(*unp)); un->un_pri = NULL; return 0; } int usbnet_activate(device_t self, devact_t act) { USBNETHIST_FUNC(); USBNETHIST_CALLED(); struct usbnet * const un = device_private(self); struct usbnet_private * const unp = un->un_pri; struct ifnet * const ifp = usbnet_ifp(un); switch (act) { case DVACT_DEACTIVATE: if_deactivate(ifp); mutex_enter(&unp->unp_lock); unp->unp_dying = true; mutex_exit(&unp->unp_lock); mutex_enter(&unp->unp_rxlock); mutex_enter(&unp->unp_txlock); unp->unp_stopping = true; mutex_exit(&unp->unp_txlock); mutex_exit(&unp->unp_rxlock); return 0; default: return EOPNOTSUPP; } } MODULE(MODULE_CLASS_MISC, usbnet, NULL); static int usbnet_modcmd(modcmd_t cmd, void *arg) { switch (cmd) { case MODULE_CMD_INIT: return 0; case MODULE_CMD_FINI: return 0; case MODULE_CMD_STAT: case MODULE_CMD_AUTOUNLOAD: default: return ENOTTY; } }