/* $NetBSD: uatp.c,v 1.19.4.1 2020/02/12 20:05:58 martin Exp $ */ /*- * Copyright (c) 2011-2014 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Taylor R. Campbell. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * uatp(4) - USB Apple Trackpad * * The uatp driver talks the protocol of the USB trackpads found in * Apple laptops since 2005, including PowerBooks, iBooks, MacBooks, * and MacBook Pros. Some of these also present generic USB HID mice * on another USB report id, which the ums(4) driver can handle, but * Apple's protocol gives more detailed sensor data that lets us detect * multiple fingers to emulate multi-button mice and scroll wheels. */ /* * Protocol * * The device has a set of horizontal sensors, each being a column at a * particular position on the x axis that tells you whether there is * pressure anywhere on that column, and vertical sensors, each being a * row at a particular position on the y axis that tells you whether * there is pressure anywhere on that row. * * Whenever the device senses anything, it emits a readout of all of * the sensors, in some model-dependent order. (For the order, see * read_sample_1 and read_sample_2.) Each sensor datum is an unsigned * eight-bit quantity representing some measure of pressure. (Of * course, it really measures capacitance, not pressure, but we'll call * it `pressure' here.) */ /* * Interpretation * * To interpret the finger's position on the trackpad, the driver * computes a weighted average over all possible positions, weighted by * the pressure at that position. The weighted average is computed in * the dimensions of the screen, rather than the trackpad, in order to * admit a finer resolution of positions than the trackpad grid. * * To update the finger's position smoothly on the trackpad, the driver * computes a weighted average of the old raw position, the old * smoothed position, and the new smoothed position. The weights are * given by the old_raw_weight, old_smoothed_weight, and new_raw_weight * sysctl knobs. * * Finally, to move the cursor, the driver takes the difference between * the old and new positions and accelerates it according to some * heuristic knobs that need to be reworked. * * Finally, there are some bells & whistles to detect tapping and to * emulate a three-button mouse by leaving two or three fingers on the * trackpad while pressing the button. */ /* * Future work * * With the raw sensor data available, we could implement fancier bells * & whistles too, such as pinch-to-zoom. However, wsmouse supports * only four-dimensional mice with buttons, and we already use two * dimensions for mousing and two dimensions for scrolling, so there's * no straightforward way to report zooming and other gestures to the * operating system. Probably a better way to do this would be just to * attach uhid(4) instead of uatp(4) and to read the raw sensors data * yourself -- but that requires hairy mode switching for recent models * (see geyser34_enable_raw_mode). * * XXX Rework the acceleration knobs. * XXX Implement edge scrolling. * XXX Fix sysctl setup; preserve knobs across suspend/resume. * (uatp0 detaches and reattaches across suspend/resume, so as * written, the sysctl tree is torn down and rebuilt, losing any * state the user may have set.) * XXX Refactor motion state so I can understand it again. * Should make a struct uatp_motion for all that state. * XXX Add hooks for ignoring trackpad input while typing. */ /* * Classifying devices * * I have only one MacBook to test this driver, but the driver should * be applicable to almost every Apple laptop made since the beginning * of 2005, so the driver reports lots of debugging output to help to * classify devices. Boot with `boot -v' (verbose) and check the * output of `dmesg | grep uatp' to answer the following questions: * * - What devices (vendor, product, class, subclass, proto, USB HID * report dump) fail to attach when you think they should work? * (vendor not apple, class not hid, proto not mouse) * * - What devices have an unknown product id? * `unknown vendor/product id' * * - What devices have the wrong screen-to-trackpad ratios? * `... x sensors, scaled by ... for ... points on screen' * `... y sensors, scaled by ... for ... points on screen' * You can tweak hw.uatp0.x_ratio and hw.uatp0.y_ratio to adjust * this, up to a maximum of 384 for each value. * * - What devices have the wrong input size? * `expected input size ... but got ... for Apple trackpad' * * - What devices give wrong-sized packets? * `discarding ...-byte input' * * - What devices split packets in chunks? * `partial packet: ... bytes' * * - What devices develop large sensor readouts? * `large sensor readout: ...' * * - What devices have the wrong number of sensors? Are there parts of * your trackpad that the system doesn't seem to notice? You can * tweak hw.uatp0.x_sensors and hw.uatp0.y_sensors, up to a maximum * of 32 for each value. */ #include __KERNEL_RCSID(0, "$NetBSD: uatp.c,v 1.19.4.1 2020/02/12 20:05:58 martin Exp $"); #ifdef _KERNEL_OPT #include "opt_usb.h" #endif #include #include #include #include #include #include #include #include #include #include #include /* Order is important here...sigh... */ #include #include #include #include #include #include #include #include #include #define CHECK(condition, fail) do { \ if (! (condition)) { \ aprint_error_dev(uatp_dev(sc), "%s: check failed: %s\n",\ __func__, #condition); \ fail; \ } \ } while (0) #define UATP_DEBUG_ATTACH __BIT(0) #define UATP_DEBUG_MISC __BIT(1) #define UATP_DEBUG_WSMOUSE __BIT(2) #define UATP_DEBUG_IOCTL __BIT(3) #define UATP_DEBUG_RESET __BIT(4) #define UATP_DEBUG_INTR __BIT(5) #define UATP_DEBUG_PARSE __BIT(6) #define UATP_DEBUG_TAP __BIT(7) #define UATP_DEBUG_EMUL_BUTTON __BIT(8) #define UATP_DEBUG_ACCUMULATE __BIT(9) #define UATP_DEBUG_STATUS __BIT(10) #define UATP_DEBUG_SPURINTR __BIT(11) #define UATP_DEBUG_MOVE __BIT(12) #define UATP_DEBUG_ACCEL __BIT(13) #define UATP_DEBUG_TRACK_DIST __BIT(14) #define UATP_DEBUG_PALM __BIT(15) /* * Unconditionally enable the debug output so you don't have to * recompile the kernel to diagnose it. This is not a high-throughput * NIC driver or anything that will be hurt by a few conditionals. */ #define UATP_DEBUG 1 #if UATP_DEBUG # define DPRINTF(sc, flags, format) do { \ if ((flags) & (sc)->sc_debug_flags) { \ printf("%s: %s: ", device_xname(uatp_dev(sc)), __func__); \ printf format; \ } \ } while (0) #else # define DPRINTF(sc, flags, format) do {} while (0) #endif /* Maximum number of bytes in an incoming packet of sensor data. */ #define UATP_MAX_INPUT_SIZE 81 /* Maximum number of sensors in each dimension. */ #define UATP_MAX_X_SENSORS 32 #define UATP_MAX_Y_SENSORS 32 #define UATP_MAX_SENSORS 32 #define UATP_SENSORS (UATP_MAX_X_SENSORS + UATP_MAX_Y_SENSORS) /* Maximum accumulated sensor value. */ #define UATP_MAX_ACC 0xff /* Maximum screen dimension to sensor dimension ratios. */ #define UATP_MAX_X_RATIO 0x180 #define UATP_MAX_Y_RATIO 0x180 #define UATP_MAX_RATIO 0x180 /* Maximum weight for positions in motion calculation. */ #define UATP_MAX_WEIGHT 0x7f /* Maximum possible trackpad position in a single dimension. */ #define UATP_MAX_POSITION (UATP_MAX_SENSORS * UATP_MAX_RATIO) /* Bounds on acceleration. */ #define UATP_MAX_MOTION_MULTIPLIER 16 /* Status bits transmitted in the last byte of an input packet. */ #define UATP_STATUS_BUTTON __BIT(0) /* Button pressed */ #define UATP_STATUS_BASE __BIT(2) /* Base sensor data */ #define UATP_STATUS_POST_RESET __BIT(4) /* Post-reset */ /* Forward declarations */ struct uatp_softc; /* Device driver state. */ struct uatp_descriptor; /* Descriptor for a particular model. */ struct uatp_parameters; /* Parameters common to a set of models. */ struct uatp_knobs; /* User-settable configuration knobs. */ enum uatp_tap_state { TAP_STATE_INITIAL, TAP_STATE_TAPPING, TAP_STATE_TAPPED, TAP_STATE_DOUBLE_TAPPING, TAP_STATE_DRAGGING_DOWN, TAP_STATE_DRAGGING_UP, TAP_STATE_TAPPING_IN_DRAG, }; static const struct uatp_descriptor *find_uatp_descriptor (const struct uhidev_attach_arg *); static device_t uatp_dev(const struct uatp_softc *); static uint8_t *uatp_x_sample(struct uatp_softc *); static uint8_t *uatp_y_sample(struct uatp_softc *); static int *uatp_x_acc(struct uatp_softc *); static int *uatp_y_acc(struct uatp_softc *); static void uatp_clear_position(struct uatp_softc *); static unsigned int uatp_x_sensors(const struct uatp_softc *); static unsigned int uatp_y_sensors(const struct uatp_softc *); static unsigned int uatp_x_ratio(const struct uatp_softc *); static unsigned int uatp_y_ratio(const struct uatp_softc *); static unsigned int uatp_old_raw_weight(const struct uatp_softc *); static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *); static unsigned int uatp_new_raw_weight(const struct uatp_softc *); static int scale_motion(const struct uatp_softc *, int, int *, const unsigned int *, const unsigned int *); static int uatp_scale_motion(const struct uatp_softc *, int, int *); static int uatp_scale_fast_motion(const struct uatp_softc *, int, int *); static int uatp_match(device_t, cfdata_t, void *); static void uatp_attach(device_t, device_t, void *); static void uatp_setup_sysctl(struct uatp_softc *); static bool uatp_setup_sysctl_knob(struct uatp_softc *, int *, const char *, const char *); static void uatp_childdet(device_t, device_t); static int uatp_detach(device_t, int); static int uatp_activate(device_t, enum devact); static int uatp_enable(void *); static void uatp_disable(void *); static int uatp_ioctl(void *, unsigned long, void *, int, struct lwp *); static void geyser34_enable_raw_mode(struct uatp_softc *); static void geyser34_initialize(struct uatp_softc *); static int geyser34_finalize(struct uatp_softc *); static void geyser34_deferred_reset(struct uatp_softc *); static void geyser34_reset_task(void *); static void uatp_intr(struct uhidev *, void *, unsigned int); static bool base_sample_softc_flag(const struct uatp_softc *, const uint8_t *); static bool base_sample_input_flag(const struct uatp_softc *, const uint8_t *); static void read_sample_1(uint8_t *, uint8_t *, const uint8_t *); static void read_sample_2(uint8_t *, uint8_t *, const uint8_t *); static void accumulate_sample_1(struct uatp_softc *); static void accumulate_sample_2(struct uatp_softc *); static void uatp_input(struct uatp_softc *, uint32_t, int, int, int, int); static uint32_t uatp_tapped_buttons(struct uatp_softc *); static bool interpret_input(struct uatp_softc *, int *, int *, int *, int *, uint32_t *); static unsigned int interpret_dimension(struct uatp_softc *, const int *, unsigned int, unsigned int, unsigned int *, unsigned int *); static void tap_initialize(struct uatp_softc *); static void tap_finalize(struct uatp_softc *); static void tap_enable(struct uatp_softc *); static void tap_disable(struct uatp_softc *); static void tap_transition(struct uatp_softc *, enum uatp_tap_state, const struct timeval *, unsigned int, unsigned int); static void tap_transition_initial(struct uatp_softc *); static void tap_transition_tapping(struct uatp_softc *, const struct timeval *, unsigned int); static void tap_transition_double_tapping(struct uatp_softc *, const struct timeval *, unsigned int); static void tap_transition_dragging_down(struct uatp_softc *); static void tap_transition_tapping_in_drag(struct uatp_softc *, const struct timeval *, unsigned int); static void tap_transition_tapped(struct uatp_softc *, const struct timeval *); static void tap_transition_dragging_up(struct uatp_softc *); static void tap_reset(struct uatp_softc *); static void tap_reset_wait(struct uatp_softc *); static void tap_touched(struct uatp_softc *, unsigned int); static bool tap_released(struct uatp_softc *); static void schedule_untap(struct uatp_softc *); static void untap_callout(void *); static uint32_t emulated_buttons(struct uatp_softc *, unsigned int); static void update_position(struct uatp_softc *, unsigned int, unsigned int, unsigned int, int *, int *, int *, int *); static void move_mouse(struct uatp_softc *, unsigned int, unsigned int, int *, int *); static void scroll_wheel(struct uatp_softc *, unsigned int, unsigned int, int *, int *); static void move(struct uatp_softc *, const char *, unsigned int, unsigned int, int *, int *, int *, int *, unsigned int *, unsigned int *, int *, int *); static int smooth(struct uatp_softc *, unsigned int, unsigned int, unsigned int); static bool motion_below_threshold(struct uatp_softc *, unsigned int, int, int); static int accelerate(struct uatp_softc *, unsigned int, unsigned int, unsigned int, unsigned int, bool, int *); struct uatp_knobs { /* * Button emulation. What do we do when two or three fingers * are on the trackpad when the user presses the button? */ unsigned int two_finger_buttons; unsigned int three_finger_buttons; #if 0 /* * Edge scrolling. * * XXX Implement this. What units should these be in? */ unsigned int top_edge; unsigned int bottom_edge; unsigned int left_edge; unsigned int right_edge; #endif /* * Multifinger tracking. What do we do with multiple fingers? * 0. Ignore them. * 1. Try to interpret them as ordinary mousing. * 2. Act like a two-dimensional scroll wheel. */ unsigned int multifinger_track; /* * Sensor parameters. */ unsigned int x_sensors; unsigned int x_ratio; unsigned int y_sensors; unsigned int y_ratio; unsigned int sensor_threshold; unsigned int sensor_normalizer; unsigned int palm_width; unsigned int old_raw_weight; unsigned int old_smoothed_weight; unsigned int new_raw_weight; /* * Motion parameters. * * XXX There should be a more principled model of acceleration. */ unsigned int motion_remainder; unsigned int motion_threshold; unsigned int motion_multiplier; unsigned int motion_divisor; unsigned int fast_motion_threshold; unsigned int fast_motion_multiplier; unsigned int fast_motion_divisor; unsigned int fast_per_direction; unsigned int motion_delay; /* * Tapping. */ unsigned int tap_limit_msec; unsigned int double_tap_limit_msec; unsigned int one_finger_tap_buttons; unsigned int two_finger_tap_buttons; unsigned int three_finger_tap_buttons; unsigned int tap_track_distance_limit; }; static const struct uatp_knobs default_knobs = { /* * Button emulation. Fingers on the trackpad don't change it * by default -- it's still the left button. * * XXX The left button should have a name. */ .two_finger_buttons = 1, .three_finger_buttons = 1, #if 0 /* * Edge scrolling. Off by default. */ .top_edge = 0, .bottom_edge = 0, .left_edge = 0, .right_edge = 0, #endif /* * Multifinger tracking. Ignore by default. */ .multifinger_track = 0, /* * Sensor parameters. */ .x_sensors = 0, /* default for model */ .x_ratio = 0, /* default for model */ .y_sensors = 0, /* default for model */ .y_ratio = 0, /* default for model */ .sensor_threshold = 5, .sensor_normalizer = 5, .palm_width = 0, /* palm detection disabled */ .old_raw_weight = 0, .old_smoothed_weight = 5, .new_raw_weight = 1, /* * Motion parameters. */ .motion_remainder = 1, .motion_threshold = 0, .motion_multiplier = 1, .motion_divisor = 1, .fast_motion_threshold = 10, .fast_motion_multiplier = 3, .fast_motion_divisor = 2, .fast_per_direction = 0, .motion_delay = 4, /* * Tapping. Disabled by default, with a reasonable time set * nevertheless so that you can just set the buttons to enable * it. */ .tap_limit_msec = 100, .double_tap_limit_msec = 200, .one_finger_tap_buttons = 0, .two_finger_tap_buttons = 0, .three_finger_tap_buttons = 0, .tap_track_distance_limit = 200, }; struct uatp_softc { struct uhidev sc_hdev; /* USB parent. */ device_t sc_wsmousedev; /* Attached wsmouse device. */ const struct uatp_parameters *sc_parameters; struct uatp_knobs sc_knobs; struct sysctllog *sc_log; /* Log for sysctl knobs. */ const struct sysctlnode *sc_node; /* Our sysctl node. */ unsigned int sc_input_size; /* Input packet size. */ uint8_t sc_input[UATP_MAX_INPUT_SIZE]; /* Buffer for a packet. */ unsigned int sc_input_index; /* Current index into sc_input. */ int sc_acc[UATP_SENSORS]; /* Accumulated sensor state. */ uint8_t sc_base[UATP_SENSORS]; /* Base sample. */ uint8_t sc_sample[UATP_SENSORS];/* Current sample. */ unsigned int sc_motion_timer; /* XXX describe; motion_delay */ int sc_x_raw; /* Raw horiz. mouse position. */ int sc_y_raw; /* Raw vert. mouse position. */ int sc_z_raw; /* Raw horiz. scroll position. */ int sc_w_raw; /* Raw vert. scroll position. */ int sc_x_smoothed; /* Smoothed horiz. mouse position. */ int sc_y_smoothed; /* Smoothed vert. mouse position. */ int sc_z_smoothed; /* Smoothed horiz. scroll position. */ int sc_w_smoothed; /* Smoothed vert. scroll position. */ int sc_x_remainder; /* Remainders from acceleration. */ int sc_y_remainder; int sc_z_remainder; int sc_w_remainder; unsigned int sc_track_distance; /* Distance^2 finger has tracked, * squared to avoid sqrt in kernel. */ uint32_t sc_status; /* Status flags: */ #define UATP_ENABLED __BIT(0) /* . Is the wsmouse enabled? */ #define UATP_DYING __BIT(1) /* . Have we been deactivated? */ #define UATP_VALID __BIT(2) /* . Do we have valid sensor data? */ struct usb_task sc_reset_task; /* Task for resetting device. */ callout_t sc_untap_callout; /* Releases button after tap. */ kmutex_t sc_tap_mutex; /* Protects the following fields. */ enum uatp_tap_state sc_tap_state; /* Current tap state. */ unsigned int sc_tapping_fingers; /* No. fingers tapping. */ unsigned int sc_tapped_fingers; /* No. fingers of last tap. */ struct timeval sc_tap_timer; /* Timer for tap state transitions. */ uint32_t sc_buttons; /* Physical buttons pressed. */ uint32_t sc_all_buttons; /* Buttons pressed or tapped. */ #if UATP_DEBUG uint32_t sc_debug_flags; /* Debugging output enabled. */ #endif }; struct uatp_descriptor { uint16_t vendor; uint16_t product; const char *description; const struct uatp_parameters *parameters; }; struct uatp_parameters { unsigned int x_ratio; /* Screen width / trackpad width. */ unsigned int x_sensors; /* Number of horizontal sensors. */ unsigned int x_sensors_17; /* XXX Same, on a 17" laptop. */ unsigned int y_ratio; /* Screen height / trackpad height. */ unsigned int y_sensors; /* Number of vertical sensors. */ unsigned int input_size; /* Size in bytes of input packets. */ /* Device-specific initialization routine. May be null. */ void (*initialize)(struct uatp_softc *); /* Device-specific finalization routine. May be null. May fail. */ int (*finalize)(struct uatp_softc *); /* Tests whether this is a base sample. Second argument is * input_size bytes long. */ bool (*base_sample)(const struct uatp_softc *, const uint8_t *); /* Reads a sensor sample from an input packet. First argument * is UATP_MAX_X_SENSORS bytes long; second, UATP_MAX_Y_SENSORS * bytes; third, input_size bytes. */ void (*read_sample)(uint8_t *, uint8_t *, const uint8_t *); /* Accumulates sensor state in sc->sc_acc. */ void (*accumulate)(struct uatp_softc *); /* Called on spurious interrupts to reset. May be null. */ void (*reset)(struct uatp_softc *); }; /* Known device parameters */ static const struct uatp_parameters fountain_parameters = { .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26, .y_ratio = 43, .y_sensors = 16, .input_size = 81, .initialize = NULL, .finalize = NULL, .base_sample = base_sample_softc_flag, .read_sample = read_sample_1, .accumulate = accumulate_sample_1, .reset = NULL, }; static const struct uatp_parameters geyser_1_parameters = { .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26, .y_ratio = 43, .y_sensors = 16, .input_size = 81, .initialize = NULL, .finalize = NULL, .base_sample = base_sample_softc_flag, .read_sample = read_sample_1, .accumulate = accumulate_sample_1, .reset = NULL, }; static const struct uatp_parameters geyser_2_parameters = { .x_ratio = 64, .x_sensors = 15, .x_sensors_17 = 20, .y_ratio = 43, .y_sensors = 9, .input_size = 64, .initialize = NULL, .finalize = NULL, .base_sample = base_sample_softc_flag, .read_sample = read_sample_2, .accumulate = accumulate_sample_1, .reset = NULL, }; /* * The Geyser 3 and Geyser 4 share parameters. They also present * generic USB HID mice on a different report id, so we have smaller * packets by one byte (uhidev handles multiplexing report ids) and * extra initialization work to switch the mode from generic USB HID * mouse to Apple trackpad. */ static const struct uatp_parameters geyser_3_4_parameters = { .x_ratio = 64, .x_sensors = 20, /* XXX */ .x_sensors_17 = 0, .y_ratio = 64, .y_sensors = 9, .input_size = 63, /* 64, minus one for the report id. */ .initialize = geyser34_initialize, .finalize = geyser34_finalize, .base_sample = base_sample_input_flag, .read_sample = read_sample_2, .accumulate = accumulate_sample_2, .reset = geyser34_deferred_reset, }; /* Known device models */ #define APPLE_TRACKPAD(PRODUCT, DESCRIPTION, PARAMETERS) \ { \ .vendor = USB_VENDOR_APPLE, \ .product = (PRODUCT), \ .description = "Apple " DESCRIPTION " trackpad", \ .parameters = (& (PARAMETERS)), \ } #define POWERBOOK_TRACKPAD(PRODUCT, PARAMETERS) \ APPLE_TRACKPAD(PRODUCT, "PowerBook/iBook", PARAMETERS) #define MACBOOK_TRACKPAD(PRODUCT, PARAMETERS) \ APPLE_TRACKPAD(PRODUCT, "MacBook/MacBook Pro", PARAMETERS) static const struct uatp_descriptor uatp_descriptors[] = { POWERBOOK_TRACKPAD(0x020e, fountain_parameters), POWERBOOK_TRACKPAD(0x020f, fountain_parameters), POWERBOOK_TRACKPAD(0x030a, fountain_parameters), POWERBOOK_TRACKPAD(0x030b, geyser_1_parameters), POWERBOOK_TRACKPAD(0x0214, geyser_2_parameters), POWERBOOK_TRACKPAD(0x0215, geyser_2_parameters), POWERBOOK_TRACKPAD(0x0216, geyser_2_parameters), MACBOOK_TRACKPAD(0x0217, geyser_3_4_parameters), /* 3 */ MACBOOK_TRACKPAD(0x0218, geyser_3_4_parameters), /* 3 */ MACBOOK_TRACKPAD(0x0219, geyser_3_4_parameters), /* 3 */ MACBOOK_TRACKPAD(0x021a, geyser_3_4_parameters), /* 4 */ MACBOOK_TRACKPAD(0x021b, geyser_3_4_parameters), /* 4 */ MACBOOK_TRACKPAD(0x021c, geyser_3_4_parameters), /* 4 */ MACBOOK_TRACKPAD(0x0229, geyser_3_4_parameters), /* 4 */ MACBOOK_TRACKPAD(0x022a, geyser_3_4_parameters), /* 4 */ MACBOOK_TRACKPAD(0x022b, geyser_3_4_parameters), /* 4 */ }; #undef MACBOOK_TRACKPAD #undef POWERBOOK_TRACKPAD #undef APPLE_TRACKPAD /* Miscellaneous utilities */ static const struct uatp_descriptor * find_uatp_descriptor(const struct uhidev_attach_arg *uha) { unsigned int i; for (i = 0; i < __arraycount(uatp_descriptors); i++) if ((uha->uiaa->uiaa_vendor == uatp_descriptors[i].vendor) && (uha->uiaa->uiaa_product == uatp_descriptors[i].product)) return &uatp_descriptors[i]; return NULL; } static device_t uatp_dev(const struct uatp_softc *sc) { return sc->sc_hdev.sc_dev; } static uint8_t * uatp_x_sample(struct uatp_softc *sc) { return &sc->sc_sample[0]; } static uint8_t * uatp_y_sample(struct uatp_softc *sc) { return &sc->sc_sample[UATP_MAX_X_SENSORS]; } static int * uatp_x_acc(struct uatp_softc *sc) { return &sc->sc_acc[0]; } static int * uatp_y_acc(struct uatp_softc *sc) { return &sc->sc_acc[UATP_MAX_X_SENSORS]; } static void uatp_clear_position(struct uatp_softc *sc) { memset(sc->sc_acc, 0, sizeof(sc->sc_acc)); sc->sc_motion_timer = 0; sc->sc_x_raw = sc->sc_x_smoothed = -1; sc->sc_y_raw = sc->sc_y_smoothed = -1; sc->sc_z_raw = sc->sc_z_smoothed = -1; sc->sc_w_raw = sc->sc_w_smoothed = -1; sc->sc_x_remainder = 0; sc->sc_y_remainder = 0; sc->sc_z_remainder = 0; sc->sc_w_remainder = 0; sc->sc_track_distance = 0; } static unsigned int uatp_x_sensors(const struct uatp_softc *sc) { if ((0 < sc->sc_knobs.x_sensors) && (sc->sc_knobs.x_sensors <= UATP_MAX_X_SENSORS)) return sc->sc_knobs.x_sensors; else return sc->sc_parameters->x_sensors; } static unsigned int uatp_y_sensors(const struct uatp_softc *sc) { if ((0 < sc->sc_knobs.y_sensors) && (sc->sc_knobs.y_sensors <= UATP_MAX_Y_SENSORS)) return sc->sc_knobs.y_sensors; else return sc->sc_parameters->y_sensors; } static unsigned int uatp_x_ratio(const struct uatp_softc *sc) { /* XXX Reject bogus values in sysctl. */ if ((0 < sc->sc_knobs.x_ratio) && (sc->sc_knobs.x_ratio <= UATP_MAX_X_RATIO)) return sc->sc_knobs.x_ratio; else return sc->sc_parameters->x_ratio; } static unsigned int uatp_y_ratio(const struct uatp_softc *sc) { /* XXX Reject bogus values in sysctl. */ if ((0 < sc->sc_knobs.y_ratio) && (sc->sc_knobs.y_ratio <= UATP_MAX_Y_RATIO)) return sc->sc_knobs.y_ratio; else return sc->sc_parameters->y_ratio; } static unsigned int uatp_old_raw_weight(const struct uatp_softc *sc) { /* XXX Reject bogus values in sysctl. */ if (sc->sc_knobs.old_raw_weight <= UATP_MAX_WEIGHT) return sc->sc_knobs.old_raw_weight; else return 0; } static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *sc) { /* XXX Reject bogus values in sysctl. */ if (sc->sc_knobs.old_smoothed_weight <= UATP_MAX_WEIGHT) return sc->sc_knobs.old_smoothed_weight; else return 0; } static unsigned int uatp_new_raw_weight(const struct uatp_softc *sc) { /* XXX Reject bogus values in sysctl. */ if ((0 < sc->sc_knobs.new_raw_weight) && (sc->sc_knobs.new_raw_weight <= UATP_MAX_WEIGHT)) return sc->sc_knobs.new_raw_weight; else return 1; } static int scale_motion(const struct uatp_softc *sc, int delta, int *remainder, const unsigned int *multiplier, const unsigned int *divisor) { int product; /* XXX Limit the divisor? */ if (((*multiplier) == 0) || ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) || ((*divisor) == 0)) DPRINTF(sc, UATP_DEBUG_ACCEL, ("bad knobs; %d (+ %d) --> %d, rem 0\n", delta, *remainder, (delta + (*remainder)))); else DPRINTF(sc, UATP_DEBUG_ACCEL, ("scale %d (+ %d) by %u/%u --> %d, rem %d\n", delta, *remainder, (*multiplier), (*divisor), (((delta + (*remainder)) * ((int) (*multiplier))) / ((int) (*divisor))), (((delta + (*remainder)) * ((int) (*multiplier))) % ((int) (*divisor))))); if (sc->sc_knobs.motion_remainder) delta += *remainder; *remainder = 0; if (((*multiplier) == 0) || ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) || ((*divisor) == 0)) return delta; product = (delta * ((int) (*multiplier))); *remainder = (product % ((int) (*divisor))); return product / ((int) (*divisor)); } static int uatp_scale_motion(const struct uatp_softc *sc, int delta, int *remainder) { return scale_motion(sc, delta, remainder, &sc->sc_knobs.motion_multiplier, &sc->sc_knobs.motion_divisor); } static int uatp_scale_fast_motion(const struct uatp_softc *sc, int delta, int *remainder) { return scale_motion(sc, delta, remainder, &sc->sc_knobs.fast_motion_multiplier, &sc->sc_knobs.fast_motion_divisor); } /* Driver goop */ CFATTACH_DECL2_NEW(uatp, sizeof(struct uatp_softc), uatp_match, uatp_attach, uatp_detach, uatp_activate, NULL, uatp_childdet); static const struct wsmouse_accessops uatp_accessops = { .enable = uatp_enable, .disable = uatp_disable, .ioctl = uatp_ioctl, }; static int uatp_match(device_t parent, cfdata_t match, void *aux) { const struct uhidev_attach_arg *uha = aux; void *report_descriptor; int report_size, input_size; const struct uatp_descriptor *uatp_descriptor; aprint_debug("%s: vendor 0x%04x, product 0x%04x\n", __func__, (unsigned int)uha->uiaa->uiaa_vendor, (unsigned int)uha->uiaa->uiaa_product); aprint_debug("%s: class 0x%04x, subclass 0x%04x, proto 0x%04x\n", __func__, (unsigned int)uha->uiaa->uiaa_class, (unsigned int)uha->uiaa->uiaa_subclass, (unsigned int)uha->uiaa->uiaa_proto); uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size); input_size = hid_report_size(report_descriptor, report_size, hid_input, uha->reportid); aprint_debug("%s: reportid %d, input size %d\n", __func__, (int)uha->reportid, input_size); /* * Keyboards, trackpads, and eject buttons share common vendor * and product ids, but not protocols: only the trackpad * reports a mouse protocol. */ if (uha->uiaa->uiaa_proto != UIPROTO_MOUSE) return UMATCH_NONE; /* Check for a known vendor/product id. */ uatp_descriptor = find_uatp_descriptor(uha); if (uatp_descriptor == NULL) { aprint_debug("%s: unknown vendor/product id\n", __func__); return UMATCH_NONE; } /* Check for the expected input size. */ if ((input_size < 0) || ((unsigned int)input_size != uatp_descriptor->parameters->input_size)) { aprint_debug("%s: expected input size %u\n", __func__, uatp_descriptor->parameters->input_size); return UMATCH_NONE; } return UMATCH_VENDOR_PRODUCT_CONF_IFACE; } static void uatp_attach(device_t parent, device_t self, void *aux) { struct uatp_softc *sc = device_private(self); const struct uhidev_attach_arg *uha = aux; const struct uatp_descriptor *uatp_descriptor; void *report_descriptor; int report_size, input_size; struct wsmousedev_attach_args a; /* Set up uhidev state. (Why doesn't uhidev do most of this?) */ sc->sc_hdev.sc_dev = self; sc->sc_hdev.sc_intr = uatp_intr; sc->sc_hdev.sc_parent = uha->parent; sc->sc_hdev.sc_report_id = uha->reportid; /* Identify ourselves to dmesg. */ uatp_descriptor = find_uatp_descriptor(uha); KASSERT(uatp_descriptor != NULL); aprint_normal(": %s\n", uatp_descriptor->description); aprint_naive(": %s\n", uatp_descriptor->description); aprint_verbose_dev(self, "vendor 0x%04x, product 0x%04x, report id %d\n", (unsigned int)uha->uiaa->uiaa_vendor, (unsigned int)uha->uiaa->uiaa_product, (int)uha->reportid); uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size); input_size = hid_report_size(report_descriptor, report_size, hid_input, uha->reportid); KASSERT(0 < input_size); sc->sc_input_size = input_size; /* Initialize model-specific parameters. */ sc->sc_parameters = uatp_descriptor->parameters; KASSERT((int)sc->sc_parameters->input_size == input_size); KASSERT(sc->sc_parameters->x_sensors <= UATP_MAX_X_SENSORS); KASSERT(sc->sc_parameters->x_ratio <= UATP_MAX_X_RATIO); KASSERT(sc->sc_parameters->y_sensors <= UATP_MAX_Y_SENSORS); KASSERT(sc->sc_parameters->y_ratio <= UATP_MAX_Y_RATIO); aprint_verbose_dev(self, "%u x sensors, scaled by %u for %u points on screen\n", sc->sc_parameters->x_sensors, sc->sc_parameters->x_ratio, sc->sc_parameters->x_sensors * sc->sc_parameters->x_ratio); aprint_verbose_dev(self, "%u y sensors, scaled by %u for %u points on screen\n", sc->sc_parameters->y_sensors, sc->sc_parameters->y_ratio, sc->sc_parameters->y_sensors * sc->sc_parameters->y_ratio); if (sc->sc_parameters->initialize) sc->sc_parameters->initialize(sc); /* Register with pmf. Nothing special for suspend/resume. */ if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "couldn't establish power handler\n"); /* Initialize knobs and create sysctl subtree to tweak them. */ sc->sc_knobs = default_knobs; uatp_setup_sysctl(sc); /* Initialize tapping. */ tap_initialize(sc); /* Attach wsmouse. */ a.accessops = &uatp_accessops; a.accesscookie = sc; sc->sc_wsmousedev = config_found_ia(self, "wsmousedev", &a, wsmousedevprint); } /* Sysctl setup */ static void uatp_setup_sysctl(struct uatp_softc *sc) { int error; error = sysctl_createv(&sc->sc_log, 0, NULL, &sc->sc_node, 0, CTLTYPE_NODE, device_xname(uatp_dev(sc)), SYSCTL_DESCR("uatp configuration knobs"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (error != 0) { aprint_error_dev(uatp_dev(sc), "unable to set up sysctl tree hw.%s: %d\n", device_xname(uatp_dev(sc)), error); goto err; } #if UATP_DEBUG if (!uatp_setup_sysctl_knob(sc, &sc->sc_debug_flags, "debug", "uatp(4) debug flags")) goto err; #endif /* * Button emulation. */ if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_buttons, "two_finger_buttons", "buttons to emulate with two fingers on trackpad")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_buttons, "three_finger_buttons", "buttons to emulate with three fingers on trackpad")) goto err; #if 0 /* * Edge scrolling. */ if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.top_edge, "top_edge", "width of top edge for edge scrolling")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.bottom_edge, "bottom_edge", "width of bottom edge for edge scrolling")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.left_edge, "left_edge", "width of left edge for edge scrolling")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.right_edge, "right_edge", "width of right edge for edge scrolling")) goto err; #endif /* * Multifinger tracking. */ if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.multifinger_track, "multifinger_track", "0 to ignore multiple fingers, 1 to reset, 2 to scroll")) goto err; /* * Sensor parameters. */ if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_sensors, "x_sensors", "number of x sensors")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_ratio, "x_ratio", "screen width to trackpad width ratio")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_sensors, "y_sensors", "number of y sensors")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_ratio, "y_ratio", "screen height to trackpad height ratio")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_threshold, "sensor_threshold", "sensor threshold")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_normalizer, "sensor_normalizer", "sensor normalizer")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.palm_width, "palm_width", "lower bound on width/height of palm")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_raw_weight, "old_raw_weight", "weight of old raw position")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_smoothed_weight, "old_smoothed_weight", "weight of old smoothed position")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.new_raw_weight, "new_raw_weight", "weight of new raw position")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_remainder, "motion_remainder", "remember motion division remainder")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_threshold, "motion_threshold", "threshold before finger moves cursor")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_multiplier, "motion_multiplier", "numerator of motion scale")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_divisor, "motion_divisor", "divisor of motion scale")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_threshold, "fast_motion_threshold", "threshold before fast motion")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_multiplier, "fast_motion_multiplier", "numerator of fast motion scale")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_divisor, "fast_motion_divisor", "divisor of fast motion scale")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_per_direction, "fast_per_direction", "don't frobnitz the veeblefitzer!")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_delay, "motion_delay", "number of packets before motion kicks in")) goto err; /* * Tapping. */ if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_limit_msec, "tap_limit_msec", "milliseconds before a touch is not a tap")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.double_tap_limit_msec, "double_tap_limit_msec", "milliseconds before a second tap keeps the button down")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.one_finger_tap_buttons, "one_finger_tap_buttons", "buttons for one-finger taps")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_tap_buttons, "two_finger_tap_buttons", "buttons for two-finger taps")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_tap_buttons, "three_finger_tap_buttons", "buttons for three-finger taps")) goto err; if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_track_distance_limit, "tap_track_distance_limit", "maximum distance^2 of tracking during tap")) goto err; return; err: sysctl_teardown(&sc->sc_log); sc->sc_node = NULL; } static bool uatp_setup_sysctl_knob(struct uatp_softc *sc, int *ptr, const char *name, const char *description) { int error; error = sysctl_createv(&sc->sc_log, 0, NULL, NULL, CTLFLAG_READWRITE, CTLTYPE_INT, name, SYSCTL_DESCR(description), NULL, 0, ptr, 0, CTL_HW, sc->sc_node->sysctl_num, CTL_CREATE, CTL_EOL); if (error != 0) { aprint_error_dev(uatp_dev(sc), "unable to setup sysctl node hw.%s.%s: %d\n", device_xname(uatp_dev(sc)), name, error); return false; } return true; } /* More driver goop */ static void uatp_childdet(device_t self, device_t child) { struct uatp_softc *sc = device_private(self); DPRINTF(sc, UATP_DEBUG_MISC, ("detaching child %s\n", device_xname(child))); /* Our only child is the wsmouse device. */ if (child == sc->sc_wsmousedev) sc->sc_wsmousedev = NULL; } static int uatp_detach(device_t self, int flags) { struct uatp_softc *sc = device_private(self); DPRINTF(sc, UATP_DEBUG_MISC, ("detaching with flags %d\n", flags)); if (sc->sc_status & UATP_ENABLED) { aprint_error_dev(uatp_dev(sc), "can't detach while enabled\n"); return EBUSY; } if (sc->sc_parameters->finalize) { int error = sc->sc_parameters->finalize(sc); if (error != 0) return error; } pmf_device_deregister(self); sysctl_teardown(&sc->sc_log); sc->sc_node = NULL; tap_finalize(sc); return config_detach_children(self, flags); } static int uatp_activate(device_t self, enum devact act) { struct uatp_softc *sc = device_private(self); DPRINTF(sc, UATP_DEBUG_MISC, ("act %d\n", (int)act)); if (act != DVACT_DEACTIVATE) return EOPNOTSUPP; sc->sc_status |= UATP_DYING; return 0; } /* wsmouse routines */ static int uatp_enable(void *v) { struct uatp_softc *sc = v; DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("enabling wsmouse\n")); /* Refuse to enable if we've been deactivated. */ if (sc->sc_status & UATP_DYING) { DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("busy dying\n")); return EIO; } /* Refuse to enable if we already are enabled. */ if (sc->sc_status & UATP_ENABLED) { DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("already enabled\n")); return EBUSY; } sc->sc_status |= UATP_ENABLED; sc->sc_status &=~ UATP_VALID; sc->sc_input_index = 0; tap_enable(sc); uatp_clear_position(sc); DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_open(%p)\n", &sc->sc_hdev)); return uhidev_open(&sc->sc_hdev); } static void uatp_disable(void *v) { struct uatp_softc *sc = v; DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("disabling wsmouse\n")); if (!(sc->sc_status & UATP_ENABLED)) { DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("not enabled\n")); return; } tap_disable(sc); sc->sc_status &=~ UATP_ENABLED; DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_close(%p)\n", &sc->sc_hdev)); uhidev_close(&sc->sc_hdev); } static int uatp_ioctl(void *v, unsigned long cmd, void *data, int flag, struct lwp *p) { DPRINTF((struct uatp_softc*)v, UATP_DEBUG_IOCTL, ("cmd %lx, data %p, flag %x, lwp %p\n", cmd, data, flag, p)); /* XXX Implement any relevant wsmouse(4) ioctls. */ return EPASSTHROUGH; } /* * The Geyser 3 and 4 models talk the generic USB HID mouse protocol by * default. This mode switch makes them give raw sensor data instead * so that we can implement tapping, two-finger scrolling, &c. */ #define GEYSER34_RAW_MODE 0x04 #define GEYSER34_MODE_REPORT_ID 0 #define GEYSER34_MODE_INTERFACE 0 #define GEYSER34_MODE_PACKET_SIZE 8 static void geyser34_enable_raw_mode(struct uatp_softc *sc) { struct usbd_device *udev = sc->sc_hdev.sc_parent->sc_udev; usb_device_request_t req; usbd_status status; uint8_t report[GEYSER34_MODE_PACKET_SIZE]; req.bmRequestType = UT_READ_CLASS_INTERFACE; req.bRequest = UR_GET_REPORT; USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID); USETW(req.wIndex, GEYSER34_MODE_INTERFACE); USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE); DPRINTF(sc, UATP_DEBUG_RESET, ("get feature report\n")); status = usbd_do_request(udev, &req, report); if (status != USBD_NORMAL_COMPLETION) { aprint_error_dev(uatp_dev(sc), "error reading feature report: %s\n", usbd_errstr(status)); return; } #if UATP_DEBUG if (sc->sc_debug_flags & UATP_DEBUG_RESET) { unsigned int i; DPRINTF(sc, UATP_DEBUG_RESET, ("old feature report:")); for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++) printf(" %02x", (unsigned int)report[i]); printf("\n"); /* Doing this twice is harmless here and lets this be * one ifdef. */ report[0] = GEYSER34_RAW_MODE; DPRINTF(sc, UATP_DEBUG_RESET, ("new feature report:")); for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++) printf(" %02x", (unsigned int)report[i]); printf("\n"); } #endif report[0] = GEYSER34_RAW_MODE; req.bmRequestType = UT_WRITE_CLASS_INTERFACE; req.bRequest = UR_SET_REPORT; USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID); USETW(req.wIndex, GEYSER34_MODE_INTERFACE); USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE); DPRINTF(sc, UATP_DEBUG_RESET, ("set feature report\n")); status = usbd_do_request(udev, &req, report); if (status != USBD_NORMAL_COMPLETION) { aprint_error_dev(uatp_dev(sc), "error writing feature report: %s\n", usbd_errstr(status)); return; } } /* * The Geyser 3 and 4 need to be reset periodically after we detect a * continual flow of spurious interrupts. We use a USB task for this. */ static void geyser34_initialize(struct uatp_softc *sc) { DPRINTF(sc, UATP_DEBUG_MISC, ("initializing\n")); geyser34_enable_raw_mode(sc); usb_init_task(&sc->sc_reset_task, &geyser34_reset_task, sc, 0); } static int geyser34_finalize(struct uatp_softc *sc) { DPRINTF(sc, UATP_DEBUG_MISC, ("finalizing\n")); usb_rem_task_wait(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task, USB_TASKQ_DRIVER, NULL); return 0; } static void geyser34_deferred_reset(struct uatp_softc *sc) { DPRINTF(sc, UATP_DEBUG_RESET, ("deferring reset\n")); usb_add_task(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task, USB_TASKQ_DRIVER); } static void geyser34_reset_task(void *arg) { struct uatp_softc *sc = arg; DPRINTF(sc, UATP_DEBUG_RESET, ("resetting\n")); /* Reset by putting it into raw mode. Not sure why. */ geyser34_enable_raw_mode(sc); } /* Interrupt handler */ static void uatp_intr(struct uhidev *addr, void *ibuf, unsigned int len) { struct uatp_softc *sc = (struct uatp_softc *)addr; uint8_t *input; int dx, dy, dz, dw; uint32_t buttons; DPRINTF(sc, UATP_DEBUG_INTR, ("softc %p, ibuf %p, len %u\n", addr, ibuf, len)); /* * Some devices break packets up into chunks, so we accumulate * input up to the expected packet length, or if it would * overflow, discard the whole packet and start over. */ if (sc->sc_input_size < len) { aprint_error_dev(uatp_dev(sc), "discarding %u-byte input packet\n", len); sc->sc_input_index = 0; return; } else if (sc->sc_input_size < (sc->sc_input_index + len)) { aprint_error_dev(uatp_dev(sc), "discarding %u-byte input\n", (sc->sc_input_index + len)); sc->sc_input_index = 0; return; } else if (sc->sc_input_size == 81 && len == 17 && sc->sc_input_index != 64) { /* * Quirk of Fountain and Geyser 1 devices: a 17-byte * packet seems to mean the last one, but sometimes we * get desynchronized, so drop this one and start over * if we see a 17-byte packet that's not at the end. */ aprint_error_dev(uatp_dev(sc), "discarding 17-byte nonterminal input at %u\n", sc->sc_input_index); sc->sc_input_index = 0; return; } #if UATP_DEBUG if (sc->sc_debug_flags & UATP_DEBUG_INTR) { unsigned int i; uint8_t *bytes = ibuf; DPRINTF(sc, UATP_DEBUG_INTR, ("raw")); for (i = 0; i < len; i++) printf(" %02x", (unsigned int)bytes[i]); printf("\n"); } #endif memcpy(&sc->sc_input[sc->sc_input_index], ibuf, len); sc->sc_input_index += len; if (sc->sc_input_index != sc->sc_input_size) { /* Wait until packet is complete. */ DPRINTF(sc, UATP_DEBUG_INTR, ("partial packet: %u bytes\n", len)); return; } /* Clear the buffer and process the now complete packet. */ sc->sc_input_index = 0; input = sc->sc_input; /* The last byte's first bit is set iff the button is pressed. * XXX Left button should have a name. */ buttons = ((input[sc->sc_input_size - 1] & UATP_STATUS_BUTTON) ? 1 : 0); /* Read the sample. */ memset(uatp_x_sample(sc), 0, UATP_MAX_X_SENSORS); memset(uatp_y_sample(sc), 0, UATP_MAX_Y_SENSORS); sc->sc_parameters->read_sample(uatp_x_sample(sc), uatp_y_sample(sc), input); #if UATP_DEBUG if (sc->sc_debug_flags & UATP_DEBUG_INTR) { unsigned int i; DPRINTF(sc, UATP_DEBUG_INTR, ("x sensors")); for (i = 0; i < uatp_x_sensors(sc); i++) printf(" %02x", (unsigned int)uatp_x_sample(sc)[i]); printf("\n"); DPRINTF(sc, UATP_DEBUG_INTR, ("y sensors")); for (i = 0; i < uatp_y_sensors(sc); i++) printf(" %02x", (unsigned int)uatp_y_sample(sc)[i]); printf("\n"); } else if ((sc->sc_debug_flags & UATP_DEBUG_STATUS) && (input[sc->sc_input_size - 1] &~ (UATP_STATUS_BUTTON | UATP_STATUS_BASE | UATP_STATUS_POST_RESET))) DPRINTF(sc, UATP_DEBUG_STATUS, ("status byte: %02x\n", input[sc->sc_input_size - 1])); #endif /* * If this is a base sample, initialize the state to interpret * subsequent samples relative to it, and stop here. */ if (sc->sc_parameters->base_sample(sc, input)) { DPRINTF(sc, UATP_DEBUG_PARSE, ("base sample, buttons %"PRIx32"\n", buttons)); /* XXX Should the valid bit ever be reset? */ sc->sc_status |= UATP_VALID; uatp_clear_position(sc); memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base)); /* XXX Perform 17" size detection like Linux? */ return; } /* If not, accumulate the change in the sensors. */ sc->sc_parameters->accumulate(sc); #if UATP_DEBUG if (sc->sc_debug_flags & UATP_DEBUG_ACCUMULATE) { unsigned int i; DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated x state:")); for (i = 0; i < uatp_x_sensors(sc); i++) printf(" %02x", (unsigned int)uatp_x_acc(sc)[i]); printf("\n"); DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated y state:")); for (i = 0; i < uatp_y_sensors(sc); i++) printf(" %02x", (unsigned int)uatp_y_acc(sc)[i]); printf("\n"); } #endif /* Compute the change in coordinates and buttons. */ dx = dy = dz = dw = 0; if ((!interpret_input(sc, &dx, &dy, &dz, &dw, &buttons)) && /* If there's no input because we're releasing a button, * then it's not spurious. XXX Mutex? */ (sc->sc_buttons == 0)) { DPRINTF(sc, UATP_DEBUG_SPURINTR, ("spurious interrupt\n")); if (sc->sc_parameters->reset) sc->sc_parameters->reset(sc); return; } /* Report to wsmouse. */ DPRINTF(sc, UATP_DEBUG_INTR, ("buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n", buttons, dx, dy, dz, dw)); mutex_enter(&sc->sc_tap_mutex); uatp_input(sc, buttons, dx, dy, dz, dw); mutex_exit(&sc->sc_tap_mutex); } /* * Different ways to discern the base sample initializing the state. * `base_sample_softc_flag' uses a state flag stored in the softc; * `base_sample_input_flag' checks a flag at the end of the input * packet. */ static bool base_sample_softc_flag(const struct uatp_softc *sc, const uint8_t *input) { return !(sc->sc_status & UATP_VALID); } static bool base_sample_input_flag(const struct uatp_softc *sc, const uint8_t *input) { /* XXX Should we also check the valid flag? */ return !!(input[sc->sc_input_size - 1] & UATP_STATUS_BASE); } /* * Pick apart the horizontal sensors from the vertical sensors. * Different models interleave them in different orders. */ static void read_sample_1(uint8_t *x, uint8_t *y, const uint8_t *input) { unsigned int i; for (i = 0; i < 8; i++) { x[i] = input[5 * i + 2]; x[i + 8] = input[5 * i + 4]; x[i + 16] = input[5 * i + 42]; if (i < 2) x[i + 24] = input[5 * i + 44]; y[i] = input[5 * i + 1]; y[i + 8] = input[5 * i + 3]; } } static void read_sample_2(uint8_t *x, uint8_t *y, const uint8_t *input) { unsigned int i, j; for (i = 0, j = 19; i < 20; i += 2, j += 3) { x[i] = input[j]; x[i + 1] = input[j + 1]; } for (i = 0, j = 1; i < 9; i += 2, j += 3) { y[i] = input[j]; y[i + 1] = input[j + 1]; } } static void accumulate_sample_1(struct uatp_softc *sc) { unsigned int i; for (i = 0; i < UATP_SENSORS; i++) { sc->sc_acc[i] += (int8_t)(sc->sc_sample[i] - sc->sc_base[i]); if (sc->sc_acc[i] < 0) { sc->sc_acc[i] = 0; } else if (UATP_MAX_ACC < sc->sc_acc[i]) { DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("overflow %d\n", sc->sc_acc[i])); sc->sc_acc[i] = UATP_MAX_ACC; } } memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base)); } static void accumulate_sample_2(struct uatp_softc *sc) { unsigned int i; for (i = 0; i < UATP_SENSORS; i++) { sc->sc_acc[i] = (int8_t)(sc->sc_sample[i] - sc->sc_base[i]); if (sc->sc_acc[i] < -0x80) { DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("underflow %u - %u = %d\n", (unsigned int)sc->sc_sample[i], (unsigned int)sc->sc_base[i], sc->sc_acc[i])); sc->sc_acc[i] += 0x100; } if (0x7f < sc->sc_acc[i]) { DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("overflow %u - %u = %d\n", (unsigned int)sc->sc_sample[i], (unsigned int)sc->sc_base[i], sc->sc_acc[i])); sc->sc_acc[i] -= 0x100; } if (sc->sc_acc[i] < 0) sc->sc_acc[i] = 0; } } /* * Report input to wsmouse, if there is anything interesting to report. * We must take into consideration the current tap-and-drag button * state. */ static void uatp_input(struct uatp_softc *sc, uint32_t buttons, int dx, int dy, int dz, int dw) { uint32_t all_buttons; KASSERT(mutex_owned(&sc->sc_tap_mutex)); all_buttons = buttons | uatp_tapped_buttons(sc); if ((sc->sc_wsmousedev != NULL) && ((dx != 0) || (dy != 0) || (dz != 0) || (dw != 0) || (all_buttons != sc->sc_all_buttons))) { int s = spltty(); DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("wsmouse input:" " buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n", all_buttons, dx, -dy, dz, -dw)); wsmouse_input(sc->sc_wsmousedev, all_buttons, dx, -dy, dz, -dw, WSMOUSE_INPUT_DELTA); splx(s); } sc->sc_buttons = buttons; sc->sc_all_buttons = all_buttons; } /* * Interpret the current tap state to decide whether the tap buttons * are currently pressed. */ static uint32_t uatp_tapped_buttons(struct uatp_softc *sc) { KASSERT(mutex_owned(&sc->sc_tap_mutex)); switch (sc->sc_tap_state) { case TAP_STATE_INITIAL: case TAP_STATE_TAPPING: return 0; case TAP_STATE_TAPPED: case TAP_STATE_DOUBLE_TAPPING: case TAP_STATE_DRAGGING_DOWN: case TAP_STATE_DRAGGING_UP: case TAP_STATE_TAPPING_IN_DRAG: CHECK((0 < sc->sc_tapped_fingers), return 0); switch (sc->sc_tapped_fingers) { case 1: return sc->sc_knobs.one_finger_tap_buttons; case 2: return sc->sc_knobs.two_finger_tap_buttons; case 3: default: return sc->sc_knobs.three_finger_tap_buttons; } default: aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n", __func__, sc->sc_tap_state); return 0; } } /* * Interpret the current input state to find a difference in all the * relevant coordinates and buttons to pass on to wsmouse, and update * any internal driver state necessary to interpret subsequent input * relative to this one. */ static bool interpret_input(struct uatp_softc *sc, int *dx, int *dy, int *dz, int *dw, uint32_t *buttons) { unsigned int x_pressure, x_raw, x_fingers; unsigned int y_pressure, y_raw, y_fingers; unsigned int fingers; x_pressure = interpret_dimension(sc, uatp_x_acc(sc), uatp_x_sensors(sc), uatp_x_ratio(sc), &x_raw, &x_fingers); y_pressure = interpret_dimension(sc, uatp_y_acc(sc), uatp_y_sensors(sc), uatp_y_ratio(sc), &y_raw, &y_fingers); DPRINTF(sc, UATP_DEBUG_PARSE, ("x %u @ %u, %uf; y %u @ %u, %uf; buttons %"PRIx32"\n", x_pressure, x_raw, x_fingers, y_pressure, y_raw, y_fingers, *buttons)); if ((x_pressure == 0) && (y_pressure == 0)) { bool ok; /* No fingers: clear position and maybe report a tap. */ DPRINTF(sc, UATP_DEBUG_INTR, ("no position detected; clearing position\n")); if (*buttons == 0) { ok = tap_released(sc); } else { tap_reset(sc); /* Button pressed: interrupt is not spurious. */ ok = true; } /* * Don't clear the position until after tap_released, * which needs to know the track distance. */ uatp_clear_position(sc); return ok; } else if ((x_pressure == 0) || (y_pressure == 0)) { /* XXX What to do here? */ DPRINTF(sc, UATP_DEBUG_INTR, ("pressure in only one dimension; ignoring\n")); return true; } else if ((x_pressure == 1) && (y_pressure == 1)) { fingers = uimax(x_fingers, y_fingers); CHECK((0 < fingers), return false); if (*buttons == 0) tap_touched(sc, fingers); else if (fingers == 1) tap_reset(sc); else /* Multiple fingers, button pressed. */ *buttons = emulated_buttons(sc, fingers); update_position(sc, fingers, x_raw, y_raw, dx, dy, dz, dw); return true; } else { /* Palm detected in either or both of the dimensions. */ DPRINTF(sc, UATP_DEBUG_INTR, ("palm detected; ignoring\n")); return true; } } /* * Interpret the accumulated sensor state along one dimension to find * the number, mean position, and pressure of fingers. Returns 0 to * indicate no pressure, returns 1 and sets *position and *fingers to * indicate fingers, and returns 2 to indicate palm. * * XXX Give symbolic names to the return values. */ static unsigned int interpret_dimension(struct uatp_softc *sc, const int *acc, unsigned int n_sensors, unsigned int ratio, unsigned int *position, unsigned int *fingers) { unsigned int i, v, n_fingers, sum; unsigned int total[UATP_MAX_SENSORS]; unsigned int weighted[UATP_MAX_SENSORS]; unsigned int sensor_threshold = sc->sc_knobs.sensor_threshold; unsigned int sensor_normalizer = sc->sc_knobs.sensor_normalizer; unsigned int width = 0; /* GCC is not smart enough. */ unsigned int palm_width = sc->sc_knobs.palm_width; enum { none, nondecreasing, decreasing } state = none; if (sensor_threshold < sensor_normalizer) sensor_normalizer = sensor_threshold; if (palm_width == 0) /* Effectively disable palm detection. */ palm_width = UATP_MAX_POSITION; #define CHECK_(condition) CHECK(condition, return 0) /* * Arithmetic bounds: * . n_sensors is at most UATP_MAX_SENSORS, * . n_fingers is at most UATP_MAX_SENSORS, * . i is at most UATP_MAX_SENSORS, * . sc->sc_acc[i] is at most UATP_MAX_ACC, * . i * sc->sc_acc[i] is at most UATP_MAX_SENSORS * UATP_MAX_ACC, * . each total[j] is at most UATP_MAX_SENSORS * UATP_MAX_ACC, * . each weighted[j] is at most UATP_MAX_SENSORS^2 * UATP_MAX_ACC, * . ratio is at most UATP_MAX_RATIO, * . each weighted[j] * ratio is at most * UATP_MAX_SENSORS^2 * UATP_MAX_ACC * UATP_MAX_RATIO, * which is #x5fa0000 with the current values of the constants, * and * . the sum of the positions is at most * UATP_MAX_SENSORS * UATP_MAX_POSITION, * which is #x60000 with the current values of the constants. * Hence all of the arithmetic here fits in int (and thus also * unsigned int). If you change the constants, though, you * must update the analysis. */ __CTASSERT(0x5fa0000 == (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC * UATP_MAX_RATIO)); __CTASSERT(0x60000 == (UATP_MAX_SENSORS * UATP_MAX_POSITION)); CHECK_(n_sensors <= UATP_MAX_SENSORS); CHECK_(ratio <= UATP_MAX_RATIO); /* * Detect each finger by looking for a consecutive sequence of * increasing and then decreasing pressures above the sensor * threshold. Compute the finger's position as the weighted * average of positions, weighted by the pressure at that * position. Finally, return the average finger position. */ n_fingers = 0; memset(weighted, 0, sizeof(weighted)); memset(total, 0, sizeof(total)); for (i = 0; i < n_sensors; i++) { CHECK_(0 <= acc[i]); v = acc[i]; /* Ignore values outside a sensible interval. */ if (v <= sensor_threshold) { state = none; continue; } else if (UATP_MAX_ACC < v) { aprint_verbose_dev(uatp_dev(sc), "ignoring large accumulated sensor state: %u\n", v); continue; } switch (state) { case none: n_fingers += 1; CHECK_(n_fingers <= n_sensors); state = nondecreasing; width = 1; break; case nondecreasing: case decreasing: CHECK_(0 < i); CHECK_(0 <= acc[i - 1]); width += 1; if (palm_width <= (width * ratio)) { DPRINTF(sc, UATP_DEBUG_PALM, ("palm detected\n")); return 2; } else if ((state == nondecreasing) && ((unsigned int)acc[i - 1] > v)) { state = decreasing; } else if ((state == decreasing) && ((unsigned int)acc[i - 1] < v)) { n_fingers += 1; CHECK_(n_fingers <= n_sensors); state = nondecreasing; width = 1; } break; default: aprint_error_dev(uatp_dev(sc), "bad finger detection state: %d", state); return 0; } v -= sensor_normalizer; total[n_fingers - 1] += v; weighted[n_fingers - 1] += (i * v); CHECK_(total[n_fingers - 1] <= (UATP_MAX_SENSORS * UATP_MAX_ACC)); CHECK_(weighted[n_fingers - 1] <= (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC)); } if (n_fingers == 0) return 0; sum = 0; for (i = 0; i < n_fingers; i++) { DPRINTF(sc, UATP_DEBUG_PARSE, ("finger at %u\n", ((weighted[i] * ratio) / total[i]))); sum += ((weighted[i] * ratio) / total[i]); CHECK_(sum <= UATP_MAX_SENSORS * UATP_MAX_POSITION); } *fingers = n_fingers; *position = (sum / n_fingers); return 1; #undef CHECK_ } /* Tapping */ /* * There is a very hairy state machine for detecting taps. At every * touch, we record the maximum number of fingers touched, and don't * reset it to zero until the finger is released. * * INITIAL STATE * (no tapping fingers; no tapped fingers) * - On touch, go to TAPPING STATE. * - On any other input, remain in INITIAL STATE. * * TAPPING STATE: Finger touched; might be tap. * (tapping fingers; no tapped fingers) * - On release within the tap limit, go to TAPPED STATE. * - On release after the tap limit, go to INITIAL STATE. * - On any other input, remain in TAPPING STATE. * * TAPPED STATE: Finger recently tapped, and might double-tap. * (no tapping fingers; tapped fingers) * - On touch within the double-tap limit, go to DOUBLE-TAPPING STATE. * - On touch after the double-tap limit, go to TAPPING STATE. * - On no event after the double-tap limit, go to INITIAL STATE. * - On any other input, remain in TAPPED STATE. * * DOUBLE-TAPPING STATE: Finger touched soon after tap; might be double-tap. * (tapping fingers; tapped fingers) * - On release within the tap limit, release button and go to TAPPED STATE. * - On release after the tap limit, go to DRAGGING UP STATE. * - On touch after the tap limit, go to DRAGGING DOWN STATE. * - On any other input, remain in DOUBLE-TAPPING STATE. * * DRAGGING DOWN STATE: Finger has double-tapped and is dragging, not tapping. * (no tapping fingers; tapped fingers) * - On release, go to DRAGGING UP STATE. * - On any other input, remain in DRAGGING DOWN STATE. * * DRAGGING UP STATE: Finger has double-tapped and is up. * (no tapping fingers; tapped fingers) * - On touch, go to TAPPING IN DRAG STATE. * - On any other input, remain in DRAGGING UP STATE. * * TAPPING IN DRAG STATE: Tap-dancing while cross-dressed. * (tapping fingers; tapped fingers) * - On release within the tap limit, go to TAPPED STATE. * - On release after the tap limit, go to DRAGGING UP STATE. * - On any other input, remain in TAPPING IN DRAG STATE. * * Warning: The graph of states is split into two components, those * with tapped fingers and those without. The only path from any state * without tapped fingers to a state with tapped fingers must pass * through TAPPED STATE. Also, the only transitions into TAPPED STATE * must be from states with tapping fingers, which become the tapped * fingers. If you edit the state machine, you must either preserve * these properties, or globally transform the state machine to avoid * the bad consequences of violating these properties. */ static void uatp_tap_limit(const struct uatp_softc *sc, struct timeval *limit) { unsigned int msec = sc->sc_knobs.tap_limit_msec; limit->tv_sec = 0; limit->tv_usec = ((msec < 1000) ? (1000 * msec) : 100000); } #if UATP_DEBUG # define TAP_DEBUG_PRE(sc) tap_debug((sc), __func__, "") # define TAP_DEBUG_POST(sc) tap_debug((sc), __func__, " ->") static void tap_debug(struct uatp_softc *sc, const char *caller, const char *prefix) { char buffer[128]; const char *state; KASSERT(mutex_owned(&sc->sc_tap_mutex)); switch (sc->sc_tap_state) { case TAP_STATE_INITIAL: state = "initial"; break; case TAP_STATE_TAPPING: state = "tapping"; break; case TAP_STATE_TAPPED: state = "tapped"; break; case TAP_STATE_DOUBLE_TAPPING: state = "double-tapping"; break; case TAP_STATE_DRAGGING_DOWN: state = "dragging-down"; break; case TAP_STATE_DRAGGING_UP: state = "dragging-up"; break; case TAP_STATE_TAPPING_IN_DRAG: state = "tapping-in-drag"; break; default: snprintf(buffer, sizeof(buffer), "unknown (%d)", sc->sc_tap_state); state = buffer; break; } DPRINTF(sc, UATP_DEBUG_TAP, ("%s:%s state %s, %u tapping, %u tapped\n", caller, prefix, state, sc->sc_tapping_fingers, sc->sc_tapped_fingers)); } #else /* !UATP_DEBUG */ # define TAP_DEBUG_PRE(sc) do {} while (0) # define TAP_DEBUG_POST(sc) do {} while (0) #endif static void tap_initialize(struct uatp_softc *sc) { callout_init(&sc->sc_untap_callout, 0); callout_setfunc(&sc->sc_untap_callout, untap_callout, sc); mutex_init(&sc->sc_tap_mutex, MUTEX_DEFAULT, IPL_SOFTUSB); } static void tap_finalize(struct uatp_softc *sc) { /* XXX Can the callout still be scheduled here? */ callout_destroy(&sc->sc_untap_callout); mutex_destroy(&sc->sc_tap_mutex); } static void tap_enable(struct uatp_softc *sc) { mutex_enter(&sc->sc_tap_mutex); tap_transition_initial(sc); sc->sc_buttons = 0; /* XXX Not the right place? */ sc->sc_all_buttons = 0; mutex_exit(&sc->sc_tap_mutex); } static void tap_disable(struct uatp_softc *sc) { /* Reset tapping, and wait for any callouts to complete. */ tap_reset_wait(sc); } /* * Reset tap state. If the untap callout has just fired, it may signal * a harmless button release event before this returns. */ static void tap_reset(struct uatp_softc *sc) { callout_stop(&sc->sc_untap_callout); mutex_enter(&sc->sc_tap_mutex); tap_transition_initial(sc); mutex_exit(&sc->sc_tap_mutex); } /* Reset, but don't return until the callout is done running. */ static void tap_reset_wait(struct uatp_softc *sc) { callout_halt(&sc->sc_untap_callout, NULL); mutex_enter(&sc->sc_tap_mutex); tap_transition_initial(sc); mutex_exit(&sc->sc_tap_mutex); } static const struct timeval zero_timeval; static void tap_transition(struct uatp_softc *sc, enum uatp_tap_state tap_state, const struct timeval *start_time, unsigned int tapping_fingers, unsigned int tapped_fingers) { KASSERT(mutex_owned(&sc->sc_tap_mutex)); sc->sc_tap_state = tap_state; sc->sc_tap_timer = *start_time; sc->sc_tapping_fingers = tapping_fingers; sc->sc_tapped_fingers = tapped_fingers; } static void tap_transition_initial(struct uatp_softc *sc) { /* * No checks. This state is always kosher, and sometimes a * fallback in case of failure. */ tap_transition(sc, TAP_STATE_INITIAL, &zero_timeval, 0, 0); } /* Touch transitions */ static void tap_transition_tapping(struct uatp_softc *sc, const struct timeval *start_time, unsigned int fingers) { CHECK((sc->sc_tapping_fingers <= fingers), do { tap_transition_initial(sc); return; } while (0)); tap_transition(sc, TAP_STATE_TAPPING, start_time, fingers, 0); } static void tap_transition_double_tapping(struct uatp_softc *sc, const struct timeval *start_time, unsigned int fingers) { CHECK((sc->sc_tapping_fingers <= fingers), do { tap_transition_initial(sc); return; } while (0)); CHECK((0 < sc->sc_tapped_fingers), do { tap_transition_initial(sc); return; } while (0)); tap_transition(sc, TAP_STATE_DOUBLE_TAPPING, start_time, fingers, sc->sc_tapped_fingers); } static void tap_transition_dragging_down(struct uatp_softc *sc) { CHECK((0 < sc->sc_tapped_fingers), do { tap_transition_initial(sc); return; } while (0)); tap_transition(sc, TAP_STATE_DRAGGING_DOWN, &zero_timeval, 0, sc->sc_tapped_fingers); } static void tap_transition_tapping_in_drag(struct uatp_softc *sc, const struct timeval *start_time, unsigned int fingers) { CHECK((sc->sc_tapping_fingers <= fingers), do { tap_transition_initial(sc); return; } while (0)); CHECK((0 < sc->sc_tapped_fingers), do { tap_transition_initial(sc); return; } while (0)); tap_transition(sc, TAP_STATE_TAPPING_IN_DRAG, start_time, fingers, sc->sc_tapped_fingers); } /* Release transitions */ static void tap_transition_tapped(struct uatp_softc *sc, const struct timeval *start_time) { /* * The fingers that were tapping -- of which there must have * been at least one -- are now the fingers that have tapped, * and there are no longer fingers tapping. */ CHECK((0 < sc->sc_tapping_fingers), do { tap_transition_initial(sc); return; } while (0)); tap_transition(sc, TAP_STATE_TAPPED, start_time, 0, sc->sc_tapping_fingers); schedule_untap(sc); } static void tap_transition_dragging_up(struct uatp_softc *sc) { CHECK((0 < sc->sc_tapped_fingers), do { tap_transition_initial(sc); return; } while (0)); tap_transition(sc, TAP_STATE_DRAGGING_UP, &zero_timeval, 0, sc->sc_tapped_fingers); } static void tap_touched(struct uatp_softc *sc, unsigned int fingers) { struct timeval now, diff, limit; CHECK((0 < fingers), return); callout_stop(&sc->sc_untap_callout); mutex_enter(&sc->sc_tap_mutex); TAP_DEBUG_PRE(sc); /* * Guarantee that the number of tapping fingers never decreases * except when it is reset to zero on release. */ if (fingers < sc->sc_tapping_fingers) fingers = sc->sc_tapping_fingers; switch (sc->sc_tap_state) { case TAP_STATE_INITIAL: getmicrouptime(&now); tap_transition_tapping(sc, &now, fingers); break; case TAP_STATE_TAPPING: /* * Number of fingers may have increased, so transition * even though we're already in TAPPING. */ tap_transition_tapping(sc, &sc->sc_tap_timer, fingers); break; case TAP_STATE_TAPPED: getmicrouptime(&now); /* * If the double-tap time limit has passed, it's the * callout's responsibility to handle that event, so we * assume the limit has not passed yet. */ tap_transition_double_tapping(sc, &now, fingers); break; case TAP_STATE_DOUBLE_TAPPING: getmicrouptime(&now); timersub(&now, &sc->sc_tap_timer, &diff); uatp_tap_limit(sc, &limit); if (timercmp(&diff, &limit, >) || (sc->sc_track_distance > sc->sc_knobs.tap_track_distance_limit)) tap_transition_dragging_down(sc); break; case TAP_STATE_DRAGGING_DOWN: break; case TAP_STATE_DRAGGING_UP: getmicrouptime(&now); tap_transition_tapping_in_drag(sc, &now, fingers); break; case TAP_STATE_TAPPING_IN_DRAG: /* * Number of fingers may have increased, so transition * even though we're already in TAPPING IN DRAG. */ tap_transition_tapping_in_drag(sc, &sc->sc_tap_timer, fingers); break; default: aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n", __func__, sc->sc_tap_state); tap_transition_initial(sc); break; } TAP_DEBUG_POST(sc); mutex_exit(&sc->sc_tap_mutex); } static bool tap_released(struct uatp_softc *sc) { struct timeval now, diff, limit; void (*non_tapped_transition)(struct uatp_softc *); bool ok, temporary_release; mutex_enter(&sc->sc_tap_mutex); TAP_DEBUG_PRE(sc); switch (sc->sc_tap_state) { case TAP_STATE_INITIAL: case TAP_STATE_TAPPED: case TAP_STATE_DRAGGING_UP: /* Spurious interrupt: fingers are already off. */ ok = false; break; case TAP_STATE_TAPPING: temporary_release = false; non_tapped_transition = &tap_transition_initial; goto maybe_tap; case TAP_STATE_DOUBLE_TAPPING: temporary_release = true; non_tapped_transition = &tap_transition_dragging_up; goto maybe_tap; case TAP_STATE_TAPPING_IN_DRAG: temporary_release = false; non_tapped_transition = &tap_transition_dragging_up; goto maybe_tap; maybe_tap: getmicrouptime(&now); timersub(&now, &sc->sc_tap_timer, &diff); uatp_tap_limit(sc, &limit); if (timercmp(&diff, &limit, <=) && (sc->sc_track_distance <= sc->sc_knobs.tap_track_distance_limit)) { if (temporary_release) { /* * XXX Kludge: Temporarily transition * to a tap state that uatp_input will * interpret as `no buttons tapped', * saving the tapping fingers. There * should instead be a separate routine * uatp_input_untapped. */ unsigned int fingers = sc->sc_tapping_fingers; tap_transition_initial(sc); uatp_input(sc, 0, 0, 0, 0, 0); sc->sc_tapping_fingers = fingers; } tap_transition_tapped(sc, &now); } else { (*non_tapped_transition)(sc); } ok = true; break; case TAP_STATE_DRAGGING_DOWN: tap_transition_dragging_up(sc); ok = true; break; default: aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n", __func__, sc->sc_tap_state); tap_transition_initial(sc); ok = false; break; } TAP_DEBUG_POST(sc); mutex_exit(&sc->sc_tap_mutex); return ok; } /* Untapping: Releasing the button after a tap */ static void schedule_untap(struct uatp_softc *sc) { unsigned int ms = sc->sc_knobs.double_tap_limit_msec; if (ms <= 1000) callout_schedule(&sc->sc_untap_callout, mstohz(ms)); else /* XXX Reject bogus values in sysctl. */ aprint_error_dev(uatp_dev(sc), "double-tap delay too long: %ums\n", ms); } static void untap_callout(void *arg) { struct uatp_softc *sc = arg; mutex_enter(&sc->sc_tap_mutex); TAP_DEBUG_PRE(sc); switch (sc->sc_tap_state) { case TAP_STATE_TAPPED: tap_transition_initial(sc); /* * XXX Kludge: Call uatp_input after the state transition * to make sure that it will actually release the button. */ uatp_input(sc, 0, 0, 0, 0, 0); case TAP_STATE_INITIAL: case TAP_STATE_TAPPING: case TAP_STATE_DOUBLE_TAPPING: case TAP_STATE_DRAGGING_UP: case TAP_STATE_DRAGGING_DOWN: case TAP_STATE_TAPPING_IN_DRAG: /* * Somebody else got in and changed the state before we * untapped. Let them take over; do nothing here. */ break; default: aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n", __func__, sc->sc_tap_state); tap_transition_initial(sc); /* XXX Just in case...? */ uatp_input(sc, 0, 0, 0, 0, 0); break; } TAP_DEBUG_POST(sc); mutex_exit(&sc->sc_tap_mutex); } /* * Emulate different buttons if the user holds down n fingers while * pressing the physical button. (This is unrelated to tapping.) */ static uint32_t emulated_buttons(struct uatp_softc *sc, unsigned int fingers) { CHECK((1 < fingers), return 0); switch (fingers) { case 2: DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON, ("2-finger emulated button: %"PRIx32"\n", sc->sc_knobs.two_finger_buttons)); return sc->sc_knobs.two_finger_buttons; case 3: default: DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON, ("3-finger emulated button: %"PRIx32"\n", sc->sc_knobs.three_finger_buttons)); return sc->sc_knobs.three_finger_buttons; } } /* * Update the position known to the driver based on the position and * number of fingers. dx, dy, dz, and dw are expected to hold zero; * update_position may store nonzero changes in position in them. */ static void update_position(struct uatp_softc *sc, unsigned int fingers, unsigned int x_raw, unsigned int y_raw, int *dx, int *dy, int *dz, int *dw) { CHECK((0 < fingers), return); if ((fingers == 1) || (sc->sc_knobs.multifinger_track == 1)) move_mouse(sc, x_raw, y_raw, dx, dy); else if (sc->sc_knobs.multifinger_track == 2) scroll_wheel(sc, x_raw, y_raw, dz, dw); } /* * XXX Scrolling needs to use a totally different motion model. */ static void move_mouse(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw, int *dx, int *dy) { move(sc, "mouse", x_raw, y_raw, &sc->sc_x_raw, &sc->sc_y_raw, &sc->sc_x_smoothed, &sc->sc_y_smoothed, &sc->sc_x_remainder, &sc->sc_y_remainder, dx, dy); } static void scroll_wheel(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw, int *dz, int *dw) { move(sc, "scroll", x_raw, y_raw, &sc->sc_z_raw, &sc->sc_w_raw, &sc->sc_z_smoothed, &sc->sc_w_smoothed, &sc->sc_z_remainder, &sc->sc_w_remainder, dz, dw); } static void move(struct uatp_softc *sc, const char *ctx, unsigned int a, unsigned int b, int *a_raw, int *b_raw, int *a_smoothed, int *b_smoothed, unsigned int *a_remainder, unsigned int *b_remainder, int *da, int *db) { #define CHECK_(condition) CHECK(condition, return) int old_a_raw = *a_raw, old_a_smoothed = *a_smoothed; int old_b_raw = *b_raw, old_b_smoothed = *b_smoothed; unsigned int a_dist, b_dist, dist_squared; bool a_fast, b_fast; /* * Make sure the quadratics in motion_below_threshold and * tracking distance don't overflow int arithmetic. */ __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION)); CHECK_(a <= UATP_MAX_POSITION); CHECK_(b <= UATP_MAX_POSITION); *a_raw = a; *b_raw = b; if ((old_a_raw < 0) || (old_b_raw < 0)) { DPRINTF(sc, UATP_DEBUG_MOVE, ("initialize %s position (%d, %d) -> (%d, %d)\n", ctx, old_a_raw, old_b_raw, a, b)); return; } if ((old_a_smoothed < 0) || (old_b_smoothed < 0)) { /* XXX Does this make sense? */ old_a_smoothed = old_a_raw; old_b_smoothed = old_b_raw; } CHECK_(0 <= old_a_raw); CHECK_(0 <= old_b_raw); CHECK_(old_a_raw <= UATP_MAX_POSITION); CHECK_(old_b_raw <= UATP_MAX_POSITION); CHECK_(0 <= old_a_smoothed); CHECK_(0 <= old_b_smoothed); CHECK_(old_a_smoothed <= UATP_MAX_POSITION); CHECK_(old_b_smoothed <= UATP_MAX_POSITION); CHECK_(0 <= *a_raw); CHECK_(0 <= *b_raw); CHECK_(*a_raw <= UATP_MAX_POSITION); CHECK_(*b_raw <= UATP_MAX_POSITION); *a_smoothed = smooth(sc, old_a_raw, old_a_smoothed, *a_raw); *b_smoothed = smooth(sc, old_b_raw, old_b_smoothed, *b_raw); CHECK_(0 <= *a_smoothed); CHECK_(0 <= *b_smoothed); CHECK_(*a_smoothed <= UATP_MAX_POSITION); CHECK_(*b_smoothed <= UATP_MAX_POSITION); if (sc->sc_motion_timer < sc->sc_knobs.motion_delay) { DPRINTF(sc, UATP_DEBUG_MOVE, ("delay motion %u\n", sc->sc_motion_timer)); sc->sc_motion_timer += 1; return; } /* XXX Use raw distances or smoothed distances? Acceleration? */ if (*a_smoothed < old_a_smoothed) a_dist = old_a_smoothed - *a_smoothed; else a_dist = *a_smoothed - old_a_smoothed; if (*b_smoothed < old_b_smoothed) b_dist = old_b_smoothed - *b_smoothed; else b_dist = *b_smoothed - old_b_smoothed; dist_squared = (a_dist * a_dist) + (b_dist * b_dist); if (dist_squared < ((2 * UATP_MAX_POSITION * UATP_MAX_POSITION) - sc->sc_track_distance)) sc->sc_track_distance += dist_squared; else sc->sc_track_distance = (2 * UATP_MAX_POSITION * UATP_MAX_POSITION); DPRINTF(sc, UATP_DEBUG_TRACK_DIST, ("finger has tracked %u units^2\n", sc->sc_track_distance)); /* * The checks above guarantee that the differences here are at * most UATP_MAX_POSITION in magnitude, since both minuend and * subtrahend are nonnegative and at most UATP_MAX_POSITION. */ if (motion_below_threshold(sc, sc->sc_knobs.motion_threshold, (int)(*a_smoothed - old_a_smoothed), (int)(*b_smoothed - old_b_smoothed))) { DPRINTF(sc, UATP_DEBUG_MOVE, ("%s motion too small: (%d, %d) -> (%d, %d)\n", ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed)); return; } if (sc->sc_knobs.fast_per_direction == 0) { a_fast = b_fast = !motion_below_threshold(sc, sc->sc_knobs.fast_motion_threshold, (int)(*a_smoothed - old_a_smoothed), (int)(*b_smoothed - old_b_smoothed)); } else { a_fast = !motion_below_threshold(sc, sc->sc_knobs.fast_motion_threshold, (int)(*a_smoothed - old_a_smoothed), 0); b_fast = !motion_below_threshold(sc, sc->sc_knobs.fast_motion_threshold, 0, (int)(*b_smoothed - old_b_smoothed)); } *da = accelerate(sc, old_a_raw, *a_raw, old_a_smoothed, *a_smoothed, a_fast, a_remainder); *db = accelerate(sc, old_b_raw, *b_raw, old_b_smoothed, *b_smoothed, b_fast, b_remainder); DPRINTF(sc, UATP_DEBUG_MOVE, ("update %s position (%d, %d) -> (%d, %d), move by (%d, %d)\n", ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed, *da, *db)); #undef CHECK_ } static int smooth(struct uatp_softc *sc, unsigned int old_raw, unsigned int old_smoothed, unsigned int raw) { #define CHECK_(condition) CHECK(condition, return old_raw) /* * Arithmetic bounds: * . the weights are at most UATP_MAX_WEIGHT; * . the positions are at most UATP_MAX_POSITION; and so * . the numerator of the average is at most * 3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION, * which is #x477000, fitting comfortably in an int. */ __CTASSERT(0x477000 == (3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION)); unsigned int old_raw_weight = uatp_old_raw_weight(sc); unsigned int old_smoothed_weight = uatp_old_smoothed_weight(sc); unsigned int new_raw_weight = uatp_new_raw_weight(sc); CHECK_(old_raw_weight <= UATP_MAX_WEIGHT); CHECK_(old_smoothed_weight <= UATP_MAX_WEIGHT); CHECK_(new_raw_weight <= UATP_MAX_WEIGHT); CHECK_(old_raw <= UATP_MAX_POSITION); CHECK_(old_smoothed <= UATP_MAX_POSITION); CHECK_(raw <= UATP_MAX_POSITION); return (((old_raw_weight * old_raw) + (old_smoothed_weight * old_smoothed) + (new_raw_weight * raw)) / (old_raw_weight + old_smoothed_weight + new_raw_weight)); #undef CHECK_ } static bool motion_below_threshold(struct uatp_softc *sc, unsigned int threshold, int x, int y) { unsigned int x_squared, y_squared; /* Caller guarantees the multiplication will not overflow. */ KASSERT(-UATP_MAX_POSITION <= x); KASSERT(-UATP_MAX_POSITION <= y); KASSERT(x <= UATP_MAX_POSITION); KASSERT(y <= UATP_MAX_POSITION); __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION)); x_squared = (x * x); y_squared = (y * y); return (x_squared + y_squared) < threshold; } static int accelerate(struct uatp_softc *sc, unsigned int old_raw, unsigned int raw, unsigned int old_smoothed, unsigned int smoothed, bool fast, int *remainder) { #define CHECK_(condition) CHECK(condition, return 0) /* Guarantee that the scaling won't overflow. */ __CTASSERT(0x30000 == (UATP_MAX_POSITION * UATP_MAX_MOTION_MULTIPLIER)); CHECK_(old_raw <= UATP_MAX_POSITION); CHECK_(raw <= UATP_MAX_POSITION); CHECK_(old_smoothed <= UATP_MAX_POSITION); CHECK_(smoothed <= UATP_MAX_POSITION); return (fast ? uatp_scale_fast_motion : uatp_scale_motion) (sc, (((int) smoothed) - ((int) old_smoothed)), remainder); #undef CHECK_ } MODULE(MODULE_CLASS_DRIVER, uatp, NULL); #ifdef _MODULE #include "ioconf.c" #endif static int uatp_modcmd(modcmd_t cmd, void *aux) { int error = 0; switch (cmd) { case MODULE_CMD_INIT: #ifdef _MODULE error = config_init_component(cfdriver_ioconf_uatp, cfattach_ioconf_uatp, cfdata_ioconf_uatp); #endif return error; case MODULE_CMD_FINI: #ifdef _MODULE error = config_fini_component(cfdriver_ioconf_uatp, cfattach_ioconf_uatp, cfdata_ioconf_uatp); #endif return error; default: return ENOTTY; } }