/* $NetBSD: if_kue.c,v 1.96.2.1 2019/09/01 13:00:37 martin Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/usb/if_kue.c,v 1.14 2000/01/14 01:36:15 wpaul Exp $ */ /* * Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The KLSI USB to ethernet adapter chip contains an USB serial interface, * ethernet MAC and embedded microcontroller (called the QT Engine). * The chip must have firmware loaded into it before it will operate. * Packets are passed between the chip and host via bulk transfers. * There is an interrupt endpoint mentioned in the software spec, however * it's currently unused. This device is 10Mbps half-duplex only, hence * there is no media selection logic. The MAC supports a 128 entry * multicast filter, though the exact size of the filter can depend * on the firmware. Curiously, while the software spec describes various * ethernet statistics counters, my sample adapter and firmware combination * claims not to support any statistics counters at all. * * Note that once we load the firmware in the device, we have to be * careful not to load it again: if you restart your computer but * leave the adapter attached to the USB controller, it may remain * powered on and retain its firmware. In this case, we don't need * to load the firmware a second time. * * Special thanks to Rob Furr for providing an ADS Technologies * adapter for development and testing. No monkeys were harmed during * the development of this driver. */ /* * Ported to NetBSD and somewhat rewritten by Lennart Augustsson. */ #include __KERNEL_RCSID(0, "$NetBSD: if_kue.c,v 1.96.2.1 2019/09/01 13:00:37 martin Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_usb.h" #endif #include #include #include #ifdef INET #include #include #endif #include #include #ifdef KUE_DEBUG #define DPRINTF(x) if (kuedebug) printf x #define DPRINTFN(n, x) if (kuedebug >= (n)) printf x int kuedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif struct kue_type { uint16_t kue_vid; uint16_t kue_did; }; struct kue_softc { struct usbnet kue_un; struct kue_ether_desc kue_desc; uint16_t kue_rxfilt; uint8_t *kue_mcfilters; }; #define KUE_MCFILT(x, y) \ (uint8_t *)&(sc->kue_mcfilters[y * ETHER_ADDR_LEN]) #define KUE_BUFSZ 1536 #define KUE_MIN_FRAMELEN 60 #define KUE_RX_LIST_CNT 1 #define KUE_TX_LIST_CNT 1 /* * Various supported device vendors/products. */ static const struct usb_devno kue_devs[] = { { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 }, { USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460 }, { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450 }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT }, { USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX }, { USB_VENDOR_ACTIONTEC, USB_PRODUCT_ACTIONTEC_KL5KUSB101 }, { USB_VENDOR_ALLIEDTELESYN, USB_PRODUCT_ALLIEDTELESYN_AT_USB10 }, { USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 }, { USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T }, { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C }, { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T }, { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1 }, { USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2 }, { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT }, { USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA }, { USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1 }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT }, { USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN }, { USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T }, { USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 }, { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 }, { USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8 }, { USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9 }, { USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA }, { USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA }, { USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_U2E }, { USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_GPE }, { USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB }, }; #define kue_lookup(v, p) (usb_lookup(kue_devs, v, p)) int kue_match(device_t, cfdata_t, void *); void kue_attach(device_t, device_t, void *); int kue_detach(device_t, int); CFATTACH_DECL_NEW(kue, sizeof(struct kue_softc), kue_match, kue_attach, kue_detach, usbnet_activate); static void kue_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t); static unsigned kue_tx_prepare(struct usbnet *, struct mbuf *, struct usbnet_chain *); static int kue_ioctl_cb(struct ifnet *, u_long, void *); static int kue_init(struct ifnet *); static struct usbnet_ops kue_ops = { .uno_ioctl = kue_ioctl_cb, .uno_tx_prepare = kue_tx_prepare, .uno_rx_loop = kue_rx_loop, .uno_init = kue_init, }; static void kue_setiff(struct usbnet *); static void kue_reset(struct usbnet *); static usbd_status kue_ctl(struct usbnet *, int, uint8_t, uint16_t, void *, uint32_t); static int kue_load_fw(struct usbnet *); static usbd_status kue_setword(struct usbnet *un, uint8_t breq, uint16_t word) { usb_device_request_t req; DPRINTFN(10,("%s: %s: enter\n", device_xname(un->un_dev),__func__)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, word); USETW(req.wIndex, 0); USETW(req.wLength, 0); return usbd_do_request(un->un_udev, &req, NULL); } static usbd_status kue_ctl(struct usbnet *un, int rw, uint8_t breq, uint16_t val, void *data, uint32_t len) { usb_device_request_t req; DPRINTFN(10,("%s: %s: enter, len=%d\n", device_xname(un->un_dev), __func__, len)); if (rw == KUE_CTL_WRITE) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = breq; USETW(req.wValue, val); USETW(req.wIndex, 0); USETW(req.wLength, len); return usbd_do_request(un->un_udev, &req, data); } static int kue_load_fw(struct usbnet *un) { usb_device_descriptor_t dd; usbd_status err; DPRINTFN(1,("%s: %s: enter\n", device_xname(un->un_dev), __func__)); /* * First, check if we even need to load the firmware. * If the device was still attached when the system was * rebooted, it may already have firmware loaded in it. * If this is the case, we don't need to do it again. * And in fact, if we try to load it again, we'll hang, * so we have to avoid this condition if we don't want * to look stupid. * * We can test this quickly by checking the bcdRevision * code. The NIC will return a different revision code if * it's probed while the firmware is still loaded and * running. */ if (usbd_get_device_desc(un->un_udev, &dd)) return EIO; if (UGETW(dd.bcdDevice) == KUE_WARM_REV) { printf("%s: warm boot, no firmware download\n", device_xname(un->un_dev)); return 0; } printf("%s: cold boot, downloading firmware\n", device_xname(un->un_dev)); /* Load code segment */ DPRINTFN(1,("%s: kue_load_fw: download code_seg\n", device_xname(un->un_dev))); /*XXXUNCONST*/ err = kue_ctl(un, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, __UNCONST(kue_code_seg), sizeof(kue_code_seg)); if (err) { printf("%s: failed to load code segment: %s\n", device_xname(un->un_dev), usbd_errstr(err)); return EIO; } /* Load fixup segment */ DPRINTFN(1,("%s: kue_load_fw: download fix_seg\n", device_xname(un->un_dev))); /*XXXUNCONST*/ err = kue_ctl(un, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, __UNCONST(kue_fix_seg), sizeof(kue_fix_seg)); if (err) { printf("%s: failed to load fixup segment: %s\n", device_xname(un->un_dev), usbd_errstr(err)); return EIO; } /* Send trigger command. */ DPRINTFN(1,("%s: kue_load_fw: download trig_seg\n", device_xname(un->un_dev))); /*XXXUNCONST*/ err = kue_ctl(un, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN, 0, __UNCONST(kue_trig_seg), sizeof(kue_trig_seg)); if (err) { printf("%s: failed to load trigger segment: %s\n", device_xname(un->un_dev), usbd_errstr(err)); return EIO; } usbd_delay_ms(un->un_udev, 10); /* * Reload device descriptor. * Why? The chip without the firmware loaded returns * one revision code. The chip with the firmware * loaded and running returns a *different* revision * code. This confuses the quirk mechanism, which is * dependent on the revision data. */ (void)usbd_reload_device_desc(un->un_udev); DPRINTFN(1,("%s: %s: done\n", device_xname(un->un_dev), __func__)); /* Reset the adapter. */ kue_reset(un); return 0; } static void kue_setiff(struct usbnet *un) { struct ethercom * ec = usbnet_ec(un); struct kue_softc * sc = usbnet_softc(un); struct ifnet * const ifp = usbnet_ifp(un); struct ether_multi *enm; struct ether_multistep step; int i; DPRINTFN(5,("%s: %s: enter\n", device_xname(un->un_dev), __func__)); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) sc->kue_rxfilt |= KUE_RXFILT_PROMISC; else sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC; if (ifp->if_flags & IFF_PROMISC) { allmulti: ifp->if_flags |= IFF_ALLMULTI; sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI|KUE_RXFILT_PROMISC; sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST; kue_setword(un, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); return; } sc->kue_rxfilt &= ~(KUE_RXFILT_ALLMULTI|KUE_RXFILT_PROMISC); i = 0; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (i == KUE_MCFILTCNT(sc) || memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { ETHER_UNLOCK(ec); goto allmulti; } memcpy(KUE_MCFILT(sc, i), enm->enm_addrlo, ETHER_ADDR_LEN); ETHER_NEXT_MULTI(step, enm); i++; } ETHER_UNLOCK(ec); ifp->if_flags &= ~IFF_ALLMULTI; sc->kue_rxfilt |= KUE_RXFILT_MULTICAST; kue_ctl(un, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS, i, sc->kue_mcfilters, i * ETHER_ADDR_LEN); kue_setword(un, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt); } /* * Issue a SET_CONFIGURATION command to reset the MAC. This should be * done after the firmware is loaded into the adapter in order to * bring it into proper operation. */ static void kue_reset(struct usbnet *un) { DPRINTFN(5,("%s: %s: enter\n", device_xname(un->un_dev), __func__)); if (usbd_set_config_no(un->un_udev, KUE_CONFIG_NO, 1) || usbd_device2interface_handle(un->un_udev, KUE_IFACE_IDX, &un->un_iface)) printf("%s: reset failed\n", device_xname(un->un_dev)); /* Wait a little while for the chip to get its brains in order. */ usbd_delay_ms(un->un_udev, 10); } /* * Probe for a KLSI chip. */ int kue_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; DPRINTFN(25,("kue_match: enter\n")); return kue_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } /* * Attach the interface. Allocate softc structures, do * setup and ethernet/BPF attach. */ void kue_attach(device_t parent, device_t self, void *aux) { struct kue_softc *sc = device_private(self); struct usbnet * const un = &sc->kue_un; struct usb_attach_arg *uaa = aux; char *devinfop; struct usbd_device * dev = uaa->uaa_device; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; KASSERT((void *)sc == un); DPRINTFN(5,(" : kue_attach: sc=%p, dev=%p", sc, dev)); aprint_naive("\n"); aprint_normal("\n"); devinfop = usbd_devinfo_alloc(dev, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); un->un_dev = self; un->un_udev = dev; un->un_sc = sc; un->un_ops = &kue_ops; un->un_rx_xfer_flags = USBD_SHORT_XFER_OK; un->un_tx_xfer_flags = 0; un->un_rx_list_cnt = KUE_RX_LIST_CNT; un->un_tx_list_cnt = KUE_TX_LIST_CNT; un->un_rx_bufsz = KUE_BUFSZ; un->un_tx_bufsz = KUE_BUFSZ; err = usbd_set_config_no(dev, KUE_CONFIG_NO, 1); if (err) { aprint_error_dev(self, "failed to set configuration" ", err=%s\n", usbd_errstr(err)); return; } /* Load the firmware into the NIC. */ if (kue_load_fw(un)) { aprint_error_dev(self, "loading firmware failed\n"); return; } err = usbd_device2interface_handle(dev, KUE_IFACE_IDX, &un->un_iface); if (err) { aprint_error_dev(self, "getting interface handle failed\n"); return; } id = usbd_get_interface_descriptor(un->un_iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(un->un_iface, i); if (ed == NULL) { aprint_error_dev(self, "couldn't get ep %d\n", i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { /* * The interrupt endpoint is currently unused by the * KLSI part. */ un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress; } } if (un->un_ed[USBNET_ENDPT_RX] == 0 || un->un_ed[USBNET_ENDPT_TX] == 0) { aprint_error_dev(self, "missing endpoint\n"); return; } /* First level attach, so kue_ctl() works. */ usbnet_attach(un, "kuedet"); /* Read ethernet descriptor */ err = kue_ctl(un, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR, 0, &sc->kue_desc, sizeof(sc->kue_desc)); if (err) { aprint_error_dev(self, "could not read Ethernet descriptor\n"); return; } memcpy(un->un_eaddr, sc->kue_desc.kue_macaddr, sizeof un->un_eaddr); sc->kue_mcfilters = kmem_alloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN, KM_SLEEP); usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST, 0, NULL); } int kue_detach(device_t self, int flags) { struct kue_softc *sc = device_private(self); if (sc->kue_mcfilters != NULL) { kmem_free(sc->kue_mcfilters, KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN); sc->kue_mcfilters = NULL; } return usbnet_detach(self, flags); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void kue_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len) { struct ifnet *ifp = usbnet_ifp(un); uint8_t *buf = c->unc_buf; unsigned pktlen; if (total_len <= 1) return; DPRINTFN(10,("%s: %s: total_len=%d len=%d\n", device_xname(un->un_dev), __func__, total_len, le16dec(buf))); pktlen = le16dec(buf); if (pktlen > total_len - ETHER_ALIGN) pktlen = total_len - ETHER_ALIGN; if (pktlen < ETHER_MIN_LEN - ETHER_CRC_LEN || pktlen > MCLBYTES - ETHER_ALIGN) { ifp->if_ierrors++; return; } DPRINTFN(10,("%s: %s: deliver %d\n", device_xname(un->un_dev), __func__, pktlen)); usbnet_enqueue(un, buf + 2, pktlen, 0, 0, 0); } static unsigned kue_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c) { unsigned total_len, pkt_len; pkt_len = m->m_pkthdr.len + 2; total_len = roundup2(pkt_len, 64); if ((unsigned)total_len > un->un_tx_bufsz) { DPRINTFN(10,("%s: %s: too big pktlen %u total %u\n", device_xname(un->un_dev), __func__, pkt_len, total_len)); return 0; } /* Frame length is specified in the first 2 bytes of the buffer. */ le16enc(c->unc_buf, (uint16_t)m->m_pkthdr.len); /* * Copy the mbuf data into a contiguous buffer after the frame length, * possibly zeroing the rest of the buffer. */ m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + 2); if (total_len - pkt_len > 0) memset(c->unc_buf + pkt_len, 0, total_len - pkt_len); DPRINTFN(10,("%s: %s: enter pktlen %u total %u\n", device_xname(un->un_dev), __func__, pkt_len, total_len)); return total_len; } static int kue_init_locked(struct ifnet *ifp) { struct usbnet * const un = ifp->if_softc; struct kue_softc *sc = usbnet_softc(un); uint8_t eaddr[ETHER_ADDR_LEN]; DPRINTFN(5,("%s: %s: enter\n", device_xname(un->un_dev),__func__)); if (usbnet_isdying(un)) return EIO; /* Cancel pending I/O */ usbnet_stop(un, ifp, 1); memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr)); /* Set MAC address */ kue_ctl(un, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, eaddr, ETHER_ADDR_LEN); sc->kue_rxfilt = KUE_RXFILT_UNICAST | KUE_RXFILT_BROADCAST; /* I'm not sure how to tune these. */ #if 0 /* * Leave this one alone for now; setting it * wrong causes lockups on some machines/controllers. */ kue_setword(un, KUE_CMD_SET_SOFS, 1); #endif kue_setword(un, KUE_CMD_SET_URB_SIZE, 64); /* Load the multicast filter. */ kue_setiff(un); return usbnet_init_rx_tx(un); } static int kue_init(struct ifnet *ifp) { struct usbnet * const un = ifp->if_softc; int rv; usbnet_lock(un); rv = kue_init_locked(ifp); usbnet_unlock(un); return rv; } static int kue_ioctl_cb(struct ifnet *ifp, u_long cmd, void *data) { struct usbnet * const un = ifp->if_softc; switch (cmd) { case SIOCADDMULTI: case SIOCDELMULTI: //kue_init(ifp); kue_setiff(un); break; default: break; } return 0; } #ifdef _MODULE #include "ioconf.c" #endif USBNET_MODULE(kue)